GB2074065A - Water-soluble casting core - Google Patents
Water-soluble casting core Download PDFInfo
- Publication number
- GB2074065A GB2074065A GB8107309A GB8107309A GB2074065A GB 2074065 A GB2074065 A GB 2074065A GB 8107309 A GB8107309 A GB 8107309A GB 8107309 A GB8107309 A GB 8107309A GB 2074065 A GB2074065 A GB 2074065A
- Authority
- GB
- United Kingdom
- Prior art keywords
- core
- binder
- casting
- sodium aluminate
- mix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005266 casting Methods 0.000 title claims abstract description 24
- 239000011230 binding agent Substances 0.000 claims abstract description 39
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910001388 sodium aluminate Inorganic materials 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 19
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 9
- 239000002253 acid Substances 0.000 claims abstract description 5
- 238000005495 investment casting Methods 0.000 claims abstract description 5
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000004327 boric acid Substances 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 19
- 239000000919 ceramic Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 claims description 12
- 239000000243 solution Substances 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 4
- 239000003513 alkali Substances 0.000 claims description 4
- 239000003518 caustics Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 238000010304 firing Methods 0.000 claims description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000010959 steel Substances 0.000 claims description 4
- 239000004014 plasticizer Substances 0.000 claims description 3
- 239000012047 saturated solution Substances 0.000 claims description 3
- 239000001488 sodium phosphate Substances 0.000 claims description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 3
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 3
- 150000004645 aluminates Chemical class 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims description 2
- 238000004512 die casting Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000009826 distribution Methods 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000001746 injection moulding Methods 0.000 claims description 2
- 229910001234 light alloy Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims description 2
- 235000019359 magnesium stearate Nutrition 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 claims description 2
- 239000004576 sand Substances 0.000 claims description 2
- 238000007528 sand casting Methods 0.000 claims description 2
- 239000002002 slurry Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000004094 surface-active agent Substances 0.000 claims description 2
- 239000003232 water-soluble binding agent Substances 0.000 claims description 2
- 229910052845 zircon Inorganic materials 0.000 claims description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 claims description 2
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/10—Cores; Manufacture or installation of cores
- B22C9/105—Salt cores
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mold Materials And Core Materials (AREA)
Abstract
A core for use in investment casting comprises a ceramic material and a binder such as sodium aluminate which is soluble in water and stable up to such temperatures that the core is refractory above 800 DEG C. Such a core is manufactured by forming the mix of the ceramic material and binder into a granulated semi-dry powder which is then pressed in a die from which it is removed and dried and then fired before use. Alternatively the ceramic material and binder are mixed with an additional organic binder with the resultant mix being granulated and injected under pressure into a die. After removal from the die the core is fired to burn out the organic binder. When such cores are used they can be leached out after casting with a hot solution of dilute boric acid or other weak acid which acts to neutralise any sodium hydroxide formed.
Description
SPECIFICATION
Improvements in or relating to casting cores
The invention is concerned with improvements in or relating to casting cores and is particularly, but not exclusively, concerned with investment casting cores and methods of manufacturing same.
The ceramic cores presently used in investment casing, for example for the casting of turbine blades, etc. in the aerospace industry, are normally formed from a material or materials which is or are soluble in caustic alkali. The use of the latter however is not appropriate when it is desired to cast certain alloys because of chemical attack by the caustic alkali.
According to the present invention there is provided a core for use in a casting, said core being formed of a ceramic material and a binder which is stable up to such temperatures that the core is refractory above 800"C, and which is soluble in water.
Preferably the binder is sodium aluminate.
The present invention also provides a method of manufacturing a core for use in casting, said method comprising mixing a ceramic material with a binder which is soluble in water, and solidifying the mix to form a core which is refractory above temperatures of 800"C by virtue of the temperature stability of the binder.
Preferably the mix is formed as a granulated semi-dry powder and is pressed in a die to form the core. Alternatively, the mix is formed as a granulated powder and is mixed with an additional organic binder, the latter mix being granulated and injected under pressure into a die to form a core, the core subsequently being fired to remove the additional organic binder.
An embodiment of the present invention will now be described by way of example only.
A core for investment casting of light alloys comprises a ceramic grain, for example zircon or alumina, bound together with a water soluble binder. The latter preferably is sodium aluminate as this compound is stable upto 180000 and imparts stability to the formed core at temperatures well in excess of 100000.
In one method of manufacturing such a core, the ceramic grain is coated with a solution of sodium aluminate and sodium phosphate by mixing, together with a release agent such as magnesium stearate. After mixing, the paste formed is dried overnight, then recrushed to a sieve size of -60 mesh. This powder is then mixed with 7.5% volume by weight of a saturated solution of sodium aluminate and after thorough mixing in, for example, a z-blade mixer, the semi-dry powder is granulated and pressed in a steel or hard alloy die at a pressure of --t ton per square inch. The core is then removed from the die and dried.
Before use, the core is fired to 800"C for one ha If to one hour. Cores based on sodium aluminate are found to become slowly insoluble under normal conditions due to reaction with atmospheric H20 and C02 and this firing reconverts any hydrolysed and carbonated sodium aluminate back to the metal aluminate. The core is then ready for metal pouring, for example in a ceramic shell or resin-sand mould.
In an alternative manufacturing method, the ceramic grain having a particle size distribution to provide a good packing density, is given an initial coating of sodium aluminate as in the previous method. After drying the powder is recrushed and blended with a solution of a suitable organic binder and sodium aluminate.
This solution is prepared by firstly dissolving sodium aluminate in water, cooling and filtering. A known quantity of polyethylene glycol is melted and three parts by volume of the sodium aluminate solution are added to seven parts by volume of the molten polyethylene glycol with constant stirring.
The two liquids are found to be perfectly miscible.
Up to 0.5% of a suitable surfactant may be added to aid dispersion.
The coated ceramic grain is then added to the mixture prepared as in the preceding paragraph in a jacket-heated mixer and stirred constantly to give a filler loading of 70% by volume (greater than 80% by weight). After cooling, the mix is granulated and is injected under pressure using a heated barrel injection moulding machine into a steel or hard alloy die.
After removal from the die the core is fired to 800"C to burn out the organic binder and to convert the precipitated sodium aluminate into a dimensionally stable cementing agent for the ceramic grain. The rate of firing, especialiy over the range 0-500 C, is critical in ensuring that the organic component of the binder does not disrupt the core during burning out, and is dependent on the core size and shape. For certain applications it may be necessary to add a plasticizer, for example a phthalate, and/or a release agent such as a stearate, to the binder and ceramic powder mix.
After casting, the core is leached out in a hot solution of dilute boric acid or other weak acid. The acid is necessary to neutralize the sodium hydroxide produced by the reaction of the sodium aluminate and water and thus to prevent attack on the alloy.
When the sodium aluminate dissolves the core collapses and the ceramic grain slurry may be readily removed from the casting.
It is to be appreciated that the use of such a core is not restricted to investment casing and may find use in die casting, shell casting, and sand casting.
1. A core for use in casting, said core being formed of a ceramic material and a binder which is stable up to such temperatures that the core is refractory above 800"C, and which is soluble in water.
2. A core according to claim 1, wherein the binder is sodium aluminate.
3. A method of manufacturing a core for use in casting, said method comprising mixing a ceramic material with a binder which is soluble in water, and solidifying the mix to form a core which is refractory above a temperature of 800"C by virtue of the temperature stability of the binder.
4. A method according to claim 3, wherein the
**WARNING** end of DESC field may overlap start of CLMS **.
Claims (16)
1. A core for use in casting, said core being formed of a ceramic material and a binder which is stable up to such temperatures that the core is refractory above 800"C, and which is soluble in water.
2. A core according to claim 1, wherein the binder is sodium aluminate.
3. A method of manufacturing a core for use in casting, said method comprising mixing a ceramic material with a binder which is soluble in water, and solidifying the mix to form a core which is refractory above a temperature of 800"C by virtue of the temperature stability of the binder.
4. A method according to claim 3, wherein the mix is formed as a granulated semi-dry powder and is pressed in a die to form the core.
5. A method according to claim 4, wherein the mix is formed as the granulated semi-dry powder by mixing the ceramic material with a solution of sodium aluminate and sodium phosphate together with a release agent, so as to coat the ceramic material, the latter mix being dried, crushed to a powder, mixed with a saturated solution of sodium aluminate, and granulated.
6. A method according to claim 4 or 5, wherein the semi-dry powder is pressed in the die at a pressure of 4112 tons per square inch.
7. A method according to any of claims 3 to 6, wherein the core is subsequently fired.
8. A method according to claim 7, wherein the core is fired to a temperature of 800"C for a time of between one half hour and one hour.
9. A method according to claim 3, wherein the mix is formed as a granulated powder and is mixed with an additional organic binder, the latter mix being granulated and injected under pressure into a die to form a core, the core subsequently being fired to remove an additional organic binder.
10. A method according to claim 9, wherein the additional organic binder is formed into a solution with sodium aluminate prior to mixing with the granulated powder.
11. A method according to claim 10, wherein the organic binder is polyethylene glycol.
12. A method according to claim 10 or 11, wherein a plasticiser is added to the mix of the ceramic material and the binder.
13. A method according to any of claims 10-12 wherein a release agent is added to the mix of the ceramic material and the binder.
14. A core for use in casting according to claim 1 and substantially as hereinbefore described.
15. A method of manufacturing a core for use in casting substantially as hereinbefore described.
16. Any novel subject matter or combination including novel subject matter herein disclosed, whether or not within the scope of or relating to the same invention as any of the preceding claims.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB8107309A GB2074065B (en) | 1980-03-08 | 1981-03-09 | Water-soluble casting core |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB8007959 | 1980-03-08 | ||
| GB8107309A GB2074065B (en) | 1980-03-08 | 1981-03-09 | Water-soluble casting core |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| GB2074065A true GB2074065A (en) | 1981-10-28 |
| GB2074065B GB2074065B (en) | 1984-01-18 |
Family
ID=26274747
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GB8107309A Expired GB2074065B (en) | 1980-03-08 | 1981-03-09 | Water-soluble casting core |
Country Status (1)
| Country | Link |
|---|---|
| GB (1) | GB2074065B (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2624040A1 (en) * | 1987-12-08 | 1989-06-09 | Sahari Harri | PROCESS USING BINDING WATER-SOLUBLE MINERAL SALT TO PREPARE MOLDS AND CORES FOR METAL CASTING |
| US5178673A (en) * | 1991-04-12 | 1993-01-12 | Union Carbide Chemicals & Plastics Technology Corporation | Investment casting compositions and processes for the manufacture and use thereof |
| US5248552A (en) * | 1990-07-11 | 1993-09-28 | Advanced Plastics Partnership | Molding core |
| GB2269771A (en) * | 1992-07-30 | 1994-02-23 | Masaru Nemoto | Method of moulding using a core of non-sand material |
| USRE35334E (en) * | 1990-07-11 | 1996-09-24 | Advanced Plastics Partnership | Process for core removal from molded products |
| US5975189A (en) * | 1992-07-30 | 1999-11-02 | Suguru Nemoto | Method of fabricating a metallic article using a non-sand core |
| WO2019074401A1 (en) * | 2017-10-09 | 2019-04-18 | Общество С Ограниченной Ответственностью Научно-Производственная Фирма Адес | Method of producing readily removable high-temperature mold cores or molds |
| CN109678535A (en) * | 2019-01-03 | 2019-04-26 | 安徽应流久源核能新材料科技有限公司 | It is a kind of using powder as Water-soluble ceramic core of raw material and preparation method thereof |
| CN115477532A (en) * | 2022-10-12 | 2022-12-16 | 上海烟草机械新场铸造有限责任公司 | Preparation method of water-soluble precision ceramic core for casting aluminum alloy |
| WO2025189501A1 (en) * | 2024-03-14 | 2025-09-18 | 中国科学院金属研究所 | Hot-press-injection dual-wall-cooled ceramic core and manufacturing method therefor |
-
1981
- 1981-03-09 GB GB8107309A patent/GB2074065B/en not_active Expired
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2624040A1 (en) * | 1987-12-08 | 1989-06-09 | Sahari Harri | PROCESS USING BINDING WATER-SOLUBLE MINERAL SALT TO PREPARE MOLDS AND CORES FOR METAL CASTING |
| US5248552A (en) * | 1990-07-11 | 1993-09-28 | Advanced Plastics Partnership | Molding core |
| USRE35334E (en) * | 1990-07-11 | 1996-09-24 | Advanced Plastics Partnership | Process for core removal from molded products |
| US5178673A (en) * | 1991-04-12 | 1993-01-12 | Union Carbide Chemicals & Plastics Technology Corporation | Investment casting compositions and processes for the manufacture and use thereof |
| GB2269771A (en) * | 1992-07-30 | 1994-02-23 | Masaru Nemoto | Method of moulding using a core of non-sand material |
| GB2269771B (en) * | 1992-07-30 | 1996-05-22 | Masaru Nemoto | Method of moulding articles |
| US5975189A (en) * | 1992-07-30 | 1999-11-02 | Suguru Nemoto | Method of fabricating a metallic article using a non-sand core |
| WO2019074401A1 (en) * | 2017-10-09 | 2019-04-18 | Общество С Ограниченной Ответственностью Научно-Производственная Фирма Адес | Method of producing readily removable high-temperature mold cores or molds |
| CN109678535A (en) * | 2019-01-03 | 2019-04-26 | 安徽应流久源核能新材料科技有限公司 | It is a kind of using powder as Water-soluble ceramic core of raw material and preparation method thereof |
| CN115477532A (en) * | 2022-10-12 | 2022-12-16 | 上海烟草机械新场铸造有限责任公司 | Preparation method of water-soluble precision ceramic core for casting aluminum alloy |
| CN115477532B (en) * | 2022-10-12 | 2023-04-25 | 上海烟草机械新场铸造有限责任公司 | Preparation method of water-soluble precise ceramic core for casting aluminum alloy |
| WO2025189501A1 (en) * | 2024-03-14 | 2025-09-18 | 中国科学院金属研究所 | Hot-press-injection dual-wall-cooled ceramic core and manufacturing method therefor |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2074065B (en) | 1984-01-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3923525A (en) | Foundry compositions | |
| US20250242404A1 (en) | Casting elements and methods of making the same using low temperature solidification | |
| US4089692A (en) | Settable composition containing aluminum phosphate and method for preparing same | |
| CN108405794B (en) | A kind of hot core sand inorganic binder and preparation method thereof | |
| GB2074065A (en) | Water-soluble casting core | |
| MX2011000528A (en) | Salt-based cores and method for the production thereof. | |
| JP2005224833A (en) | Casting mold and its manufacturing method | |
| BR112018077220B1 (en) | CORE-CASE PARTICLES, METHOD FOR PRODUCING CORE-CASE PARTICLES, FILLING MATERIAL, MOLDABLE COMPOSITION FOR PRODUCING FEEDERS AND FEEDER | |
| US3203057A (en) | Process for making cores and molds, articles made thereby and binder compositions therefor | |
| US4552202A (en) | Alkali metal silicate solutions and method of forming foundry products using the solutions | |
| JP3239209B2 (en) | Manufacturing method of heating element for casting | |
| US3722574A (en) | Process of making magnesium oxide cores | |
| GB1115441A (en) | Improvements relating to the production of metal and alloy castings | |
| EP2260046A1 (en) | Compositions containing certain metallocenes and their uses | |
| EP1113890A1 (en) | Coating compositions | |
| US3615755A (en) | Method for making a mold using manganese carbonate | |
| CN104439040A (en) | Molding sand applied to copper alloy castings and preparation method of molding sand | |
| GB2105312A (en) | Moulding | |
| EP0462176A1 (en) | FIRE RESISTANT COATING FOR FIRE RESISTANT COATINGS. | |
| JP4403233B2 (en) | Casting core manufacturing method | |
| US3057740A (en) | Inorganic binder for refractory materials | |
| JPH05208241A (en) | Casting mold for precision casting of titanium or titanium alloy | |
| JPS62144847A (en) | Quickly collapsible casting mold | |
| JPH05353A (en) | Disintegrating agent of casting mold for casting light alloy, coated sand composition and casting mold | |
| US3050797A (en) | Water sensitive molds and cores of fast collapsibility |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PCNP | Patent ceased through non-payment of renewal fee |