GB2053798A - Flame resistant laminate and method of making it - Google Patents
Flame resistant laminate and method of making it Download PDFInfo
- Publication number
- GB2053798A GB2053798A GB8016783A GB8016783A GB2053798A GB 2053798 A GB2053798 A GB 2053798A GB 8016783 A GB8016783 A GB 8016783A GB 8016783 A GB8016783 A GB 8016783A GB 2053798 A GB2053798 A GB 2053798A
- Authority
- GB
- United Kingdom
- Prior art keywords
- web
- foil
- resin
- substrate
- flame retardant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title description 3
- 239000011888 foil Substances 0.000 claims abstract description 50
- 229920005989 resin Polymers 0.000 claims abstract description 38
- 239000011347 resin Substances 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 35
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000004593 Epoxy Substances 0.000 claims abstract description 14
- 239000003063 flame retardant Substances 0.000 claims abstract description 14
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 11
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims abstract description 8
- 239000004952 Polyamide Substances 0.000 claims abstract description 7
- 229920002647 polyamide Polymers 0.000 claims abstract description 7
- 235000013824 polyphenols Nutrition 0.000 claims abstract description 7
- 230000009970 fire resistant effect Effects 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011521 glass Substances 0.000 claims abstract description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000009738 saturating Methods 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 3
- 229920001807 Urea-formaldehyde Polymers 0.000 claims abstract description 3
- 229920006397 acrylic thermoplastic Polymers 0.000 claims abstract description 3
- 239000010425 asbestos Substances 0.000 claims abstract description 3
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 239000000919 ceramic Substances 0.000 claims abstract description 3
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 3
- 150000007974 melamines Chemical class 0.000 claims abstract description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 3
- 229920000728 polyester Polymers 0.000 claims abstract description 3
- 229910052895 riebeckite Inorganic materials 0.000 claims abstract description 3
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 claims abstract description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 8
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 239000003365 glass fiber Substances 0.000 claims description 3
- 239000000945 filler Substances 0.000 claims description 2
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 claims description 2
- 238000004026 adhesive bonding Methods 0.000 claims 1
- -1 lumber Substances 0.000 abstract description 6
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 239000004035 construction material Substances 0.000 abstract description 4
- 239000002984 plastic foam Substances 0.000 abstract description 3
- 239000011093 chipboard Substances 0.000 abstract description 2
- 239000011120 plywood Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 7
- 229920006122 polyamide resin Polymers 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 240000004885 Quercus rubra Species 0.000 description 2
- 235000009135 Quercus rubra Nutrition 0.000 description 2
- 229920003180 amino resin Polymers 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920001944 Plastisol Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000410 antimony oxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004999 plastisol Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229940117958 vinyl acetate Drugs 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/14—Layered products comprising a layer of metal next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/20—Layered products comprising a layer of metal comprising aluminium or copper
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/94—Protection against other undesired influences or dangers against fire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/306—Resistant to heat
- B32B2307/3065—Flame resistant or retardant, fire resistant or retardant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2311/00—Metals, their alloys or their compounds
- B32B2311/24—Aluminium
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
A flame retardant laminate comprising a flammable substrate, a metal foil adhered to a face of the substrate, and a resin-saturated fibrous web adhered to the foil, the foil being between the fibrous web and the substrate. The web is formed predominantly of fire resistant fibers, such as glass, ceramic, phenolic, carbon, and asbestos. The resin saturating the web is selected from among vinyl compounds, acrylics, polyesters, polyamides, poylimides, melamines, phenolics, ureaformaldehyde resins, epoxies, modified cellulosics, and the like. The foil may be of any suitable metal, such as aluminum, having a thickness up to several mils. The substrate may be a construction material such as lumber, plywood, pressed board, chip board, hard board, or an insulative plastic foam.
Description
SPECIFICATION
Flame resistant laminate and method of making it
This invention relates to providing fire resistance to flammable materials, and more particularly to
laminating layers of material to flammable substrates so as to protect the substrates from burning when
exposed to flame.
Flammability protection in construction materials is needed so that occupants of buildings, automotive
vehicles, airplanes, and the like are not exposed to an unnecessarily great hazard from the flammability of
the materials which surround them. Great strides have been made in recent years in the field of flammability
protection, in part due to more stringent building codes and improved testing criteria. Often, however, the
attainment of protection from flammability is achieved only with the sacrifice of other desirable qualities.
For example, nonburning structures made with metal plates suffer from their high weight, lack of
corrosion resistance, and difficulty of fabrication. Flame resistant fibrous compositions do not have great
durability and are difficult to decorate. Similarly, fibrous, cement, and gypsum boards are lacking in
durability and are very heavy when made thick enough to provide significant structural rigidity and strength.
Flame resistant paints are available to protect flammable substrates, but they often include toxic or
otherwise undesirable constituents. Paints without these undesirable constituents tend to lack durability.
It is an object of the present invention to overcome these problems by providing flame retardancy for
flammable construction materials, such as wood or plastic foam, without unduly increasing the weight of the
substrate and accompanied by a durable surface for the substrate. It is a further object to provide such flame
retardancy using readily available materials.
Afeature of the invention involves laminating to the substrate a metallic foil and a resin-saturated fibrous
web, the foil being between the substrate and the fibrous web.
Additional objects and features of the invention will be apparent from the following description, in which
reference is made to the accompanying drawing. The drawing is a partly perspective, partly cross-sectional
view of a flame retardant laminate according to this invention.
Referring to the drawing, the substrate 10 may be any type of construction material which can benefit from
being made fire resistant. Adhered to one face of substrate 10 is a layer of metallic foil 11. Adhered to the
face of foil 11, opposite the face adhered to substrate 10, is a resin-saturated fibrous web 12.
The substrate may be a material such as lumber, plywood, pressed board, chip board, or hard board,
having rigidity and structural strength. The substrate could be an insulating material, such as polystyrene
foam, urethane foam, or other plastic foams.
Foil 11 may be formed of any metal having a melting point sufficiently high such that it remains intact
when exposed to the heat of an open flame. However, in practice the foil is not exposed directly to flame
since it is shielded from flame by substrate 10, on one side, and by web 12, on the other. Foil 11 has a
thickness in the range between a fraction of a mil and several mils, and is formed of a metal, such as
aluminum, malleable enough to be processed into a foil of such thickness. Any suitable adhesive capable of
bonding metal foil to the substrate may be used for that purpose.
Fibrous web 12, which is saturated with a resin, serves the dual purpose of insulating the foil to protect it
when the laminate is exposed to flame, and providing a durable and decorative surface for the laminate. The
web may be a woven or non-woven material, and is formed predominantly of fire resistant fibers, such as
glass, ceramic, phenolic, carbon, and minerals, e.g., asbestos. Non-woven webs may be made by wet-laying
the fibers, as in a papermaking process, or by airlaying the fibers in a dry process. Preferably, the web is
formed of glass fibers having diameters in the range between one and fifteen microns.
The resin used to saturate web 12 may be of any suitable material, and is selected to meet the
requirements of particular applications. For example, a resin may be chosen to provide resistance to
ultraviolet light when outdoor exposure is intended, or to resist abrasion when that quality is required. The ,resin may also be selected for its decorative or decoratable qualities. While the resin need not necessarily be
non-burnable, flammability and heat resistance may be considered in choosing the resin employed. Resins
suitable for the purposes of this invention include vinyl compounds (e.g., vinylchloride, vinylacetate, and
vinylfluoride), acrylics, polyesters, polyamides, polimides, melamines, phenolics, urea-formaldehyde, epoxies, and modified cellulosics.
The resin may be applied to the fibrous web undiluted in any carrier, from solution, from a latex
dispersion, or frorn compounds such as plastisols or organisols. Any suitable adhesive may be used to bond
the dry resin-saturated fibrous web 12 to the foil 11. Alternatively, the web, while wet, can be applied to the
foil so that the resin, after drying, serves to bond the web and foil together. Preferably, the wet, saturated
web, the foil, and the substrate are arranged in face-to-face contact, and heat and pressure then applied to
the laminate for a time sufficient to cure the resin.
If desired, pigments may be added to the resin for decorative purposes. In addition, flame retardant fillers,
such as antimony oxide and hydrated alumina, may be added to the resin to increase its flame retardancy.
While it is believed that the invention is clear from the description above, it will be further illustrated by the
following examples.
Example I
A hardboard substrate, sold commercially under the trademark "Masonite", was coated on one face with a mixture of epichlorohydrin-bisphenol A based epoxy resin and polyamide resin at a thickness of five grams per square foot, the epoxy and polyamide being present in the ratio of three to one by weight. A layer of aluminum foil having a thickness of 0.8 mil was placed on the coated face of the substrate. The exposed face of the foil was covered with a coating of the epoxy/polyamide resin described above at a thickness of 20 grams per square foot A web composed of 90% glass fibers and 10% wood fibers, which had been made by a wet laid process, and having a basis weight of 60 grams per square meter was placed on the resin coating.
The resin was allowed to soak into the fibrous web, and completely saturate it, and then the exposed face of the web was covered with a fluorocarbon-coated release sheet. The laminate was placed in a heated press and pressed with a pressure of 10,000 pounds per square foot at 160 C for a period of seven minutes, at which time the resin was cured. The laminate was removed from the press and the release sheet pealed from the laminate.
Example lI A laminate was prepared in the manner described in Example I, except that the fibrous web had a basis weight of 30 grams per square meter, and the coating thickness of the epoxylpolyamide resin applied to the exposed face of the foil was ten grams per square foot.
Example 111 A laminate was prepared in the manner described in Example I, except that a brominated epoxy resin was used in place of the epoxy/polyamide resin, and the laminate was pressed for 20 minutes at 1800 C to cure the resin.
Example IV A laminate was prepared in the manner described in Example I, except that a phenolic resin was used in place of the epoxy/polyamide resin.
Example V
A laminate was prepared in the manner described in Example I, except that an intumescent aminoplast was used in place of the epoxy/polyamide resin.
The laminates of Examples I-V are made according to the present invention. For comparison purposes, laminates were made as described in the following four examples.
Example V/
A laminate was prepared in the manner described in Example I, except that no foil was employed. Instead, the 20 grams per square foot resin coating was applied directly to the Masonite substrate, and the fibrous web placed on this coating. The laminate was heated and pressed as described in Example I to cure the resin.
Example VIII A laminate was prepared in the manner described in Example I, except that the positions of the foil and fibrous web were reversed. The Masonite substrate was coated with the epoxy/polyamide resin at a thickness of 20 grams per square foot, and the fibrous web placed on the resin coating. After the resin soaked into the web, the foil layer was placed on the web. The laminate was heated and pressed as described in
Example I to cure the resin.
Example IX
A laminate was prepared in the manner described in Example I, except that a cellulosic web, i.e., a web made entirely of burnable cellulose fibers, having a basis weight of 34 grams per square meter was used in place of the glass/wood web.
In order to determine the relative resistance to burning of the laminates prepared as described in the preceding examples, a procedure was used as described by H.L. Vandersall in the "Journal of Paint
Technology", Volume 39, No. 51 1, Page 494(1967). According to this procedure a tunnel is employed having a length of two feet and a width of approximately 6 inches. The tunnel is inclined 28 from the horizontal and laminate samples are placed one at a time into the tunnel. As an ignition source, a Meeker burner is placed one and one-eighth inches from the bottom of each sample, and the gas flow is regulated to a constant 4.82 cubic feet per square inch. Each test is run for a period of four minutes and the maximum flame propagation down the tunnel is noted.
As reference materials, asbestos-cement board is given a defined rating of 0 and red oak floorboards are given a defined rating of 100. The "Flame Spread" rating for each sample is determined by the following equation: Flame Spread Rating = Ls La x100
Lo - Where
Ls= maximum flame travel for the samples La= maximum flame travel for the asbestos-cement board
Lo= maximum flame travel for the red oak boards Flammability test results
Example No.Sample Description Flame Spread
Rating
60 GSM web, epoxy/polyamide, foil 61
II 30 GSM web, epoxy/polyamide, foil 40 lil 60 GSM web, brominated epoxy, foil 79
IV 60 GSM web, phenolic, foil 95
V 60-GSM web, aminoplast, foil 48
VI No foil 135+
VII No fibrous web Board burned through
VIII Foil outside web Board burned through
IX Cellulosic web, epoxy/polyamide, foil Board burned through
It will be appreciated from these results that only those laminates having all the essential features of this invention, such as those of Examples I-V, show superior fire resistance. Those features include use of both a resin-saturated fibrous web and a metallic foil layer, locating the foil layer between the substrate and the fibrous web, and using a fibrous web consisting predominantly of fire resistant fibers.Where no foil is used (Example VI), or no fibrous web is used (Example VII), or the fibrous web is located between the foil and the substrate (Example VIII), or a burnable fibrous web is used (Example IX), fire resistance is severely diminished.
If the results of the tests involving the laminates of Examples I and II are compared, it will be noticed that the laminate of Example II had a more desirable Flame Spread Rating than did the one of Example I, even though the laminate of Example I includes a thicker fibrous web. The reason appears to be that the laminate of Example I also includes more resin saturating the web, and it is the burning resin which affected the flame spread ratings. Therefore, a further sample was prepared as described in the following example.
Example A laminate was prepared in the manner described in Example I, except that the fibrous web was saturated with a chlorinated polyester resin catalyzed with methylethyl ketone peroxide, a flame retardant resin, instead of with the epoxy/polyamide resin. In addition, the laminate was pressed to a pressure of 10,000 pounds per square foot for five minutes at a temperature of 1300C. When flame tested as described above, the laminate had a Flame Spread Rating of 22.
It will be seen, therefore, that while the invention provides significant fire resistance regardless of the resin employed, use of a flame retardant resin improves the fire resistance of the laminate.
The invention has been shown and described in preferred form only, and by way of example, and many variations may be made in the invention which will still be comprised within its spirit. It is understood, therefore, that the invention is not limited to any specific form or embodiment except insofar as such limitations are included in the appended claims.
Claims (15)
1. Aflame retardant laminate comprising:
(a) a flammable substrate,
(b) a metallic-foil adhered to a face of the substrate, and
(c) a resin-saturated fibrous web adhered to the face of the foil opposite the face of the latter which is adhered to the substrate, so that the foil is between the web and the substrate, the web consisting predominantly of fire resistant fibers.
2. A flame retardant laminate as defined in Claim 1 wherein the metallic foil has a thickness between a fraction of a mil and several mils.
3. Aflame retardant laminates as defined in Claim 1 wherein the metallic foil is aluminum foil.
4. A flame retardant laminate as defined in Claim 1 wherein the web is the product of a wet-laying papermaking process.
5. Aflame retardant laminates as defined in Claim 1 wherein the web is formed predominately of fibers selected from the group consisting of glass, ceramic, phenolic, carbon and asbestos.
6. A flame retardant laminate as defined in Claim 1 wherein the web is formed predominantly of glass fibers having a diameter between one and fifteen microns.
7. A flame retardant laminate as defined in Claim 1 wherein the resin saturating the web is selected from the group consisting of vinyl compounds, acrylics, polyesters, polyamides, polimides, melamines, phenolics, urea-formaldehyde, epoxies, and modified cellulosics.
8. Aflame retardant laminate as defined in Claim 1 wherein the resin saturating the web is a flame retardant resin.
9. Aflame retardant laminate as defined in Claim 1 including flame retardant fillers dispersed in the resin which saturates the web.
10. Aflame retardant laminate as defined in Claim 1 including a resin adhesive bonding the foil to the substrate.
11. A flame retardant laminate as defined in Claim 1 wherein the resin which saturates the web also bonds the web to the foil.
12. A flame retardant laminate as defined in Claim 1 wherein the resin which saturates the web has been cured by application to it of heat and pressure.
13. A method of forming a flame retardant laminate comprising the steps of: (a) applying a metallic foil to a face of a flammable substrate, and
(b) applying to the face of the foil opposite the face of the latter which faces the substrate a resin-saturated fibrous web, the web consisting predominantly of fire resistant fibers.
14. A method as defined in Claim 13 including the step of adhesively bonding the foil to the substrate, and bonding the fibrous web to the foil with the resin which saturates the web.
15. A method as defined in Claim 13 including the step of including a resin adhesive between the foil and the substrate, and subjecting the combined substrate, foil and resin-saturated web to heat and pressure in a direction perpendicular to the plane of the combination until the resin is cured.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US5419479A | 1979-07-02 | 1979-07-02 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| GB2053798A true GB2053798A (en) | 1981-02-11 |
Family
ID=21989376
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GB8016783A Withdrawn GB2053798A (en) | 1979-07-02 | 1980-05-21 | Flame resistant laminate and method of making it |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JPS5610453A (en) |
| FR (1) | FR2460204A1 (en) |
| GB (1) | GB2053798A (en) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0780224A3 (en) * | 1995-12-20 | 1998-11-04 | Röhm Gmbh | Insulating layers for fire resistant spaces |
| FR2797675A1 (en) * | 1999-08-18 | 2001-02-23 | Serge Bedet | Thermal insulating composite material, has foamed backed metal sheet applied to surface(s) of cotton-like layer of non-woven polyester fibres using cold solvent based adhesive |
| US6959514B1 (en) * | 1997-01-22 | 2005-11-01 | Pdg Domus Corporation | Molded wall panel and house construction |
| EP1795668A1 (en) | 2005-12-07 | 2007-06-13 | Berry Finance Nv | Floor panel with a fire-retardant layer |
| NL2008566C2 (en) * | 2012-03-29 | 2013-10-01 | Isobouw Systems Bv | FIRE-DELAYING INSULATING BUILDING PANEL. |
| CN104669715A (en) * | 2015-03-02 | 2015-06-03 | 黑龙江省森林保护研究所 | Flame-retardant composite material for forest fire prevention fire-proof cover as well as preparation method of composite material |
| WO2021003156A1 (en) | 2019-07-02 | 2021-01-07 | DDP Specialty Electronic Materials US, Inc. | Fire-retardant thermally insulating laminate |
| US20220049114A1 (en) * | 2019-02-11 | 2022-02-17 | Dow Global Technologies Llc | Fire retardant thermally insulating laminate |
| WO2024081790A1 (en) | 2022-10-14 | 2024-04-18 | Arclin Usa Llc | Fiberglass overlay with intumescent fire retardant coating |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58129036U (en) * | 1982-02-24 | 1983-09-01 | 三菱重工業株式会社 | supercharger bearing stand |
| JPS61293804A (en) * | 1985-06-21 | 1986-12-24 | Iwakuragumi Mokuzai Kk | Manufacture of particle board for shielding electromagnetic wave |
| CN103659948A (en) * | 2013-11-27 | 2014-03-26 | 湖州立方塑木新材料有限公司 | Machining process for flame-retarded and heat-insulation veneers |
| CN104029271B (en) * | 2014-06-26 | 2016-05-18 | 绥阳兴翰轮盘制造有限公司 | A kind of processing method of sorghum stalk particieboard |
| JP2018094861A (en) * | 2016-12-16 | 2018-06-21 | パナソニックIpマネジメント株式会社 | Wood/plastic composite board |
| EP4197775B1 (en) | 2021-12-16 | 2024-06-26 | Walki Group Oy | A building envelope |
-
1980
- 1980-05-21 GB GB8016783A patent/GB2053798A/en not_active Withdrawn
- 1980-06-27 FR FR8014357A patent/FR2460204A1/en active Granted
- 1980-07-01 JP JP8988480A patent/JPS5610453A/en active Pending
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0780224A3 (en) * | 1995-12-20 | 1998-11-04 | Röhm Gmbh | Insulating layers for fire resistant spaces |
| US6959514B1 (en) * | 1997-01-22 | 2005-11-01 | Pdg Domus Corporation | Molded wall panel and house construction |
| FR2797675A1 (en) * | 1999-08-18 | 2001-02-23 | Serge Bedet | Thermal insulating composite material, has foamed backed metal sheet applied to surface(s) of cotton-like layer of non-woven polyester fibres using cold solvent based adhesive |
| US8465821B2 (en) | 2005-12-07 | 2013-06-18 | Berry Finance N.V. | Floor panel with a fire-resistant coating |
| WO2007065481A1 (en) | 2005-12-07 | 2007-06-14 | Berry Finance Nv | Floor panel with a fire-resistant coating |
| RU2408769C2 (en) * | 2005-12-07 | 2011-01-10 | Бэрри Файнэнс Нв | Floor panels with fire-resistant layer |
| EP1795668A1 (en) | 2005-12-07 | 2007-06-13 | Berry Finance Nv | Floor panel with a fire-retardant layer |
| NL2008566C2 (en) * | 2012-03-29 | 2013-10-01 | Isobouw Systems Bv | FIRE-DELAYING INSULATING BUILDING PANEL. |
| EP2650118A1 (en) * | 2012-03-29 | 2013-10-16 | IsoBouw Systems B.V. | Fire retardant insulating construction panel |
| CN104669715A (en) * | 2015-03-02 | 2015-06-03 | 黑龙江省森林保护研究所 | Flame-retardant composite material for forest fire prevention fire-proof cover as well as preparation method of composite material |
| US20220049114A1 (en) * | 2019-02-11 | 2022-02-17 | Dow Global Technologies Llc | Fire retardant thermally insulating laminate |
| WO2021003156A1 (en) | 2019-07-02 | 2021-01-07 | DDP Specialty Electronic Materials US, Inc. | Fire-retardant thermally insulating laminate |
| WO2024081790A1 (en) | 2022-10-14 | 2024-04-18 | Arclin Usa Llc | Fiberglass overlay with intumescent fire retardant coating |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5610453A (en) | 1981-02-02 |
| FR2460204A1 (en) | 1981-01-23 |
| FR2460204B3 (en) | 1981-12-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100493535B1 (en) | Flame-retardant or incombustible decorative laminated sheet | |
| GB2053798A (en) | Flame resistant laminate and method of making it | |
| EP1266067B1 (en) | Roofing underlayment | |
| FI87322C (en) | ELDBESTAONDIGT LAMINAT | |
| US4315967A (en) | Magnesium oxycement/fibrous web composites | |
| US4681798A (en) | Fibrous mat facer with improved strike-through resistance | |
| NO157854B (en) | COMPOSITION MATERIALS INCLUDING A TRAFFIC MATERIAL IMPREGNATED WITH A HARDENABLE RESIN AND THERMOPLASTIC PARTICLES, PROCEDURE FOR MANUFACTURING THE COMPOSITION MATERIAL AND USING IT. | |
| JPH06328599A (en) | Composite sandwich panel having high- temperature 1100degrees combustibility and resistance to penetration | |
| RU2112845C1 (en) | Fire-resistant panel and method of its production | |
| EP1055513A1 (en) | Pre-preg and panel structure | |
| US3427216A (en) | Building material laminate | |
| US3510391A (en) | Perlite board bonded to organic plastic foam | |
| JP3840615B1 (en) | Makeup incombustible material | |
| JP3965635B1 (en) | Makeup incombustible material | |
| JPH1142737A (en) | Fireproof precious wood decorative sheet, its production, and fire proof precious wood decorative panel having the sheet bonded thereto | |
| KR100635935B1 (en) | Nonflammable panel and its manufacturing method | |
| JPH02199190A (en) | Application of impregnated mica paper composition for covering structural element,and structural element thus obtained | |
| JP3161975B2 (en) | Non-combustible decorative board | |
| CN114072242A (en) | Fire-proof heat-insulating laminate | |
| DE3024909A1 (en) | Incombustible building unit with combustible substrate - carrying metal film and resin-impregnated fabric of fireproof fibres | |
| JPH04175152A (en) | Wooden fireproof building material | |
| JPH09291643A (en) | Fireproof panel for building materials | |
| CA2340451A1 (en) | Foamed facer and insulation boards made therefrom | |
| KR820001410B1 (en) | Flame retardant plywood panel | |
| KR20160069962A (en) | Door having flame retardancy |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WAP | Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1) |