[go: up one dir, main page]

EP4587542A1 - Machine à laver et procédé de lavage - Google Patents

Machine à laver et procédé de lavage

Info

Publication number
EP4587542A1
EP4587542A1 EP23753883.0A EP23753883A EP4587542A1 EP 4587542 A1 EP4587542 A1 EP 4587542A1 EP 23753883 A EP23753883 A EP 23753883A EP 4587542 A1 EP4587542 A1 EP 4587542A1
Authority
EP
European Patent Office
Prior art keywords
reservoir
washing machine
liquid detergent
washing
fragrance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23753883.0A
Other languages
German (de)
English (en)
Inventor
Stephen Norman Batchelor
Andrew David Green
David Moorfield
Alyn James Parry
Jeremy Robert Westwell
Robert Iain Whitlow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever Global IP Ltd
Unilever IP Holdings BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever Global IP Ltd, Unilever IP Holdings BV filed Critical Unilever Global IP Ltd
Publication of EP4587542A1 publication Critical patent/EP4587542A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0026Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/37Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of metering of detergents or additives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/02Devices for adding soap or other washing agents
    • D06F39/022Devices for adding soap or other washing agents in a liquid state

Definitions

  • a laundry liquid formulation comprising a structured liquid and an encapsulated fragrance is more stable in an auto-dosing environment as the dose of fragrance is more even than for unstructured liquids.
  • a method for cleaning fabric comprising filling a reservoir of a washing machine with from 80ml to 3000ml of a liquid detergent comprising an external structurant and an encapsulated fragrance and conducting a washing cycle which draws a portion of the liquid detergent from the reservoir and leaves at least 20ml in the reservoir.
  • a consumer may conduct a number of washing cycles before needing to add further liquid detergent to the reservoir.
  • a reservoir is sufficient to conduct five or more washes and potentially up to 20 or more depending on the size of the reservoir in the washing machine and also the dose to be used for each washing cycle.
  • Typical physical stresses include temperature (where the temperature of the interior of the washing machine in the vicinity of the reservoir can easily reach above 50°C and higher), and agitation due to the washing cycle as well as periods of non-use where the detergent may sit in the reservoir for long periods without any agitation at all.
  • the liquid detergent comprises from 0.001 to 5% wt. encapsulated fragrance.
  • encapsulated fragrance By this is meant the weight of the encapsulated fragrance I combination with the capsule in which it is contained.
  • compositions of the invention may have their rheology further modified by use of one or more external structurants which form a structuring network within the composition.
  • external structurants include crystallizable glycerides such as hydrogenated castor oil; microfibrous cellulose and citrus pulp fibre.
  • crystallizable glycerides such as hydrogenated castor oil; microfibrous cellulose and citrus pulp fibre.
  • the presence of an external structurant may provide shear thinning rheology and may also enable materials such as encapsulates and visual cues to be suspended stably in the liquid.
  • the composition preferably comprises a crystallizable glyceride.
  • the crystallizable glyceride is useful in forming an external structuring system as described in WO2011/031940, the contents of which, in particular as regards manufacture of the External Structuring System (ESS) are incorporated by reference.
  • ESS External Structuring System
  • the ESS of the present invention preferably comprises: (a) crystallizable glyceride(s); (b) alkanolamine; (c) anionic surfactant; (d) additional components; and (e) optional components. Each of these components is discussed in detail below.
  • Crystallizable glyceride(s) of use herein preferably include "Hydrogenated castor oil” or "HCO".
  • HCO as used herein most generally can be any hydrogenated castor oil, provided that it is capable of crystallizing in the ESS premix.
  • Castor oils may include glycerides, especially triglycerides, comprising C10 to C22 alkyl or alkenyl moieties which incorporate a hydroxyl group. Hydrogenation of castor oil to make HCO converts double bonds, which may be present in the starting oil as ricinoleyl moieties, to convert ricinoleyl moieties to saturated hydroxyalkyl moieties, e.g., hydroxystearyl.
  • the HCO herein may, in some embodiments, be selected from: trihydroxystearin; dihydroxystearin; and mixtures thereof.
  • the HCO may be processed in any suitable starting form, including, but not limited those selected from solid, molten and mixtures thereof.
  • HCO is typically present in the ESS of the present invention at a level of from about 2 percent to about 10 percent, from about 3 percent to about 8 percent, or from about 4 percent to about 6 percent by weight of the structuring system.
  • the corresponding percentage of hydrogenated castor oil delivered into a finished laundry detergent product is below about 1.0 percent, typically from 0.1 percent to 0.8 percent.
  • Useful HCO may have the following characteristics: a melting point of from about 40 degrees centigrade to about 100 degrees centigrade, or from about 65 degrees centigrade to about 95 degrees C; and/or Iodine value ranges of from 0 to about 5, from 0 to about 4, or from 0 to about 2.6.
  • the melting point of HCO can measured using either ASTM D3418 or ISO 11357; both tests utilize DSC: Differential Scanning Calorimetry.
  • HCO of use in the present invention includes those that are commercially available.
  • Non-limiting examples of commercially available HCO of use in the present invention include:
  • HCO THIXCIN(R) from Rheox, Inc.
  • the source of the castor oil for hydrogenation to form HCO can be of any suitable origin, such as from Brazil or India.
  • castor oil is hydrogenated using a precious metal, e.g., palladium catalyst, and the hydrogenation temperature and pressure are controlled to optimize hydrogenation of the double bonds of the native castor oil while avoiding unacceptable levels of dehydroxylation.
  • the invention is not intended to be directed only to the use of hydrogenated castor oil.
  • Any other suitable crystallizable glyceride(s) may be used.
  • the structurant is substantially pure triglyceride of 12-hydroxystearic acid. This molecule represents the pure form of a fully hydrogenated triglyceride of 12-hydrox-9-cis-octadecenoic acid.
  • the composition of castor oil is rather constant, but may vary somewhat. Likewise hydrogenation procedures may vary.
  • Any other suitable equivalent materials, such as mixtures of triglycerides wherein at least 80 percent wt. is from castor oil, may be used.
  • Exemplary equivalent materials comprise primarily, or consist essentially of, triglycerides; or comprise primarily, or consist essentially of, mixtures of diglycerides and triglycerides; or comprise primarily, or consist essentially of, mixtures of triglyerides with diglycerides and limited amounts, e.g., less than about 20 percent wt. of the glyceride mixtures, of monoglyerides; or comprise primarily, or consist essentially of, any of the foregoing glycerides with limited amounts, e.g., less than about 20 percent wt., of the corresponding acid hydrolysis product of any of said glycerides.
  • Crystallizable glyceride(s) of use in the present invention may have a melting point of from about 40 degrees centigrade to about 100 degrees centigrade.
  • the external structurant is present at from 0.1 to 5% wt. of the composition.
  • Non-ionic surfactant are discussed in Non-ionic Surfactants: Organic Chemistry edited by Nico M. van Os (Marcel Dekker 1998), Surfactant Science Series published by CRC press.
  • Preferred non-ionic surfactants are alkoxylate, preferably ethoxylated
  • Preferred non-ionic surfactant are alcohol ethoxylates and methyl ester ethoxylates, with C10-C18 alkyl chains.
  • Commonly used in laundry liquid compositions are C12-C15 alcohol ethoxylates having a straight or branched chain alkyl group having 12 to 15 carbon atoms and containing an average of 5 to 12EO units per molecule.
  • a preferred example is C12-C15 alcohol ethoxylates with a mole average of 7 to 9 ethoxylate units. Ethoxy units may be partially replaced by propoxy units in anionic and non-ionic surfactants.
  • Linear saturated or mono-unsaturated C20 and C22 alcohol ethoxylate may also be present.
  • the weight fraction of sum of 018 alcohol ethoxylate’ 1020 and C22 alcohol ethoxylate’ is greater than 10.
  • the C16/18 alcohol ethoxylate contains less than 15wt%, more preferably less than 8 wt%, most preferably less than 5wt% of the alcohol ethoxylate polyunsaturated alcohol ethoxylates.
  • a polyunsaturated alcohol ethoxylate contains a hydrocarbon chains with two or more double bonds.
  • C16/18 alcohol ethoxylates may be synthesised by ethoxylation of an alkyl alcohol, via the reaction:.
  • the alkyl alcohol may be produced by transesterification of the triglyceride to a methyl ester, followed by distillation and hydrogenation to the alcohol. The process is discussed in Journal of the American Oil Chemists' Society. 61 (2): 343-348 by Kreutzer, II. R.
  • Preferred alkyl alcohol for the reaction is oleyl alcohol with in an iodine value of 60 to 80, preferably 70 to 75, such alcohol are available from BASF, Cognis, Ecogreen.
  • the ethoxylation reactions are base catalysed using NaOH, KOH, or NaOCHs.
  • catalyst which provide narrower ethoxy distribution than NaOH, KOH, or NaOCHs.
  • these narrower distribution catalysts involve a Group II base such as Ba dodecanoate; Group II metal alkoxides; Group II hyrodrotalcite as described in W02007/147866. Lanthanides may also be used.
  • Such narrower distribution alcohol ethoxylates are available from Azo Nobel and Sasol.
  • q 10
  • greater than 70 wt.% of the alcohol ethoxylate should consist of ethoxylate with 5, 6, 7, 8, 9 10, 11 , 12, 13, 14 and 15 ethoxylate groups.
  • a preferred ether sulfate is of the formula:
  • R2 is selected from saturated, monounsaturated and polyunsaturated linear C16 and
  • the mono-unsaturation is preferably in the 9 position of the chain, where the carbons are counted from the ethoxylate bound chain end.
  • the double bond may be in a cis or trans configuration (oleyl or elaidyl), but is preferably cis.
  • R2 is selected from saturated C16, saturated C18 and monounsaturated C18. More preferably, the saturated C16 is at least 90% wt. of the C16 content linear alkyl. As regards the C18 content, it is preferred that the predominant C18 moiety is C18:1 , more preferably C18:1(A9). Preferably, the proportion of monounsaturated C18 constitutes at least 50% wt. of the total C16 and C18 alkyl ether sulphate surfactant.
  • the C16 alcohol ethoxylate surfactant comprises at least 2% wt. and more preferably, from 4% of the total C16 and C18 alkyl ether sulphate surfactant.
  • the composition comprises a mixture of the C16/18 sourced material for the alkyl ether sulphate as well as the more traditional C12 alkyl chain length materials it is preferred that the total C16/18 alkyl ether sulphate content should comprise at least 10% wt. of the total alkyl ether sulphate, more preferably at least 50%, even more preferably at least 70%, especially preferably at least 90% and most preferably at least 95% of alkyl ether sulphate in the composition.
  • Ether sulfate may be synthesised by the sulphonation of the corresponding alcohol ethoxylate.
  • the alcohol ethoxylate may be produced by ethoxylation of an alkyl alcohol.
  • the alkyl alcohol used to produced the alcohol ethoxylate may be produced by transesterification of the triglyceride to a methyl ester, followed by distillation and hydrogenation to the alcohol. The process is discussed in Journal of the American Oil Chemists' Society. 61 (2): 343-348 by Kreutzer, II. R.
  • Preferred alkyl alcohol for the reaction is oleyl alcohol with an iodine value of 60 to 80, preferably 70 to 75, such alcohol are available from BASF, Cognis, Ecogreen.
  • the ethoxylation reactions are base catalysed using NaOH, KOH, or NaOCHs.
  • catalyst which provide narrower ethoxy distribution than NaOH, KOH, or NaOCHs.
  • these narrower distribution catalysts involve a Group II base such as Ba dodecanoate; Group II metal alkoxides; Group II hyrodrotalcite as described in
  • a preferred methyl ester ethoxylate surfactant is of the form:
  • R3COO is a fatty acid moiety, such as oleic, stearic, palmitic.
  • Fatty acid nomenclature is to describe the fatty acid by 2 numbers A:B where A is the number of carbons in the fatty acid and B is the number of double bonds it contains.
  • oleic is 18: 1
  • stearic is 18:0
  • palmitic 16:0 The position of the double bond on the chain may be given in brackets, 18:1 (9) for oleic, 18:2 (9,12) for linoleic where 9 if the number of carbons from the COOH end.
  • n is the mole average number of ethoxylates.
  • Methyl Ester Ethoxylates are described in chapter 8 of Biobased Surfactants (Second Edition) Synthesis, Properties, and Applications Pages 287-301 (AOCS press 2019) by
  • MEE may be produced the reaction of methyl ester with ethylene oxide, using catalysts based on calcium or magnesium. The catalyst may be removed or left in the MEE.
  • An alternative route to preparation is transesterification reaction of a methyl ester or esterification reaction of a carboxylic acid with a polyethylene glycol that is methyl terminated at one end of the chain.
  • the methyl ester may be produced by transesterification reaction of methanol with a triglyceride, or esterification reaction of methanol with a fatty acid.
  • Transesterification reactions of a triglyceride to fatty acid methyl esters and glycerol are discussed in Fattah et al (Front. Energy Res., June 2020, volume 8 article 101) and references therein.
  • Common catalysts for these reactions include sodium hydroxide, potassium hydroxide, and sodium methoxide. Esterase and lipases enzyme may also be used.
  • Triglycerides occur naturally in plant fats or oils, preferred sources are rapeseed oil, castor oil, maize oil, cottonseed oil, olive oil, palm oil, safflower oil, sesame oil, soybean oil, high steric/high oleic sunflower oil, high oleic sunflower oil, non-edible vegetable oils, tall oil and any mixture thereof and any derivative thereof.
  • the oil from trees is called tall oil.
  • Used food cooking oils may be utilised.
  • Triglycerides may also be obtained from algae, fungi, yeast or bacteria. Plant sources are preferred.
  • Distillation and fractionation process may be used in the production of the methyl ester or carboxylic acid to produce the desired carbon chain distribution.
  • Preferred sources of triglyceride are those which contain less than 35%wt polyunsaturated fatty acids in the oil before distillation, fractionation, or hydrogenation.
  • Fatty acid and methyl ester may be obtained from Oleochemical suppliers such as Wilmar, KLK Oleo, Unilever oleochemical Indonesia. Biodiesel is methyl ester and these sources may be used.
  • ESB When ESB is MEE preferably has a mole average of from 8 to 30 ethoxylate groups (EO), more preferably from 10 to 20. The most preferred ethoxylate comprises 12 to 18EO.
  • EO ethoxylate groups
  • At least 10% wt., more preferably at least 30% wt. of the total C18:1 MEE in the composition has from 9 to 11 EO, even more preferably at least 10wt% is exactly 10EO.
  • at least 10 wt.% of the MEE should consist of ethoxylate with 9, 10 and 11 ethoxylate groups.
  • the methyl ester ethoxylate preferably has a mole average of from 8 to 13 ethoxylate groups (EO).
  • EO ethoxylate groups
  • the most preferred ethoxylate has a mol average of from 9 to 11 EO, even more preferably 10EO.
  • the MEE has a mole average of 10EO then at least 10 wt.% of the MEE should consist of ethoxylate with 9, 10 and 11 ethoxylate groups.
  • At least 40wt% of the total MEE in the composition is C18:1.
  • the MEE component also comprises some C16 MEE.
  • the total MEE component comprises from 5 to 50% wt. total MEE, C16 MEE.
  • the C16 MEE is greater than 90wt%, more preferably greater than 95wt% 016:0.
  • the total MEE component comprises less than 15% wt, more preferably less than 10wt%, most preferably less than 5wt% total MEE of polyunsaturated C18, i.e. C18:2 and C18:3.
  • C18:3 is present at less than 1 wt%, more preferably less than 0.5wt%, most preferably essentially absent.
  • the levels of polyunsaturation may be controlled by distillation, fractionation or partial hydrogenation of the raw materials (triglyceride or methyl ester) or of the MEE.
  • the C18:0 component is less than 10wt% by weight of the total MEE present.
  • the components with carbon chains of 15 or shorter comprise less than 4wt% by weight of the total MEE present.
  • a particularly preferred MEE has 2 to 26 wt.% of the MEE C16:0 chains, 1 to 10 wt.% C18:0 chains, 50 to 85 wt.% C18:1 chains and 1 to 12 wt.% C18:2 chains.
  • Preferred sources for the alkyl groups for the MEE include methyl ester derived from distilled palm oil and distilled high oleic methyl ester derived from palm kernel oil, partially hydrogenated methyl ester of low euric rapeseed oil, methyl ester of high oleic sunflower oil, methyl ester of high oleic safflower oil and methyl ester of high oleic soybean oil.
  • High Oleic oils are available from DuPont (Plenish high oleice soybean oil), Monsanto (Visitive Gold Soybean oil), Dow (Omega-9 Canola oil, Omega-9 sunflower oil), the National Sunflower Association and Oilseeds International.
  • the methyl ester ethoxylate comprises from 0.1 to 95% wt. of the composition methyl ester ethoxylate. More preferably the composition comprises from 2 to 40% MEE and most preferably from 4 to 30% wt. MEE. Preferably, the composition comprises at least 50% wt. water but this depends on the level of total surfactant and is adjusted accordingly.
  • composition may comprise further surfactants and preferably other anionic and/or non-ionic surfactants, for example alkyl ether sulphates or alcohol ethoxylates comprising C12 to C18 alkyl chains.
  • surfactant sources comprise C18 chains, it is preferred that at least 30% wt of the total C18 surfactant is a methyl ester ethoxylate surfactant.
  • Anionic surfactant weights are calculated as the protonated form.
  • Non edible plant oils may be used and are preferably selected from the fruit and seeds of Jatropha curcas, Calophyllum inophyllum, Sterculia feotida, Madhuca indica (mahua), Pongamia glabra (koroch seed), Linseed, Pongamia pinnata (karanja), Hevea brasiliensis (Rubber seed), Azadirachta indica (neem), Camelina sativa, Lesquerella fendleri, Nicotiana tabacum (tobacco), Deccan hemp, Ricinus communis L. (castor), Simmondsia chinensis (Jojoba), Eruca sativa.
  • Primary sugars are obtained from cane sugar or sugar beet, etc., and may be fermented to form bioethanol.
  • the bioethanol is then dehydrated to form bio-ethylene which then undergoes olefin methathesis to form alkenes.
  • These alkenes are then processed into linear alcohols either by hydroformylation or oxidation.
  • Biomass for example forestry products, rice husks and straw to name a few may be processed into syngas by gasification. Through a Fischer Tropsch reaction these are processed into alkanes, which in turn are dehydrogenated to form olefins. These olefins may be processed in the same manner as the alkenes described above [primary sugars].
  • the pyrolyzed oils are cracked to form ethylene which is then processed to form the required alkenes by olefin metathesis. These are then processed into linear alcohols as described above [primary sugars].
  • Waste oils such as used cooking oil can be physically separated into the triglycerides which are split to form linear fatty acids and then linear alcohols as described above.
  • the used cooking oil may be subjected to the Neste Process whereby the oil is catalytically cracked to form bio-ethylene. This is then processed as described above.
  • Methane capture methods capture methane from landfill sites or from fossil fuel production.
  • the methane may be formed into syngas by gasification.
  • the syngas may be processed as described above whereby the syngas is turned into methanol (Fischer Tropsch reaction) and then olefins before being turned into linear alcohols by hydroformylation oxidation.
  • the syngas may be turned into alkanes and then olefins by Fischer Tropsch and then dehydrogenation.
  • Carbon dioxide may be captured by any of a variety of processes which are all well known.
  • the carbon dioxide may be turned into carbon monoxide by a reverse water gas shift reaction and which in turn may be turned into syngas using hydrogen gas in an electrolytic reaction.
  • the syngas is then processed as described above and is either turned into methanol and/or alkanes before being reacted to form olefins.
  • the captured carbon dioxide is mixed with hydrogen gas before being enzymatically processed to form ethanol. This is a process which has been developed by Lanzatech. From here the ethanol is turned into ethylene and then processed into olefins and then linear alcohols as described above.
  • the above processes may also be used to obtain the C16/18 chains of the C16/18 alcohol ethoxylate and/or the C16/18 ether sulfates.
  • the weight ratio of total non-ionic surfactant to total alkyl ether sulphate surfactant is from 0.5 to 2, preferably from 0.7 to 1.5, most preferably 0.9 to 1.1.
  • the weight ratio of total C16/18 non-ionic surfactant to linear alkyl benzene sulphonate, where present, is from 0.1 to 2, preferably 0.3 to 1 , most preferably 0.45 to 0.85.
  • Textiles can include woven fabrics, non-woven fabrics, and knitted fabrics; and can include natural or synthetic fibres such as silk fibres, linen fibres, cotton fibres, polyester fibres, polyamide fibres such as nylon, acrylic fibres, acetate fibres, and blends thereof including cotton and polyester blends.
  • liquid in the context of this invention denotes that a continuous phase or predominant part of the composition is liquid and that the composition is flowable at 15°C and above. Accordingly, the term “liquid” may encompass emulsions, suspensions, and compositions having flowable yet stiffer consistency, known as gels or pastes.
  • the viscosity of the composition is preferably from 200 to about 10,000 mPa.s at 25°C at a shear rate of 21 sec 1 . This shear rate is the shear rate that is usually exerted on the liquid when poured from a bottle.
  • Pourable liquid detergent compositions preferably have a viscosity of from 200 to 1 ,500 mPa.s, preferably from 200 to 700 mPa.s.
  • a composition according to the invention may suitably have an aqueous continuous phase.
  • aqueous continuous phase is meant a continuous phase which has water as its basis.
  • the composition comprises at least 50% wt. water and more preferably at least 70% wt. water.
  • the composition comprises a mixture of the C16/18 sourced material for the alkyl ether sulphate as well as the more traditional C12 alkyl chain length materials it is preferred that the C16/18 alkyl ether sulphate should comprise at least 10% wt. of the total alkyl ether sulphate, more preferably at least 50%, even more preferably at least 70%, especially preferably at least 90% and most preferably at least 95% of alkyl ether sulphate in the composition.
  • the alcohol ethoxylate may be provided in a single raw material component or by way of a mixture of components.
  • the composition comprises a mixture of the C16/18 sourced material for the alcohol ethoxylate as well as the more traditional C12 alkyl chain length materials it is preferred that the C16/18 alcohol ethoxylate should comprise at least 10% wt. total alcohol ethoxylate, more preferably at least 50%, even more preferably at least 70%, especially preferably at least 90% and most preferably at least 95% of the alcohol ethoxylate in the composition.
  • the selection and amount of surfactant is such that the composition and the diluted mixture are isotropic in nature.
  • the liquid detergent composition comprises a polyamine as an anti-redeposition polymer to stabilize the soil in the wash solution thus preventing redeposition of the soil.
  • Suitable soil release polymers for use in the invention include alkoxylated polyamine, preferably alkoxylated polyethyleneimines.
  • Polyethyleneimines are materials composed of ethylene imine units -CH2CH2NH- and, where branched, the hydrogen on the nitrogen is replaced by another chain of ethylene imine units.
  • Preferred alkoxylated polyethyleneimines for use in the invention have a polyethyleneimine backbone of about 300 to about 10000 weight average molecular weight (M w ). The polyethyleneimine backbone may be linear or branched.
  • the alkoxylation may typically be ethoxylation or propoxylation, or a mixture of both. Where a nitrogen atom is alkoxylated, a preferred average degree of alkoxylation is from 10 to 30, preferably from 15 to 25 alkoxy groups per modification.
  • a preferred material is ethoxylated polyethyleneimine, with an average degree of ethoxylation being from 10 to 30, preferably from 15 to 25 ethoxy groups per ethoxylated nitrogen atom in the polyethyleneimine backbone.
  • the polyamine is an alkoxylated cationic or zwitterionic di or polyamine polymer, wherein the positive charge is provided by quaternisation of the nitrogen atoms of the amines, and the anionic groups (where present) by sulphation or sulphonation of the alkoxylated group.
  • the alkoxylate is selected from propoxy and ethoxy, most preferably ethoxy.
  • the polymer contains 2 to 10, more preferably 2 to 6, most preferably 3 to 5 quaternised nitrogen amines.
  • the alkoxylate groups are selected from ethoxy and propoxy groups, most preferably ethoxy.
  • the polymer contains ester (COO) or acid amide (CONH) groups within the structure, preferably these groups are placed, so that when all the ester or acid amide groups are hydrolysed, at least one, preferably all of the hydrolysed fragments has a molecular weight of less than 4000, preferably less than 2000, most preferably less than 1000.
  • the polymer is of the form:
  • the aminocarboxylate is present in the composition at from 0.1 to 15%wt., more preferably 0.1 to 10% wt., even more preferably 0.3 to 5 % wt., still more preferably 0.8 to 3% wt., and most preferably 1 to 2.5 % wt. (by weight of the composition).
  • the sodium salt of methyl glycine diacetic acid is preferred. Especially preferred is the trisodium salt of MGDA.
  • MGDA can be partially or preferably fully neutralized with the respective alkali metal.
  • an average of from 2.7 to 3 COOH groups per molecule of MGDA is neutralized with alkali metal, preferably with sodium.
  • Suitable commercial sources of MGDA in the form of the trisodium salt are TRI LON® M available from BASF and Dissolvine® M-40 from Nouryon.
  • the detergent compositions may also optionally contain relatively low levels of organic detergent builder or sequestrant material.
  • organic detergent builder or sequestrant material examples include the alkali metal, citrates, succinates, malonates, carboxymethyl succinates, carboxylates, polycarboxylates and polyacetyl carboxylates. Specific examples include sodium, potassium and lithium salts of oxydisuccinic acid, mellitic acid, benzene polycarboxylic acids, and citric acid.
  • DEQUESTTM organic phosphonate type sequestering agents sold by Monsanto and alkanehydroxy phosphonates.
  • organic builders include the higher molecular weight polymers and copolymers known to have builder properties.
  • such materials include appropriate polyacrylic acid, polymaleic acid, and polyacrylic/polymaleic acid copolymers and their salts, for example those sold by BASF under the name SOKALANTM.
  • the organic builder materials may comprise from about 0.5 percent to 20 wt percent, preferably from 1 wt percent to 10 wt percent, of the composition.
  • the preferred builder level is less than 10 wt percent and preferably less than 5 wt percent of the composition.
  • the liquid laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate.
  • the laundry detergent formulation is not built i.e. contain less than 1 wt.% of builder.
  • a preferred sequestrant is HEDP (1 - Hydroxyethylidene -1 ,1 ,-diphosphonic acid), for example sold as Dequest 2010.
  • Dequest(R) 2066 Diethylenetriamine penta(methylene phosphonic acid or Heptasodium DTPMP.
  • the composition comprises less than 0.5% wt. phosphonate based sequestrant and more preferably less than 0.1% wt. phosphonate based sequestrant.
  • the composition is free from phosphonate based sequestrant.
  • the composition comprises hydroxamate.
  • hydroxamate Whenever either the term 'hydroxamic acid' or 'hydroxamate' is used, this encompasses both hydroxamic acid and the corresponding hydroxamate (salt of hydroxamic acid), unless indicated otherwise.
  • Hydroxamic acids are a class of chemical compounds in which a hydroxylamine is inserted into a carboxylic acid.
  • the general structure of a hydroxamic acid is the following: (Formula 1 ) in which R 1 is an organic residue, for example alkyl or alkylene groups.
  • R 1 is an organic residue, for example alkyl or alkylene groups.
  • the hydroxamic acid may be present as its corresponding alkali metal salt, or hydroxamate.
  • the preferred salt is the potassium salt.
  • hydroxamates may conveniently be formed from the corresponding hydroxamic acid by substitution of the acid hydrogen atom by a cation:
  • L + is a monovalent cation for example the alkali metals (e.g. potassium, sodium), or ammonium or a substituted ammonium.
  • the hydroxamic acid or its corresponding hydroxamate has the structure: (Formula 3) wherein R 1 is a straight or branched C4-C20 alkyl, or a straight or branched substituted C4-C20 alkyl, or a straight or branched C4-C20 alkenyl, or a straight or branched substituted C4-C20 alkenyl, or an alkyl ether group CH3 (CH2)n (EO) m wherein n is from 2 to 20 and m is from 1 to 12, or a substituted alkyl ether group CH3 (CH2)n (EO) m wherein n is from 2 to 20 and m is from 1 to 12, and the types of substitution include one or more of NH2, OH, S, -O- and COOH, and R 2 is selected from hydrogen and a moiety that forms part of a cyclic structure with a branched R 1 group.
  • the preferred hydroxamates are those where R 2 is Hydrogen and R 1 is Cs to C14 alkyl, preferably normal alkyl, most preferably saturated.
  • hydroxamic acids include lysine hydroxamate HCI, methionine hydroxamate and norvaline hydroxamate and are commercially available.
  • the hydroxamate is thought to act by binding to metal ions that are present in the soil on the fabric. This binding action, which is, in effect, the known sequestrant property of the hydroxamate is not, in itself, of any use to remove the soil from the fabric.
  • the key is the "tail" of the hydroxamate i.e. the group R 1 minus any branching that folds back onto the amate nitrogen via group R 2 .
  • the tail is selected to have an affinity for the surfactant system.
  • the soil removal ability of an already optimised surfactant system is further enhanced by the use of the hydroxamate as it, in effect, labels the difficult to remove particulate material (clay) as "soil” for removal by the surfactant system acting on the hydroxamate molecules now fixed to the particulates via their binding to the metal ions embedded in the clay type particulates.
  • the non-soap detersive surfactants will adhere to the hydroxamate, leading overall to more surfactants interacting with the fabric, leading to better soil release.
  • the hydroxamic acids act as a linker molecule facilitating the removal and suspension of the particulate soil from the fabric into a wash liquor and thus boosting the primary detergency.
  • the hydroxamates have a higher affinity for transition metals, like iron, than for alkaline earth metals, for example calcium and magnesium, therefore the hydroxamic acid primarily acts to improve the removal of soil on fabric, especially particulate soils, and not additionally as a builder for calcium and magnesium.
  • a preferred hydroxamate is the 80 percent solids coco hydroxamic acid available under the trade name RK853 from Axis House.
  • the corresponding Potassium salt is available from Axis House under the trade name RK852.
  • Axis house also supply the coco hydroxamic acid as a 50 percent solids material under the trade name RK858.
  • the 50 percent coco hydroxamate potassium salt is available as RK857.
  • Another preferred material is RK842, an Alkyl hydroxamic acid made from Palm Kernel Oil, from Axis House.
  • the composition preferably comprises an enzyme selected from cellulase, a protease and an amylase/mannase mixture.
  • Lipoclean ® Lipoclean ®, Whitzyme ® Stainzyme®, Stainzyme Plus®, Natalase ®, Mannaway ®, Amplify ® Xpect ®, Celluclean ® (Novozymes), Biotouch (AB Enzymes), Lavergy ® (BASF).
  • Detergent enzymes are discussed in W02020/186028(Procter and Gamble), W02020/200600 (Henkel), W02020/070249 (Novozymes), W02021/001244 (BASF) and WO2020/259949 (Unilever).
  • a nuclease enzyme is an enzyme capable of cleaving the phosphodiester bonds between the nucleotide sub-units of nucleic acids and is preferably a deoxyribonuclease or ribonuclease enzyme.
  • proteases hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains.
  • suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases; aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred.
  • the term "subtilases" refers to a sub-group of serine protease according to Siezen et al. , Protein Engng.
  • Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate.
  • the subtilases may be divided into 6 sub divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and W009/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO 89/06279 and protease PD138 described in (WO 93/18140).
  • Bacillus lentus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and W009/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus lichen
  • proteases may be those described in WO 92/175177, WO 01/016285, WO 02/026024 and WO 02/016547.
  • trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO 89/06270, WO 94/25583 and WO 05/040372, and the chymotrypsin proteases derived from Cellumonas described in WO 05/052161 and WO 05/052146.
  • subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and W009/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140).
  • the subsilisin is derived from Bacillus, preferably Bacillus lentus, B. alkalophilus, B.
  • subtilis B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii as described in US 6,312,936 Bl, US 5,679,630, US 4,760,025, US7,262,042 and WO 09/021867.
  • subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.
  • Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A/S).
  • Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alphaamylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO00/060060.
  • amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
  • CelluzymeTM Commercially available cellulases include CelluzymeTM, CarezymeTM, CellucleanTM, EndolaseTM,RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation). CellucleanTM is preferred.
  • the composition comprises a lipase.
  • Lipases are lipid esterase enzymes and the terms lipid esterase and lipase are used herein synonymously.
  • the composition preferably comprises from 0.0005 to 0.5 wt.%, preferably from 0.005 to 0.2 wt.% of a lipase.
  • Cleaning lipid esterases are discussed in Enzymes in Detergency edited by
  • the lipid esterase may be selected from lipase enzymes in E.C. class 3.1 or 3.2 or a combination thereof.
  • the cleaning lipid esterases is selected from:
  • Triacylglycerol lipases E.C. 3.1.1.3
  • Wax-ester hydrolase (E.C. 3.1.1.50)
  • Triacylglycerol lipases (E.C. 3.1.1.3) are most preferred.
  • Suitable triacylglycerol lipases can be selected from variants of the Humicola lanuginosa (Thermomyces lanuginosus) lipase.
  • Other suitable triacylglycerol lipases can be selected from variants of Pseudomonas lipases, e.g., from P. alcaligenes or P. pseudoalcaligenes (EP 218272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P.
  • wisconsinensis (WO 96/12012), Bacillus lipases, e.g., from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
  • Suitable carboxylic ester hydrolases can be selected from wild-types or variants of carboxylic ester hydrolases endogenous to B. gladioli, P. fluorescens, P. putida, B. acidocaldarius, B. subtilis, B. stearothermophilus, Streptomyces chrysomallus, S. diastatochromogenes and Saccaromyces cerevisiae.
  • Suitable cutinases can be selected from wild-types or variants of cutinases endogenous to strains of Aspergillus, in particular Aspergillus oryzae, a strain of Alternaria, in particular Alternaria brassiciola, a strain of Fusarium, in particular Fusarium solani, Fusarium solani pisi, Fusarium oxysporum, Fusarium oxysporum cepa, Fusarium roseum culmorum, or Fusarium roseum sambucium, a strain of Helminthosporum, in particular Helminthosporum sativum, a strain of Humicola, in particular Humicola insolens, a strain of Pseudomonas, in particular Pseudomonas mendocina, or Pseudomonas putida, a strain of Rhizoctonia, in particular Rhizoctonia solani, a strain of Streptomyces, in particular
  • the cutinase is selected from variants of the Pseudomonas mendocina cutinase described in WO 2003/076580 (Genencor), such as the variant with three substitutions at I178M, F180V, and S205G.
  • the cutinase is a wild-type or variant of the six cutinases endogenous to Coprinopsis cinerea described in H. Kontkanen et al, App. Environ.
  • the cutinase is a wild-type or variant of the two cutinases endogenous to Trichoderma reesei described in W02009007510 (VTT).
  • the cutinase is derived from a strain of Humicola insolens, in particular the strain Humicola insolens DSM 1800.
  • Humicola insolens cutinase is described in WO 96/13580 which is hereby incorporated by reference.
  • the cutinase may be a variant, such as one of the variants disclosed in WO 00/34450 and WO 01/92502.
  • Preferred cutinase variants include variants listed in Example 2 of WO 01/92502.
  • Preferred commercial cutinases include Novozym 51032 (available from Novozymes, Bagsvaerd, Denmark).
  • the sterol esterase is the Melanocarpus albomyces sterol esterase described in H. Kontkanen et al, Enzyme Microb Technol., 39, (2006), 265-273.
  • Suitable wax-ester hydrolases may be derived from Simmondsia chinensis.
  • the lipid esterase is preferably selected from lipase enzyme in E.C. class 3.1.1.1 or 3.1.1.3 or a combination thereof, most preferably E.C.3.1.1.3.
  • Examples of EC 3.1.1.3 lipases include those described in WIPO publications WO 00/60063, WO 99/42566, WO 02/062973, WO 97/04078, WO 97/04079 and US 5,869,438.
  • Preferred lipases are produced by Absidia reflexa, Absidia corymbefera, Rhizmucor miehei, Rhizopus deleman Aspergillus niger, Aspergillus tubigensis, Fusaqum oxysporum, Fusarium heterosporum, Aspergillus oryzea, Penicilium camembertii, Aspergillus foetidus, Aspergillus niger, Thermomyces lanoginosus (synonym: Humicola lanuginosa) and Landerina penisapora, particularly Thermomyces lanoginosus. Certain preferred lipases are supplied by Novozymes under the tradenames.
  • Lipolase®, Lipolase Ultra®, Lipoprime®, Lipoclean® and Lipex® registered tradenames of Novozymes
  • LIPASE P "AMANO®” available from Areario Pharmaceutical Co. Ltd., Nagoya, Japan
  • AMANO-CES® commercially available from Toyo Jozo Co., Tagata, Japan
  • Chromobacter viscosum lipases from Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A, and Diosynth Co., Netherlands, and other lipases such as Pseudomonas gladioli.
  • suitable lipases include the "first cycle lipases" described in WO 00/60063 and U.S. Patent 6,939,702 Bl, preferably a variant of SEQ ID No. 2, more preferably a variant of SEQ ID No. 2 having at least 90% homology to SEQ ID No. 2 comprising a substitution of an electrically neutral or negatively charged amino acid with R or K at any of positions 3, 224, 229, 231 and 233, with a most preferred variant comprising T23 IR and N233R mutations, such most preferred variant being sold under the tradename Lipex® (Novozymes).
  • lipases can be used in combination (any mixture of lipases can be used). Suitable lipases can be purchased from Novozymes, Bagsvaerd, Denmark; Areario Pharmaceutical Co. Ltd., Nagoya, Japan; Toyo Jozo Co., Tagata, Japan; Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A; Diosynth Co., Oss, Netherlands and/or made in accordance with the examples contained herein.
  • Lipid esterase with reduced potential for odour generation and a good relative performance are particularly preferred, as described in WO 2007/087243. These include lipoclean ® (Novozyme).
  • LipolaseTM and Lipolase UltraTM LipexTM and Lipoclean TM (Novozymes A/S).
  • FRAGRANCES LipolaseTM and Lipolase UltraTM, LipexTM and Lipoclean TM (Novozymes A/S).
  • the liquid detergent composition comprises a fragrance as part of the encapsulated fragrance and also preferably a free fragrance component.
  • the total fragrance (encapsulated and free) is present at from 0.01 to 5% wt., more preferably 0.1 to 1wt% of the composition.
  • encapsulated fragrance is meant the fragrance component of the encapsulate and not the coating component.
  • fragrance components listed below may be part of the encapsulate or any free fragrance and the levels indicated relate to the total of encapsulated fragrance and any free fragrance.
  • the fragrance comprises a component selected from the group consisting of ethyl-2- methyl valerate (manzanate), limonene, (4Z)-cyclopentadec-4-en-1-one, dihyro myrcenol, dimethyl benzyl carbonate acetate, benzyl acetate, spiro[1,3-dioxolane-2,5'-(4',4',8',8'- tetramethyl-hexahydro-3',9'-methanonaphthalene)], benzyl acetate, Rose Oxide, geraniol, methyl nonyl acetaldehyde, decanal, octanal, undecanal, verdyl acetate, tert-butylcyclohexyl acetate, cyclamal, beta ionone, hexyl salicylate, tonalid, phenafleur, octa
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component ethyl-2-methyl valerate (manzanate).
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15 wt.% and especially preferably from 6 to 10% wt. of the fragrance component limonene.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component (4Z)-cyclopentadec-4-en-1-one.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component dimethyl benzyl carbonate acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component dihyromyrcenol.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component rose oxide.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component tert-butylcyclohexyl acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component spiro[1 ,3-dioxolane-2,5'- (4',4',8',8'-tetramethyl-hexahydro-3',9'-methanonaphthalene)].
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component geraniol.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component verdyl propionate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component bornyl acetate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component bornyl propionate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component methyl nonyl acetaldehyde.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15% and especially preferably from 6 to 10% wt. of the fragrance component cyclamal.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component beta ionone.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component hexyl salicylate.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component tonalid.
  • the fragrance comprises from 0.5 to 30% wt., more preferably from 2 to 15wt.% and especially preferably from 6 to 10% wt. of the fragrance component phenafleur.
  • Tricyclodecenyl based fragrances are verdyl acetate; verdyl propionate; bornyl acetate and bornyl propionate.
  • the sum of the weights of verdyl acetate; verdyl propionate; bornyl acetate and bornyl propionate, will be called Tricyclodecenyl sum.
  • the fragrance contains at least 4, most preferably at least 5 components selected from a tricyclodecenyl based fragrances; tert butyl cyclohexyl acetate; dihydromyrcenol; tetramethyl acetyloctahydronaphthalenes; hexyl salicylate; and tetrahydrolinalool.
  • the weight ratio in the fragrance of tricyclodecenyl sum: tert butyl cyclohexyl acetate: dihydromyrcenol is selected from 30 to 40 : 20 to 30: 10 to 20 for long lasting fragrances and 5 to 15 : 20 to 30 : 35 to 50 for freshness fragrances.
  • the weight ratio in the fragrance of tetramethyl acetyloctahydronaphthalenes: hexyl salicylate is from 5 to 15 : 10 to 16.
  • the weight ratio in the fragrance of dihydromyrcenokhexyl salicylate is from 0.5 to 6.0, more preferably from 1.0 to 3.0.
  • the fragrance component listed above is present in the final detergent composition at from 0.0001 to 1% by wt. of the composition.
  • the fluorescer contains 2 SOa" groups.
  • the C16 and/or C18 alkyl based surfactant whether the alcohol ethoxylate or the alkyl ether sulphate is typically available as a mixture with C16 and C18 alkyl chain length raw material.
  • fatty acids and/or their salts are not included in the level of surfactant or in the level of builder.
  • the cleaning polymer is selected from alkoxylate polyethylene imines, polyester soil release polymers and co-polymer of PEG/vinyl acetate. Preservative
  • the formulation contains a preservative or a mixture of preservatives, selected from benzoic acid and salts thereof, alkylesters of p-hydroxybenzoic acid and salts thereof, sorbic acid, diethyl pyrocarbonate, dimethyl pyrocarbonate, preferably benzoic acid and salts thereof, most preferably sodium benzoate.
  • a preservative or a mixture of preservatives selected from benzoic acid and salts thereof, alkylesters of p-hydroxybenzoic acid and salts thereof, sorbic acid, diethyl pyrocarbonate, dimethyl pyrocarbonate, preferably benzoic acid and salts thereof, most preferably sodium benzoate.
  • the composition comprises phenoxyethanol at from 0.1 to 3wt%, preferably 0.3wt% to 1 ,5w% of the composition.
  • the composition comprises dehydroacetic acid at from 0.1 to 3wt%, preferably 0.3wt% to 1 ,5w% of the composition.
  • the composition comprises less than 0.1% wt. isothiazolinone-based preservative, more preferably less than 0.05% wt.
  • Soil release polymers help to improve the detachment of soils from fabric by modifying the fabric surface during washing.
  • the adsorption of a SRP over the fabric surface is promoted by an affinity between the chemical structure of the SRP and the target fibre.
  • SRPs for use in the invention may include a variety of charged (e.g. anionic) as well as noncharged monomer units and structures may be linear, branched or star-shaped.
  • the SRP structure may also include capping groups to control molecular weight or to alter polymer properties such as surface activity.
  • the weight average molecular weight (M w ) of the SRP may suitably range from about 1000 to about 20,000 and preferably ranges from about 1500 to about 10,000.
  • Non-aqueous carriers when included, may be present in an amount ranging from 0.1 to 3%, preferably from 0.5 to 1% (by weight based on the total weight of the composition).
  • the level of hydrotrope used is linked to the level of surfactant and it is desirable to use hydrotrope level to manage the viscosity in such compositions.
  • the preferred hydrotropes are monopropylene glycol and glycerol.
  • sociative monomer in the context of this invention denotes a monomer having an ethylenically unsaturated section (for addition polymerization with the other monomers in the mixture) and a hydrophobic section.
  • a preferred type of associative monomer includes a polyoxyalkylene section between the ethylenically unsaturated section and the hydrophobic section.
  • a composition of the invention will preferably comprise from 0.01 to 5% wt. of the composition but depending on the amount intended for use in the final diluted product and which is desirably from 0.1 to 3% wt. by weight based on the total weight of the diluted composition.
  • Shading dyes are well known in the art of laundry liquid formulation.
  • Suitable and preferred classes of dyes include direct dyes, acid dyes, hydrophobic dyes, basic dyes, reactive dyes and dye conjugates.
  • Preferred examples are Disperse Violet 28, Acid Violet 50, anthraquinone dyes covalently bound to ethoxylate or propoxylated polyethylene imine as described in WO2011/047987 and WO 2012/119859 alkoxylated mono-azo thiophenes, dye with CAS-No 72749-80-5, acid blue 59, and the phenazine dye selected from: wherein:
  • X3 is selected from: -H; -F; -CH3; -C2H5; -OCH3; and, -OC2H5;
  • X4 is selected from: -H; -CH3; -C2H5; -OCH3; and, -OC2H5;
  • Y 2 is selected from: -OH; -OCH2CH2OH; -CH(OH)CH 2 OH; -OC(O)CH 3 ; and, C(O)OCH 3 .
  • Alkoxylated thiophene dyes are discussed in WO2013/142495 and W02008/087497.
  • the shading dye is preferably present in the composition in range from 0.0001 to 0.1wt %. Depending upon the nature of the shading dye there are preferred ranges depending upon the efficacy of the shading dye which is dependent on class and particular efficacy within any particular class.
  • the method comprises dosing at least 5ml liquid laundry detergent into a wash liquor in a washing cycle. More preferably, the method comprises dosing at least 10ml and most preferably at least 15ml liquid laundry detergent.
  • the further liquid detergent may be the same or different to the initial laundry liquid composition but it is preferred that it is the same or substantially similar.
  • the further liquid laundry composition comprises at least one from a group selected from encapsulated fragrance and an external structurant.
  • the method comprises conducting at least five washing cycles before adding said further liquid detergent to the reservoir.
  • each washing cycle comprises the drawing of a volume of liquid laundry detergent from the reservoir sufficient to form an appropriate wash liquor and to clean the fabric.
  • the figure shows that the Brand 1 (Circle in key) Auto-dosing Washing Machine (AWM) dispenses from around 35ml to 58ml laundry liquid under the same conditions.
  • the Brand 2 AWM Triangle
  • the third brand (Square) AWM dispenses sometimes around 18ml but otherwise anything from 35 to 68ml.
  • the dosing is set at 27ml and is more regular but still variable between no dose and around 35 ml being dosed. Several times the dose added to the wash liquor was zero.
  • the Brand 1 average dose is around 22ml and the Brand 2 around 27 ml. The exercise was not possible with the Brand 3 as it had different dosing algorithm and depended on water hardness.
  • the formulation provides a more regular dose of fragrance to the wash liquor than a formulation without external structurant. This is especially important in auto-dosing washing machines which are not able to deliver a regular dose. The need to maintain a regular dose of fragrance becomes thus more important.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

La machine à laver comprend un réservoir de détergent, ledit réservoir contenant entre 80 ml et 3 000 ml de détergent liquide comprenant un agent structurant externe et un parfum encapsulé.
EP23753883.0A 2022-09-13 2023-08-04 Machine à laver et procédé de lavage Pending EP4587542A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP22195448 2022-09-13
EP22195450 2022-09-13
EP23175073 2023-05-24
PCT/EP2023/071718 WO2024056278A1 (fr) 2022-09-13 2023-08-04 Machine à laver et procédé de lavage

Publications (1)

Publication Number Publication Date
EP4587542A1 true EP4587542A1 (fr) 2025-07-23

Family

ID=87570035

Family Applications (1)

Application Number Title Priority Date Filing Date
EP23753883.0A Pending EP4587542A1 (fr) 2022-09-13 2023-08-04 Machine à laver et procédé de lavage

Country Status (3)

Country Link
EP (1) EP4587542A1 (fr)
CN (1) CN119895017A (fr)
WO (1) WO2024056278A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2025012293A1 (fr) * 2023-07-13 2025-01-16 Unilever Ip Holdings B.V. Lave-linge et procédé

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (fr) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
DK187280A (da) 1980-04-30 1981-10-31 Novo Industri As Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode
US4760025A (en) 1984-05-29 1988-07-26 Genencor, Inc. Modified enzymes and methods for making same
US4861512A (en) 1984-12-21 1989-08-29 The Procter & Gamble Company Sulfonated block polyesters useful as soil release agents in detergent compositions
US4702857A (en) 1984-12-21 1987-10-27 The Procter & Gamble Company Block polyesters and like compounds useful as soil release agents in detergent compositions
US4933287A (en) 1985-08-09 1990-06-12 Gist-Brocades N.V. Novel lipolytic enzymes and their use in detergent compositions
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
DE68924654T2 (de) 1988-01-07 1996-04-04 Novonordisk As Spezifische Protease.
DK6488D0 (da) 1988-01-07 1988-01-07 Novo Industri As Enzymer
JP3079276B2 (ja) 1988-02-28 2000-08-21 天野製薬株式会社 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法
DE68911131T2 (de) 1988-03-24 1994-03-31 Novonordisk As Cellulosezubereitung.
US5776757A (en) 1988-03-24 1998-07-07 Novo Nordisk A/S Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof
EP0364403B1 (fr) 1988-10-13 1993-03-24 Ciba-Geigy Ag Composés distyrylbiphényliques
US4956447A (en) 1989-05-19 1990-09-11 The Procter & Gamble Company Rinse-added fabric conditioning compositions containing fabric sofening agents and cationic polyester soil release polymers and preferred cationic soil release polymers therefor
DE4111321A1 (de) 1990-04-14 1991-10-17 Kali Chemie Ag Alkalische bacillus-lipasen, hierfuer codierende dna-sequenzen sowie bacilli, die diese lipasen produzieren
US5869438A (en) 1990-09-13 1999-02-09 Novo Nordisk A/S Lipase variants
DK28792D0 (da) 1992-03-04 1992-03-04 Novo Nordisk As Nyt enzym
US5340390A (en) 1992-10-29 1994-08-23 Rheox, Inc. Rheological additive comprising derivatives of castor oil
WO1994020597A1 (fr) 1993-03-01 1994-09-15 The Procter & Gamble Company Compositions adoucissantes pour tissus concentrees et biodegradables a base d'ammonium quaternaire et composes contenant des chaines d'acide gras insature a indice d'iode intermediaire
DK52393D0 (fr) 1993-05-05 1993-05-05 Novo Nordisk As
JP2859520B2 (ja) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物
ES2287931T3 (es) 1993-10-14 2007-12-16 THE PROCTER & GAMBLE COMPANY Composiciones limpiadoras que contienen proteasa.
ATE510010T1 (de) 1994-03-29 2011-06-15 Novozymes As Alkaline amylase aus bacillus
BE1008998A3 (fr) 1994-10-14 1996-10-01 Solvay Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci.
AU3697995A (en) 1994-10-26 1996-05-23 Novo Nordisk A/S An enzyme with lipolytic activity
JPH08228778A (ja) 1995-02-27 1996-09-10 Showa Denko Kk 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法
CN101955921A (zh) 1995-03-17 2011-01-26 诺沃奇梅兹有限公司 新的内切葡聚糖酶
JP4307549B2 (ja) 1995-07-14 2009-08-05 ノボザイムス アクティーゼルスカブ 脂肪分解活性を有する修飾された酵素
DE69735767T2 (de) 1996-09-17 2007-04-05 Novozymes A/S Cellulasevarianten
AR015977A1 (es) 1997-10-23 2001-05-30 Genencor Int Variantes de proteasa multiplemente substituida con carga neta alterada para su empleo en detergentes
AU3247699A (en) 1998-02-17 1999-09-06 Novo Nordisk A/S Lipase variant
JP4615723B2 (ja) 1998-12-04 2011-01-19 ノボザイムス アクティーゼルスカブ クチナーゼ変異体
AU781258B2 (en) 1999-03-31 2005-05-12 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
AU3420100A (en) 1999-03-31 2000-10-23 Novozymes A/S Lipase variant
AU6820000A (en) 1999-08-31 2001-03-26 Novozymes A/S Novel proteases and variants thereof
CN1426463A (zh) 2000-06-02 2003-06-25 诺维信公司 角质酶变体
CN1337553A (zh) 2000-08-05 2002-02-27 李海泉 地下观光游乐园
CN100591763C (zh) 2000-08-21 2010-02-24 诺维信公司 枯草杆菌酶
WO2002062973A2 (fr) 2001-02-07 2002-08-15 Novozymes A/S Variantes de lipase
DE10162728A1 (de) 2001-12-20 2003-07-10 Henkel Kgaa Neue Alkalische Protease aus Bacillus gibsonii (DSM 14393) und Wasch-und Reinigungsmittel enthaltend diese neue Alkalische Protease
WO2003076580A2 (fr) 2002-03-05 2003-09-18 Genencor International, Inc. Methode de criblage de mutagenese à haute densité
US20100129862A1 (en) 2003-05-12 2010-05-27 Jones Brian E Novel lipolytic Enzyme lip1
EP1625217B1 (fr) 2003-05-12 2014-12-17 Danisco US Inc. Une nouvelle enzyme lipolytique dite elip
WO2004101759A2 (fr) 2003-05-12 2004-11-25 Genencor International, Inc. Nouvelle enzyme lipolytique lip2
JP4880469B2 (ja) 2003-10-23 2012-02-22 ノボザイムス アクティーゼルスカブ 洗剤中で改良された安定性を有するプロテアーゼ
WO2005052161A2 (fr) 2003-11-19 2005-06-09 Genencor International, Inc. Serine proteases, acides nucleiques codant des enzymes de serine et vecteurs et cellules hotes les integrant
DE102005061058A1 (de) 2005-12-21 2007-07-05 Clariant Produkte (Deutschland) Gmbh Anionische Soil Release Polymere
WO2007087243A2 (fr) 2006-01-23 2007-08-02 The Procter & Gamble Company Compositions détergentes
MX2009000119A (es) 2006-06-23 2009-01-26 Akzo Nobel Nv Procedimiento para la preparacion de alquilaminas/alquil eter aminas alcoxiladas con distribucion en punta.
ES2386873T3 (es) 2007-01-19 2012-09-04 The Procter & Gamble Company Composición para el cuidado en el lavado de ropa que comprende un agente de blanqueamiento para sustratos celulósicos
FI120835B (fi) 2007-07-10 2010-03-31 Valtion Teknillinen Uusia esteraaseja ja niiden käyttö
DE102007038031A1 (de) 2007-08-10 2009-06-04 Henkel Ag & Co. Kgaa Mittel enthaltend Proteasen
WO2010034736A1 (fr) * 2008-09-25 2010-04-01 Unilever Plc Détergents liquides
WO2011031940A1 (fr) 2009-09-14 2011-03-17 The Procter & Gamble Company Systeme de structuration externe pour composition liquide de detergent a lessive
AU2010309968B2 (en) 2009-10-23 2014-01-16 Unilever Global Ip Limited Dye polymers
DE102010028483A1 (de) * 2010-05-03 2011-11-03 Henkel Ag & Co. Kgaa Dosiersystem zur Freisetzung von bleichmittelhaltigen Zubereitungen während eines Waschprogramms einer Waschmaschine
CN103429670B (zh) 2011-03-10 2016-01-27 荷兰联合利华有限公司 染料聚合物
CN104350106B (zh) 2012-03-19 2017-03-08 宝洁公司 包含染料的衣物洗涤护理组合物
PL3071742T3 (pl) 2013-11-20 2022-07-04 Electrolux Appliances Aktiebolag Pralka z szufladą na detergent zawierającą panel sterowania
CN106459846A (zh) * 2014-04-10 2017-02-22 荷兰联合利华有限公司 制造外部结构化的各向同性水性洗涤剂液体的方法
EP3167033B1 (fr) 2014-07-09 2020-04-29 Unilever Plc. Procédé de préparation d'une composition liquide pour la lessive
WO2020070249A1 (fr) 2018-10-03 2020-04-09 Novozymes A/S Compositions de nettoyage
MX2021011121A (es) 2019-03-14 2021-10-14 Procter & Gamble Composiciones de limpieza que comprenden enzimas.
DE102019204792A1 (de) 2019-04-04 2020-10-08 Henkel Ag & Co. Kgaa Verwendung von Mannanase-Enzym in Kombination mit Catecholderivaten
WO2020259949A1 (fr) 2019-06-28 2020-12-30 Unilever Plc Composition détergente
EP3994148A1 (fr) 2019-07-01 2022-05-11 Basf Se Acétals peptidiques pour stabiliser des enzymes
IT201900022392A1 (it) * 2019-11-28 2021-05-28 Salros S R L Composizione di lavaggio liquida a componenti separati, per bucato in macchine lavatrici automatiche
JP7750609B2 (ja) 2020-02-21 2025-10-07 ベーアーエスエフ・エスエー 改善された生分解性を有するアルコキシル化ポリアルキレンイミン又はアルコキシル化ポリアミン
CN115397888B (zh) 2020-05-29 2024-11-15 巴斯夫欧洲公司 用于改进衣物洗涤剂去污力的两性改性低聚丙烯亚胺乙氧基化物
US20230365889A1 (en) * 2020-09-24 2023-11-16 Conopco, Inc., D/B/A Unilever Composition
EP4247929A1 (fr) 2020-11-19 2023-09-27 The Procter & Gamble Company Produit de consommation comprenant des particules d'administration biodégradables

Also Published As

Publication number Publication date
WO2024056278A1 (fr) 2024-03-21
CN119895017A (zh) 2025-04-25

Similar Documents

Publication Publication Date Title
WO2023227332A1 (fr) Composition liquide de blanchisserie comprenant un tensioactif, un polymère de polyamine zwitterionique alcoxylé et une protéase
EP4349947A1 (fr) Composition liquide pour la lessive
WO2024056334A1 (fr) Machine à laver et procédé de lavage
EP4587542A1 (fr) Machine à laver et procédé de lavage
EP4587543A1 (fr) Machine à laver et procédé de lavage
EP4532659B1 (fr) Composition liquide de lessive comprenant un tensioactif, un acide organique, un aminocarboxylate et un parfum
EP4532648B1 (fr) Composition liquide comprenant un alkylbenzènesulfonate linéaire, un éthoxylate d'ester méthylique et un polymère polyamine alcoxylé zwitterionique.
WO2025012293A1 (fr) Lave-linge et procédé
WO2025214659A1 (fr) Procédé de lavage
WO2024056331A1 (fr) Machine à laver et procédé de lavage
EP4608955A1 (fr) Composition
WO2025011886A1 (fr) Procédé de traitement de tissu
WO2025124811A1 (fr) Composition
WO2024213443A1 (fr) Composition
EP4361239A1 (fr) Composition liquide pour la lessive
WO2025011808A1 (fr) Procédé de traitement de tissu
WO2024213428A1 (fr) Composition
WO2024213430A1 (fr) Composition
EP4663728A1 (fr) Procede de traitement de tissus
WO2024213438A1 (fr) Composition
EP4663729A1 (fr) Procede de traitement de tissus
EP4349943A1 (fr) Composition liquide pour la lessive
EP4349945A1 (fr) Composition liquide pour la lessive
WO2025214720A1 (fr) Lave-linge et procédé de lavage
EP4349942A1 (fr) Composition liquide pour la lessive

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20250211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER IP HOLDINGS B.V.

Owner name: UNILEVER GLOBAL IP LIMITED

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)