EP4458949A1 - Artificial liver system - Google Patents
Artificial liver system Download PDFInfo
- Publication number
- EP4458949A1 EP4458949A1 EP24186387.7A EP24186387A EP4458949A1 EP 4458949 A1 EP4458949 A1 EP 4458949A1 EP 24186387 A EP24186387 A EP 24186387A EP 4458949 A1 EP4458949 A1 EP 4458949A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- channel
- housing
- perfusion
- mesh structure
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3472—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration with treatment of the filtrate
- A61M1/3486—Biological, chemical treatment, e.g. chemical precipitation; treatment by absorbents
- A61M1/3489—Biological, chemical treatment, e.g. chemical precipitation; treatment by absorbents by biological cells, e.g. bioreactor
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/10—Preservation of living parts
- A01N1/14—Mechanical aspects of preservation; Apparatus or containers therefor
- A01N1/142—Apparatus
- A01N1/143—Apparatus for organ perfusion
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/10—Preservation of living parts
- A01N1/12—Chemical aspects of preservation
- A01N1/122—Preservation or perfusion media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/08—Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M25/00—Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
- C12M25/02—Membranes; Filters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/04—Filters; Permeable or porous membranes or plates, e.g. dialysis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/10—Perfusion
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M29/00—Means for introduction, extraction or recirculation of materials, e.g. pumps
- C12M29/24—Recirculation of gas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M33/00—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
- C12M33/14—Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0062—General methods for three-dimensional culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/067—Hepatocytes
- C12N5/0671—Three-dimensional culture, tissue culture or organ culture; Encapsulated cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0697—Artificial constructs associating cells of different lineages, e.g. tissue equivalents
Definitions
- the application relates generally to organ replacement therapy and, more particularly, to reactors, devices, and systems for performing same.
- Acute liver failure is characterized by an abrupt decrease in hepatic function following a severe insult to the liver in patients with no pre-existing liver disease.
- a standard treatment for acute liver failure is liver transplantation, which should be carried out within a few days from the onset of symptoms to avoid the progression to multi-organ failure. Liver transplantation is difficult, risky and not widely available. The liver's regenerative abilities are well documented in the literature. Since patients with ALF often do not have any underlying disease prior to the injury, approximatively 80% of transplants might be avoided if liver function could be replaced for the time needed for the liver to regenerate, such as with an extracorporeal system.
- liver support systems which are based on molecular adsorption and albumin dialysis to purify the blood.
- the systems are usually used in conjunction with hemodialysis to remove water soluble solutes.
- clinical trials have shown no significant differences in patient survival between standard therapy and some approved extracorporeal systems.
- liver cells Some cell-based dialysis systems are under investigation.
- the use of human liver cells is favored since it circumvents unwanted effects associated with the use of xenogeneic liver cells.
- human liver cells are limited in availability, difficult to culture and some have shown rapid decrease in liver specific functions with time.
- Another limitation of some of the devices is the limited mass exchange between the patient's blood and the extracorporeal liver cells.
- a perfusion bioreactor comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing disposed between the housing inlet and the housing outlet and in fluid communication therewith; and perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure,
- a perfusion device comprising: a mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body.
- an artificial liver system comprising: a fluid network and a pump to circulate plasma through the fluid network; and a perfusion bioreactor in fluid communication with the fluid network to receive the plasma therefrom, the perfusion bioreactor comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing between the housing inlet and the housing outlet and in fluid communication therewith, the housing inlet receiving the plasma; and a plurality of perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated liver tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated liver tissue having at least one liver organoid at least partially covered with a
- a method of processing blood plasma comprising: conveying the blood plasma to at least one channel formed in an encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one channel having a diameter selected to diffuse undesired solutes out of the blood plasma and into the encapsulated liver tissue.
- a method of making a perfusion device comprising: providing at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer having a body with at least one channel extending into the body, the at least one channel having a diameter selected to diffuse solutes out of a fluid and into the body; and positioning the body within a cavity of a mesh structure to allow the fluid to enter the cavity and the at least one channel of the body, and to exit the cavity.
- Fig. 1A illustrates a perfusion bioreactor 10.
- the perfusion bioreactor 10 is an apparatus in which a perfusion operation is carried out.
- the perfusion bioreactor 10 (sometimes referred to herein simply as the "bioreactor 10") allows for the exchange of particles between a liquid and the cells and tissues embedded within a porous biomaterial.
- the bioreactor 10 is a vessel having a controlled environment that allows cells to survive and perform metabolic activities.
- the bioreactor 10 has agglomerations of organ cells which perform at least part of the metabolic functions of an organ of the human body.
- the bioreactor 10 may be manufactured from any suitable biocompatible plastic, metal, or composites thereof, for example polycarbonate, in order to achieve this functionality.
- the bioreactor 10 receives fluid, and conveys fluid out of the bioreactor 10.
- the bioreactor 10 therefore has a suitable inlet and a suitable outlet that are connected to suitable tubing.
- the bioreactor 10 has a housing 16 which is an elongated body extending a length L between a housing inlet 18A and a housing outlet 18B.
- the housing inlet 18A is configured to allow for infusion of plasma, nutrients, or other fluid materials into the housing 16.
- the housing 16 is a cylindrical body extending along a longitudinal axis such that it is longer than it is wide. Other shapes of the housing 16 are possible and within the scope of the present disclosure.
- the housing inlet and outlet 18A,18B are conical ends of the housing 16, and act as funnels to convey fluid into and out of the main portion of the housing 16.
- the housing 16 is hollow, and thus has an inner cavity 19 into which the fluid is conveyed for interaction with the organ cells.
- the inner cavity 19 is delimited by a wall of the housing, which is cylindrical in the depicted embodiment, and which defines an inner surface 19A. Fluid travels through the housing 16 by first entering the housing inlet 18A, then travelling through the inner cavity 19, and the exiting via the housing outlet 18B.
- the bioreactor 10 also includes perfusion devices 20.
- Each perfusion device 20 performs the work of the bioreactor 10 by assisting with the exchange of particles between a liquid and the cells and tissues embedded within a porous biomaterial of each perfusion device 20.
- the perfusion devices 20 contain the agglomeration of organ cells which perform at least part of the metabolic functions of an organ of the human body, as explained in greater detail below.
- the perfusion devices 20 are disposed in the internal cavity 19 of the housing 16. As shown in Fig. 1B , the perfusion devices 20 are disposed in the internal cavity 19 one adjacent to another and spaced apart from each other along the length L of the housing 16.
- the perfusion devices 20 form a stack of perfusion devices 20A.
- the stack of perfusion devices 20A has an upright or vertical orientation.
- the perfusion devices 20 are stacked one on top of the other in the stack of perfusion devices 20A.
- the stack of perfusion devices 20A has a horizontal or inclined orientation. Irrespective of their orientation, the perfusion devices 20 and their components interact with the fluid which travels through the inner cavity 19 of the housing 16, from the housing inlet 18A to the housing outlet 18B.
- each perfusion device 20 includes a mesh structure 30 and one or more encapsulated organ tissues 40.
- the mesh structure 30 forms the corpus of the perfusion device 20 and provides structure thereto.
- the mesh structure 30 is porous, and is supported from the inner surface 19A of the housing 16 to mount each perfusion device 20 to the housing 16.
- the encapsulated organ tissue 40 of each perfusion device is positioned within the mesh structure 30.
- the mesh structure 30 is therefore any suitable device for holding the encapsulated organ tissue 40, and for allowing the fluid within the housing 16 to engage the encapsulated organ tissue 40.
- the bioreactor 600 has a housing 616 which is an elongated body extending a length between a housing inlet 618A and a housing outlet 618B.
- the housing 616 is a cylindrical body extending along a longitudinal axis such that it is longer than it is wide.
- the housing 616 is transparent and admits light.
- the housing inlet and outlet 618A,618B are conical ends of the housing 616, and act as funnels to convey fluid into and out of the main portion of the housing 616.
- the housing 616 is hollow, and thus has an inner cavity 619 into which the fluid is conveyed for interaction with the organ cells.
- the inner cavity 619 is delimited by a transparent wall of the housing 616, which is cylindrical in the depicted embodiment. Fluid travels through the housing 616 by first entering the housing inlet 618A, then travelling through the inner cavity 619, and the exiting via the housing outlet 618B.
- the bioreactor 600 has an internal support 617 for supporting the perfusion devices 20.
- the internal support 617 is positioned within the inner cavity 619.
- the internal support 617 includes end plates 617A which are perforated to permit the passage of fluid therethrough.
- the end plates 617A are linked to each other by racks 617B which extend between the end plates 617A.
- the racks 617B are spaced apart from each other.
- the racks 617B may be attached to an internal surface of the housing 616.
- Each of the racks 617B includes notches or grooves 617C spaced apart along the length of the rack 617B.
- the mesh structure 30 of each perfusion device 20 is removably mounted to the racks 617B by being placed in the grooves 617C.
- the bioreactor 10,400 provides a controlled environment.
- the internal temperature of the bioreactor 10,400 is controlled via a heat exchanger to maintain it constant at 37°C.
- the internal pH of the bioreactor 10,400 is controlled by modulating bicarbonate to maintain it constant at about 7.4. Since the depicted bioreactor 10,400 is used to process blood plasma, erythrocytes (i.e. red blood cells) are not present in the plasma. Therefore, an oxygen content of the plasma in the bioreactor 10,400 is controlled.
- the bioreactor 10,400 may be used with other types of corporeal fluids, and may control for fewer or other parameters.
- the mesh structure 30 and the encapsulated organ tissues 40 are now described in greater detail.
- the mesh structure 30 has a first wall 32 spaced apart from a second wall 34 to define an internal mesh cavity 36.
- the encapsulated organ tissue 40 (not shown in Figs. 2A and 2B ) is disposed in the internal mesh cavity 36 between the first and second walls 32,34.
- the first and second walls 32,34 are porous to allow the fluid to enter the internal mesh cavity 36 to interact with the encapsulated organ tissue 40.
- the porous nature of the mesh structure 30 is provided by openings 38 in each of the first and second walls 32,34, which permit fluid communication through the mesh structure 30.
- the mesh structure 30 includes a base 30A and a cap 30B that is mountable on the base 30A to close the mesh structure 30 and define the internal mesh cavity 36.
- the base 30A includes the first wall 32 of the mesh structure 30, and the cap 30B includes the second wall 34.
- the cap 30B is press fit onto the base 30A.
- Fig. 3 shows a one-piece mesh structure 130.
- the mesh structure 130 is cylindrical, and is shaped as a disc.
- the first and second walls 132,134 are shown spaced apart to define the internal mesh cavity 136.
- the first and second walls 132,134 also have openings 138 therein.
- the mesh structure 130 has a side wall 131 with an aperture 133 therein.
- the aperture 133 is in fluid communication with the internal mesh cavity 136.
- the aperture 133 allows for the introduction of components making up the encapsulated organ tissue 40 into the internal mesh cavity 136, as explained in greater detail below.
- the mesh structure 30,130 may have a thickness between about 1 mm and about 8 mm, and may have a diameter between about 10 mm and about 80 mm.
- the mesh size i.e. the size of the openings 38,138
- the mesh structure 30,130 may have other shapes, including but not limited to, rectangular, square, triangular, etc.
- the encapsulated organ tissue 40 (sometimes referred to herein simply as the "EOT 40") has one or more organoids 42 that are at least partially covered with a biocompatible cross-linked polymer 44.
- Each organoid 42 is a grown or cultured mass of cells or tissue that resembles an organ.
- each organoid 42 is a liver organoid which resembles the liver, such that the EOT 40 is an encapsulated liver tissue (ELT).
- EOT 40 encapsulated liver tissue
- the fluid that enters the bioreactor 10,400 exchanges compounds with the tissue or cells of the organoids 42 within the EOT 40 so that toxic compounds are metabolized by the cells of the organoids 42 and eliminated in a non-toxic form, while useful proteins are produced by the cells of the organoids 42 and released into the fluid.
- Albumin, ammonia and other plasma constituents that need to be processed by the liver may therefore be metabolized by the liver organoids 42, which is similar to human liver function.
- the organoids 42 may also be cultured from the cells or tissues of another organ.
- a non-limitative list of other organs whose function can be mimicked by the organoids 42 includes the kidney, endocrine tissue, and any other tissue that can be perfused by blood and which can be agglomerated into organoids 42. It will therefore be appreciated that reference to the liver, liver organoids, or encapsulated liver tissue in the present disclosure does not limit the organoids 42 or the EOT 40 to only being formed from liver cells or tissue.
- Fig. 4 shows a process to provide a plurality of monodispersed liver organoids 42 within the biocompatible and crossed-linked polymer 44.
- hepatoblasts, endothelial progenitor cells and mesenchymal progenitor cells are obtained from differentiating a single iPSC.
- the cells are mixed and co-cultured in suspension to form the liver organoid 42.
- the hepatoblasts have differentiated into hepatocytes which substantially cover a cellular core formed by mesenchymal and endothelial progenitor cells (prior to the introduction of the liver organoids 42 in the encapsulated liver tissue 40).
- the embodiment of the liver organoid 42 shown in Fig. 4 is substantially spherical in shape and has a relative diameter of about 150 ⁇ m.
- the liver organoids 42 are then encapsulated, using a crosslinking agent, which in Fig. 4 is shown as UV light, in a first compatible and crosslinkable matrix.
- the encapsulated liver tissue 40 can be used as transplantable liver tissue (having for example, a size between 5 mm and 10 cm) in regenerative medicine.
- the liver organoids 42 can be designed to a multiwell plate and used in drug development to determine metabolism or hepatotoxicity of screened compounds.
- the polymer 44 (also referred to as a polymeric matrix) that can be used in the encapsulated liver tissue 40 forms a hydrogel around the liver organoids 42.
- a hydrogel refers to polymeric chains that are hydrophilic in which water is the dispersion medium. Hydrogels can be obtained from natural or synthetic polymeric networks.
- encapsulation within the hydrogel prevents embedded liver organoids 42 from leaking out of the polymer 44.
- each liver organoid 42 is encapsulated individually and the encapsulated liver organoids 42 can, in another embodiment, be further included in a polymeric matrix 44.
- the liver organoids 44 are included in a polymeric matrix 44 so as to encapsulate them. As shown in Fig.
- the liver organoids 42 encapsulated within the hydrogel material form a disc or other cylindrical structure.
- Other shapes for the organoids 42 encapsulated within the hydrogel material are possible and within the scope of the present disclosure.
- the hydrogel may be any biocompatible material. Some non-limitative examples of hydrogels include PEG, and any polyethylene glycol (PEG) based material such as PEG-vinyl sulfone (PEG-VS).
- Fig. 4 shows a process for making the encapsulated organ tissue 40, which is described in PCT patent application PCT/CA2017/051404 (published as WO 2018/094522) entitled "Encapsulated Liver Tissue” and filed November 23, 2017 , the entirety of which is incorporated by reference herein.
- the organoids 42 may be harvested from the ultra-low attachment flasks and centrifuged at low speed (400g for 5 minutes) to form a pellet.
- the pellet (about 3 000 organoids) may be resuspended in 5% 4-arm PEG-vinyl sulfone (20 kDa) solution in sterile PBS without calcium and magnesium supplemented with 0.1% N-vinyl-2-pyrrilidone and 0.4 mg/mL Irgacure 2959.
- a 50 ⁇ L droplet of such a solution (containing about 100 organoids 42) may be generated and deposed in a well of a 96-well plate, and subsequently cross-linked under UV light (5 minutes 1090 ⁇ W/cm 2 at a distance of 4 cm).
- the generated encapsulated liver tissue 40 may be maintained in complete William's E medium/complete EMB2 (1:1) medium supplemented with, 20 ng/mL OSM and 10 ⁇ M dexamethasone for 5 days. Five days after encapsulation, the OSM supplementation may be suspended and the ratio complete William's E medium/complete EBM2 medium may be changed from 1:1 to 4:1.
- the tissue may be cultured at 37°C in ambient O 2 /5%CO 2 and the medium may be changed every other day. Albumin secretion may be assessed weekly in the conditioned medium.
- encapsulated organoids 42 may preserve their ability to secrete albumin through the hydrogel over more than 7 weeks of culture, proving their survival and maintenance of their differentiated status within the polymer 44 while confirming the diffusion of the secreted protein outside of it.
- the encapsulated liver tissue 40 may be solid enough to be manipulated with instruments without losing its shape and integrity.
- Figs. 5A to 5C show one of the perfusion devices 20 and the EOT 40.
- the EOT 40 has a body 46 which provides physical structure to the EOT 40.
- the body 46 defines a thickness T.
- the thickness T is defined between a first surface 48A of the body 46 adjacent to the first wall 32 of the mesh structure 30, and a second surface 48B of the body 46 adjacent to the second wall 34.
- the EOT 40 is therefore "sandwiched" by the mesh structure 30.
- the body 46 takes the form of the mesh structure 30, and is thus shaped as a cylinder or disc.
- the body 46 may have other shapes, which are part of the present disclosure.
- the thickness T of the body 46 is between about 1 mm to about 3 mm. Other values for the thickness T of the body 46 are possible and within the scope of the present disclosure.
- the EOT 40 is a three-dimensional porous body.
- the EOT 40 is embedded with spatially-organized passages which are perfused with the fluid (e.g. plasma) supplied to the housing 16.
- the body 46 has one or more channels 41 which extend into the body 46.
- Each channel 41 extends into the body 46 from one or both or the of the first and second surfaces 48A,48B in order to receive the fluid into the channel 41.
- Each channel 41 has a diameter D. The diameter D of each channel 41 is selected so that undesirable solutes within the fluid can be diffused out of the fluid and into the surrounding tissue of the body 46 to be metabolized.
- Control over the diameter D of the channels 41 may allow for improved removal of molecules of a certain size from the fluid, while allowing molecules of interest which have different sizes to remain in the fluid.
- the diameter D of each channel 41 in the body 46 may be the same, or may vary.
- the diameter D of one or more of the channels 41 is between about 150 ⁇ m and about 750 ⁇ m. Other values for the diameter D of the channels 41 are possible and within the scope of the present disclosure.
- each EOT 40 has a vascular-like structure (i.e. the channels 41) which may assist with penetration of the fluid and its solutes within the EOT 40, and with the diffusion of solutes out of the fluid into the surrounding polymer 44 hydrogel of the body 46.
- the channels 41 may be formed using any suitable technique. Some possible techniques include photolithography, sacrificial molding, or any other suitable microfabrication technique.
- forming the channels 41 includes curing portions of the biocompatible cross-linked polymer 44 with a UV light source while the body 46 remains in the internal mesh cavity 36 of the mesh structure 30. This may include covering the body 46 with a photomask which has one or more opaque portions which correspond to the ultimate location of the channels 41.
- the biocompatible cross-linked polymer 44 is then cured with a UV light source applied to the photomask. The portions of the body 46 covered by the opaque portions of the photomask will remain uncured to thereby form the channels 41 in the body 46.
- the EOT 40 may therefore be photopolymerized within the mesh structure 30. If the channels 41 are generated while the polymer 44 is in the mesh structure 30, then the photomask used in photolithography may need to coordinate the opaque portions with the openings 38 of the mesh structure 30 to allow UV light to penetrate to the hydrogel for curing to occur.
- forming the channels 41 includes injecting the at least one liver organoid 42 and the biocompatible cross-linked polymer 44 into the internal mesh cavity 36 of the mesh structure, and then curing portions of the biocompatible cross-linked polymer 44 with a UV light source to solidify the mass.
- the portions of the polymer 44 which are not cured form the channels 41.
- One technique for achieving this result involves pipetting the hydrogel polymer 44 and the organoids 42 into the internal mesh cavity 36 via the openings 38 in the first and second walls 32,34, or via the aperture 133 (see Figs. 2A to 3 ).
- both of the first and second walls 32,34 and their openings 38 can be sealed, such as with a light-transparent seal like a glass slide.
- the mixture is then cured and photopolymerized within the mesh structure 30.
- the EOT 40 is added to the internal mesh cavity 36 of the mesh structure 30 after photopolymerization.
- the body 46 is bio-printed, or formed using a fabricated mold containing the channels 41, or by using sacrificial molding of polymers or sugars.
- the endothelial progenitor cells of the liver organoid 42 organise in a capillary or a capillary-like configuration.
- the shape, orientation, and path of the channels 41 may vary, and at least some of these are now described in greater detail.
- the body 46 includes multiple channels 41.
- the channels 41A extend through the body 46 between the first and second surfaces 48A,48B.
- the channels 41A therefore communicate the fluid through the body 46.
- a length La of the channels 41A is substantially equal to the thickness T of the body 46.
- the channels 41B also extend through the body 46, and also communicate the fluid through the body 46.
- the length Lb of the channels 41B is greater than the thickness T of the body 46 because the channels 41B are slanted or inclined with respect to the first and second surfaces 48A,48B.
- the through channels 41A,14B allow the fluid to be communicated through the body 46 of one perfusion device 20, and to the body 46A of another, immediately adjacent perfusion device 20.
- the channels 41A,41B of the body 46 are offset from the channels 41C,41D of the adjacent body 46A.
- the offset channels 41A,41B,41C,41D of the bodies 46,46A are not vertically aligned.
- the channels 41A,41B,41C,41D of the bodies 46,46A do not overlap. The fluid is therefore prevented from flowing directly, in a straight or non-deviated path, between the bodies 46,46A.
- the offset channels 41A,41B,41C,41D therefore define a winding flow path P for the fluid, such that the fluid is deviated from a straight-line path between the bodies 46,46A.
- one of the winding flow paths P allows the fluid to enter the channel 41A and flow through the body 46, and then flow along the first surface 48A of the body 46A until arriving at the channel 41C, at which point the fluid enters the channel 41C and flows through the body 46A.
- This deviation of the fluid from one perfusion device 20 to the next may help to increase the chance of solutes diffusing out of the fluid by delaying diffusion and giving the fluid more time to interact with the organoids 42 of the EOT 40.
- Fig. 6 shows another configuration of the channels 141 of the EOT 40.
- the channels 141 include a first or primary channel 141A and one or more other channels 141, referred to as secondary channels 141B.
- the primary channel 141A is a through-channel, and extends through the body 46 between the first and second surfaces 48A,48B.
- the secondary channels 141B extend into the body 46 from a first end 149A at one of the first and second surfaces 48A,48B, to a second end 149B within the body 46 at the primary channel 141A.
- the second end 149B of the secondary channels 141B opens into the primary channel 141A, such that the secondary channel 141B is in fluid communication with the primary channel 141A.
- the fluid may therefore be conveyed from the first or second surface 48A,48B of the body 46, through the secondary channels 141B, and into the primary channel 141A.
- the length La of the primary channel 141A is substantially equal to, or greater than, the thickness T of the body 46.
- the length Lb of the secondary channels 141B is either less than the thickness T of the body 46, or greater than the thickness T of the body 46.
- the length Lb' of the secondary channel 141B is less than the thickness T of the body 46.
- the length Lb" of the secondary channel 141B is greater than the thickness T of the body 46, such that this secondary channel 141B follows a meandering, winding, or serpentine path through the body 46.
- the secondary channel 141B′′′ is a "dead-end” channel, and extends into the body 46 from one of the first and second surfaces 48A,48B to a second end 149B within the body 46 that is not in fluid communication with any other channels 141A,141B.
- the dead-end secondary channel 141B′′′ may diffuse solvents out of the fluid and into the body 46.
- Fig. 7 shows another configuration of the channels 241 of the EOT 40.
- the body 46 includes two primary channels 241A.
- Each primary channel 241A extends into the body 46 from one of the first and second surfaces 48A,48B.
- Each primary channel 241A is a "dead-end" channel, and does not extend through the body 46.
- One or more secondary channels 241B extend between the two primary channels 241A to fluidly connect them. The fluid is therefore able to pass through the body 46 from each of the first and second surfaces 48A,48B by flowing into one of the primary channels 241A, through one or more secondary channels 241B, and out the other primary channel 241A.
- the fluid received at the housing inlet 18A of the housing 16 is conveyed into the internal cavity 19 to perfuse the fluid to the EOT 40 of each perfusion device 20.
- the fluid is therefore delivered through the openings 38 in the first and second walls 32,34 of each mesh structure 30 to the organoids 42 and the channels 41 of each EOT 40.
- the fluid is conveyed against gravity, from the lower housing inlet 18A to the higher housing outlet 18B.
- the housing 16 has multiple supports 17 which are attached to the inner surface 19A and spaced apart along the length L of the housing 16.
- each perfusion device 20 is removably mounted to one of the supports 17.
- the supports 17 are notches or grooves in parallel columns 17A which are attached to the inner surface 19A, and which extend along the length L of the housing 16.
- the columns 17A are supported with sieves to prevent organoids 42 from the EOT 40 from escaping into the processed fluid leaving the fluid outlet 18B in case of tissue breakage.
- Other configurations for the supports 17 are possible and within the scope of the present disclosure.
- each mesh structure 30 has one or more supports 17 for attaching to the inner surface 19A of the housing 16.
- the stack of perfusion devices 20A may be cryopreserved. All materials used may withstand extremely low temperatures without or with minimal fatigue.
- the perfusion devices 20 Prior to starting plasma therapy, the perfusion devices 20 may be taken out of cryopreservation and inserted into the bioreactor 10. Circulation of warm fluid (e.g. warm plasma) can thaw the organoids 42 in the bioreactor 10 and further maintain the temperature of the organoids 42 at body temperature, creating an optimal environment for the tissue.
- warm fluid e.g. warm plasma
- the perfusion devices 20 of the housing 16 This equates to approximately from a few million to a few billion liver cells, and may also equate to between about 500 to about 10,000 organoids per perfusion device 20.
- Fig. 8 shows an embodiment of an artificial liver system 300 having the bioreactor 10,400 described herein.
- the artificial liver system 300 helps to mimic the function of the human liver, and may therefore be referred to as a "Bio-Artificial Liver Device (BALD)".
- the artificial liver system 300 (sometimes referred to herein simply as the "system 300") includes a fluid network 302, which is a series of tubes, connectors, and other components to communicate blood plasma between the features of the system 300.
- the system 300 has a peristaltic pump 304 to circulate the plasma through the fluid network 302.
- the pump 304 pushes plasma through the fluid network 302 at a flow rate of between about 50 mL/min to about 300 mL/min.
- Infusion pumps may be placed right after the pump 304 to insert saline and/or an anticoagulant (Heparin).
- the fluid network 302 may have a pressure sensor to determine pressure across the system 300, and to ensure that plasma re-enters the patient at a pressure similar to that at which it was extracted.
- the system 300 may optionally have an adsorbent cartridge, shown in Fig. 8 as a molecular adsorbent system 306, or MAS.
- the MAS 306 is any suitable perfusion device or charcoal adsorbent system.
- the MAS 306 is in fluid communication with the fluid network 302 to remove some of the undesired solutes from the plasma.
- the undesired solutes may include toxins, and high levels of bilirubin.
- the undesired solutes are removed from the plasma in the MAS 306 using adsorption on an activated charcoal or hydrophobic resin.
- the system 300 may also have an oxygenator 308 in fluid communication with the fluid network 302, as shown in Fig. 8 .
- the oxygenator 308 operates to dissolve oxygen into the plasma to produce oxygenated plasma.
- the bioreactor 10,400 is shown in fluid communication with the oxygenator 308, and receives the oxygenated plasma therefrom.
- the oxygenated plasma enters the bioreactor 10,400 and interacts with the ELTs 40 of the perfusion devices 20, which operate to diffuse other remaining undesired solutes, not already removed by the MAS 306, out of the oxygenated plasma and into the body 46 of the EOT 40.
- the oxygenator 308 is a component of the bioreactor 10,400, and oxygenation is performed in the bioreactor 10,400 itself.
- the system 300 is free of an oxygenator.
- oxygenation is performed on the plasma downstream of the bioreactor 10,400.
- the processed plasma exiting the housing outlet 18B of the bioreactor 10,400 may be provided to attach to a commercially-available extracorporeal filtration system 310.
- the system 300 in Fig. 8 may therefore be an add-on device to be used with the existing extracorporeal filtration system 310.
- a dialyzer 416 (see Fig. 9 ) is placed in the system 300 after the bioreactor 10,400 to perform plasma dialysis.
- Fig. 9 shows another embodiment of an artificial liver system 400 having the bioreactor 10,400 described herein.
- the system 400 is a stand-alone extracorporeal unit which includes a blood circuit 401A and a plasma circuit 401B.
- the blood circuit 401A includes a pump 402 to pump blood into the system 400.
- Infusion pumps 402A are placed right after the pump 402 to insert saline and an anticoagulant (Heparin).
- the MAS 406 is positioned in the blood circuit 401A before a plasma fractionation module 408 which separates the plasma from the blood, and which provides the plasma to the plasma circuit 401B.
- the system 400 has a peristaltic pump 410 to circulate the plasma through the fluid network 412.
- a blood leak detector 414 is present before the dialyzer 416 of the plasma circuit 401B, which removes some of the undesired solutes from the plasma using a dialysate.
- the plasma circuit 401B also has an oxygenator 418 to dissolve oxygen into the plasma to produce oxygenated plasma.
- the bioreactor 10,400 is in fluid communication with the oxygenator 418, and receives the oxygenated plasma therefrom.
- the oxygenated plasma enters the bioreactor 10,400 and interacts with the ELTs 40 of the perfusion devices 20, which operate to diffuse other, remaining undesired solutes, not already removed by the MAS 406 or the dialyzer 416, out of the oxygenated plasma and into the bodies 46 of the EOTs 40.
- the processed plasma exiting the housing outlet 18B of the bioreactor 10,400 is provided back to the blood circuit 401A, where it is recombined with the separated blood products and returned to the patient's blood, or further fluid processing may be performed.
- the blood circuit 401A has an air bubble detector 420 to prevent air from being introduced into the blood.
- the system 400 may also include temperature sensor(s), flow meter(s), a cell filter(s), heat exchanger(s) to maintain a constant temperature, clamp(s), drip chamber(s), and any other suitable devices.
- Fig. 10 shows another embodiment of an artificial liver system 500 having the bioreactor 10,400 described herein.
- the system 500 is a stand-alone extracorporeal unit which includes a blood circuit 501A and a plasma circuit 501B.
- the blood circuit 501A includes a pump 502 to pump blood into the system 500.
- Infusion pumps 502A are placed right after the pump 502 to insert saline and an anticoagulant (Heparin).
- Heparin anticoagulant
- a plasma fractionation module 508 separates the plasma from the blood, and provides the plasma to the plasma circuit 501B.
- the system 500 has a peristaltic pump 510 to circulate the plasma through the fluid network 512.
- a blood leak detector 514 is present upstream of the pump 510.
- the plasma circuit 501B also has an oxygenator 518 to dissolve oxygen into the plasma to produce oxygenated plasma.
- the bioreactor 10,400 is in fluid communication with the oxygenator 518, and receives the oxygenated plasma therefrom.
- the oxygenated plasma enters the bioreactor 10,400 and interacts with the ELTs 40 of the perfusion devices 20, which operate to diffuse remaining undesired solutes out of the oxygenated plasma and into the bodies 46 of the EOTs 40.
- the processed plasma exiting the housing outlet 18B of the bioreactor 10,400 is provided back to the blood circuit 501A, and then to the dialyzer 516, which removes some of the undesired solutes from the plasma using a dialysate.
- the treated plasma is recombined with the separated blood products and returned to the patient's blood, or further fluid processing may be performed.
- the blood circuit 501A has an air bubble detector 520 to prevent air from being introduced into the blood.
- the system 500 may also include temperature sensor(s), flow meter(s), a cell filter(s), heat exchanger(s) to maintain a constant temperature, clamp(s), drip chamber(s), and any other suitable devices.
- the system 500 may include a hemoperfusion (HP) cartridge, as shown in Fig. 10 , which may be positioned upstream of the bioreactor 10,400.
- HP hemoperfusion
- a perfusion bioreactor comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing disposed between the housing inlet and the housing outlet and in fluid communication therewith; and perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body
- a perfusion device comprising: a mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body.
- An artificial liver system comprising: a fluid network and a pump to circulate plasma through the fluid network; and a perfusion bioreactor in fluid communication with the fluid network to receive the plasma therefrom, the perfusion bioreactor comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing between the housing inlet and the housing outlet and in fluid communication therewith, the housing inlet receiving the plasma; and a plurality of perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated liver tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated liver tissue having at least one liver organoid at least partially covered with a bio
- a method of processing blood plasma comprising: conveying the blood plasma to at least one channel formed in an encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one channel having a diameter selected to diffuse undesired solutes out of the blood plasma and into the encapsulated liver tissue.
- a method of making a perfusion device comprising: providing at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer having a body with at least one channel extending into the body, the at least one channel having a diameter selected to diffuse solutes out of a fluid and into the body; and positioning the body within a cavity of a mesh structure to allow the fluid to enter the cavity and the at least one channel of the body, and to exit the cavity.
- Each of the embodiments A, B, C, D and E may have one or more of the following additional elements in any combination.
- Element 1 the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Element 3 the at least one channel of one of the perfusion devices is offset from the at least one channel of an immediately adjacent perfusion device, the fluid following a winding flow path between the channels of the adjacent perfusion devices.
- the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Element 6 the length of the at least another channel is greater than the thickness of the body.
- Element 7 a plurality of supports spaced apart along the length of the housing, the mesh structure of each perfusion device being removably mounted to one of the supports.
- Element 8 the housing has an upright orientation, the perfusion devices being supported from the housing one on top of another in a stack.
- the diameter of the at least one channel is between 150 ⁇ m and 750 ⁇ m.
- the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- conveying the oxygenated blood plasma includes conveying the oxygenated blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer.
- conveying the oxygenated blood plasma includes conveying the oxygenated blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer, the second channel being misaligned with the at least one channel.
- conveying the oxygenated blood plasma from the at least one channel to the second channel includes conveying the oxygenated blood plasma to the second channel being vertically spaced apart from the at least one channel.
- Element 14 cryopreserving the encapsulated liver tissue prior to conveying the blood plasma through the fluid network.
- Element 15 warming the cryopreserved encapsulated liver tissue with the oxygenated blood plasma
- Element 16 providing the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer includes forming the at least one channel in the body using photolithography.
- Element 17 forming the at least one channel includes curing portions of the biocompatible cross-linked polymer with a UV light source while the body remains in the cavity of the mesh structure.
- Element 18 forming the at least one channel includes injecting the at least one liver organoid and the biocompatible cross-linked polymer into the cavity of the mesh structure, and curing portions of the biocompatible cross-linked polymer with a UV light source.
- Element 19 forming the at least one channel includes covering the body with a photomask having at least one opaque portion, and curing the biocompatible cross-linked polymer with a UV light source applied to the photomask, a portion of the body covered by the at least one opaque portion of the photomask remaining uncured to form the at least one channel.
- Element 20 oxygenating the blood plasma to produce oxygenated blood plasma.
- oxygenating the blood plasma includes oxygenating the blood plasma before conveying the blood plasma to the at least one channel.
- oxygenating the blood plasma includes oxygenating the blood plasma in a perfusion bioreactor.
- Element 23 an oxygenator in fluid communication with the fluid network to diffuse oxygen into the plasma to produce oxygenated plasma.
- Example 1 A perfusion bioreactor, comprising:
- Example 2 The perfusion bioreactor of example 1, wherein the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- Example 3 The perfusion bioreactor of example 2, wherein a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Example 4 The perfusion bioreactor of example 2 or 3, wherein the at least one channel of one of the perfusion devices is offset from the at least one channel of an immediately adjacent perfusion device, the fluid following a winding flow path between the channels of the adjacent perfusion devices.
- Example 5 The perfusion bioreactor of example 1, wherein the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- Example 6 The perfusion bioreactor of example 5, wherein a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Example 7 The perfusion bioreactor of example 6, wherein the length of the at least another channel is greater than the thickness of the body.
- Example 8 The perfusion bioreactor of any one of examples 1 to 7, comprising a plurality of supports spaced apart along the length of the housing, the mesh structure of each perfusion device being removably mounted to one of the supports.
- Example 9 The perfusion bioreactor of any one of examples 1 to 8, wherein the housing has an upright orientation, the perfusion devices being supported from the housing one on top of another in a stack.
- Example 10 The perfusion bioreactor of any one of examples 1 to 9, wherein the diameter of the at least one channel is between 150 ⁇ m and 750 ⁇ m.
- Example 11 The perfusion bioreactor of any one of examples 1 to 10, wherein the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- Example 12 A perfusion device, comprising:
- Example 13 The perfusion device of example 12, wherein the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- Example 14 The perfusion device of example 13, wherein a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Example 15 The perfusion device of example 12, wherein the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- Example 16 The perfusion device of example 15, wherein a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Example 17 The perfusion device of example 16, wherein the length of the at least another channel is greater than the thickness of the body.
- Example 18 The perfusion device of any one of examples 1 to 17, wherein the diameter of the at least one channel is between 150 ⁇ m and 750 ⁇ m.
- Example 19 The perfusion device of any one of examples 1 to 18, wherein the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- Example 20 An artificial liver system, comprising:
- Example 21 The artificial liver system of example 20, wherein the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- Example 22 The artificial liver system of example 21, wherein a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Example 23 The artificial liver system of example 21 or 22, wherein the at least one channel of one of the perfusion devices is offset from the at least one channel of an immediately adjacent perfusion device, the fluid following a winding flow path between the channels of the adjacent perfusion devices.
- Example 24 The artificial liver system of example 20, wherein the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- Example 25 The artificial liver system of example 24, wherein a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Example 26 The artificial liver system of example 25, wherein the length of the at least another channel is greater than the thickness of the body.
- Example 27 The artificial liver system of any one of examples 20 to 26, comprising a plurality of supports spaced apart along the length of the housing, the mesh structure of each perfusion device being removably mounted to one of the supports.
- Example 28 The artificial liver system of any one of examples 20 to 27, wherein the housing has an upright orientation, the perfusion devices being supported from the housing one on top of another in a stack.
- Example 29 The artificial liver system of any one of examples 20 to 28, wherein the diameter of the at least one channel is between 150 ⁇ m and 750 ⁇ m.
- Example 30 The artificial liver system of any one of examples 20 to 29, wherein the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- Example 31 The artificial liver system of any one of examples 20 to 30, comprising an oxygenator in fluid communication with the fluid network to diffuse oxygen into the plasma to produce oxygenated plasma.
- Example 32 A method of processing blood plasma, comprising: conveying the blood plasma to at least one channel formed in an encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one channel having a diameter selected to diffuse undesired solutes out of the blood plasma and into the encapsulated liver tissue.
- Example 33 The method of example 32, wherein conveying the blood plasma includes conveying the blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer.
- Example 34 The method of example 32, wherein conveying the blood plasma includes conveying the blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer, the second channel being misaligned with the at least one channel.
- Example 35 The method of example 33 or 34, wherein conveying the blood plasma from the at least one channel to the second channel includes conveying the blood plasma to the second channel being vertically spaced apart from the at least one channel.
- Example 36 The method of any one of examples 32 to 35, comprising cryopreserving the encapsulated liver tissue prior to conveying the blood plasma.
- Example 37 The method of example 36, comprising warming the cryopreserved encapsulated liver tissue with the blood plasma.
- Example 38 The method of any one of examples 32 to 37, comprising oxygenating the blood plasma to produce oxygenated blood plasma.
- Example 39 The method of example 38, wherein oxygenating the blood plasma includes oxygenating the blood plasma before conveying the blood plasma to the at least one channel.
- Example 40 The method of example 38, wherein oxygenating the blood plasma includes oxygenating the blood plasma in a perfusion bioreactor.
- Example 41 A method of making a perfusion device, comprising:
- Example 42 The method of example 41, wherein providing the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer includes forming the at least one channel in the body using photolithography.
- Example 43 The method of example 42, wherein forming the at least one channel includes curing portions of the biocompatible cross-linked polymer with a UV light source while the body remains in the cavity of the mesh structure.
- Example 44 The method of example 41, wherein forming the at least one channel includes injecting the at least one liver organoid and the biocompatible cross-linked polymer into the cavity of the mesh structure, and curing portions of the biocompatible cross-linked polymer with a UV light source.
- Example 45 The method of any one of examples 42 to 44, wherein forming the at least one channel includes covering the body with a photomask having at least one opaque portion, and curing the biocompatible cross-linked polymer with a UV light source applied to the photomask, a portion of the body covered by the at least one opaque portion of the photomask remaining uncured to form the at least one channel.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Molecular Biology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- Heart & Thoracic Surgery (AREA)
- Environmental Sciences (AREA)
- Dentistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Anesthesiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Prostheses (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- External Artificial Organs (AREA)
Abstract
Description
- This application claims priority to
, the entire contents of which are incorporated by reference herein.US provisional patent application number 62/674,696 filed May 22, 2018 - The application relates generally to organ replacement therapy and, more particularly, to reactors, devices, and systems for performing same.
- Acute liver failure (ALF) is characterized by an abrupt decrease in hepatic function following a severe insult to the liver in patients with no pre-existing liver disease. A standard treatment for acute liver failure is liver transplantation, which should be carried out within a few days from the onset of symptoms to avoid the progression to multi-organ failure. Liver transplantation is difficult, risky and not widely available. The liver's regenerative abilities are well documented in the literature. Since patients with ALF often do not have any underlying disease prior to the injury, approximatively 80% of transplants might be avoided if liver function could be replaced for the time needed for the liver to regenerate, such as with an extracorporeal system.
- Some extracorporeal systems to treat liver failure are cell-free liver support systems, which are based on molecular adsorption and albumin dialysis to purify the blood. The systems are usually used in conjunction with hemodialysis to remove water soluble solutes. However, clinical trials have shown no significant differences in patient survival between standard therapy and some approved extracorporeal systems.
- Some cell-based dialysis systems are under investigation. The use of human liver cells is favored since it circumvents unwanted effects associated with the use of xenogeneic liver cells. However, human liver cells are limited in availability, difficult to culture and some have shown rapid decrease in liver specific functions with time. Another limitation of some of the devices is the limited mass exchange between the patient's blood and the extracorporeal liver cells.
- There is provided a perfusion bioreactor, comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing disposed between the housing inlet and the housing outlet and in fluid communication therewith; and perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body; the perfusion devices being disposed in the internal cavity of the housing one adjacent to another and spaced apart from each other along the length of the housing to receive the fluid conveyed from the housing inlet to the housing outlet, and to perfuse the fluid to the encapsulated organ tissue of each perfusion device and to the at least one channel therein.
- There is provided a perfusion device, comprising: a mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body.
- There is provided an artificial liver system, comprising: a fluid network and a pump to circulate plasma through the fluid network; and a perfusion bioreactor in fluid communication with the fluid network to receive the plasma therefrom, the perfusion bioreactor comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing between the housing inlet and the housing outlet and in fluid communication therewith, the housing inlet receiving the plasma; and a plurality of perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated liver tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated liver tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive the plasma therein, the at least one channel having a diameter selected to diffuse undesired solutes out of the plasma and into the body; the perfusion devices being disposed in the internal cavity of the housing one adjacent to another and spaced apart from each other along the length of the housing to receive the plasma conveyed from the housing inlet to the housing outlet, and to perfuse the plasma to the encapsulated liver tissue of each perfusion device and to the at least one channel therein.
- There is provided a method of processing blood plasma, comprising: conveying the blood plasma to at least one channel formed in an encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one channel having a diameter selected to diffuse undesired solutes out of the blood plasma and into the encapsulated liver tissue.
- There is provided a method of making a perfusion device, comprising: providing at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer having a body with at least one channel extending into the body, the at least one channel having a diameter selected to diffuse solutes out of a fluid and into the body; and positioning the body within a cavity of a mesh structure to allow the fluid to enter the cavity and the at least one channel of the body, and to exit the cavity.
- Reference is now made to the accompanying figures in which:
-
Fig. 1A is a schematic view of a perfusion bioreactor; -
Fig. 1B is a schematic view of a housing and perfusion devices of the perfusion bioreactor ofFig. 1A ; -
Fig. 2A is a perspective view of part of a mesh structure of the perfusion devices ofFig. 1B ; -
Fig. 2B is a perspective view of another part of the mesh structure ofFig. 2A ; -
Fig. 3 is a perspective view of another mesh structure for use in the perfusion devices ofFig. 1B ; -
Fig. 4 shows a process for encapsulating liver organoids and making an encapsulated liver tissue for use in the perfusion devices ofFig. 1B ; -
Fig. 5A is a perspective view of one of the perfusion devices ofFig. 1B ; -
Fig. 5B is a side elevational view of an encapsulated organ tissue of the perfusion device shown inFig. 5A ; -
Fig. 5C is an end view of the encapsulated organ tissue of the perfusion device shown inFig. 5A ; -
Fig. 5D is a side elevational view of the encapsulated organ tissues of two of the perfusion devices ofFig. 1B arranged adjacent to each other; -
Fig. 6 is a side elevational view of another encapsulated organ tissue for use in the perfusion devices ofFig. 1B ; -
Fig. 7 is a side elevational view of another an encapsulated organ tissue for use in the perfusion devices ofFig. 1B ; -
Fig. 8 is a schematic view of an artificial liver system having the perfusion bioreactor ofFig. 1A ; -
Fig. 9 is a schematic view of another artificial liver system having the perfusion bioreactor ofFig. 1A ; -
Fig. 10 is a schematic view of another artificial liver system having the perfusion bioreactor ofFig. 1A ; -
Fig. 11A is a schematic view of another perfusion bioreactor; -
Fig. 11B is a perspective view of an internal support for the perfusion bioreactor ofFig. 11A ; and -
Fig. 11C is a perspective view of the internal support ofFig. 11B with perfusion devices. -
Fig. 1A illustrates aperfusion bioreactor 10. Theperfusion bioreactor 10 is an apparatus in which a perfusion operation is carried out. Specifically, the perfusion bioreactor 10 (sometimes referred to herein simply as the "bioreactor 10") allows for the exchange of particles between a liquid and the cells and tissues embedded within a porous biomaterial. Thebioreactor 10 is a vessel having a controlled environment that allows cells to survive and perform metabolic activities. In the depicted embodiment, and as explained in more detail below, thebioreactor 10 has agglomerations of organ cells which perform at least part of the metabolic functions of an organ of the human body. Thebioreactor 10 may be manufactured from any suitable biocompatible plastic, metal, or composites thereof, for example polycarbonate, in order to achieve this functionality. - In operation, the
bioreactor 10 receives fluid, and conveys fluid out of thebioreactor 10. Thebioreactor 10 therefore has a suitable inlet and a suitable outlet that are connected to suitable tubing. In the depicted embodiment, thebioreactor 10 has ahousing 16 which is an elongated body extending a length L between ahousing inlet 18A and ahousing outlet 18B. Thehousing inlet 18A is configured to allow for infusion of plasma, nutrients, or other fluid materials into thehousing 16. In the depicted embodiment, thehousing 16 is a cylindrical body extending along a longitudinal axis such that it is longer than it is wide. Other shapes of thehousing 16 are possible and within the scope of the present disclosure. The housing inlet and 18A,18B are conical ends of theoutlet housing 16, and act as funnels to convey fluid into and out of the main portion of thehousing 16. Thehousing 16 is hollow, and thus has aninner cavity 19 into which the fluid is conveyed for interaction with the organ cells. Theinner cavity 19 is delimited by a wall of the housing, which is cylindrical in the depicted embodiment, and which defines aninner surface 19A. Fluid travels through thehousing 16 by first entering thehousing inlet 18A, then travelling through theinner cavity 19, and the exiting via thehousing outlet 18B. - Referring to
Fig. 1B , thebioreactor 10 also includesperfusion devices 20. Eachperfusion device 20 performs the work of thebioreactor 10 by assisting with the exchange of particles between a liquid and the cells and tissues embedded within a porous biomaterial of eachperfusion device 20. Theperfusion devices 20 contain the agglomeration of organ cells which perform at least part of the metabolic functions of an organ of the human body, as explained in greater detail below. Theperfusion devices 20 are disposed in theinternal cavity 19 of thehousing 16. As shown inFig. 1B , theperfusion devices 20 are disposed in theinternal cavity 19 one adjacent to another and spaced apart from each other along the length L of thehousing 16. Theperfusion devices 20 form a stack of perfusion devices 20A. In the depicted embodiment, the stack of perfusion devices 20A has an upright or vertical orientation. Theperfusion devices 20 are stacked one on top of the other in the stack of perfusion devices 20A. In an alternate embodiment, the stack of perfusion devices 20A has a horizontal or inclined orientation. Irrespective of their orientation, theperfusion devices 20 and their components interact with the fluid which travels through theinner cavity 19 of thehousing 16, from thehousing inlet 18A to thehousing outlet 18B. - Still referring to
Fig. 1B , eachperfusion device 20 includes amesh structure 30 and one or more encapsulatedorgan tissues 40. Themesh structure 30 forms the corpus of theperfusion device 20 and provides structure thereto. Themesh structure 30 is porous, and is supported from theinner surface 19A of thehousing 16 to mount eachperfusion device 20 to thehousing 16. The encapsulatedorgan tissue 40 of each perfusion device is positioned within themesh structure 30. Themesh structure 30 is therefore any suitable device for holding the encapsulatedorgan tissue 40, and for allowing the fluid within thehousing 16 to engage the encapsulatedorgan tissue 40. - Another embodiment of the
bioreactor 600 is shown inFigs. 11A to 11C . In the depicted embodiment, thebioreactor 600 has a housing 616 which is an elongated body extending a length between ahousing inlet 618A and a housing outlet 618B. In the depicted embodiment, the housing 616 is a cylindrical body extending along a longitudinal axis such that it is longer than it is wide. The housing 616 is transparent and admits light. The housing inlet andoutlet 618A,618B are conical ends of the housing 616, and act as funnels to convey fluid into and out of the main portion of the housing 616. The housing 616 is hollow, and thus has aninner cavity 619 into which the fluid is conveyed for interaction with the organ cells. Theinner cavity 619 is delimited by a transparent wall of the housing 616, which is cylindrical in the depicted embodiment. Fluid travels through the housing 616 by first entering thehousing inlet 618A, then travelling through theinner cavity 619, and the exiting via the housing outlet 618B. - Still referring to
Figs. 11A to 11C , thebioreactor 600 has aninternal support 617 for supporting theperfusion devices 20. Theinternal support 617 is positioned within theinner cavity 619. Theinternal support 617 includesend plates 617A which are perforated to permit the passage of fluid therethrough. Theend plates 617A are linked to each other byracks 617B which extend between theend plates 617A. Theracks 617B are spaced apart from each other. Theracks 617B may be attached to an internal surface of the housing 616. Each of theracks 617B includes notches or grooves 617C spaced apart along the length of therack 617B. Themesh structure 30 of eachperfusion device 20 is removably mounted to theracks 617B by being placed in the grooves 617C. - The bioreactor 10,400 provides a controlled environment. In the depicted embodiment, the internal temperature of the bioreactor 10,400 is controlled via a heat exchanger to maintain it constant at 37°C. The internal pH of the bioreactor 10,400 is controlled by modulating bicarbonate to maintain it constant at about 7.4. Since the depicted bioreactor 10,400 is used to process blood plasma, erythrocytes (i.e. red blood cells) are not present in the plasma. Therefore, an oxygen content of the plasma in the bioreactor 10,400 is controlled. The bioreactor 10,400 may be used with other types of corporeal fluids, and may control for fewer or other parameters.
- The
mesh structure 30 and the encapsulatedorgan tissues 40 are now described in greater detail. - Referring to
Figs. 2A and 2B , themesh structure 30 has afirst wall 32 spaced apart from asecond wall 34 to define aninternal mesh cavity 36. The encapsulated organ tissue 40 (not shown inFigs. 2A and 2B ) is disposed in theinternal mesh cavity 36 between the first and 32,34. The first andsecond walls 32,34 are porous to allow the fluid to enter thesecond walls internal mesh cavity 36 to interact with the encapsulatedorgan tissue 40. The porous nature of themesh structure 30 is provided byopenings 38 in each of the first and 32,34, which permit fluid communication through thesecond walls mesh structure 30. InFigs. 2A and 2B , themesh structure 30 includes abase 30A and a cap 30B that is mountable on thebase 30A to close themesh structure 30 and define theinternal mesh cavity 36. Thebase 30A includes thefirst wall 32 of themesh structure 30, and the cap 30B includes thesecond wall 34. The cap 30B is press fit onto thebase 30A. - Other embodiments of the
mesh structure 30 are possible. For example,Fig. 3 shows a one-piece mesh structure 130. Themesh structure 130 is cylindrical, and is shaped as a disc. The first and second walls 132,134 are shown spaced apart to define theinternal mesh cavity 136. The first and second walls 132,134 also haveopenings 138 therein. InFig. 3 , themesh structure 130 has aside wall 131 with anaperture 133 therein. Theaperture 133 is in fluid communication with theinternal mesh cavity 136. Theaperture 133 allows for the introduction of components making up the encapsulatedorgan tissue 40 into theinternal mesh cavity 136, as explained in greater detail below. Irrespective of its configuration, the mesh structure 30,130 may have a thickness between about 1 mm and about 8 mm, and may have a diameter between about 10 mm and about 80 mm. The mesh size (i.e. the size of the openings 38,138) may be between about 500 µm and about 5 mm. Although shown inFigs. 2A-3 as being substantially circular in shape, it will be appreciated that the mesh structure 30,130 may have other shapes, including but not limited to, rectangular, square, triangular, etc. - Referring to
Fig. 4 , the encapsulated organ tissue 40 (sometimes referred to herein simply as the "EOT 40") has one ormore organoids 42 that are at least partially covered with a biocompatiblecross-linked polymer 44. Eachorganoid 42 is a grown or cultured mass of cells or tissue that resembles an organ. InFig. 4 , each organoid 42 is a liver organoid which resembles the liver, such that theEOT 40 is an encapsulated liver tissue (ELT). The fluid that enters the bioreactor 10,400 exchanges compounds with the tissue or cells of theorganoids 42 within theEOT 40 so that toxic compounds are metabolized by the cells of theorganoids 42 and eliminated in a non-toxic form, while useful proteins are produced by the cells of theorganoids 42 and released into the fluid. Albumin, ammonia and other plasma constituents that need to be processed by the liver may therefore be metabolized by theliver organoids 42, which is similar to human liver function. Theorganoids 42 may also be cultured from the cells or tissues of another organ. A non-limitative list of other organs whose function can be mimicked by theorganoids 42 includes the kidney, endocrine tissue, and any other tissue that can be perfused by blood and which can be agglomerated intoorganoids 42. It will therefore be appreciated that reference to the liver, liver organoids, or encapsulated liver tissue in the present disclosure does not limit theorganoids 42 or theEOT 40 to only being formed from liver cells or tissue. -
Fig. 4 shows a process to provide a plurality ofmonodispersed liver organoids 42 within the biocompatible and crossed-linkedpolymer 44. As shown, hepatoblasts, endothelial progenitor cells and mesenchymal progenitor cells are obtained from differentiating a single iPSC. The cells are mixed and co-cultured in suspension to form theliver organoid 42. In the embodiment of theliver organoid 42 shown inFig. 4 , the hepatoblasts have differentiated into hepatocytes which substantially cover a cellular core formed by mesenchymal and endothelial progenitor cells (prior to the introduction of theliver organoids 42 in the encapsulated liver tissue 40). The embodiment of theliver organoid 42 shown inFig. 4 is substantially spherical in shape and has a relative diameter of about 150 µm. The liver organoids 42 are then encapsulated, using a crosslinking agent, which inFig. 4 is shown as UV light, in a first compatible and crosslinkable matrix. The encapsulatedliver tissue 40 can be used as transplantable liver tissue (having for example, a size between 5 mm and 10 cm) in regenerative medicine. Alternatively, theliver organoids 42 can be designed to a multiwell plate and used in drug development to determine metabolism or hepatotoxicity of screened compounds. - The polymer 44 (also referred to as a polymeric matrix) that can be used in the encapsulated
liver tissue 40 forms a hydrogel around theliver organoids 42. A hydrogel refers to polymeric chains that are hydrophilic in which water is the dispersion medium. Hydrogels can be obtained from natural or synthetic polymeric networks. In the context of the present disclosure, encapsulation within the hydrogel prevents embeddedliver organoids 42 from leaking out of thepolymer 44. In an embodiment, eachliver organoid 42 is encapsulated individually and the encapsulatedliver organoids 42 can, in another embodiment, be further included in apolymeric matrix 44. In still another embodiment, theliver organoids 44 are included in apolymeric matrix 44 so as to encapsulate them. As shown inFig. 4 , theliver organoids 42 encapsulated within the hydrogel material form a disc or other cylindrical structure. Other shapes for theorganoids 42 encapsulated within the hydrogel material are possible and within the scope of the present disclosure. The hydrogel may be any biocompatible material. Some non-limitative examples of hydrogels include PEG, and any polyethylene glycol (PEG) based material such as PEG-vinyl sulfone (PEG-VS). -
Fig. 4 shows a process for making the encapsulatedorgan tissue 40, which is described in PCT patent application (published asPCT/CA2017/051404 WO 2018/094522) entitled "Encapsulated Liver Tissue" and filed November 23, 2017 , the entirety of which is incorporated by reference herein. Theorganoids 42 may be harvested from the ultra-low attachment flasks and centrifuged at low speed (400g for 5 minutes) to form a pellet. The pellet (about 3 000 organoids) may be resuspended in 5% 4-arm PEG-vinyl sulfone (20 kDa) solution in sterile PBS without calcium and magnesium supplemented with 0.1% N-vinyl-2-pyrrilidone and 0.4 mg/mL Irgacure 2959. A 50 µL droplet of such a solution (containing about 100 organoids 42) may be generated and deposed in a well of a 96-well plate, and subsequently cross-linked under UV light (5 minutes 1090 µW/cm2 at a distance of 4 cm). The generated encapsulatedliver tissue 40 may be maintained in complete William's E medium/complete EMB2 (1:1) medium supplemented with, 20 ng/mL OSM and 10 µM dexamethasone for 5 days. Five days after encapsulation, the OSM supplementation may be suspended and the ratio complete William's E medium/complete EBM2 medium may be changed from 1:1 to 4:1. The tissue may be cultured at 37°C in ambient O2/5%CO2 and the medium may be changed every other day. Albumin secretion may be assessed weekly in the conditioned medium. It may be possible for encapsulatedorganoids 42 to preserve their ability to secrete albumin through the hydrogel over more than 7 weeks of culture, proving their survival and maintenance of their differentiated status within thepolymer 44 while confirming the diffusion of the secreted protein outside of it. The encapsulatedliver tissue 40 may be solid enough to be manipulated with instruments without losing its shape and integrity. -
Figs. 5A to 5C show one of theperfusion devices 20 and theEOT 40. TheEOT 40 has abody 46 which provides physical structure to theEOT 40. Thebody 46 defines a thickness T. The thickness T is defined between afirst surface 48A of thebody 46 adjacent to thefirst wall 32 of themesh structure 30, and asecond surface 48B of thebody 46 adjacent to thesecond wall 34. TheEOT 40 is therefore "sandwiched" by themesh structure 30. In the depicted embodiment, thebody 46 takes the form of themesh structure 30, and is thus shaped as a cylinder or disc. Just like themesh structure 30, thebody 46 may have other shapes, which are part of the present disclosure. In an embodiment, the thickness T of thebody 46 is between about 1 mm to about 3 mm. Other values for the thickness T of thebody 46 are possible and within the scope of the present disclosure. - Referring to
Figs. 5B and 5C , theEOT 40 is a three-dimensional porous body. TheEOT 40 is embedded with spatially-organized passages which are perfused with the fluid (e.g. plasma) supplied to thehousing 16. As shown inFigs. 5B and 5C , thebody 46 has one or more channels 41 which extend into thebody 46. Each channel 41 extends into thebody 46 from one or both or the of the first and 48A,48B in order to receive the fluid into the channel 41. Each channel 41 has a diameter D. The diameter D of each channel 41 is selected so that undesirable solutes within the fluid can be diffused out of the fluid and into the surrounding tissue of thesecond surfaces body 46 to be metabolized. Control over the diameter D of the channels 41 may allow for improved removal of molecules of a certain size from the fluid, while allowing molecules of interest which have different sizes to remain in the fluid. The diameter D of each channel 41 in thebody 46 may be the same, or may vary. In an embodiment, the diameter D of one or more of the channels 41 is between about 150 µm and about 750 µm. Other values for the diameter D of the channels 41 are possible and within the scope of the present disclosure. - It can therefore be appreciated that each
EOT 40 has a vascular-like structure (i.e. the channels 41) which may assist with penetration of the fluid and its solutes within theEOT 40, and with the diffusion of solutes out of the fluid into the surroundingpolymer 44 hydrogel of thebody 46. This contrasts with some conventional polymerized organ tissues which do not have passages, such that the diffusion of solutes is limited to only the surface of the polymerized organ tissue. - The channels 41 may be formed using any suitable technique. Some possible techniques include photolithography, sacrificial molding, or any other suitable microfabrication technique. When using photolithography, for example, forming the channels 41 includes curing portions of the biocompatible
cross-linked polymer 44 with a UV light source while thebody 46 remains in theinternal mesh cavity 36 of themesh structure 30. This may include covering thebody 46 with a photomask which has one or more opaque portions which correspond to the ultimate location of the channels 41. The biocompatiblecross-linked polymer 44 is then cured with a UV light source applied to the photomask. The portions of thebody 46 covered by the opaque portions of the photomask will remain uncured to thereby form the channels 41 in thebody 46. TheEOT 40 may therefore be photopolymerized within themesh structure 30. If the channels 41 are generated while thepolymer 44 is in themesh structure 30, then the photomask used in photolithography may need to coordinate the opaque portions with theopenings 38 of themesh structure 30 to allow UV light to penetrate to the hydrogel for curing to occur. - In another embodiment of photolithography within the
mesh structure 30, forming the channels 41 includes injecting the at least oneliver organoid 42 and the biocompatiblecross-linked polymer 44 into theinternal mesh cavity 36 of the mesh structure, and then curing portions of the biocompatiblecross-linked polymer 44 with a UV light source to solidify the mass. The portions of thepolymer 44 which are not cured form the channels 41. One technique for achieving this result involves pipetting thehydrogel polymer 44 and theorganoids 42 into theinternal mesh cavity 36 via theopenings 38 in the first and 32,34, or via the aperture 133 (seesecond walls Figs. 2A to 3 ). Prior to injecting thehydrogel polymer 44 and theorganoids 42, both of the first and 32,34 and theirsecond walls openings 38 can be sealed, such as with a light-transparent seal like a glass slide. The mixture is then cured and photopolymerized within themesh structure 30. - Other techniques for forming the channels 41 are also possible and within the scope of the present disclosure. In an alternate embodiment, the
EOT 40 is added to theinternal mesh cavity 36 of themesh structure 30 after photopolymerization. In yet another embodiment, thebody 46 is bio-printed, or formed using a fabricated mold containing the channels 41, or by using sacrificial molding of polymers or sugars. In yet another embodiment, the endothelial progenitor cells of theliver organoid 42 organise in a capillary or a capillary-like configuration. - The shape, orientation, and path of the channels 41 may vary, and at least some of these are now described in greater detail.
- Referring to
Figs. 5B and 5C , thebody 46 includes multiple channels 41. The channels 41A extend through thebody 46 between the first and 48A,48B. The channels 41A therefore communicate the fluid through thesecond surfaces body 46. A length La of the channels 41A is substantially equal to the thickness T of thebody 46. The channels 41B also extend through thebody 46, and also communicate the fluid through thebody 46. The length Lb of the channels 41B is greater than the thickness T of thebody 46 because the channels 41B are slanted or inclined with respect to the first and 48A,48B.second surfaces - Referring to
Figs. 5C and 5D , the through channels 41A,14B allow the fluid to be communicated through thebody 46 of oneperfusion device 20, and to the body 46A of another, immediatelyadjacent perfusion device 20. The channels 41A,41B of thebody 46 are offset from thechannels 41C,41D of the adjacent body 46A. In the embodiment where the stack of perfusion devices 20A has an upright orientation, the offsetchannels 41A,41B,41C,41D of thebodies 46,46A are not vertically aligned. Thechannels 41A,41B,41C,41D of thebodies 46,46A do not overlap. The fluid is therefore prevented from flowing directly, in a straight or non-deviated path, between thebodies 46,46A. The offsetchannels 41A,41B,41C,41D therefore define a winding flow path P for the fluid, such that the fluid is deviated from a straight-line path between thebodies 46,46A. InFig. 5D , one of the winding flow paths P allows the fluid to enter the channel 41A and flow through thebody 46, and then flow along thefirst surface 48A of the body 46A until arriving at thechannel 41C, at which point the fluid enters thechannel 41C and flows through the body 46A. This deviation of the fluid from oneperfusion device 20 to the next may help to increase the chance of solutes diffusing out of the fluid by delaying diffusion and giving the fluid more time to interact with theorganoids 42 of theEOT 40. -
Fig. 6 shows another configuration of the channels 141 of theEOT 40. The channels 141 include a first or primary channel 141A and one or more other channels 141, referred to assecondary channels 141B. The primary channel 141A is a through-channel, and extends through thebody 46 between the first and 48A,48B. Thesecond surfaces secondary channels 141B extend into thebody 46 from afirst end 149A at one of the first and 48A,48B, to asecond surfaces second end 149B within thebody 46 at the primary channel 141A. Thesecond end 149B of thesecondary channels 141B opens into the primary channel 141A, such that thesecondary channel 141B is in fluid communication with the primary channel 141A. The fluid may therefore be conveyed from the first or 48A,48B of thesecond surface body 46, through thesecondary channels 141B, and into the primary channel 141A. The length La of the primary channel 141A is substantially equal to, or greater than, the thickness T of thebody 46. The length Lb of thesecondary channels 141B is either less than the thickness T of thebody 46, or greater than the thickness T of thebody 46. The length Lb' of thesecondary channel 141B is less than the thickness T of thebody 46. The length Lb" of thesecondary channel 141B is greater than the thickness T of thebody 46, such that thissecondary channel 141B follows a meandering, winding, or serpentine path through thebody 46. Thesecondary channel 141B‴ is a "dead-end" channel, and extends into thebody 46 from one of the first and 48A,48B to asecond surfaces second end 149B within thebody 46 that is not in fluid communication with anyother channels 141A,141B. The dead-endsecondary channel 141B‴ may diffuse solvents out of the fluid and into thebody 46. -
Fig. 7 shows another configuration of the channels 241 of theEOT 40. Thebody 46 includes twoprimary channels 241A. Eachprimary channel 241A extends into thebody 46 from one of the first and 48A,48B. Eachsecond surfaces primary channel 241A is a "dead-end" channel, and does not extend through thebody 46. One or moresecondary channels 241B extend between the twoprimary channels 241A to fluidly connect them. The fluid is therefore able to pass through thebody 46 from each of the first and 48A,48B by flowing into one of thesecond surfaces primary channels 241A, through one or moresecondary channels 241B, and out the otherprimary channel 241A. - Referring to
Figs. 1A and 1B , the operation of thebioreactor 10 is explained in greater detail. The fluid received at thehousing inlet 18A of thehousing 16 is conveyed into theinternal cavity 19 to perfuse the fluid to theEOT 40 of eachperfusion device 20. The fluid is therefore delivered through theopenings 38 in the first and 32,34 of eachsecond walls mesh structure 30 to theorganoids 42 and the channels 41 of eachEOT 40. In the depicted embodiment, the fluid is conveyed against gravity, from thelower housing inlet 18A to thehigher housing outlet 18B. As shown inFig. 1B , thehousing 16 hasmultiple supports 17 which are attached to theinner surface 19A and spaced apart along the length L of thehousing 16. Themesh structure 30 of eachperfusion device 20 is removably mounted to one of thesupports 17. In the depicted embodiment, thesupports 17 are notches or grooves inparallel columns 17A which are attached to theinner surface 19A, and which extend along the length L of thehousing 16. Thecolumns 17A are supported with sieves to preventorganoids 42 from theEOT 40 from escaping into the processed fluid leaving thefluid outlet 18B in case of tissue breakage. Other configurations for thesupports 17 are possible and within the scope of the present disclosure. For example, in any alternate embodiment, eachmesh structure 30 has one ormore supports 17 for attaching to theinner surface 19A of thehousing 16. - Still referring to
Fig. 1B , the stack of perfusion devices 20A may be cryopreserved. All materials used may withstand extremely low temperatures without or with minimal fatigue. Prior to starting plasma therapy, theperfusion devices 20 may be taken out of cryopreservation and inserted into thebioreactor 10. Circulation of warm fluid (e.g. warm plasma) can thaw theorganoids 42 in thebioreactor 10 and further maintain the temperature of theorganoids 42 at body temperature, creating an optimal environment for the tissue. In an embodiment, between about 0.1% and about 1% of the mass of a human liver is present in theperfusion devices 20 of thehousing 16. This equates to approximately from a few million to a few billion liver cells, and may also equate to between about 500 to about 10,000 organoids perperfusion device 20. -
Fig. 8 shows an embodiment of anartificial liver system 300 having the bioreactor 10,400 described herein. Theartificial liver system 300 helps to mimic the function of the human liver, and may therefore be referred to as a "Bio-Artificial Liver Device (BALD)". The artificial liver system 300 (sometimes referred to herein simply as the "system 300") includes afluid network 302, which is a series of tubes, connectors, and other components to communicate blood plasma between the features of thesystem 300. Thesystem 300 has aperistaltic pump 304 to circulate the plasma through thefluid network 302. In the depicted embodiment, thepump 304 pushes plasma through thefluid network 302 at a flow rate of between about 50 mL/min to about 300 mL/min. Infusion pumps may be placed right after thepump 304 to insert saline and/or an anticoagulant (Heparin). Thefluid network 302 may have a pressure sensor to determine pressure across thesystem 300, and to ensure that plasma re-enters the patient at a pressure similar to that at which it was extracted. - The
system 300 may optionally have an adsorbent cartridge, shown inFig. 8 as amolecular adsorbent system 306, or MAS. TheMAS 306 is any suitable perfusion device or charcoal adsorbent system. TheMAS 306 is in fluid communication with thefluid network 302 to remove some of the undesired solutes from the plasma. The undesired solutes may include toxins, and high levels of bilirubin. The undesired solutes are removed from the plasma in theMAS 306 using adsorption on an activated charcoal or hydrophobic resin. Thesystem 300 may also have an oxygenator 308 in fluid communication with thefluid network 302, as shown inFig. 8 . The oxygenator 308 operates to dissolve oxygen into the plasma to produce oxygenated plasma. The bioreactor 10,400 is shown in fluid communication with the oxygenator 308, and receives the oxygenated plasma therefrom. The oxygenated plasma enters the bioreactor 10,400 and interacts with theELTs 40 of theperfusion devices 20, which operate to diffuse other remaining undesired solutes, not already removed by theMAS 306, out of the oxygenated plasma and into thebody 46 of theEOT 40. In an alternate embodiment, the oxygenator 308 is a component of the bioreactor 10,400, and oxygenation is performed in the bioreactor 10,400 itself. In an embodiment, thesystem 300 is free of an oxygenator. In an embodiment, oxygenation is performed on the plasma downstream of the bioreactor 10,400. The processed plasma exiting thehousing outlet 18B of the bioreactor 10,400 may be provided to attach to a commercially-availableextracorporeal filtration system 310. Thesystem 300 inFig. 8 may therefore be an add-on device to be used with the existingextracorporeal filtration system 310. In an alternate embodiment, a dialyzer 416 (seeFig. 9 ) is placed in thesystem 300 after the bioreactor 10,400 to perform plasma dialysis. -
Fig. 9 shows another embodiment of anartificial liver system 400 having the bioreactor 10,400 described herein. Thesystem 400 is a stand-alone extracorporeal unit which includes ablood circuit 401A and a plasma circuit 401B. Theblood circuit 401A includes apump 402 to pump blood into thesystem 400. Infusion pumps 402A are placed right after thepump 402 to insert saline and an anticoagulant (Heparin). InFig. 9 , theMAS 406 is positioned in theblood circuit 401A before aplasma fractionation module 408 which separates the plasma from the blood, and which provides the plasma to the plasma circuit 401B. In the plasma circuit 401B, thesystem 400 has aperistaltic pump 410 to circulate the plasma through thefluid network 412. Ablood leak detector 414 is present before thedialyzer 416 of the plasma circuit 401B, which removes some of the undesired solutes from the plasma using a dialysate. The plasma circuit 401B also has anoxygenator 418 to dissolve oxygen into the plasma to produce oxygenated plasma. The bioreactor 10,400 is in fluid communication with theoxygenator 418, and receives the oxygenated plasma therefrom. The oxygenated plasma enters the bioreactor 10,400 and interacts with theELTs 40 of theperfusion devices 20, which operate to diffuse other, remaining undesired solutes, not already removed by theMAS 406 or thedialyzer 416, out of the oxygenated plasma and into thebodies 46 of theEOTs 40. The processed plasma exiting thehousing outlet 18B of the bioreactor 10,400 is provided back to theblood circuit 401A, where it is recombined with the separated blood products and returned to the patient's blood, or further fluid processing may be performed. Theblood circuit 401A has anair bubble detector 420 to prevent air from being introduced into the blood. Thesystem 400 may also include temperature sensor(s), flow meter(s), a cell filter(s), heat exchanger(s) to maintain a constant temperature, clamp(s), drip chamber(s), and any other suitable devices. -
Fig. 10 shows another embodiment of anartificial liver system 500 having the bioreactor 10,400 described herein. Thesystem 500 is a stand-alone extracorporeal unit which includes a blood circuit 501A and a plasma circuit 501B. The blood circuit 501A includes apump 502 to pump blood into thesystem 500. Infusion pumps 502A are placed right after thepump 502 to insert saline and an anticoagulant (Heparin). Aplasma fractionation module 508 separates the plasma from the blood, and provides the plasma to the plasma circuit 501B. In the plasma circuit 501B, thesystem 500 has a peristaltic pump 510 to circulate the plasma through thefluid network 512. Ablood leak detector 514 is present upstream of the pump 510. The plasma circuit 501B also has anoxygenator 518 to dissolve oxygen into the plasma to produce oxygenated plasma. The bioreactor 10,400 is in fluid communication with theoxygenator 518, and receives the oxygenated plasma therefrom. The oxygenated plasma enters the bioreactor 10,400 and interacts with theELTs 40 of theperfusion devices 20, which operate to diffuse remaining undesired solutes out of the oxygenated plasma and into thebodies 46 of theEOTs 40. The processed plasma exiting thehousing outlet 18B of the bioreactor 10,400 is provided back to the blood circuit 501A, and then to thedialyzer 516, which removes some of the undesired solutes from the plasma using a dialysate. The treated plasma is recombined with the separated blood products and returned to the patient's blood, or further fluid processing may be performed. The blood circuit 501A has anair bubble detector 520 to prevent air from being introduced into the blood. Thesystem 500 may also include temperature sensor(s), flow meter(s), a cell filter(s), heat exchanger(s) to maintain a constant temperature, clamp(s), drip chamber(s), and any other suitable devices. Thesystem 500 may include a hemoperfusion (HP) cartridge, as shown inFig. 10 , which may be positioned upstream of the bioreactor 10,400. - A. A perfusion bioreactor, comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing disposed between the housing inlet and the housing outlet and in fluid communication therewith; and perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body; the perfusion devices being disposed in the internal cavity of the housing one adjacent to another and spaced apart from each other along the length of the housing to receive the fluid conveyed from the housing inlet to the housing outlet, and to perfuse the fluid to the encapsulated organ tissue of each perfusion device and to the at least one channel therein.
- B. A perfusion device, comprising: a mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body.
- C. An artificial liver system, comprising: a fluid network and a pump to circulate plasma through the fluid network; and a perfusion bioreactor in fluid communication with the fluid network to receive the plasma therefrom, the perfusion bioreactor comprising: a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing between the housing inlet and the housing outlet and in fluid communication therewith, the housing inlet receiving the plasma; and a plurality of perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising: a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and an encapsulated liver tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated liver tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive the plasma therein, the at least one channel having a diameter selected to diffuse undesired solutes out of the plasma and into the body; the perfusion devices being disposed in the internal cavity of the housing one adjacent to another and spaced apart from each other along the length of the housing to receive the plasma conveyed from the housing inlet to the housing outlet, and to perfuse the plasma to the encapsulated liver tissue of each perfusion device and to the at least one channel therein.
- D. A method of processing blood plasma, comprising: conveying the blood plasma to at least one channel formed in an encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one channel having a diameter selected to diffuse undesired solutes out of the blood plasma and into the encapsulated liver tissue.
- E. A method of making a perfusion device, comprising: providing at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer having a body with at least one channel extending into the body, the at least one channel having a diameter selected to diffuse solutes out of a fluid and into the body; and positioning the body within a cavity of a mesh structure to allow the fluid to enter the cavity and the at least one channel of the body, and to exit the cavity.
- Each of the embodiments A, B, C, D and E may have one or more of the following additional elements in any combination.
- Element 1: the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- Element 2: a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Element 3: the at least one channel of one of the perfusion devices is offset from the at least one channel of an immediately adjacent perfusion device, the fluid following a winding flow path between the channels of the adjacent perfusion devices.
- Element 4: the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- Element 5: a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Element 6: the length of the at least another channel is greater than the thickness of the body.
- Element 7: a plurality of supports spaced apart along the length of the housing, the mesh structure of each perfusion device being removably mounted to one of the supports.
- Element 8: the housing has an upright orientation, the perfusion devices being supported from the housing one on top of another in a stack.
- Element 9: the diameter of the at least one channel is between 150 µm and 750 µm.
- Element 10: the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- Element 11: conveying the oxygenated blood plasma includes conveying the oxygenated blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer.
- Element 12: conveying the oxygenated blood plasma includes conveying the oxygenated blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer, the second channel being misaligned with the at least one channel.
- Element 13: conveying the oxygenated blood plasma from the at least one channel to the second channel includes conveying the oxygenated blood plasma to the second channel being vertically spaced apart from the at least one channel.
- Element 14: cryopreserving the encapsulated liver tissue prior to conveying the blood plasma through the fluid network.
- Element 15: warming the cryopreserved encapsulated liver tissue with the oxygenated blood plasma
- Element 16: providing the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer includes forming the at least one channel in the body using photolithography.
- Element 17: forming the at least one channel includes curing portions of the biocompatible cross-linked polymer with a UV light source while the body remains in the cavity of the mesh structure.
- Element 18: forming the at least one channel includes injecting the at least one liver organoid and the biocompatible cross-linked polymer into the cavity of the mesh structure, and curing portions of the biocompatible cross-linked polymer with a UV light source.
- Element 19: forming the at least one channel includes covering the body with a photomask having at least one opaque portion, and curing the biocompatible cross-linked polymer with a UV light source applied to the photomask, a portion of the body covered by the at least one opaque portion of the photomask remaining uncured to form the at least one channel.
- Element 20: oxygenating the blood plasma to produce oxygenated blood plasma.
- Element 21: oxygenating the blood plasma includes oxygenating the blood plasma before conveying the blood plasma to the at least one channel.
- Element 22: oxygenating the blood plasma includes oxygenating the blood plasma in a perfusion bioreactor.
- Element 23: an oxygenator in fluid communication with the fluid network to diffuse oxygen into the plasma to produce oxygenated plasma.
- The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
- Example 1: A perfusion bioreactor, comprising:
- a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing disposed between the housing inlet and the housing outlet and in fluid communication therewith; and
- perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising:
- a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and
- an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body;
- the perfusion devices being disposed in the internal cavity of the housing one adjacent to another and spaced apart from each other along the length of the housing to receive the fluid conveyed from the housing inlet to the housing outlet, and to perfuse the fluid to the encapsulated organ tissue of each perfusion device and to the at least one channel therein.
- Example 2: The perfusion bioreactor of example 1, wherein the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- Example 3: The perfusion bioreactor of example 2, wherein a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Example 4: The perfusion bioreactor of example 2 or 3, wherein the at least one channel of one of the perfusion devices is offset from the at least one channel of an immediately adjacent perfusion device, the fluid following a winding flow path between the channels of the adjacent perfusion devices.
- Example 5: The perfusion bioreactor of example 1, wherein the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- Example 6: The perfusion bioreactor of example 5, wherein a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Example 7: The perfusion bioreactor of example 6, wherein the length of the at least another channel is greater than the thickness of the body.
- Example 8: The perfusion bioreactor of any one of examples 1 to 7, comprising a plurality of supports spaced apart along the length of the housing, the mesh structure of each perfusion device being removably mounted to one of the supports.
- Example 9: The perfusion bioreactor of any one of examples 1 to 8, wherein the housing has an upright orientation, the perfusion devices being supported from the housing one on top of another in a stack.
- Example 10: The perfusion bioreactor of any one of examples 1 to 9, wherein the diameter of the at least one channel is between 150 µm and 750 µm.
- Example 11: The perfusion bioreactor of any one of examples 1 to 10, wherein the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- Example 12: A perfusion device, comprising:
- a mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and
- an encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body.
- Example 13: The perfusion device of example 12, wherein the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- Example 14: The perfusion device of example 13, wherein a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Example 15: The perfusion device of example 12, wherein the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- Example 16: The perfusion device of example 15, wherein a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Example 17: The perfusion device of example 16, wherein the length of the at least another channel is greater than the thickness of the body.
- Example 18: The perfusion device of any one of examples 1 to 17, wherein the diameter of the at least one channel is between 150 µm and 750 µm.
- Example 19: The perfusion device of any one of examples 1 to 18, wherein the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- Example 20: An artificial liver system, comprising:
- a fluid network and a pump to circulate plasma through the fluid network; and
- a perfusion bioreactor in fluid communication with the fluid network to receive the plasma therefrom, the perfusion bioreactor comprising:
- a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing between the housing inlet and the housing outlet and in fluid communication therewith, the housing inlet receiving the plasma; and
- a plurality of perfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising:
- a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; and
- an encapsulated liver tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated liver tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive the plasma therein, the at least one channel having a diameter selected to diffuse undesired solutes out of the plasma and into the body;
- the perfusion devices being disposed in the internal cavity of the housing one adjacent to another and spaced apart from each other along the length of the housing to receive the plasma conveyed from the housing inlet to the housing outlet, and to perfuse the plasma to the encapsulated liver tissue of each perfusion device and to the at least one channel therein.
- Example 21: The artificial liver system of example 20, wherein the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- Example 22: The artificial liver system of example 21, wherein a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- Example 23: The artificial liver system of example 21 or 22, wherein the at least one channel of one of the perfusion devices is offset from the at least one channel of an immediately adjacent perfusion device, the fluid following a winding flow path between the channels of the adjacent perfusion devices.
- Example 24: The artificial liver system of example 20, wherein the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- Example 25: The artificial liver system of example 24, wherein a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- Example 26: The artificial liver system of example 25, wherein the length of the at least another channel is greater than the thickness of the body.
- Example 27: The artificial liver system of any one of examples 20 to 26, comprising a plurality of supports spaced apart along the length of the housing, the mesh structure of each perfusion device being removably mounted to one of the supports.
- Example 28: The artificial liver system of any one of examples 20 to 27, wherein the housing has an upright orientation, the perfusion devices being supported from the housing one on top of another in a stack.
- Example 29: The artificial liver system of any one of examples 20 to 28, wherein the diameter of the at least one channel is between 150 µm and 750 µm.
- Example 30: The artificial liver system of any one of examples 20 to 29, wherein the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
- Example 31: The artificial liver system of any one of examples 20 to 30, comprising an oxygenator in fluid communication with the fluid network to diffuse oxygen into the plasma to produce oxygenated plasma.
- Example 32: A method of processing blood plasma, comprising: conveying the blood plasma to at least one channel formed in an encapsulated liver tissue having at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one channel having a diameter selected to diffuse undesired solutes out of the blood plasma and into the encapsulated liver tissue.
- Example 33: The method of example 32, wherein conveying the blood plasma includes conveying the blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer.
- Example 34: The method of example 32, wherein conveying the blood plasma includes conveying the blood plasma from the at least one channel to a second channel in another encapsulated liver tissue having at least one liver organoid at least partially covered with the biocompatible cross-linked polymer, the second channel being misaligned with the at least one channel.
- Example 35: The method of example 33 or 34, wherein conveying the blood plasma from the at least one channel to the second channel includes conveying the blood plasma to the second channel being vertically spaced apart from the at least one channel.
- Example 36: The method of any one of examples 32 to 35, comprising cryopreserving the encapsulated liver tissue prior to conveying the blood plasma.
- Example 37: The method of example 36, comprising warming the cryopreserved encapsulated liver tissue with the blood plasma.
- Example 38: The method of any one of examples 32 to 37, comprising oxygenating the blood plasma to produce oxygenated blood plasma.
- Example 39: The method of example 38, wherein oxygenating the blood plasma includes oxygenating the blood plasma before conveying the blood plasma to the at least one channel.
- Example 40: The method of example 38, wherein oxygenating the blood plasma includes oxygenating the blood plasma in a perfusion bioreactor.
- Example 41: A method of making a perfusion device, comprising:
- providing at least one liver organoid at least partially covered with a biocompatible cross-linked polymer, the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer having a body with at least one channel extending into the body, the at least one channel having a diameter selected to diffuse solutes out of a fluid and into the body; and
- positioning the body within a cavity of a mesh structure to allow the fluid to enter the cavity and the at least one channel of the body, and to exit the cavity.
- Example 42: The method of example 41, wherein providing the at least one liver organoid at least partially covered with the biocompatible cross-linked polymer includes forming the at least one channel in the body using photolithography.
- Example 43: The method of example 42, wherein forming the at least one channel includes curing portions of the biocompatible cross-linked polymer with a UV light source while the body remains in the cavity of the mesh structure.
- Example 44: The method of example 41, wherein forming the at least one channel includes injecting the at least one liver organoid and the biocompatible cross-linked polymer into the cavity of the mesh structure, and curing portions of the biocompatible cross-linked polymer with a UV light source.
- Example 45: The method of any one of examples 42 to 44, wherein forming the at least one channel includes covering the body with a photomask having at least one opaque portion, and curing the biocompatible cross-linked polymer with a UV light source applied to the photomask, a portion of the body covered by the at least one opaque portion of the photomask remaining uncured to form the at least one channel.
Claims (11)
- A perfusion bioreactor, comprising:a housing having a length defined between a housing inlet and a housing outlet, the housing having an inner surface delimiting an internal cavity of the housing disposed between the housing inlet and the housing outlet and in fluid communication therewith; andperfusion devices disposed in the internal cavity of the housing, each of the perfusion devices comprising:a mesh structure supported from the inner surface of the housing, the mesh structure having a first wall spaced apart from a second wall to define an internal mesh cavity, each of the first and second walls of the mesh structure having openings therein to permit fluid communication through the mesh structure; andan encapsulated organ tissue disposed in the internal mesh cavity between the first and second walls of the mesh structure, the encapsulated organ tissue having at least one organoid at least partially covered with a biocompatible cross-linked polymer, the encapsulated organ tissue having a body with a thickness defined between a first surface of the body adjacent the first wall of the mesh structure and a second surface of the body adjacent the second wall of the mesh structure, the body having at least one channel extending into the body from one of the first and second surfaces to receive a fluid therein, the at least one channel having a diameter selected to diffuse solutes out of the fluid and into the body;the perfusion devices being disposed in the internal cavity of the housing one adjacent to another and spaced apart from each other along the length of the housing to receive the fluid conveyed from the housing inlet to the housing outlet, and to perfuse the fluid to the encapsulated organ tissue of each perfusion device and to the at least one channel therein.
- The perfusion bioreactor of claim 1, wherein the at least one channel of the body of each perfusion device extends through the body between the first and second surfaces.
- The perfusion bioreactor of claim 2, wherein a length of the at least one channel is substantially equal to, or greater than, the thickness of the body.
- The perfusion bioreactor of claim 2 or 3, wherein the at least one channel of one of the perfusion devices is offset from the at least one channel of an immediately adjacent perfusion device, the fluid following a winding flow path between the channels of the adjacent perfusion devices.
- The perfusion bioreactor of claim 1, wherein the at least one channel of the body includes a first channel and at least another channel, the first channel extending through the body between the first and second surfaces, the at least another channel extending into the body from a first end at one of the first and second surfaces to a second end within the body at the first channel, the at least another channel being in fluid communication with the first channel.
- The perfusion bioreactor of claim 5, wherein a length of the first channel is substantially equal to, or greater than, the thickness of the body, and a length of the at least another channel is less than or greater than the thickness of the body.
- The perfusion bioreactor of claim 6, wherein the length of the at least another channel is greater than the thickness of the body.
- The perfusion bioreactor of any one of claims 1 to 7, comprising a plurality of supports spaced apart along the length of the housing, the mesh structure of each perfusion device being removably mounted to one of the supports.
- The perfusion bioreactor of any one of claims 1 to 8, wherein the housing has an upright orientation, the perfusion devices being supported from the housing one on top of another in a stack.
- The perfusion bioreactor of any one of claims 1 to 9, wherein the diameter of the at least one channel is between 150 µm and 750 µm.
- The perfusion bioreactor of any one of claims 1 to 10, wherein the at least one organoid of the encapsulated organ tissue includes a plurality of liver organoids.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862674696P | 2018-05-22 | 2018-05-22 | |
| EP19808413.9A EP3797151B1 (en) | 2018-05-22 | 2019-05-22 | Artificial liver system |
| PCT/CA2019/050698 WO2019222847A1 (en) | 2018-05-22 | 2019-05-22 | Perfusion bioreactor, perfusion device, artificial liver system, and related methods |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19808413.9A Division EP3797151B1 (en) | 2018-05-22 | 2019-05-22 | Artificial liver system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP4458949A1 true EP4458949A1 (en) | 2024-11-06 |
Family
ID=68616241
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP24186387.7A Pending EP4458949A1 (en) | 2018-05-22 | 2019-05-22 | Artificial liver system |
| EP19808413.9A Active EP3797151B1 (en) | 2018-05-22 | 2019-05-22 | Artificial liver system |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19808413.9A Active EP3797151B1 (en) | 2018-05-22 | 2019-05-22 | Artificial liver system |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US11096388B2 (en) |
| EP (2) | EP4458949A1 (en) |
| JP (1) | JP2021526386A (en) |
| KR (1) | KR102768340B1 (en) |
| CN (1) | CN112154201B (en) |
| AU (1) | AU2019273870B2 (en) |
| CA (1) | CA3100865A1 (en) |
| ES (1) | ES2986823T3 (en) |
| WO (1) | WO2019222847A1 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102559192B1 (en) * | 2016-11-23 | 2023-07-27 | 몰포셀 테크놀로지스 인코포레이티드 | encapsulated liver tissue |
| WO2019222847A1 (en) * | 2018-05-22 | 2019-11-28 | Morphocell Technologies Inc. | Perfusion bioreactor, perfusion device, artificial liver system, and related methods |
| CN111249552B (en) * | 2020-03-16 | 2020-11-17 | 南京鼓楼医院 | Bioartificial liver based on human iPSCs-induced hepatocytes and multilayer porous bioreactor |
| US20220331502A1 (en) * | 2020-06-26 | 2022-10-20 | Ykrita Lifesciences Private Limited | Bioengineered Artificial Lateral Liver (BALL) or Bioengineered Artificial Ectopic Liver (BAEL) |
| US12478723B2 (en) * | 2022-11-19 | 2025-11-25 | Ykrita Lifesciences Private Limited | Extracorporeal bioengineered dual-cell liver regeneration system (EBDLR) and bio purifier therefor |
| WO2024220607A2 (en) * | 2023-04-19 | 2024-10-24 | President And Fellows Of Harvard College | Protective mesh for tissue constructs |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN201064500Y (en) * | 2007-08-17 | 2008-05-28 | 浙江大学 | Filling bracket perfusion type bioreactor for artificial liver |
| CN201418905Y (en) * | 2009-05-07 | 2010-03-10 | 浙江大学 | Fiber mesh stacked bioreactor for artificial liver |
| WO2018094522A1 (en) | 2016-11-23 | 2018-05-31 | Valorisation-Hsj, Limited Partnership | Encapsulated liver tissue |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS53118581A (en) * | 1977-03-24 | 1978-10-17 | Kanegafuchi Chem Ind Co Ltd | Method and apparatus for culturing microorganisms |
| US6372482B1 (en) * | 1997-01-16 | 2002-04-16 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Device and method for performing a biological modification of a fluid |
| JP4222658B2 (en) * | 1998-06-23 | 2009-02-12 | テルモ株式会社 | Cell support substrate, culture apparatus and liquid processing apparatus |
| EP1317526B1 (en) * | 2000-09-13 | 2008-05-21 | Csir | Bio-reactor device |
| JP2002335949A (en) * | 2001-05-22 | 2002-11-26 | Inst Of Physical & Chemical Res | Three-dimensional tissue culture method of cells using honeycomb structure film |
| US20050130254A1 (en) * | 2003-12-16 | 2005-06-16 | Park Sung-Soo | Drug testing system with bio-artificial liver |
| DE10340487B4 (en) * | 2003-09-03 | 2007-07-12 | Technische Universität Dresden | perfusion |
| EP2061871A1 (en) * | 2006-09-14 | 2009-05-27 | ProBioGen AG | Modular culture system for maintenance, differentiation and proliferation of cells |
| JP5583312B2 (en) * | 2007-02-20 | 2014-09-03 | 富士フイルム株式会社 | Tissue formation substrate, tissue formation kit, tissue formation method using the same, and three-dimensional tissue formed by the tissue formation method |
| CN101199436A (en) * | 2007-11-28 | 2008-06-18 | 中国人民解放军第三军医大学第一附属医院 | Three-dimensional three-dimensional bioreactor for culturing hepatocytes |
| CN201211251Y (en) * | 2008-07-04 | 2009-03-25 | 南京大学医学院附属鼓楼医院 | Novel bioartificial liver cell reactor |
| WO2010042072A1 (en) * | 2008-10-08 | 2010-04-15 | Agency For Science, Technology And Research | Apparatus for culturing anchorage dependent cells |
| CN102198022B (en) * | 2011-05-23 | 2013-04-17 | 西安交通大学 | Solid forming method of active cell-hydrogel organ structure |
| EP3354343B1 (en) * | 2011-06-02 | 2023-09-06 | President and Fellows of Harvard College | Methods and uses for ex vivo tissue culture systems |
| US9725687B2 (en) * | 2011-12-09 | 2017-08-08 | President And Fellows Of Harvard College | Integrated human organ-on-chip microphysiological systems |
| CN102631710A (en) * | 2012-04-13 | 2012-08-15 | 清华大学 | Preparation method of precursor of composite tissues and organs with multichannel multilayer cell structure |
| CN104837982B (en) * | 2012-09-29 | 2017-11-21 | 诺荑思公司 | Microfluidic systems for regenerative functional units of tissues and organs in vitro |
| CN103100119A (en) * | 2013-01-24 | 2013-05-15 | 中山大学 | Artificial liver bioreactor |
| CN106163581B (en) * | 2013-11-05 | 2019-10-25 | 哈佛学院院长及董事 | Method of printing tissue constructs with embedded vasculature |
| US9701933B2 (en) * | 2014-09-19 | 2017-07-11 | Sarfaraz K. Niazi | Harvesting and purification or perfusion yielder (HAPPY) device |
| WO2016141137A1 (en) * | 2015-03-03 | 2016-09-09 | President And Fellows Of Harvard College | Methods of generating functional human tissue |
| AU2016331079B2 (en) * | 2015-10-02 | 2022-07-14 | Wake Forest University Health Sciences | Spontaneously beating cardiac organoid constructs and integrated body-on-chip apparatus containing the same |
| JP6942448B2 (en) * | 2016-08-08 | 2021-09-29 | 株式会社カネカ | Cell culture container, cell culture system using this, and cell culture method |
| WO2019222847A1 (en) * | 2018-05-22 | 2019-11-28 | Morphocell Technologies Inc. | Perfusion bioreactor, perfusion device, artificial liver system, and related methods |
| EP4426752A1 (en) * | 2021-11-01 | 2024-09-11 | Universiteit Maastricht | Hydrogels for organoid culture |
-
2019
- 2019-05-22 WO PCT/CA2019/050698 patent/WO2019222847A1/en not_active Ceased
- 2019-05-22 CN CN201980033743.XA patent/CN112154201B/en active Active
- 2019-05-22 ES ES19808413T patent/ES2986823T3/en active Active
- 2019-05-22 CA CA3100865A patent/CA3100865A1/en active Pending
- 2019-05-22 EP EP24186387.7A patent/EP4458949A1/en active Pending
- 2019-05-22 KR KR1020207036834A patent/KR102768340B1/en active Active
- 2019-05-22 EP EP19808413.9A patent/EP3797151B1/en active Active
- 2019-05-22 JP JP2021515255A patent/JP2021526386A/en active Pending
- 2019-05-22 US US17/057,061 patent/US11096388B2/en active Active
- 2019-05-22 AU AU2019273870A patent/AU2019273870B2/en active Active
-
2021
- 2021-07-16 US US17/377,574 patent/US11805775B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN201064500Y (en) * | 2007-08-17 | 2008-05-28 | 浙江大学 | Filling bracket perfusion type bioreactor for artificial liver |
| CN201418905Y (en) * | 2009-05-07 | 2010-03-10 | 浙江大学 | Fiber mesh stacked bioreactor for artificial liver |
| WO2018094522A1 (en) | 2016-11-23 | 2018-05-31 | Valorisation-Hsj, Limited Partnership | Encapsulated liver tissue |
Non-Patent Citations (4)
| Title |
|---|
| IJIMA H ET AL: "Development of a hybrid artificial liver using a polyurethane foam/hepatocyte-spheroid packed-bed module", INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, WICHTIG PUBLISHING, IT, vol. 23, no. 6, 1 June 2000 (2000-06-01), pages 389 - 397, XP009135706, ISSN: 0391-3988 * |
| JINGWEI ZHANG ET AL: "A decade of progress in liver regenerative medicine", BIOMATERIALS, vol. 157, 1 March 2018 (2018-03-01), AMSTERDAM, NL, pages 161 - 176, XP055658982, ISSN: 0142-9612, DOI: 10.1016/j.biomaterials.2017.11.027 * |
| JUAN LU ET AL: "A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems", PLOS ONE, vol. 11, no. 2, 3 February 2016 (2016-02-03), pages 1 - 18, XP055658965, DOI: 10.1371/journal.pone.0147376 * |
| LEI XIA ET AL: "Hepatocyte function within a stacked double sandwich culture plate cylindrical bioreactor for bioartificial liver system", BIOMATERIALS, vol. 33, no. 32, 1 January 2012 (2012-01-01), AMSTERDAM, NL, pages 7925 - 7932, XP055658969, ISSN: 0142-9612, DOI: 10.1016/j.biomaterials.2012.06.078 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112154201A (en) | 2020-12-29 |
| CN112154201B (en) | 2024-12-27 |
| AU2019273870A1 (en) | 2021-01-21 |
| AU2019273870B2 (en) | 2024-12-12 |
| ES2986823T3 (en) | 2024-11-12 |
| US11096388B2 (en) | 2021-08-24 |
| WO2019222847A1 (en) | 2019-11-28 |
| CA3100865A1 (en) | 2019-11-28 |
| JP2021526386A (en) | 2021-10-07 |
| EP3797151A4 (en) | 2022-04-20 |
| EP3797151B1 (en) | 2024-08-07 |
| EP3797151A1 (en) | 2021-03-31 |
| EP3797151C0 (en) | 2024-08-07 |
| US20210176984A1 (en) | 2021-06-17 |
| KR20210011996A (en) | 2021-02-02 |
| KR102768340B1 (en) | 2025-02-17 |
| US11805775B2 (en) | 2023-11-07 |
| US20210337783A1 (en) | 2021-11-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11805775B2 (en) | Perfusion bioreactor, perfusion device, artificial liver system, and related methods | |
| US11596901B2 (en) | Biomimetically designed modular microfluidic-based capillaries and lymphatic units for kidney and liver dialysis systems, organ bio-reactors and bio-artificial organ support systems | |
| AU748044B2 (en) | A device and method for performing a biological modification of a fluid | |
| CA2262812C (en) | Hollow fiber bioreactor comprising a hydrogel flow restrictor | |
| US9095817B2 (en) | Device for the treatment of biological fluid | |
| US8491561B2 (en) | Micromachined bilayer unit of engineered tissues | |
| US6858146B1 (en) | Artificial liver apparatus and method | |
| JP5524824B2 (en) | Improved bioreactor surface | |
| US5741334A (en) | Artificial pancreatic perfusion device | |
| EP0950432A1 (en) | Removal of agent from cell suspension | |
| JP2016531660A (en) | Cross flow filtration device | |
| EP1196029A2 (en) | A device and method for performing a biological modification of a fluid | |
| JP2003206201A (en) | Organ preservation apparatus for transplantation comprising organ storage apparatus and artificial organ system comprising the storage apparatus | |
| JP2004275718A (en) | Module for bionic artificial pancreas and bionic artificial pancreas | |
| CA2201159A1 (en) | Artificial liver apparatus and method | |
| EP2444478A1 (en) | Tubular body fluid mass exchange system and mass exchange device | |
| JP2004049301A (en) | Blood purifying system | |
| JP2004041527A (en) | Bio-artificial organ |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
| AC | Divisional application: reference to earlier application |
Ref document number: 3797151 Country of ref document: EP Kind code of ref document: P |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20250428 |