EP4368293A1 - Séparateur compact de déchets solides - Google Patents
Séparateur compact de déchets solides Download PDFInfo
- Publication number
- EP4368293A1 EP4368293A1 EP23202724.3A EP23202724A EP4368293A1 EP 4368293 A1 EP4368293 A1 EP 4368293A1 EP 23202724 A EP23202724 A EP 23202724A EP 4368293 A1 EP4368293 A1 EP 4368293A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- separator
- nozzle
- module
- drum
- solid waste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002910 solid waste Substances 0.000 title claims abstract description 17
- 239000006148 magnetic separator Substances 0.000 claims abstract description 31
- 239000002699 waste material Substances 0.000 claims abstract description 31
- 238000000926 separation method Methods 0.000 claims abstract description 19
- 238000004062 sedimentation Methods 0.000 claims abstract description 14
- 230000005484 gravity Effects 0.000 claims abstract description 5
- 230000001154 acute effect Effects 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 42
- 239000000463 material Substances 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000004033 plastic Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 239000004411 aluminium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 235000013361 beverage Nutrition 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010813 municipal solid waste Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- WWVKQTNONPWVEL-UHFFFAOYSA-N caffeic acid phenethyl ester Natural products C1=C(O)C(O)=CC=C1C=CC(=O)OCC1=CC=CC=C1 WWVKQTNONPWVEL-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000010793 electronic waste Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 ferrous metals Chemical class 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- SWUARLUWKZWEBQ-UHFFFAOYSA-N phenylethyl ester of caffeic acid Natural products C1=C(O)C(O)=CC=C1C=CC(=O)OCCC1=CC=CC=C1 SWUARLUWKZWEBQ-UHFFFAOYSA-N 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/30—Combinations with other devices, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B9/00—General arrangement of separating plant, e.g. flow sheets
- B03B9/06—General arrangement of separating plant, e.g. flow sheets specially adapted for refuse
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/023—Separation using Lorentz force, i.e. deflection of electrically charged particles in a magnetic field
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/16—Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/23—Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/23—Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
- B03C1/24—Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
- B03C1/247—Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields obtained by a rotating magnetic drum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C7/00—Separating solids from solids by electrostatic effect
- B03C7/02—Separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B4/00—Separating solids from solids by subjecting their mixture to gas currents
- B07B4/02—Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
- B07B4/025—Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall the material being slingered or fled out horizontally before falling, e.g. by dispersing elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/20—Magnetic separation of bulk or dry particles in mixtures
Definitions
- the subject of the invention is a compact solid waste separator, in particular for the processing of mixed solid waste (hereinafter referred to as "MMSW").
- MMSW mixed solid waste
- Magnetic separators are important equipment for the preparation and the processing of waste, where the separation of the components is based on the final sedimentation rate of the particles, whether or not the airflow grabs the particles.
- Magnetic separators are widely used in the industry as stand-alone devices for the separation of materials that can be magnetized.
- a common feature of magnetic separators is that a permanent magnet or electromagnet is placed inside a transporting device, such as a conveyor belt or a drum. The magnet attracts the particles that can be magnetized and the transport device transports them to the right place.
- Eddy current separators have been gaining ground in recent decades because they have proven to be suitable for extracting metals from waste based on conductivity. The following document provides a comprehensive description of the commonly used types of separators and their principle of operation: H. Schubert: Eddy-current Separation - Fundamentals, Separators, Application. Aufleungs-technik 35 (1994) Nr. 11 .
- FIG. 1 illustrates the modular CAME separator comprising an airflow separator (I), a magnetic separator (II) and an eddy current separator (III).
- the airflow separator (I) comprises a feeder (A) containing the waste to be processed, underneath it is a vibratory feeder (1) directed onto a rotating drum (3), under which a nozzle (2) is placed.
- An outfeed conveyor belt (8) is installed underneath the rotating drum (3) to transport light products (B).
- Baffle plates (4, 5) and air vent manifolds (6, 7) are arranged in the top cover of the unit.
- the magnetic separator (II) is a magnetic drum (9) placed in the space envelope below the drum being rotated (3).
- the eddy current separator (III) comprises the feeder element (F), the impeller (10) arranged underneath, the wear element (K) and the adjustable separator plate mounted underneath.
- the CAPE separator has four or five products: the foil-paper or otherwise known as 2D product (B), the inert product (C) containing stones, glass and bulk biological materials, the 3D product (D) containing mainly plastic bottles and flasks, and the aluminium product (E).
- the fifth product is generated when the eddy current separator has a third, stainless steel product outlet built into the equipment.
- a compact solid waste separator consisting of an airflow separator module, magnetic separator modules and an eddy current separator module incorporated in a common enclosure.
- the plant is specifically designed to enrich the pre-crushed and screened coarse product of MMSW, but it is also suitable for the enrichment of separately collected single or multi-component municipal solid waste and even electronic waste.
- the compact solid waste separator according to the invention produces the following products from the waste fed in:
- a waste receiving hopper is installed in the upper part of the module enclosure and a feed conveyor with adjustable speed is installed underneath.
- a nozzle with an adjustable angle of inclination and an adjustable cross-section of air blow is mounted under the feed conveyor in an acute angle.
- the nozzle consists of a throttle drum and connected to it is a blowpipe divided into segments by blades.
- the lower part of the blowpipe is an adjustable baffle plate.
- the enclosure Downstream from the nozzle, the enclosure incorporates a rotating drum separator with adjustable speed and an adjustable lever for separating Si and 2D, 3D products, followed by a rotating drum with adjustable speed and an adjustable lever for separating the 2D and 3D products, under which a 2D product outfeed conveyor is installed.
- the 2D product outfeed conveyor delivers the 2D product to the gravity sedimentation chamber of the enclosure. The module is therefore used to separate the 2D product from the waste stream.
- the vertical and horizontal position of the rotating drums separating the different types of waste is adjustable.
- the primary function of the rotating drums is to transport the particles coming into contact with them into the correct product channel, which is particularly problematic for fibrous or deformable particles.
- the first magnetic separator module is arranged under the nozzle and the separated Fe-1 and Si products are removed from the enclosure with two outfeed conveyors.
- the second magnetic separator module consists of a Fe-2 product outfeed conveyor and an upper magnetic separator arranged below the 2D product outfeed conveyor.
- Fe particles with a low final sedimentation rate such as thin-walled Fe cans and beverage cans, are blown by the nozzle in the direction of the 3D product line. These particles, however, cannot get onto the eddy current separator because they would stick to the rotating pole motor and burn out the thin-walled casing or the conveyor belt.
- the second magnetic separator integrated in the equipment is positioned above the infeed conveyor of the eddy current separator conveying the loosened material, thus providing a good efficiency of separation of ferrous metals.
- the eddy current separator module there is a variable speed infeed conveyor arranged below the second magnetic separator module for feeding the waste to the eddy current drum separator with a pole motor integrated in a separate drum.
- An SS product outfeed conveyor is installed under the infeed conveyor. Downstream from the eddy current drum separator, a rotating drum separator with adjustable speed and shaft position and a lever is installed in the enclosure to separate Al and 3D products, below which there is an outfeed conveyor for Al products, followed by an outfeed conveyor to remove 3D products from the enclosure.
- the infeed conveyor and the pole motor are two separate structural components, which has its benefits as the infeed rate - materials sliding onto the separator plate - and the speed of the drum and the pole motor can be controlled independently and the separator can be adjusted more effectively for a specific type of waste.
- Our invention illustrated in Figure 2 , is a complex device arranged in 1 enclosure and comprises separate modules, namely, (I) the airflow separator module, (II) the first magnetic separator module, (III) the second magnetic separator module and (IV) the eddy current separator module.
- the equipment can be dismantled into modules.
- the airflow separator module (I) is located in the upper part of the enclosure of the compact solid waste separator (hereinafter: separator) (1), where the waste is loaded into the separator.
- the dispatched waste is fed through (1.1) an infeed hopper to (2) the infeed conveyor.
- the (2) infeed conveyor is a rubber belt transportation device of a familiar design, wherein one driven and one free running drum is located at each end.
- the speed of the (2) conveyor drive motor can be controlled by a variable-frequency drive, so that the mass flow rate of the separator infeed can be adjusted.
- the speed of the (2) infeed conveyor can be used to control the infeed capacity of the module, and thus the amount of MMSW and the layer thickness of the waste on the (2) infeed conveyor.
- the material falls down at the end of the (2) infeed conveyor and the movement of the falling particles is intersected by the air jet exiting the (4) nozzles.
- the (4) nozzle separates the heavy and light waste fractions (Si and 2D, 3D products), blowing the light 2D and 3D fractions towards the interior of the enclosure (1).
- the angle of the (4) nozzle can be adjusted to control the angle of the injected air jet and thus the separation of Si and 2D, 3D products.
- the (4) nozzle is supplied with air via (4.3) air inlet pipes (see Figure 3 ) at the pressure side of an external fan (not part of the separator).
- the final sedimentation rate of the particles depends on their size, density and shape. Particles with a lower final sedimentation rate, the so-called light fraction (2D, 3D products) are caught by the air jet.
- lightweight particles with a typically three-dimensional shape such as plastic containers for detergents and other cosmetics, or aluminium or iron beverage cans, are only carried a small distance.
- the 3D particles with a lower final sedimentation rate pass through the (8) rotating drum separator and are transferred to the variable speed (9) infeed conveyor of the (IV) eddy current separator module.
- Lightweight particles such as plastic films and sheets of paper with a typically two-dimensional shape, are fed into the 2D product of the separator because the air jet can get these particles through the other (10) rotating drum separator.
- This (10) rotating drum separator also having a (10.1) lever, has a similar design and function as the previous (8) rotating drum separator.
- the sedimentation of the light 2D particles begins at the 2D product (11) outfeed conveyor installed downstream of the (10) rotating drum separator and continues at the (18) gravity sedimentation chamber connected downstream of the separator at the upper end of the (1) enclosure.
- the magnetizable particles must be separated from the lightweight 3D particles coming off the (8) rotating drum separator and falling on the (9) infeed conveyor, because if they reach the (13) eddy current drum separator of the (IV) eddy current separator module, they can be trapped by the strong magnetic field against the movement of the (9) infeed conveyor, and even causing the (9) infeed conveyor to burn or catch fire.
- the thin-walled cans of cat and dog food are typically deposited here because they are also blown away by the air jet.
- the (12) top belt magnetic separator of general design of the (III) second magnetic separator module is located above the (9) infeed conveyor and it separates the lightweight magnetizable 3D particles and transversely removes them from the (1) enclosure by means of the transversely arranged (12.1) outfeed conveyor.
- the (IV) eddy current separator module is not of conventional design.
- the (13.1) pole motor comprising glued permanent magnets rotating at a high circumferential speed, is not installed in the rotating drum of the (9) infeed conveyor, but is housed in a separate (13) eddy current drum separator installed downstream of a (13.2) separator plate. This means that the speed of the (9) infeed conveyor can be adjusted across a wide range to match the specific volume of material, so that the material feed rate to the (13) eddy current drum separators can also be controlled, resulting in a much sharper separation.
- An additional advantage is that there is an insignificant gap between the (13.1) pole motor in the standalone drum and the particles, because the (9) infeed conveyor is not there, resulting in significantly higher Lorentz force for separation in comparison with the conventional design.
- the electrically conductive particles such as aluminium beverage cans among the lightweight 3D particles induce eddy currents and are then ejected by the resulting Lorentz force.
- a simple baffle plate is used to separate the conductive and non-conductive products, but this solution does not provide a sharp separation, so the separator according to our invention also features a (16) rotating drum separator with a (16.1) lever at this location, whose horizontal and vertical position can be adjusted by some installation work as described above.
- the 3D conductive product (Al product) is removed from the (1) enclosure by a (17) transversally arranged outfeed conveyor.
- Municipal waste may, at times, contain small amounts of stainless steel particles.
- the thin-walled stainless steel particles (SS product) are also fed onto the (9) infeed conveyor belts and then transferred to the (14) outfeed conveyor, which is positioned transversely under the (13.1) pole motor.
- Lightweight 3D particles, such as plastic bottles and beverage bottles, are not electrically conductive, and therefore they fall onto the lengthwise (15) outfeed conveyor that removes these products from the (1) enclosure.
- FIG. 3 shows the structural design of the nozzle in two views.
- the air supplied to the (4) nozzle is fed through the (4.3) flexible air supply hoses into a (4.1) throttle drum.
- This flexible guiding allows the angle of the (4) nozzle to be adjusted even during operation, making the separator insensitive to vibrations.
- the (4.1) throttle drum is connected to the (4.2) blowpipe (4.4) divided into segments by blades, the lower part of which is fitted with a (4.5) comb-shaped baffle plate with an adjustable angle of inclination, driven by an (4.6) electric motor shaft.
- the jet velocity of the air stream coming out of the (4) nozzle is the most important characteristic of the (I) airflow separator module, because it determines the final sedimentation rate at which the separator separates the heavy (Si product) and light (2D, 3D product) waste fractions.
- the adjustable angle of the (4.5) baffle plates allows the outlet cross-section of the (4) nozzles to be adjusted, as well as the mouth opening of the 2 blowpipes, and therefore the outlet air speed can be adjusted during operation according to the law of continuity, so that the separation on the (I) airflow separator module can be adjusted during operation to match the quantity and quality of the waste being fed in.
- the invention is suitable in all respects for achieving the objectives set out, and that it makes it possible to reduce technological losses by using environmentally friendly technical solutions.
Landscapes
- Sorting Of Articles (AREA)
- Combined Means For Separation Of Solids (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| HUP2200446A HU231628B1 (hu) | 2022-11-14 | 2022-11-14 | Kompakt szilárdhulladék szeparátor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP4368293A1 true EP4368293A1 (fr) | 2024-05-15 |
Family
ID=90624942
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP23202724.3A Pending EP4368293A1 (fr) | 2022-11-14 | 2023-10-10 | Séparateur compact de déchets solides |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP4368293A1 (fr) |
| HU (1) | HU231628B1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119387009A (zh) * | 2024-11-07 | 2025-02-07 | 山东联邦重工有限公司 | 一种高纯石英砂分级磁选设备 |
| CN120695972A (zh) * | 2025-08-15 | 2025-09-26 | 四川蜀矿环锂科技有限公司 | 一种锂电池回收分选设备 |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR200255197Y1 (ko) * | 2001-08-16 | 2001-12-01 | 주식회사 청석공영 | 송풍기를 이용한 건식 건설폐기물선별장치 |
| US20080105771A1 (en) * | 2006-11-08 | 2008-05-08 | Royal Green Corporation | Method for sorting recyclable products |
| KR200454419Y1 (ko) * | 2010-12-09 | 2011-07-04 | (주)네비엔 | 풍력 비중 선별장치 |
| CN203448297U (zh) * | 2013-08-29 | 2014-02-26 | 张家港市联达机械有限公司 | 废旧塑料薄膜回收分离机 |
| KR20180118866A (ko) * | 2017-04-24 | 2018-11-01 | (주)에이씨아이케미칼아시아 | 송풍에 의한 비중선별 및 진동에 의한 탄도선별이 병행 수행되는 비중 발리스틱 선별장치 |
| WO2018222519A1 (fr) * | 2017-06-02 | 2018-12-06 | Skinner Matthew J | Flux d'air unique pour séparer un flux de déchets mélangés en trois fractions |
| HU231142B1 (hu) * | 2015-12-07 | 2021-03-01 | 3B Hungaria Kft | Kombinált légáramú mágneses és elektromos (KLME) szeparátor |
| EP2643101B1 (fr) * | 2010-11-24 | 2022-07-13 | Organic Energy Corporation | Séparation mécanisée de déchets solides mixtes et récupération des produits recyclables |
-
2022
- 2022-11-14 HU HUP2200446A patent/HU231628B1/hu unknown
-
2023
- 2023-10-10 EP EP23202724.3A patent/EP4368293A1/fr active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR200255197Y1 (ko) * | 2001-08-16 | 2001-12-01 | 주식회사 청석공영 | 송풍기를 이용한 건식 건설폐기물선별장치 |
| US20080105771A1 (en) * | 2006-11-08 | 2008-05-08 | Royal Green Corporation | Method for sorting recyclable products |
| EP2643101B1 (fr) * | 2010-11-24 | 2022-07-13 | Organic Energy Corporation | Séparation mécanisée de déchets solides mixtes et récupération des produits recyclables |
| KR200454419Y1 (ko) * | 2010-12-09 | 2011-07-04 | (주)네비엔 | 풍력 비중 선별장치 |
| CN203448297U (zh) * | 2013-08-29 | 2014-02-26 | 张家港市联达机械有限公司 | 废旧塑料薄膜回收分离机 |
| HU231142B1 (hu) * | 2015-12-07 | 2021-03-01 | 3B Hungaria Kft | Kombinált légáramú mágneses és elektromos (KLME) szeparátor |
| KR20180118866A (ko) * | 2017-04-24 | 2018-11-01 | (주)에이씨아이케미칼아시아 | 송풍에 의한 비중선별 및 진동에 의한 탄도선별이 병행 수행되는 비중 발리스틱 선별장치 |
| WO2018222519A1 (fr) * | 2017-06-02 | 2018-12-06 | Skinner Matthew J | Flux d'air unique pour séparer un flux de déchets mélangés en trois fractions |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119387009A (zh) * | 2024-11-07 | 2025-02-07 | 山东联邦重工有限公司 | 一种高纯石英砂分级磁选设备 |
| CN120695972A (zh) * | 2025-08-15 | 2025-09-26 | 四川蜀矿环锂科技有限公司 | 一种锂电池回收分选设备 |
Also Published As
| Publication number | Publication date |
|---|---|
| HU231628B1 (hu) | 2025-04-28 |
| HUP2200446A1 (hu) | 2024-05-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP4368293A1 (fr) | Séparateur compact de déchets solides | |
| US3643797A (en) | Trash-separating apparatus and method | |
| CN101043951B (zh) | 可运输的塑料回收系统 | |
| US4139454A (en) | Reclaiming system for scrap metals | |
| KR101799066B1 (ko) | 폐 전선 처리장치 | |
| RU2721912C1 (ru) | Магнитный сепаратор | |
| US20030056306A1 (en) | Installation for cleaning wood-containing material | |
| CN110882840A (zh) | 一种叠排式双分级磁选机及磁性矿干法粉磨分选系统 | |
| JPH0253330B2 (fr) | ||
| AU2010352883A1 (en) | Apparatus for pneumatic vacuum separation of bulk materials | |
| US7441716B2 (en) | Aluminum recovering dry system and process | |
| CN213000566U (zh) | 干式精选机 | |
| JP2005342651A (ja) | 選別装置 | |
| US5685498A (en) | Method and apparatus for processing recyclable material | |
| US5022982A (en) | Rotary drum solid waste air classifier | |
| EP2150349B1 (fr) | Procédé utilisant une unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier d'un flux de scories métalliques | |
| KR101915536B1 (ko) | 원료의 이물 제거용 복합적 선별장치 | |
| CN111589579A (zh) | 干式精选机 | |
| JP2007105582A (ja) | 選別装置 | |
| JP2004174374A (ja) | 非磁性金属選別装置 | |
| CN101786043B (zh) | 圆锥行波电磁选矿机 | |
| US3831748A (en) | Trash separating apparatus | |
| US11833525B2 (en) | Method and apparatus for separating feed material | |
| Kaya | Sorting and separation of WPCBs | |
| CN118019588A (zh) | 处理源自废料处理设施的细粒流的方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20241111 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR |