GB1567467A - Method of heating water - Google Patents
Method of heating water Download PDFInfo
- Publication number
- GB1567467A GB1567467A GB45545/76A GB4554576A GB1567467A GB 1567467 A GB1567467 A GB 1567467A GB 45545/76 A GB45545/76 A GB 45545/76A GB 4554576 A GB4554576 A GB 4554576A GB 1567467 A GB1567467 A GB 1567467A
- Authority
- GB
- United Kingdom
- Prior art keywords
- water
- aeration
- stages
- agents
- substances
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000008236 heating water Substances 0.000 title 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 81
- 238000005273 aeration Methods 0.000 claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims abstract description 31
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 25
- 230000003647 oxidation Effects 0.000 claims abstract description 13
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 13
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 52
- 239000000126 substance Substances 0.000 claims description 38
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 26
- 238000001179 sorption measurement Methods 0.000 claims description 25
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 22
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 12
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 11
- 239000001569 carbon dioxide Substances 0.000 claims description 8
- 238000005189 flocculation Methods 0.000 claims description 8
- 238000000926 separation method Methods 0.000 claims description 8
- -1 ammonium ions Chemical class 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- 230000016615 flocculation Effects 0.000 claims description 6
- 244000005700 microbiome Species 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 239000010802 sludge Substances 0.000 claims description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- 150000007513 acids Chemical class 0.000 claims description 4
- 150000001450 anions Chemical class 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 claims description 4
- 150000001768 cations Chemical class 0.000 claims description 4
- 239000007800 oxidant agent Substances 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 230000003311 flocculating effect Effects 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 3
- 229940122930 Alkalising agent Drugs 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 239000013543 active substance Substances 0.000 claims description 2
- 239000003463 adsorbent Substances 0.000 claims description 2
- 239000012752 auxiliary agent Substances 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 239000008394 flocculating agent Substances 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims description 2
- 239000002667 nucleating agent Substances 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims description 2
- 239000012286 potassium permanganate Substances 0.000 claims description 2
- 230000000063 preceeding effect Effects 0.000 claims description 2
- 238000001556 precipitation Methods 0.000 abstract description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000003651 drinking water Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000010808 liquid waste Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 102100030551 Protein MEMO1 Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000010170 biological method Methods 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 101150047813 memo1 gene Proteins 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1205—Particular type of activated sludge processes
- C02F3/1226—Particular type of activated sludge processes comprising an absorbent material suspended in the mixed liquor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/62—Heavy metal compounds
- C02F1/64—Heavy metal compounds of iron or manganese
- C02F1/645—Devices for iron precipitation and treatment by air
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/04—Aerobic processes using trickle filters
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/02—Softening water by precipitation of the hardness
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Water Treatment By Sorption (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
The water proceeds sequentially through a plurality of aeration stages of which each is connected to a delay and/or reaction chamber. After the aeration, the water remains in the delay and/or reaction chamber for establishment of equilibrium and, possibly, reaction with added agents and/or biological oxidation. This treatment is repeated in the following identical stages. Precipitation or reaction products are taken off from the delay and/or reaction chambers. In the apparatus for carrying out the process, the treatment stages are arranged one above the other and are connected together by branch pipes in such a manner that the water can run first through all odd-numbered and then through the even-numbered aeration stages and reaction chambers. A pump makes intensive treatment possible by connecting one after the other the odd and even treatment stages. The pump can be bypassed by gate valves and the throughput can be doubled by parallel operation of the odd and even treatment stages. Process and apparatus make possible softening to any desired degree of hardness, deacidification, biological oxidation and nitrification independently of variations in the throughput in volume per unit of time.
Description
(54) A METHOD OF TREATING WATER
(71) I, KLAUS HABERER, a Citizen of the Federal Republic of Germany, of
Nussbaumstrasse 4, 6200 Wiesbaden, The Federal Republic of Germany do hereby declare the invention for which I pray that a patent may be granted to me, and the method by which it is to be performed, to be particularly described in and by the following statement:
The invention relates to a method of treating water by the removal of carbonate hardness.
In some known methods, calcium carbonate is precipitated or there is an ion exchange. In view of the large water throughputs, these methods produce large amounts of solid or liquid waste substances which cause difficulties. It is particularly difficult to eliminate liquid waste, and even the removal of calcium carbonate sludge is complicated and expensive.
Calcium carbonate is precipitated in water treatment in accordance with the equation:
Ca(HCO3)2 + Ca(OH)2 = 2 CaCO3 + 2H2O by adding an equal quantity of calcium in hydroxide form. In order to reduce the hardness of the water by 2 mmol/l (11.2"d) at a throughput of 1000 m3/h; 3.6 tons of Ca(OH)2 is required and 9.6 tons of CaCO3 is precipitated daily. In order to reduce the waste problem, it is known for the calcium carbonate to be burnt in large furnaces and partly recycled. In a more recent method, Ca(OH)2 is replaced by caustic soda, which is usually more expensive.
Only half the amount of calcium carbonate is precipitated, but sodium ions enter the water (46 mg/e in the above example, if 3.9 tons/day of NaOH is added). But clearly the removal of organic substances from water is a prime concern in waste-water purification and in the treatment of surface water to produce drinking water. If the organic substances are biologically decomposable, they can be removed by biological methods. Such methods, however, are efficient only with an adequate oxygen supply, and they are therefore adversely affected by other oxygen-consuming processes such as the biological nitrification of ammonium ions, which uses a large amount of oxygen. If natural or man-produced organic substances are present, e.g. in surface water and underground water containing humic acid, conventional break-point chlorination for oxidizing ammonium ions results in the formation of chlorine compounds which are difficult to decompose and in some cases are a danger to health.
Attempts are therefore being made to oxidize ammonium ions biologically. However, ammonium oxidation by bacteria in biologically active filters comes to an end when the atmospheric oxygen is used up. The solubility of oxygen in water is very limited and the saturation concentration is about 10 mg/e. Biological nitrifications is frequently interfered with by organic substances in the water, which are preferentially decomposed by the micro-organisms. Organic substances which cannot be decomposed by biological means can be removed from the water by adsorption agents. Finally, many substances which are difficult to decompose can be converted into a more easily decomposable form by using stronger oxidizing agents.
According to the present invention I provide a method of treating water in which it passes alternately through an aeration stage and a reaction chamber, in the aeration stage the water is intensively aerated and in the reaction chamber the water is softened by removal of calcium carbonate together with the biological oxidation of organic substances and/or the biological oxidation of ammonium ions in the water.
During the intensive aeration for the purpose of calcium carbonate softening by carbonate hardness removal, the water is converted into a state where it is supersaturated with calcium carbonate. In its unstable state, the water is given the opportunity to precipitate calcium carbonate, thus again liberating carbon dioxide. The processes are then carried out again and repeated until the desired softening is obtained. For this purpose the water must be conveyed through reaction chambers after the aeration stage. Advantageously the calcium carbonate precipitation is accelerated by suitable methods, e.g. by providing catalysts. More particularly, substances can be added for use as crystal nuclei.
Organic substances and ammonium ions can be adsorbed by the successive use of different adsorption agents having different efficiency with respect to individual classes of substances, and also by using porous substances to which micro-organisms adhere and can grow. By means of a multi-stage suspended bed arrangement, pressure losses may be reduced to a minimum. The adsorption agents can be continuously withdrawn and replaced bv measured amounts of traditional adsorption agents, to ensure uniform quality of the product If the same adsorption agent is used in a number of stages, it can be supplied to the next higher stage and thus conveyed in counter-current to the water.
Intensive aeration also greatly assists the removal of volatile organic substances.
In order to improve the adsorption and biological decomposition. the pH in the initial stages can be advantageously altered by adding acid or alkali. Organic substances which are difficult to decompose can, if required, be converted into a biologically more decomposable form by adding suitable oxidizing agents. It may also be advantageous to use suitable catalysts.
The invention also provides devices for performing the method, characterised in that aeration stages and reaction chambers are disposed in economic and space-saving manner, so that a number of aeration and reaction stages are flowed through in free fall.
More particularly, the processes can be combined and suitably extended so as to be completely adapted to different processing requirements, depending on the quality of the water. and can also be supplemented by flocculation processes. There are also the following detailed advantages.
Undesired gases (excess CO. and HrS) and easily volatile organic substances (evilsmelling substances) are directly removed by intensive aeration. Multiple intensive aeration results in partial softening by removal of carbonate hardness and reduces the buffering of the water. At the same time iron and manganese are precipitated. If the water is made strongly alkaline with (a) alkali or (b) anion exchangers in the OH- form, naturally present magnesium is precipitated as the hydroxide, which has excellent flocculating properties. In case (b) anions (e.g. chloride) are additionally withdrawn. The withdrawal of organic substances by adsorption can be increased to a maximum by using various adsorption agents having different properties. The multiple intensive aeration facilitates the biological decomposition of organic substances and also enables higher amounts of ammonia to be nitrified.
The invention will be explained in detail with reference to the accompanying drawings. in which:
Figure 1 shows a device particularly suitable for softening by removal of carbonate hardness:
Figure 2 is a graph illustrating the calcium content. which decreases in the separate stages
Figure 3 is a diagrammatic side view of a device which is particularly suitable for oxidation. and
Figure 4 is a view in oblique perspective of the device in Figure 3.
The device in Figure 1 comprises individual aeration stages in a multistage reaction tower comprising suitable packing elements. Air enters each aeration stage at the top end and it is discharged at the bottom end. Reaction chambers are provided between the aeration stages; water enters the reaction chamber after leaving one aeration stage and before entering the next aeration stage.
In another feature of the invention, the water for treatment in an aeration column flows from the first aeration stage into a third and thence into the other odd-number stages with interposed reactors, after which the water flows through the even-number aeration stages, i.e. the second, fourth stage etc.. with interposed reactors, and the odd-number and even-number aeration stages are flowed through either in parallel or in sequence, after a single pumping operation.
In the device in Figure 1, raw water for softening is supplied by a raw-water pipe line 1 to an aeration tower 2 and flows through a distribution tray 3 into a first aeration stage BI, where air is sucked in through lateral aeration slots (not shown) and forms a large, constantly-changing boundary layer with water in aeration element 4 and produces a gas exchange. After travelling through each aeration element 4, the used-up air is liberated and the water, depleted in carbon dioxide and rich in oxygen, is discharged through a pipe line 6 into a separation reactor 7. More particularly, after travelling through the first aeration stage Bl, the water flows into the separation reactor Al, where calcium carbonate is deposited from the supersaturated solution and carbon dioxide is simultaneously liberated.
After being freed from supersaturated material, the water is returned from reactor 7 via return pipe lines 8 in the aeration tower 2. so that more carbon dioxide can be remove The water flows from reactor Al into aeration stage B111 and then through reactors A111, Av.
Avll through the subsequent odd-number aeration stages Bv, 13vl1 and Blx. 'Ihé cven-number stages Blx with reactor All, Blv with reactor Alv etc. can either be supplied with the same water subsequently, or else the installation can be operated so that the even-number aeration stages Bull, Blv etc. are supplied in parallel by the raw-water supply pipe line 1. This greatly reduces the softening effect by removal of carbonate hardness but doubles the throughput. The water flowing through the parallel-operating groups of aeration stages and reactors then enters a collecting vessel 13 and is then discharged via a
pure-water pipe line 14.
The substances deposited in the individual reactors Al, All etc. are discharged through
the sludge lines after opening the associated gate valves and, if required, are given sludge
treatment. In this manner, depending on requirements, the water for softening by removal of carbonate hardness can be conveyed through the required number of aeration stages and
reactors and thus brought to the required degree of hardness.
Figure 2 is a graph in which the free CO2 (in mg/f) is plotted against the carbonate
hardness (in memo1/4).
Normally, the water for softening by removal of carbonate hardness is in a state
represented by the equilibrium curve 20. Starting from a point 21, carbon dioxide is
removed by aeration and, assuming an easily-attainable gasification efficiency of n = 40% per stage. the water reaches an unstable stage represented by point 22. After calcium
carbonate has been separated and equimolar quantities of CO2 have simultaneously
formed, the water returns to a new equilibrium state denoted by point 23 i.e. is again in a
state described hv the equilibrium curve but contains less calcium carbonate. By means of
the individual aer'ltion stages, this process is repeated a number of time until the desired
final state at 24 is reached.
This method of softening by removal of carbonate hardness cannot give very soft water,
but excessively soft drinking water is thought by the World Health Organisation to be
undesirable for health reasons.
The device shown in Figure 3 has perforated trays disposed one above the other, through which air from a blower is conveyed upwards. According to the invention the water on the
trays flows at an angle to the air flow and then travels through reaction chambers before being supplied to the next perforated tray and downstream reaction chamber, so that it
flows in a zig-zag through the entire installation. Separation, sedimentation, adsorption and
flocculation processes can also occur in the reaction chambers; in the latter case, the solids are where possible held in a fluidized bed.
The device shown in Figure 3 is made up of similar elements each comprising a porous perforated aeration plate 31, and an adjacent reaction chamber having tapered walls 32. If required. two separation chambers can be placed in series.
A number of such elements (between four and twelve depending on the required output) is disposed one above the other so that the aeration plates are horizontal and spaced vertically at equal intervals apart, whereas the adjoining separation chambers are offset by a right angle from one stage to another. The aeration plates are sealed to produce a multi-stage closed column 34. The resulting aeration tower is sealed by surge tanks at the water inlet and outlet, so that no air can escape laterally. As shown in Figure 4 one outer separation chamber has a lateral overflow edge 35 adjacent a small channel 36 supplying water to the perforated plate of the stage that is below it.
A bell vessel (Figure 3) having an outlet 37 is disposed above the top aeration plate.
Water flows horizontally over the plates. and a large excess of air is blown in from below by a compressor through a distribution chamber 38. and this flows through the porous plates and out at the top outlet 37.
As a result of the cross-current aeration, an intensive gas exchange occurs with formation of a foam layer at each plate. oxygen being absorbed and carbon dioxide being liberated.
The water travels through a foam trap and then enters reaction chamber 32 and then, if required, enters reaction chamber 33 where the reactions occur, measured amounts of substances being added if required. The reaction products are discharged laterally.
The following processes can occur in the multi-stage reactor.
In the case of relatively hard water, calcium carbonate is deposited, resulting in partial softening by removal of carbonate hardness, in the upper stages, crystal nuclei such as fine sand being added if required after the CO2 has been discharged. After travelling through the first-stage reactor, the water is supplied to the aeration plate of the stage below, so that carbon dioxide can be discharged and calcium carbonate can be subsequently separated as often as required.
In the case of softer water or water partially softened by removal of carbonate hardness, the lower stages can be used for flocculation, exchange or adsorption processes or biological oxidation. For this purpose, flocculating agents, flocculating auxiliary agents, active carbon having various degrees of activity, other adsorption agents and other substances having a porous structure on which micro-organisms adhere and can grow, are placed in the inlet channels to the aeration plates or in the reaction chambers themselves. Acids or alkalis or cation and anion exchangers in the H+ or OH forms can be added so as to alter the conditions of the water medium in the optimum manner for the required processes. In the last mentioned case, there is a simultaneous reduction of cations, or anoins (i.e. calcium or chloride ions). Agents, having a relatively intensive oxidizing effect e.g. KMnO4, H2O2 and ozone, can convert organic substances which are difficult to decompose into a form in which they can be biologically decomposed.
Operation in a fluidized bed in an upward stream of water eliminates high resistances and enables the throughput to be increased and the added chemicals to be more efficiently used.
Normally, the process is not critically affected if small residues of reaction products penetrate into the downstream stages. For increased efficiency, it may even be advantageous for small proportions of adsorption agents, flocs and other substances to be carried directly into the downstream stages, whereas most of the industrial auxiliary substances and reaction products are withdrawn directly, either continuously or periodically, from the individual stages. In addition, a low-power pump can be used to introduce the adsorbing or biologically active substances in the opposite direction to the flow of water in the reaction stage above and thus produce a counter-current effect, whereby the fresh adsorption agent is first supplied to the last stage, in which the water has been most completly processed, and then, as it becomes increasingly charged, makes contact with increasingly contaminated water.
The entire processing operation occurs in free fall without intermediate pumps, and needs to be followed only by a filtration step. The quality of the product can be kept constant, since substances can be added or discharged continuously or in small steps.
WHAT I CLAIM IS:
1. A method of treating water in which it passes alternately through an aeration stage and a reaction chamber, in the aeration stage the water is intensively aerated and in the reaction chamber the water is softened by removal of calcium carbonate together with the biological oxidation of organic substances and/or the biological oxidation of ammonium ions in the water.
2. The method according to claim 1, characterised in that the water is intensively aerated and converted into a state in which it is supersaturated with calcium carbonate; the water in its unstable state is given the opportunity to precipitate calcium carbonate, and the method is repeated until the desired softening is obtained.
3. The method according to claim 1, characterised in that the separation of calcium carbonate is accelerated by catalysts that are nucleating agents.
4. The method according to any preceeding claim, characterised in that adsorption processes are simultaneously carried out.
5. The method according to claim 4, characterised in that use is made of adsorption agents having different partial selectivity or of porous substances to which micro-organisms adhere and can grow.
6. The method according to claim 5, characterised in that the adsorption agents or porous substances are held in an upward flowing stream in a suspended bed.
7. The method according to claims 4 to 6. characterised in that the pH of the medium is altered between the individual aeration stages.
8. The method according to any of claims 1 to 7, characterised in that the reaction products or the loaded adsorbents are continuously or periodically withdrawn.
9. The method according to claims 4 or 7. characterised in that an adsorption agent is supplied in the opposite direction to the water, to achieve a counter-current effect.
10. The method according to any of claims 1 to 9. characterised in that flocculation agents, auxiliary flocculation agents, acids, alkalis or oxidizing agents are also supplied.
11. The method according to any one of claims 7 to 9, characterised in that the pH of the medium is altered by adding ion exchangers in the H+ or OH form.
12. A device for performing the method according to any of the preceding claims, characterised in that the aeration stages and reaction chambers are disposed in economic and space-saving manner so that a number of aeration and reaction stages are flowed through in free fall and repeated pumping is avoided.
13. The device according to claim 12, characterised in that the individual aeration stages
**WARNING** end of DESC field may overlap start of CLMS **.
Claims (1)
- **WARNING** start of CLMS field may overlap end of DESC **.the first-stage reactor, the water is supplied to the aeration plate of the stage below, so that carbon dioxide can be discharged and calcium carbonate can be subsequently separated as often as required.In the case of softer water or water partially softened by removal of carbonate hardness, the lower stages can be used for flocculation, exchange or adsorption processes or biological oxidation. For this purpose, flocculating agents, flocculating auxiliary agents, active carbon having various degrees of activity, other adsorption agents and other substances having a porous structure on which micro-organisms adhere and can grow, are placed in the inlet channels to the aeration plates or in the reaction chambers themselves. Acids or alkalis or cation and anion exchangers in the H+ or OH forms can be added so as to alter the conditions of the water medium in the optimum manner for the required processes. In the last mentioned case, there is a simultaneous reduction of cations, or anoins (i.e. calcium or chloride ions). Agents, having a relatively intensive oxidizing effect e.g. KMnO4, H2O2 and ozone, can convert organic substances which are difficult to decompose into a form in which they can be biologically decomposed.Operation in a fluidized bed in an upward stream of water eliminates high resistances and enables the throughput to be increased and the added chemicals to be more efficiently used.Normally, the process is not critically affected if small residues of reaction products penetrate into the downstream stages. For increased efficiency, it may even be advantageous for small proportions of adsorption agents, flocs and other substances to be carried directly into the downstream stages, whereas most of the industrial auxiliary substances and reaction products are withdrawn directly, either continuously or periodically, from the individual stages. In addition, a low-power pump can be used to introduce the adsorbing or biologically active substances in the opposite direction to the flow of water in the reaction stage above and thus produce a counter-current effect, whereby the fresh adsorption agent is first supplied to the last stage, in which the water has been most completly processed, and then, as it becomes increasingly charged, makes contact with increasingly contaminated water.The entire processing operation occurs in free fall without intermediate pumps, and needs to be followed only by a filtration step. The quality of the product can be kept constant, since substances can be added or discharged continuously or in small steps.WHAT I CLAIM IS:1. A method of treating water in which it passes alternately through an aeration stage and a reaction chamber, in the aeration stage the water is intensively aerated and in the reaction chamber the water is softened by removal of calcium carbonate together with the biological oxidation of organic substances and/or the biological oxidation of ammonium ions in the water.2. The method according to claim 1, characterised in that the water is intensively aerated and converted into a state in which it is supersaturated with calcium carbonate; the water in its unstable state is given the opportunity to precipitate calcium carbonate, and the method is repeated until the desired softening is obtained.3. The method according to claim 1, characterised in that the separation of calcium carbonate is accelerated by catalysts that are nucleating agents.4. The method according to any preceeding claim, characterised in that adsorption processes are simultaneously carried out.5. The method according to claim 4, characterised in that use is made of adsorption agents having different partial selectivity or of porous substances to which micro-organisms adhere and can grow.6. The method according to claim 5, characterised in that the adsorption agents or porous substances are held in an upward flowing stream in a suspended bed.7. The method according to claims 4 to 6. characterised in that the pH of the medium is altered between the individual aeration stages.8. The method according to any of claims 1 to 7, characterised in that the reaction products or the loaded adsorbents are continuously or periodically withdrawn.9. The method according to claims 4 or 7. characterised in that an adsorption agent is supplied in the opposite direction to the water, to achieve a counter-current effect.10. The method according to any of claims 1 to 9. characterised in that flocculation agents, auxiliary flocculation agents, acids, alkalis or oxidizing agents are also supplied.11. The method according to any one of claims 7 to 9, characterised in that the pH of the medium is altered by adding ion exchangers in the H+ or OH form.12. A device for performing the method according to any of the preceding claims, characterised in that the aeration stages and reaction chambers are disposed in economic and space-saving manner so that a number of aeration and reaction stages are flowed through in free fall and repeated pumping is avoided.13. The device according to claim 12, characterised in that the individual aeration stagesare disposed in an aeration tower comprising packing elements, or larger aeration elements.14. The device according to claim 13, characterised in that gate valves are provided for the purpose of parallel operation between odd-number and even-number aeration stages.15. The device according to claim 13 or claim 14, characterised in that all the separating reaclors are provided with valves whereby sludge can be evacuated through common sludge lines A method of alternately softening water ond/or biological oxidation and nitrification of water substantially as described herein and shown in the figures of the accompanying drawings.17. A device for carrying out the method of claim I constructed and adapted to operate substantillly as described herein and shown in the figures of the accompanying drawings.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE2551902A DE2551902C2 (en) | 1975-11-19 | 1975-11-19 | Process for optional partial softening (decarbonisation) and / or biological oxidation and nitrification of water |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| GB1567467A true GB1567467A (en) | 1980-05-14 |
Family
ID=5962111
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GB45545/76A Expired GB1567467A (en) | 1975-11-19 | 1976-11-02 | Method of heating water |
Country Status (7)
| Country | Link |
|---|---|
| AT (1) | AT357950B (en) |
| CH (1) | CH630323A5 (en) |
| DE (1) | DE2551902C2 (en) |
| FR (1) | FR2332236A1 (en) |
| GB (1) | GB1567467A (en) |
| IT (1) | IT1063813B (en) |
| NL (1) | NL7611903A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1241140A3 (en) * | 2001-03-12 | 2003-09-24 | VTA Technologies GmbH | Process for reducing scaling while collecting and drawing off water |
| WO2016166775A3 (en) * | 2015-04-16 | 2016-11-24 | Council Of Scientific & Industrial Research | A device for groundwater iron removal and the process thereof |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2414025A1 (en) * | 1978-01-10 | 1979-08-03 | Mallet Entreprise Gle Const | Nitrification of water for public consumption to remove ammonia cpds. - using nitrifying bacteria and oxygen-contg. gas |
| NL8202536A (en) * | 1982-06-23 | 1984-01-16 | Csm Suiker | METHOD AND APPARATUS FOR MAKING CALCIUM-RICH WASTE WATER SUITABLE FOR ANAEROBIC FERMENTATION. |
| DE3912060C2 (en) * | 1989-04-13 | 1997-08-07 | Messer Griesheim Gmbh | Process for treating wastewater with high COD loads by circulating oxygen / oxygen-rich gas, removing part of the CO¶2¶ and returning oxygen to the circuit |
Family Cites Families (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1278957B (en) * | 1963-06-13 | 1968-09-26 | Heinz Henke | Process for treating water |
| DE2332150B2 (en) * | 1973-06-25 | 1978-08-10 | Vereinigte Kesselwerke Ag, 4000 Duesseldorf | System for aerating water |
-
1975
- 1975-11-19 DE DE2551902A patent/DE2551902C2/en not_active Expired
-
1976
- 1976-10-27 FR FR7632318A patent/FR2332236A1/en active Granted
- 1976-10-27 NL NL7611903A patent/NL7611903A/en not_active Application Discontinuation
- 1976-11-02 GB GB45545/76A patent/GB1567467A/en not_active Expired
- 1976-11-05 CH CH1399776A patent/CH630323A5/en not_active IP Right Cessation
- 1976-11-11 IT IT2922376A patent/IT1063813B/en active
- 1976-11-16 AT AT850376A patent/AT357950B/en not_active IP Right Cessation
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1241140A3 (en) * | 2001-03-12 | 2003-09-24 | VTA Technologies GmbH | Process for reducing scaling while collecting and drawing off water |
| WO2016166775A3 (en) * | 2015-04-16 | 2016-11-24 | Council Of Scientific & Industrial Research | A device for groundwater iron removal and the process thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| FR2332236A1 (en) | 1977-06-17 |
| CH630323A5 (en) | 1982-06-15 |
| FR2332236B3 (en) | 1979-07-13 |
| DE2551902C2 (en) | 1986-05-22 |
| IT1063813B (en) | 1985-02-18 |
| AT357950B (en) | 1980-08-11 |
| NL7611903A (en) | 1977-05-23 |
| ATA850376A (en) | 1979-12-15 |
| DE2551902A1 (en) | 1977-06-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3904518A (en) | Waste water treatment process | |
| US5707514A (en) | Water treating method and apparatus treating waste water by using ion exchange resin | |
| EP0025589B1 (en) | Process and apparatus for the biological treatment of aqueous waste in a pure oxygen-activated sludge/ozone system | |
| US4069148A (en) | Industrial waste water treatment process | |
| US3268443A (en) | Process for the treatment of waste liquors with flocculating agent recovery | |
| US3377271A (en) | Process for the treatment of waste-containing waters | |
| US4183808A (en) | Phosphate removal from wastewater | |
| US3278423A (en) | Process for the treatment of aqueous crude effluent liquors from coal carbonizing plants | |
| US4029574A (en) | Process and apparatus for the purification of organically contaminated sewage | |
| US3409545A (en) | Waste treatment process and process and apparatus for recovering lime | |
| EP0362978A1 (en) | Process for treating caustic cyanide metal wastes | |
| US5573670A (en) | Method for treatment of waste water by activated sludge process | |
| JPH04349997A (en) | Treatment of organic waste water | |
| GB1567467A (en) | Method of heating water | |
| US4539119A (en) | Process for the treatment of waste and contaminated waters with improved recovery of aluminum and iron flocculating agents | |
| KR0126883Y1 (en) | Large scale sewage treatment facilities | |
| CN212269808U (en) | Reverse osmosis strong brine processing system | |
| CS222653B2 (en) | Method of cleaning industrial refuse waters containing oxidable impurities organic as well anorganic and device for executing the same | |
| JP2022527826A (en) | Methods and Systems for Reducing Total Carbon Consumption in the Generation of Low Chemical Oxygen Demand Treatment Streams | |
| EP0040946B1 (en) | Ozonization system for drinking water disinfection | |
| JP3087914B2 (en) | Aeration treatment equipment | |
| SU1130539A1 (en) | Method for purifying effluents | |
| JPS59173199A (en) | Biological treatment of waste water containing dithionic acid and ammonia | |
| JPS62225294A (en) | Biological denitrification device | |
| CN212025116U (en) | System for be used for handling high ammonia-nitrogen concentration waste water and flue gas desulfurization dust removal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PS | Patent sealed | ||
| PCNP | Patent ceased through non-payment of renewal fee |