[go: up one dir, main page]

EP4362525B1 - Procédé mis en uvre par ordinateur pour optimiser la réception de signal dans un réseau de communication approprié pour un processeur de concept quantique - Google Patents

Procédé mis en uvre par ordinateur pour optimiser la réception de signal dans un réseau de communication approprié pour un processeur de concept quantique Download PDF

Info

Publication number
EP4362525B1
EP4362525B1 EP22204374.7A EP22204374A EP4362525B1 EP 4362525 B1 EP4362525 B1 EP 4362525B1 EP 22204374 A EP22204374 A EP 22204374A EP 4362525 B1 EP4362525 B1 EP 4362525B1
Authority
EP
European Patent Office
Prior art keywords
candidate
dlr
antenna
pixel
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22204374.7A
Other languages
German (de)
English (en)
Other versions
EP4362525A1 (fr
Inventor
Marc Geitz
Oliver Holschke
Christine Crisan
Ming Yin
Christian MÜNCH
Fritz Schinkel
Abhishek Awasthi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Germany GmbH
Deutsche Telekom AG
Original Assignee
Fujitsu Germany GmbH
Deutsche Telekom AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Germany GmbH, Deutsche Telekom AG filed Critical Fujitsu Germany GmbH
Priority to EP22204374.7A priority Critical patent/EP4362525B1/fr
Priority to PCT/EP2023/075926 priority patent/WO2024088657A1/fr
Publication of EP4362525A1 publication Critical patent/EP4362525A1/fr
Application granted granted Critical
Publication of EP4362525B1 publication Critical patent/EP4362525B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/60Quantum algorithms, e.g. based on quantum optimisation, quantum Fourier or Hadamard transforms

Definitions

  • the present disclosure relates to the field of computer based planning and optimization of communication networks.
  • it relates to a computer-implemented method for optimizing signal reception in a communications network with a plurality of radio cells, a quantum concept processor and a computer program.
  • base station antennas of a communication network are important for its service quality in terms of total coverage and expected data rates for mobile terminals.
  • base stations with three three-sector antennas per site can be placed on a hexagonal grid with a distance of 3*R, where R is the cell radius.
  • R is the cell radius.
  • Finding a suitable location for a new base station site and a corresponding configuration of antennas associated therewith becomes more complicated when the location cannot be freely chosen, for example due to land ownership and access issues, or when physical obstacles, such as mountains or buildings, affect radio signal propagation.
  • CN 113766518 A provides a base station antenna selection and broadcast beam planning method and device.
  • the method comprises the steps of building a ray projection grid model for each cell in a simulation region according to a three-dimensional map, a station location and antenna height calibrated on the three-dimensional map, and three-dimensional building information in the three-dimensional map; performing grid degeneration on the ray projection grid model of each cell in the simulation area based on various broadcast beam configurations corresponding to the candidate antennas; calculating cost functions corresponding to various grid degeneracy modes, and selecting a candidate antenna corresponding to the grid degeneracy mode with the maximum cost function gain as a selected antenna; and bringing the various broadcast beam configurations corresponding to the selected antenna into the system-level simulation platform for simulation verification to obtain the optimal broadcast beam configuration of each base station in the simulation area. Influence factors such as the site, the antenna height and three-dimensional building information are considered, and automatic optimization of related parameters of antenna selection and broadcast beam configuration is realized.
  • US 2005/097161 A1 provides a system and method for performing a network planning and mobility management optimization, which includes a graphical user interface (GUI) front-end for allowing users to operate required procedures for network planning and mobility management optimization.
  • GUI graphical user interface
  • the network plan takes a network topology (NT) and its associated network statistic data as input. Accordingly, a network plan can represent an arrangement of network elements which display a superior-subordinate relationship between network elements in the mobile communication network.
  • US 6,470,195 B1 discloses that a network planning tool (NPT) computer program is used to model characteristics of a wireless telephone network.
  • the network contains a plurality of cells which each include a plurality of sectors disposed about a base station that has a respective antenna for each sector.
  • Techniques are provided for modeling smart antennas, including use of a switched-beam transmit and receive patterns with approximately random allocation among the beams of frequencies assigned to an associated sector.
  • power levels for that antenna and a remote antenna operating at the same frequency are adjusted so as to increase a differential therebetween by an improvement value associated with the smart antenna.
  • Potential uplink interference at a given base station is modeled by simulating operation of other base stations at an uplink frequency with a reduced power level.
  • Potential interfering signals are discounted to the extent a smart antenna can intelligently reject a limited number of undesired signals.
  • a computer-implemented method for optimizing signal reception in a cellular communications network with a plurality of antennas for communicating with terminals comprising the following steps: specifying a set S of candidate sites s and a set D of candidate antenna configurations, CAC, for placement of one or more antennas at the candidate sites s ; specifying a set P of pixels p , each pixel p corresponding to a geographic location within a service area for which signal reception should be optimized; selecting a set B p of candidate best servers, CBS, for each pixel p based on an expected radio signal strength for a terminal at the geographic location corresponding to the respective pixel p , each set B p comprising zero or more candidate servers corresponding to one of the candidate sites s and one of the CAC; and determining a set of proposed servers.
  • the determination is based at least on: an optimized aggregated signal-to-noise ratio, SNR, computed for all pixels p in case all of the proposed servers of the set are built at the corresponding candidate sites s with the corresponding CAC, and a first restriction requiring that, from each set B p of CBS, at most a single CBS is included in the set of proposed servers.
  • SNR signal-to-noise ratio
  • a determination of proposed or to-be-built servers e.g. antennas to be placed at a potential site for a new base station and with a given configuration to cover a corresponding new cell of the communications network, can be greatly simplified, if, in a first step, a set of candidate best servers is selected for each pixel based on an expected radio signal strength, and, in a second step, at most a single candidate best server from each such set is included in the set of proposed servers.
  • the above preselection and additional constraint achieve a good coverage and signal quality and, at the same time, simplify the optimization of the network.
  • this is based on the insight that only sites with a good expected radio signal strength, e.g. nearby candidate sites, need to be considered to achieve a satisfactory coverage and signal quality for a given pixel.
  • any such site will be sufficient to provide a desired coverage and signal quality, whereas further servers in the same radio environment will add significant interference.
  • This approach also has the advantage that a best server for each pixel p can already be decided by the choice of a candidate best server from the set B p of candidate best servers, which simplifies the optimization as no further computation and/or decision variable is necessary to determine the best server of each pixel within a chosen set of candidate sites with corresponding antenna configuration.
  • the communication network comprises a set of pre-existing antennas, each pre-existing antenna installed at a fixed site sf and having a fixed antenna configuration.
  • the method further comprises identifying a best fixed antenna, BFA, for each pixel p , wherein the BFA corresponds to the antenna of the set of pre-existing antennas providing the highest expected radio signal strength at the geographic location corresponding to the respective pixel p .
  • the step of selecting the set B p of CBS for each pixel p comprises selecting candidate servers complying with a predefined second coverage criterion with respect to the BFA for the corresponding pixel p as CBS.
  • pre-existing antennas located in proximity to a pixel thus having a high expected radio signal strength can be considered in the optimization procedure, while at the same time further limiting the number of candidate best serves in the set B p of candidate best servers of the pixel p .
  • only candidate servers providing a better DLR than the BFA for the corresponding pixel p are selected as CBS, wherein DLR indicates a downlink reference value for the respective candidate server.
  • the restriction enforces that only candidate sites with CAC for which the best server antenna exceeds the highest expected radio signal strength of the BFA can be selected into the set B p of CBS. Among others, this ensures that the selected CBS from B p are not dominated by the pre-existing fixed antenna.
  • the set D of CAC for a candidate site s is characterized by at least one of the following: a number N a of antennas to be installed at the candidate site s ; a horizontal mounting angle d of at least one first antenna (A 0 ) to be installed at the candidate site s ; a vertical mounting angle of at least one antenna to be installed at the candidate site s ; and/or a mounting height of at least one antenna to be installed at the candidate site s .
  • This allows to represent similar antenna configurations in an efficient manner in the computer-implemented optimization procedure, while preserving their physical characteristics.
  • d a 360/ N a ⁇ a + d, with a ⁇ ⁇ 0, ...,N, - 1 ⁇ .
  • the inventors have also found several ways to map the task of optimizing signal reception in a network as detailed above to a quadratic unconstrained binary optimization, QUBO, function, both with and without the above preselection and constraints. Reformulating the above task as a QUBO enables its execution on a quantum concept computer, which can very quickly evaluate a large number of possible system configurations.
  • binary decision variables may correspond to potential sites, antenna configurations and/or best servers for a pixel, which can be used to define a Hamiltonian comprising polynomial terms expressing an optimization goal and any desired constraints of the optimized system.
  • digital annealing methods may be employed to find an optimal or near optimal configuration for the communication network.
  • the step of determining the set of proposed servers comprises: providing a quadratic unconstrained binary optimization, QUBO, function, in particular a Hamiltonian, comprising at least a first polynomial term H SNR and a second polynomial term H one_best_server , the first polynomial term H SNR expressing an objective function indicative of the aggregated SNR computed for each pixel p , and the second polynomial term H one_best_server expressing a first constraint based on the first restriction; and optimizing the QUBO function using a quantum concept processor, QCP, to determine the set of proposed servers.
  • QCP quantum concept processor
  • the QUBO function further comprises a third polynomial term H allowed_degrees expressing a second constraint requiring that, for each candidate site s , only a single, common antenna configuration is included in the set of proposed servers.
  • the QUBO function further comprises a fourth polynomial term H number_sites expressing a third constraint requiring that a predetermined number S num of sites and/or servers is included in the set of proposed servers.
  • the QUBO function is optimizing based on an inequality requiring that the number of servers included in the set of proposed servers is bounded by at least on of an upper limit S max and a lower limit S min .
  • the QCP is configured to perform digital annealing using a plurality of binary decision variables, comprising: a first set of binary decision variables y s d associated with each of the candidate sites s and CAC, indicating whether at least one antenna is built at the corresponding candidate sites s in the respective CAC.
  • binary decision variables correspond to the desired optimized configuration of the communication network.
  • a quantum concept processor in particular a digital annealing processing unit or a quantum annealing processing unit.
  • the QCP is configured for performing one or more steps of the method according to the first aspect or any of its implementations, in particular the step of determining the set of proposed servers.
  • a computer program comprises instructions that, when the program is executed by one or more processors, cause the one or more processors to perform the method according to the first aspect or any of its implementations.
  • FIG. 1 shows a number of potential candidate sites CS for erecting new base stations.
  • Each base station to be erected may be configured with a specific antenna configuration.
  • the antenna configuration may be expressed as a number of antennas to be installed at each candidate site and its horizontal mounting angle, i.e. an orientation or direction of preferred signal emission and reception given by an angle with respect to a given reference direction, such as geographic north.
  • a vertical mounting angle of an antenna i.e. an inclination or tilt angle with respect to the horizontal direction
  • a mounting height etc.
  • a total of nine candidate sites CS is considered. In the following, this is referred to as set S of candidate sites s.
  • set S of candidate sites s At each candidate site CS two different configurations of a three-sector antenna A 0 , A 1 and A 2 are considered, i.e. antennas facing 0, 120 and 240°, or 60, 180 and 300°.
  • the orientation of the two remaining antennas A 1 and A 2 is implied.
  • the number of candidate sites CS and antenna configurations may be relatively small, the number of their potential combinations is considerably larger, giving rise to a high degree of complexity in case an extended service area 200 is investigated, as detailed later.
  • a subset B P of all candidate sites S and antenna configurations D is considered.
  • the subset B P also facilitates selection of a best server for each pixel, i.e. specific site and corresponding antenna configuration, as explained in further detail later.
  • This first preselection is based on an expected signal strength, which may be obtained by topographical models of the service area 200 and/or calculated distances. For example, as shown in Figure 2 , only those candidate sites CS in proximity to the pixel p and antenna configurations comprising an antenna A 0 , A 1 or A 2 oriented roughly towards the location of the pixel p are included in the subset B P .
  • each of the candidate sites CS and antenna configurations in the subset B P should provide a good coverage for the respective pixel p.
  • This is indicated schematically in Figure 3 , showing the expected field strength of the respective best server antennas BSA 1 to BSA 5 in the area of the pixel p .
  • Figure 3 further shows that, if all of the candidate sites CS and antenna configurations in the subset B P would actually be built, the pixel p would experience a very high signal interference, severely limiting the signal quality.
  • a further selection criterion or heuristic is derived, that at most one of the serving antennas BSA 1 to BSA 5 should be built.
  • This criterion should give rise to a high signal-to-noise ratio for pixel p in case any one of the serving antennas BSA 1 to BSA 5 is built, or no or only very low coverage in case none of the serving antennas BSA 1 to BSA 5 is built. The latter is reduced by optimizing aggregated coverage for all pixels p , as detailed later.
  • Figure 4 shows the same set S of candidate sites CS, with nine pixels p 1 to p 9 to be considered. Attention is drawn to the fact that each of the pixels p has its own subset B P of best candidate servers, but that their interrelationships need to be considered during network planning. For example, a single candidate site can serve, or indeed disturb, a number of pixels p. This in turn leads to a great number of combinations to be considered. During cell planning, the effects of each possible candidate site and each possible antenna configuration on each considered pixel p needs to be examined.
  • Figures 5A and 5B show possible configurations for only two candidate sites with three three-sector antennas each, having possible modulo angles of 0, 30, 60 and 90 degrees. As discussed in greater detail below, such configurations can be expressed in a compact form as binary decision variables. As detailed later, each of the possible four configurations per candidate site CS could be identified using a corresponding single bit, i.e. four bits per candidate site.
  • FIG. 6 shows, in a schematic manner, how the above considerations can be used in a computer-implemented method 300 for optimizing signal reception in a communications network with a plurality of radio cells.
  • each radio cell comprising at least one antenna configured for communicating with terminals located within a service area 200.
  • the method comprises the steps 310 to 350 as detailed below.
  • Step 310 Provide a set S of candidate sites s for placement of at least one additional antenna.
  • This first input to the optimization process can be provided by supplying x, y and, optionally, z coordinates of sites manually or automatically identified as candidate sites, e.g. roofs of high buildings, unused open land, or similar promising locations.
  • Step 320 Provide a set D of candidate antenna configurations for each one of the candidate sites s. These may be uniform for all sites, i.e. placement of three-sector antennas spaced 120° apart from each other, or site specific, i.e. limited by a field of view, or a mixture of both, for example a selection from multiple available types of configurations, e.g. a choice of installing a two-sector or three-sector antenna at each candidate site s.
  • Step 330 Provide a set P of pixels p, each pixel p corresponding to a geographic location within the service area for which signal reception should be optimized.
  • these input parameters may be provided automatically, e.g. a fixed grid of pixels at regular intervals, or may be provided manually, e.g. to cover specific points of interest, such as roads and railway lines with in the service area 200.
  • Step 340 Select a set B p of candidate best servers, CBS, for each pixel p based on an expected radio signal strength for a terminal at the geographic location corresponding to the respective pixel p, each set B p comprising zero or more CBS corresponding to one of the specified candidate sites s and one of the specified candidate antenna configurations.
  • each set B p should contain at least one CBS.
  • the set B p is empty, the corresponding pixel p cannot be reliably served by any of the new candidate sites considered. This may be the case, for example, for pixels p already covered by a nearby, pre-existing antenna, or a pixel p located at a great distance with respect to any of the candidate sites.
  • Pixels that cannot be served by any one of the candidate sites or any of the pre-existing antenna may be removed from the set P of pixel p to simplify the later optimization step.
  • the selection may be performed, for example, using known topological models of the service area 200 and corresponding simulations for signal propagation based on the locations of the candidate sites, the antenna configurations and the locations of the pixels.
  • Step 350 Determine at least one server proposed to be built.
  • a set of proposed servers may be selected from the union of all sets B p of CBS for all pixels p.
  • the selection is based on the restriction that, from each set B p of CBS, at most a single CBS is selected as a proposed server. This restriction reduces interferences and limits the number of solutions.
  • the selection is further based, at least on part, on optimizing a signal-to-noise ratio, SNR, computed for all pixels p in case the at least one proposed server is built at the corresponding candidate site s with the corresponding antenna configuration.
  • SNR signal-to-noise ratio
  • the ones with the best overall coverage and best signal quality, i.e. highest SNR, should be identified in step 350 using optimization.
  • One approach suitable for such statistical optimisation problems is simulated (thermal) annealing. Starting from an initial, typically random configuration or system state, available decisions variables are varied to find a global optimum. To limit the computational effort, an energy is associated with each system state. State changes are chosen randomly among accepted candidate changes. Candidate changes that result in a lower system energy are accepted. All other candidate changes are accepted randomly with decreasing probability with regard to increasing energy delta and time. With increasing time, acceptance of candidate state changes with increasing energy become more and more unlikely in order to reach a final state in the form of a local or global minimum.
  • Simulated annealing is applicable to the problem of network planning and optimization.
  • the high combinatorial number of possible solutions combined with the high effort of computing the expected signal strength at each pixel results in a number of challenges.
  • Each run of the optimization takes a long time and/or requires a high number of computational resources. This in turn implies that the size of the planning area, the number of candidate sites, considered configurations and/or considered pixels need to be limited.
  • Quantum or digital annealing is another optimization process for finding a global minimum of a given objective function over a given set of candidate solutions or states, by a process inspired by quantum fluctuations. Quantum annealing is particularly useful for problems, where the search space is discrete (combinatorial optimization problems) with many local minima, such as finding a ground state of a spin glass. The inventors have found that quantum annealing can also be applied for network cell planning.
  • a processor is defined as a quantum concept processor, which solves a so called “Ising model” or the equivalent quadratic unconstrained binary problem (QUBO).
  • QUBO quadratic unconstrained binary problem
  • Such a processor is for example based on conventional hardware technology, for example based on complementary metal-oxide-semiconductor (CMOS) technology.
  • CMOS complementary metal-oxide-semiconductor
  • An example of such quantum concept processor is Fujitsu's Digital Annealer.
  • any other quantum processors can be used for the herein described method, and in future times also such technologies that are based on real quantum bit technologies.
  • quantum concept processors are the quantum annealer of DWave (e.g. 5000Q), but also quantum gate computers (IBM, Rigetti, OpenSuperQ, IonQ or Honeywell) and their future successors or alternative quantum computing designs making use of quantum optimization algorithms like Quantum Approximate Optimization Algorithm (QAOA) or Variational Quantum Eigensolver (VQE).
  • a quantum concept processor as defined herein is a processor which realises the concept of minimization of a so-called quadratic unconstrained binary optimization (QUBO) function, either on a special processor based on classic technology, a quantum gate computer or on a quantum annealer.
  • QUBO quadratic unconstrained binary optimization
  • Quantum concept computing based digital annealing has many advantages over conventional optimization algorithms, including higher processing speeds. This is partly due to the fact that quantum annealing allows to separate the objective function (or main QUBO) from specific constraints or optimisation targets. Thus, contrary to simulated annealing, wherein the entire cost function needs to be reformulated and re-computed, in digital annealing subsequent computations based on modified constraints or optimisation targets become computationally more efficient.
  • Figures 7A and 7B compare simulated annealing and digital annealing, respectively. They show that, in digital annealing, constraints and optimization goals are calculated based on a QUBO computed based on partial values of the cost function. Iterations in the search space are always influenced by these values of the QUBO. To the contrary, in simulated annealing, the control of the search and the computation of the cost function is based directly on the original data. Expressed differently, digital annealing enables the use of mass testing based on the same original data. Thus, the main QUBO can remain the same for all tests. However, each test can provide its own conditions. For example, a first test decides between one and three candidate sites, and a second test decides between one and ten candidate sites.
  • Figures 7A and 7B visualize the entry point for each new test or scenario to be evaluated.
  • Figure 7A in simulated annealing, definition of the cost function for a given test is relatively straightforward. Accordingly, each test starts new by building a test specific cost function. What is expensive though, in terms of computing time, is the evaluation of the test-specific cost function. Since each test requires its own test function, performing multiple tests becomes computationally expensive.
  • Figure 7B in digital annealing, construction of the main QUBO is complex and requires more time. However, the main QUBO is the same for all test. Each test can use the same main QUBO and modify it using additional constraints. This can be implemented and computed efficiently. Thus, in case many different tests are performed, e.g. for large values of K, the QUBO based approach becomes more efficient.
  • the individual terms of a QUBO can be computed separately. Subsequently, the individual terms are added up prior to performing digital annealing. However, the separate pre-computing has the advantage that individual parts of the QUBO can be re-used for different optimizations.
  • the first QUBO focusses on how a non-quadratic equation representation of an expected signal to noise ratio can be reformulated using a quadratic equation.
  • the second QUBO focusses on how to reduce the number of binary decision variables required to represent a single, standardized configuration of the candidate sites.
  • the third QUBO focusses on how to extend the optimization to also consider pre-existing, fixed antenna locations.
  • the fourth QUBO focusses on how to reduce the number of binary decision variables required to represent the pre-existing, fixed antenna locations and also introduces a further optimization goal for defining a number of selected candidate sites.
  • the fifth QUBO focusses on how to keep the number of binary decision variables small and at the same time allow for different standardized configurations of the candidate sites (e.g. two-antenna or three-antenna configurations).
  • the sixth QUBO focusses on how to reduce the number of binary decision variables even further by assuming that at most one candidate from a set of candidate best servers per pixel is built as detailed above. While the respective QUBOs are described separately, their respective contributions to the overall problem can be combined in many ways to achieve the respective advantages.
  • Each antenna a on any site s can have no more than one direction.
  • An antenna may have no direction, which means it is not considered in the solution.
  • Constraint 2 Maximum one best server for any pixel
  • the optimization problem consists of finding antenna positions for each site such that as many pixels as possible are covered in the best possible way.
  • DLR and ULR indicate signal strength.
  • DLR specifically indicates a downlink reference value (in dB) and ULR indicates an uplink reference value (in dB).
  • dB downlink reference value
  • ULR indicates an uplink reference value (in dB).
  • the last two conditions can be enforced by a QUBO constraint.
  • the first term depends on the downlink reference strength DLR p , s , a d in Decibel (dB) and represents the signal contribution of the best serving antenna selected by the decision variables b p , s , a d .
  • the second term depends on the downlink reference strength DLR_W in Watt (W) and represents the noise contribution or interference of all other antennas by the decision variables x s ′ , a ′ d ′ .
  • a Decibel value e.g. of a signal strength, such as a downlink or uplink reference value, a path loss, a gain as specified above, can be converted to Watt and vice-versa as follows.
  • Val_W 10 Val 10
  • Val_W in Watt
  • Val db 10 ⁇ log 10 Val_W .
  • the optimization parameter load in formula (11) above indicates to what extend interference is considered. In the described implementations, this is set to a value of 0.5. It may be varied, for example in the range of 0.3 to 0.8, to give more or less weight to the interference caused by other antennas. This may depend on the specific signal transmission technology and coding, for example.
  • the last line is a QUBO, i.e. can be expressed in quadratic form.
  • x s ′ , a ′ d ′ , and b p , s , a d are the above binary decision variables, which are multiplied with a real value.
  • H SNR : ⁇ p ⁇ P ⁇ s ⁇ S ⁇ a ⁇ A ⁇ d ⁇ D load ⁇ ⁇ s ′ ⁇ S ⁇ a ′ ⁇ A : s ′ ⁇ s or a ′ ⁇ a ⁇ d ′ ⁇ D DLR_W p , s ′ , a ′ , d ′ 10 DLR p s a d / 10 ⁇ x s ′ , a ′ d ′ ⁇ 10 ⁇ SNRTh / 10 ⁇ b p , s , a d d
  • the equivalent objective function (15) will favour configurations with low interference between the antennas and high signal strength for the pixels (first part of the term under the sums) while simultaneously optimizing the coverage of the pixels by a best server, i.e. the number of pixels for which the bracket attains a negative value.
  • w A , w B , w C , and w D are respective QUBO penalty weights.
  • the penalty weights w A , w B , and w C are chosen to implement the respective QUBO terms as hard constraints.
  • H one_best_server may be omitted in the final QUBO.
  • the set of binary decision variables becomes very large, and may exceed the number of decision variables available in existing quantum concept processors.
  • a number of further optimizations are considered, which help to reduce the number of binary decision variables.
  • Constraint 1 Allowed degrees for antennas on a site
  • Constraint 2 Maximum one best server for any pixel
  • H best_server ⁇ ⁇ p ⁇ P ⁇ s ⁇ S ⁇ d ⁇ D max a ⁇ A : ULR p s 120 ⁇ a + d > ULTh DLR p s 120 ⁇ a + d ⁇ b p , s d
  • this term may be omitted in some implementations.
  • Constraint 3 Decide if a candidate site is selected
  • the above formulation of the objective function requires a significantly reduced number of binary decision bits, as generally only one decision bit is required per candidate site and antenna degree, rather than one per candidate site, antenna degree and antenna number.
  • pre-existing antenna which are assumed to remain in the network unchanged. That is to say, we model already built (fixed) sites in the network, and consider it with regard to coverage, signal and interference provided.
  • the disclosed methods can also be used to optimize existing networks, for example by removing or re-orientating existing antennas, which cause high interference to other existing or newly planned antennas.
  • existing antennas under investigation should be modelled as candidate sites, rather than as fixed antennas.
  • Each of the fixed sites consists of 1, 2 or 3 antennas at some pre-determined angle (degree).
  • d f ⁇ D f s f be the angles of all the antennas on a fixed site s f .
  • D f s f contains more than one angle, each angle corresponding to a specific antenna on site s f .
  • D f s f may also be referred to as the antenna configuration of the fixed site s f .
  • condition for fixed bits is similar to the constant bit condition for the b p , s d bits, as defined above.
  • Constraint 1 Allowed degrees for antennas on a site
  • any site can only be built in one configuration. This can be enforced by the constraint (16) above.
  • Constraint 2 Maximum one best server for any pixel
  • any pixel can have at most one best server. Note that a pixel can select its best server either from the candidate sites or from the fixed sites. This condition is satisfied by the following penalty QUBO term.
  • Constraint 3 Decide if a candidate site is selected
  • a p , s , d ⁇ argmax ⁇ a ⁇ A , s . t .
  • DLR p , s , d ⁇ max ⁇ a ⁇ A , s . t .
  • a p , s , d ⁇ indicates the strongest antenna of a given candidate site and configuration for a given pixel
  • DLR p , s , d ⁇ indicates the DLR value of the strongest antenna of the given candidate site and configuration for the given pixel
  • d p , s f ⁇ indicates the direction of the strongest antenna of a given fixed site for a given pixel
  • DLR_F p , s f ⁇ indicates the DLR value of the strongest antenna of the antennas of the fixed site for the given pixel.
  • DLR_F ( p,sf,df ) is used for DLR p s f d f to indicate that it refers to a fixed site.
  • DLR_W_F indicates its value in Watt.
  • DLR_W_ F ( p,sf , df ) represents the downlink reference value of an antenna at fixed site s f with antenna direction d f for a given pixel p, indicated in Watt.
  • DLR* and DLR_W parameterized by the term d a 120 ⁇ a + d to determine the respective antenna orientation for the newly considered sites
  • the corresponding parameters DLR_F* and DLR_W_F are parameterized by the fixed antenna direction d f to determine the fixed antenna orientation.
  • SNR_fixed p ⁇ ⁇ s f ⁇ S f DLR _ F p s f ⁇ ⁇ 10 ⁇ log 10 load ⁇ ⁇ ⁇ s ⁇ S ⁇ ⁇ d ⁇ D ⁇ ⁇ a ⁇ A DLR _ W p s a d ⁇ y s d + load ⁇ ⁇ ⁇ s f ⁇ S f ⁇ ⁇ d ′ f ⁇ D f s ′ f s ′ f , d ′ f ⁇ s f d p , s f ⁇ DLR _ W _ F p , s ′ f , d ′ f ⁇ s f d p , s f ⁇ DLR _ W _ F p , s ′ f , d ′ f ⁇ z p , s f
  • H SNR ⁇ ⁇ p ⁇ P ⁇ ⁇ s ⁇ S ⁇ ⁇ d ⁇ D load ⁇ ⁇ ⁇ s ′ ⁇ S ⁇ ⁇ d ′ ⁇ D ⁇ ⁇ a ′ ⁇ A s a p , s , d ⁇ ⁇ s ′ , a ′ DLR_W p , s ′ , a ′ , d ′ 10 DLR p , s d ⁇ / 10 ⁇ y s ′ ′ + load ⁇ ⁇ ⁇ s f ⁇ S f ⁇ ⁇ d f ⁇ D f s f DLR_W_F p s f d f 10 DLR p , s d ⁇ / 10 ⁇ 10 ⁇ SNRTh / 10 ⁇ b p , s d
  • each new site that is built contains all of its antennas.
  • the fourth QUBO includes a further restriction on the number of selected candidate sites.
  • Equation (31) defines, for each pixel p, the best fixed site f p ⁇ and antenna d fp ⁇ from all fixed sites S f and antenna directions D f s f achieving the best signal level.
  • DLR_F p ⁇ the maximal DLR value offered by this ( s , d ) pair for each pixel p.
  • DLR_F p ⁇ the best DLR value offered to pixel p from all the fixed sites, and let f p * be the best fixed site for pixel p. If DLR p , s , d ⁇ ⁇ DLR_F p ⁇ , then we can certainly claim that for pixel p the best server antenna cannot be at candidate-site s at modulo degree d, but is rather at fixed site f p ⁇ . This implies b p , s d can be set to a constant 0.
  • b p , s d : fixed as 0 , fixed as 0 , 1 , 0 , if 3 or 4 is violated for each antenna a and degree d a , if DLR p , s , d ⁇ ⁇ DLR_F p ⁇ , if any antenna a of site s with degree d a is BSA for pixel p , otherwise .
  • Constraint 1 Allowed degrees for antennas on a site
  • any site can only be built in one configuration. This can be enforced by the constraint (16) above.
  • Constraint 2 Maximum one best server for any pixel
  • any pixel can have at most one best server.
  • a pixel can select its best server either from the candidate sites or from the fixed sites. This condition is satisfied by the following, simplified penalty QUBO term based on the new bit variable z p :
  • Constraint 3 Decide if a candidate site is selected
  • Constraint 4 Restriction of selected candidate sites
  • a site containing a specific number of antennas (at specific angles) is built at each of the selected candidate sites. It is economically beneficial to restrict the total number of sites to be built in the entire network, provided we can provide high DLR/SNR values to the pixels. Therefore, it makes sense to control the number of selected candidate sites.
  • Constraint 4a Specified range of candidate sites
  • Constraint 4b Exact number of candidate sites
  • H SNR ⁇ ⁇ p ⁇ P ⁇ ⁇ s ⁇ S ⁇ ⁇ d ⁇ D load ⁇ ⁇ ⁇ s ′ ⁇ S ⁇ ⁇ d ′ ⁇ D ⁇ ⁇ a ′ ⁇ A s a p , s , d ⁇ ⁇ s ′ , a ′ DLR_W p , s ′ , a ′ , d ′ 10 DLR p s d ⁇ / 10 ⁇ y s ′ ′ + load ⁇ ⁇ ⁇ f ⁇ S f ⁇ ⁇ d f ⁇ D f DLR_W_F p f d f 10 DLR p s d ⁇ / 10 ⁇ 10 ⁇ SNRTh / 10 ⁇ b p , s d + ⁇ ⁇ p ⁇ P load ⁇ ⁇ ⁇ ⁇ P load ⁇ ⁇ ⁇ ⁇ P load ⁇
  • w A , w B , w C , w D and w E are respective QUBO penalty weights.
  • the penalty weights w A , w B , w C and w E are chosen to implement the respective QUBO terms as hard constraints.
  • each new site which is built, contains two or three of antennas with even separation, i.e. three antenna spaced at 120° or two antennas spaced at 180°.
  • This can be combined with any of the previous approaches. More generally, any number of antennas per site, e.g. 4 or more antenna per candidate site, may be treated in a similar manner.
  • b p , s , 3 d : fixed as 0 , 1 , 0 , if d ⁇ 120 or if 3 or 4 is violated for each antenna for site s with three antennas , if any antenna of site s with modulo degree is the best server antenna for pixel p , otherwise .
  • b p , s , 2 d : fixed as 0 , fixed as 0 , 1 , 0 , if 3 or 4 is violated for each antenna for site s with two antennas , if DLR p , s , d , 2 ⁇ ⁇ DLR_F p ⁇ , if any antenna a of site s with module degree d for two antenna is BSA for pixel p , otherwise .
  • b p , s , 3 d : fixed as 0 , fixed as 0 , 1 , 0 , if d ⁇ 120 or if 3 or 4 is violated for each antenna for site s with three antennas , if DLR p , s , d , 3 ⁇ ⁇ DLR_F p ⁇ , if any antenna a of site s with module degree d for three antenna is BSA for pixel p , otherwise .
  • bit variable z p is defined as above.
  • Constraint 1 Allowed degrees for antennas on a site
  • Constraint 2 Maximum one best server for any pixel
  • b p , s , 2 d , b p , s , 3 d , y s d and z p represent the complete problem formulation as a QUBO.
  • Constraint 3a Decide if a candidate site is built with zero, two or three antennas
  • Constraint 3b Decide if a candidate site is selected
  • Constraint 4 Restriction of selected candidate sites
  • Constraint 4a Specified range of candidate sites
  • Constraint 4b Exact number of candidate sites
  • SNR_fixed p DLR_F p ⁇ ⁇ 10 ⁇ log 10 load ⁇ ⁇ ⁇ s ⁇ S ⁇ ⁇ d ⁇ D ⁇ ⁇ a ⁇ A 2 DLR_W p s a d 2 ⁇ y s , 2 d + ⁇ ⁇ a ⁇ A 3 DLR_W p s a d 3 ⁇ y s , 3 d + load ⁇ ⁇ ⁇ f ′ ⁇ S f ⁇ ⁇ d f ′ ⁇ D f ′ f ′ , d f ′ ⁇ f p ⁇ d f p ⁇ DLR_W_F p , f ′ , d f ′ ⁇ z p
  • H SNR ⁇ ⁇ p ⁇ P ⁇ ⁇ s ⁇ S ⁇ ⁇ d ⁇ D load ⁇ ⁇ ⁇ s ′ ⁇ S ⁇ ⁇ d ′ ⁇ D ⁇ ⁇ a ′ ⁇ A 2 s a p s d 2 ⁇ ⁇ s ′ , d ′ DLR _ W p , s ′ , a ′ , d ′ , 2 10 DLR p s d 2 ⁇ / 10 ⁇ y s ′ , 2 d ′ + ⁇ ⁇ a ′ ⁇ A 3 DLR _ W p , s ′ , a ′ , d ′ , 3 10 DLR p s d 2 ⁇ / 10 ⁇ y s ′ , 3 d ′ + load ⁇ ⁇ f ⁇ S f ⁇ d
  • w A , w B , w C , w D , w E and w F are respective QUBO penalty weights.
  • the penalty weights w A , w B , w C , w E and w F are chosen to implement the respective QUBO terms as hard constraints.
  • the sixth QUBO builds on several of the previously approaches for formulating an objective function and associated constraints in a manner amendable for a quantum concept processor in general and a digital annealer in particular. It combines these approaches with the observations of the first part that at most one site from a set of best server candidate should be built. This allows for a particularly compact representation of the QUBO with a reduced number of binary decision variables. In consequence, the sixth QUBO is particularly useful for optimizing reception based on a larger number of candidate sites and pixels.
  • each site is built with three antennas as detailed above with respect to the second to fourth QUBO.
  • the formulation with two or three antennas at a site can be formulated similar as detailed above with respect to the fifth QUBO.
  • B p : s d ⁇ S ⁇ D : DLR p s d ⁇ DLTh DLR p s p ⁇ d p ⁇ ⁇ DLTh ⁇ t
  • the threshold t indicates the margin of the DLR value DLR p s d of a selected server candidates above the threshold value DLTh with respect to the respective margin of the best possible DLR value DLR DLR p s p ⁇ d p ⁇ .
  • t can be varied. Good results have been obtained for t from the range between 0.5 and 0.8.
  • Each fixed site consists of 1, 2 or 3 antennas at some pre-determined angles (degrees).
  • Let f ⁇ S f denote a fixed site, where S f are all the fixed sites.
  • d f ⁇ D f be the angles of all the antennas on a fixed site f.
  • D f contains more than one angle, where each angle corresponds to a specific antenna on the fixed-site f.
  • z p : fixed as 0 , 1 , 0 , if DLR_F p ⁇ and ULR_F p , f p ⁇ , d f p ⁇ ⁇ are less than the required threshold values for pixel p , if a pixel has fixed site f p ⁇ as its best server site , otherwise .
  • Constraint 1 Most one modulo degree for a site
  • Constraint 2 Maximum one best server for any pixel
  • any pixel can have at most one best server. Note that a pixel can select its best server either from the candidate sites or from the fixed sites.
  • Constraint 3a Specified range of candidate sites
  • the target to minimize the SNR value of all pixels is achieved by minimizing a similar QUBO as in the previous approaches with the difference that we do not determine the best server of a pixel p ⁇ P by the bits b p , s ′ d , s ⁇ S , d ⁇ D, but rather by that bit y s d with ( s , d ) ⁇ B p which is one.
  • H SNR ⁇ p ⁇ P ⁇ s d ⁇ B p y s d ⁇ ⁇ s ′ , d ′ ⁇ B ⁇ p ⁇ s d ⁇ a ′ ⁇ A , s . t .
  • the first two terms in the first bracket represent the interference affecting a selected candidate site originating from the other selected candidate sites and fixed antennas with respect to the signal reception strength, respectively.
  • the first two terms of the second bracket represent the interference affecting a fixed site selected as best server antenna originating from the selected candidate sites and other fixed antennas with respect to the signal reception strength, respectively.
  • the remaining terms -10 -SNRTh/10 of each expression are fixed and enforce that a site with a configuration is only chosen as a best server site for a pixel if the threshold SNRTh is exceeded for that pixel. In the latter case, the bracket attains a value smaller than zero which is valuable for H_SNR.
  • the bracket attains a value larger than zero which implies a penalty if the variable in front of the bracket is one. Note that for each pixel p, at most one of the two brackets makes a contribution to the overall Hamiltonian.
  • w A , w B , w C and w D are respective QUBO penalty weights.
  • the penalty weights w A , w B and w C are chosen to implement the respective QUBO terms as hard constraints.
  • Figures 8A to 11B show optimization results for a given service area 200 obtained using a prototype system based on the sixth formulation of the QUBO and adapted for the more flexible antenna configuration as detailed above with respect to the fifth QUBO.
  • the prototype system was configured to return a predefined number of best results obtained, for example, using different, random starting conditions.
  • the obtained results can be influenced by using slightly different QUBO penalties and weights and/or threshold parameters as detailed above.
  • the specific challenge or test is indicated before the dash, e.g. to identify exactly one site, with the permissible antenna configuration identified thereafter.
  • the text in the figure indicates how the optimization targets were achieved.
  • Figure 8A shows a solution providing a very high total SNR value for all covered pixels using a single site with two antennas.
  • Figure 8B shows a solution providing a slightly lower total SNR value, but providing a better coverage (corresponding to the number or percentage of pixels exceeding the defined reception and/or transmission strength threshold) using a single site with three antennas.
  • Figures 9A and 9B have been obtained in the same way as the results shown in Figures 8A and 8B , except that the system was configured to select between 1 and 10 candidate sites.
  • Figure 9A shows a solution providing a very high SNR using two sites with two antennas each.
  • Figure 9B shows a solution providing a very high coverage using two sites with three antennas each.
  • Figures 10A and 10B have been obtained in the same way as the results shown in Figures 8A and 8B , except that the system was configured to select exactly 3 candidate sites.
  • Figure 10A shows a solution providing a medium to high SNR and high coverage using three sites with two antennas each.
  • Figure 10B shows a solution providing a high coverage using a single site with three antennas and two further sites with two antennas each.
  • Figures 11A and 11B have been obtained in the same way as the results shown in Figures 9A and 9B , except that the system was configured to select only two-sector antennas for each of the candidate sites.
  • Figure 11A shows a solution providing high coverage using five sites with two antennas each.
  • Figure 11B shows a solution providing a high SNR and high coverage using only two sites with two antennas each.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Signal Processing (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Claims (16)

  1. Procédé mis en œuvre par ordinateur pour optimiser la réception des signaux dans un réseau de communications cellulaires avec une pluralité d'antennes pour communiquer avec des terminaux, le procédé comprenant les étapes suivantes :
    - fournir un ensemble S de sites candidats s et un ensemble D de configurations d'antennes candidates, CAC, envisagées pour le placement d'une ou plusieurs antennes sur les sites candidats s
    - fournir un ensemble P de pixels p, chaque pixel p correspondant à un emplacement géographique dans une zone de service (200) pour laquelle la réception du signal doit être optimisée ;
    - présélectionner un ensemble Bp de meilleurs serveurs candidats, CBS, pour chaque pixel p en fonction de la puissance attendue du signal radio d'un terminal à l'emplacement géographique correspondant au pixel p respectif, chaque ensemble Bp comprenant zéro ou plusieurs CBS correspondant à l'un des sites candidats et à l'un des CAC, comprenant la sélection de serveurs candidats conformes à un premier critère de couverture prédéfini pour le pixel p correspondant en tant que CBS ; et
    - déterminer un ensemble de serveurs proposés, comprenant :
    - fournir une fonction d'optimisation binaire quadratique sans contrainte, QUBO, comprenant au moins un premier terme polynomial HSNR et un second terme polynomial Hone_best_server, le premier terme polynomial HSNR et le second terme polynomial Hone_best_server étant exprimés en termes de variables de décision binaires ; et
    - optimiser la fonction QUBO à l'aide d'un processeur conceptuel quantique, QCP, en faisant varier les variables de décision binaires pour déterminer l'ensemble des serveurs proposés ; dans lequel
    - le premier terme polynomial HSNR exprime la fonction objective de la QUBO indiquant un rapport signal/bruit, SNR, agrégé optimisé calculé pour tous les pixels p dans le cas où tous les serveurs proposés de l'ensemble sont construits sur les sites candidats s correspondants avec le CAC correspondant, et
    - le second terme polynomial Hone_best_server est un terme de pénalité exprimant une première restriction exigeant que, dans chaque ensemble Bp de CBS, au plus un seul CBS soit sélectionné et inclus dans l'ensemble des serveurs proposés.
  2. Le procédé de la revendication 1, dans lequel l'étape de présélection de l'ensemble Bp de CBS pour chaque pixel p, comprend au moins l'un des suivants :
    - sélection de serveurs candidats conformes à DLR ≥ DLTh, DLR indiquant une valeur de référence sur la liaison descendante pour le serveur candidat respectif, DLTh indiquant une valeur seuil sur la liaison descendante ;
    - sélection des serveurs candidats conformes à ULR ≥ ULTh, ULR indiquant une valeur de référence de liaison montante pour le serveur candidat concerné, et ULTh indiquant une valeur seuil de liaison montante ;
    - exclure les serveurs candidats qui dépassent un critère d'interférence prédéfini pour au moins un autre pixel p de l'ensemble P de pixels de l'ensemble Bp de CBS ; et
    - sélectionner au maximum un nombre limité et prédéfini de serveurs candidats en tant que CBS pour chaque pixel p.
  3. Le procédé de la revendication 1 ou 2, dans lequel
    - le réseau de communication comprend un ensemble d'antennes préexistantes, chaque antenne préexistante étant installée sur un site fixe Sf et ayant une configuration d'antenne fixe ;
    - le procédé comprend en outre l'identification d'une meilleure antenne fixe, BFA, pour chaque pixel p, dans laquelle la BFA correspond à l'antenne de l'ensemble des antennes préexistantes fournissant la force de signal radio la plus élevée attendue à l'emplacement géographique correspondant au pixel p respectif ; et
    - l'étape de présélection de l'ensemble Bp de CBS pour chaque pixel p consiste à sélectionner comme CBS les serveurs candidats qui satisfont à un deuxième critère de couverture prédéfini par rapport à la BFA pour le pixel p correspondant.
  4. Le procédé de la revendication 3, dans lequel seuls les serveurs candidats fournissant un meilleur DLR que le BFA pour le pixel p correspondant sont sélectionnés comme CBS, en particulier avec DLR ≥ DLR_F et/ou ULR ≥ ULR_F, DLR indiquant une valeur de référence de liaison descendante pour le serveur candidat respectif, DLR_F indiquant la valeur de référence de liaison descendante du BFA, ULR indiquant une valeur de référence de liaison montante pour le serveur candidat respectif, et ULR_F indiquant la valeur de référence de liaison montante du BFA.
  5. Le procédé de la revendication 3 ou 4, comprenant en outre :
    - sélectionner au maximum un meilleur serveur pour chaque pixel p de l'ensemble P de pixels, en sélectionnant au maximum le BFA ou un serveur candidat de l'ensemble respectif Bp de CBS conforme au deuxième critère de couverture.
  6. Le procédé de l'une des revendications 1 à 5, dans lequel l'ensemble D de CAC pour un site candidat s est caractérisé par au moins l'un des éléments suivants :
    - un nombre Na d'antennes à installer sur le site candidat s ;
    - un angle de montage horizontal d d'au moins une première antenne (A0) à installer sur le site candidat s ;
    - un angle de montage vertical d'au moins une antenne à installer sur le site candidat ; et/ou
    - une hauteur de montage d'au moins une antenne à installer sur le site du candidat s.
  7. Le procédé selon la revendication 6, dans lequel le nombre Na d'antennes est fixé pour tous les sites candidats s de l'ensemble S, en particulier à Na = 3, et l'angle de montage horizontal d est utilisé pour indiquer une orientation da de Na antennes sectorielles équidistantes à installer sur le site candidat s, en particulier = 360/Na · a + d, avec a ∈ {0, ... ,Na -1}.
  8. Le procédé de l'une des revendications 1 à 7, dans lequel la fonction QUBO est un hamiltonien, et optimiser la fonction QUBO comprend la minimisation d'au moins le premier terme polynomial HSNR et le second terme polynomial Hone_best_server.
  9. Le procédé de l'une des revendications 1 à 8, dans lequel
    - la fonction QUBO comprend en outre un troisième terme de pénalité polynomiale, Hallowed_degrees, qui exprime une deuxième contrainte exigeant que, pour chaque site candidat s, une seule configuration d'antenne commune soit incluse dans l'ensemble des serveurs proposés ;
    - la fonction QUBO comprend en outre un quatrième terme polynomial de pénalité Hnumber_sites exprimant une troisième contrainte exigeant qu'un nombre prédéterminé Snum de sites et/ou de serveurs soit inclus dans l'ensemble des serveurs proposés ; et/ou
    - la fonction QUBO est optimisant sur la base d'une inégalité exigeant que le nombre de serveurs inclus dans l'ensemble des serveurs proposés soit limité par au moins l'une d'une limite supérieure Smax et d'une limite inférieure Smin.
  10. Le procédé de la revendication 8 ou 9, dans lequel le QCP est configuré pour effectuer un recuit numérique ou quantique à l'aide d'une pluralité de variables de décision binaires, comprenant :
    - un premier ensemble de variables de décision binaires y s d
    Figure imgb0170
    associé à chacun des sites candidats s et CAC, indiquant si au moins une antenne est construite sur les sites candidats s correspondants dans le CAC respectif.
  11. Le procédé de la revendication 10, dans lequel
    - pour chaque site candidat s, seule une première classe de CAC prédéfinis avec un nombre fixe Na d'antennes pour tous les sites candidats s est prise en considération, en particulier des antennes à trois secteurs également espacés (A0, A1, A3 ), et le premier ensemble de variables de décision binaires y s d
    Figure imgb0171
    indiquant si toutes les Na antennes sont construites sur le site candidat s correspondant ; ou
    - pour chaque site candidat, on considère une classe de CAC parmi plusieurs, chacune de ces classes correspondant à un sous-ensemble différent du premier ensemble de variables de décision binaires, en particulier un premier sous-ensemble correspondant aux sites dotés d'antennes à deux secteurs et un second sous-ensemble correspondant aux sites dotés d'antennes à deux secteurs, et un troisième sous-ensemble correspondant aux sites dotés d'antennes à deux secteurs y s , 2 d
    Figure imgb0172
    correspondant aux sites dotés d'antennes à deux secteurs et un second sous-ensemble y s , 3 d
    Figure imgb0173
    correspondant aux sites dotés d'antennes à trois secteurs.
  12. Le procédé de la revendication 10 ou 11, dans lequel
    - le réseau de communication comprend un certain nombre d'antennes préexistantes telles que définies dans la revendication 3 ; et
    - la pluralité de variables de décision binaires comprend en outre un deuxième ensemble de variables de décision binaires zp associé à chacun des pixels p et indiquant si le pixel p correspondant est desservi par l'une des antennes préexistantes identifiées comme représentant la meilleure antenne fixe, BFA, pour le pixel respectif.
  13. Procédé de l'une des revendications 1 à 12, dans lequel le premier terme polynomial est H SNR = p P s d B p y s d s , d B ¯ p s d a A , s . t . s , a s a p s d load DLR_W p , s , a , d 10 DLR p s d 10 y s d + f S f d f D f load DLR_W_F p f d f 10 DLR p s d / 10 10 SNRTh / 10 + p P z p s d B ¯ p a A load DLR_W p s a d 10 DLR_F p / 10 y s d + f S f d f D f , s . t . f , d f f p d f p load DLR_W_F p , f , d f 10 DLR _ F p / 10 10 SNRTh / 10 ,
    Figure imgb0174
    où d représente l'un des angles de montage horizontal préconfigurés pour les antennes des serveurs candidats, en particulier l'angle de montage horizontal d'une première antenne (A0 ) d'une antenne multisectorielle, y s d
    Figure imgb0175
    représente un premier ensemble de variables de décision binaires indiquant si des antennes sont construites sur le site candidat correspondant s avec l'angle de montage d, Bp représente le complément de Bp A représente un ensemble de numéros d'antenne pour chacun des sites candidats, a p s d
    Figure imgb0176
    représente le numéro de l'antenne du site candidat s avec l'angle de montage d qui fournit le signal le plus élevé au pixel, load représente la mesure dans laquelle les interférences causées par d'autres antennes sont prises en compte, DLR_W représente une puissance de référence en liaison descendante en watts, DLR* représente la valeur de référence en liaison descendante de l'antenne du site candidat s avec l'angle de montage d qui fournit le signal le plus élevé au pixel, df ∈ Df représente l'orientation horizontale d'une antenne fixe préexistante f, DLR_W_F représente une valeur de référence de la liaison descendante d'une antenne fixe en watts, SNRTh représente une valeur seuil SNR fixe, et zp représente un deuxième ensemble de variables de décision binaires associées à chacun des pixels p et indiquant si le pixel p correspondant est desservi par l'une des antennes préexistantes.
  14. Processeur de concept quantique, QCP, en particulier une unité de traitement de recuit numérique ou une unité de traitement de recuit quantique, configuré pour exécuter au moins l'étape de détermination de l'ensemble des serveurs proposés dans le cadre du procédé selon l'une des revendications 1 à 13.
  15. Le QCP de la revendication 14, dans lequel le QCP est configuré pour résoudre un modèle Ising ou un problème d'optimisation binaire quadratique sans contrainte (QUBO) au moyen d'un recuit quantique ou d'une émulation de recuit quantique.
  16. Programme d'ordinateur comprenant des instructions qui, lorsque le programme est exécuté par un ou plusieurs processeurs, amènent le ou les processeurs à exécuter le procédé selon l'une des revendications 1 à 13.
EP22204374.7A 2022-10-28 2022-10-28 Procédé mis en uvre par ordinateur pour optimiser la réception de signal dans un réseau de communication approprié pour un processeur de concept quantique Active EP4362525B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22204374.7A EP4362525B1 (fr) 2022-10-28 2022-10-28 Procédé mis en uvre par ordinateur pour optimiser la réception de signal dans un réseau de communication approprié pour un processeur de concept quantique
PCT/EP2023/075926 WO2024088657A1 (fr) 2022-10-28 2023-09-20 Procédé mis en œuvre par ordinateur d'optimisation de réception de signal dans un réseau de communication approprié pour un processeur à concept quantique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22204374.7A EP4362525B1 (fr) 2022-10-28 2022-10-28 Procédé mis en uvre par ordinateur pour optimiser la réception de signal dans un réseau de communication approprié pour un processeur de concept quantique

Publications (2)

Publication Number Publication Date
EP4362525A1 EP4362525A1 (fr) 2024-05-01
EP4362525B1 true EP4362525B1 (fr) 2025-02-12

Family

ID=84044293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22204374.7A Active EP4362525B1 (fr) 2022-10-28 2022-10-28 Procédé mis en uvre par ordinateur pour optimiser la réception de signal dans un réseau de communication approprié pour un processeur de concept quantique

Country Status (2)

Country Link
EP (1) EP4362525B1 (fr)
WO (1) WO2024088657A1 (fr)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6470195B1 (en) * 2000-10-31 2002-10-22 Raytheon Company Method and apparatus for modeling a smart antenna in a network planning tool
US7561876B2 (en) * 2003-02-21 2009-07-14 Groundhog Technologies Inc. System with user interface for network planning and mobility management optimization in a mobile communication network and method thereof
CN113766518B (zh) * 2020-06-02 2022-11-01 中国移动通信集团设计院有限公司 基站天线选择和广播波束规划方法及装置

Also Published As

Publication number Publication date
WO2024088657A1 (fr) 2024-05-02
EP4362525A1 (fr) 2024-05-01

Similar Documents

Publication Publication Date Title
JP4819303B2 (ja) 移動通信システムにおける基地局設置設計方法及び基地局設置設計装置並びにプログラム
US6611500B1 (en) Methods and apparatus for derivative-based optimization of wireless network performance
US7395058B1 (en) Method and system for analyzing digital wireless network performance
EP1098545B1 (fr) Procédés et appareil pour la caractérisation, l'ajustement et l'optimisation de réseaux sans fils
Luna et al. ACO vs EAs for solving a real-world frequency assignment problem in GSM networks
WO2007071271A1 (fr) Procede d'estimation de couverture radioelectrique de zone geographique dans un reseau cellulaire de radiocommunications mobiles
US6405046B1 (en) Method for partitioning mobile stations of a wireless network between an overlay and an underlay
CN112950243A (zh) 一种5g站址规划方法、装置、电子设备及存储介质
US11265731B1 (en) Small cell telecommunications network design
EP4280660A1 (fr) Procédé et appareil d'optimisation de paramètres de configuration d'antenne, et support d'enregistrement
US20090088171A1 (en) Radio network designing apparatus and method
EP1508986B1 (fr) Procédé et système d'évaluation d'interférence intercellulaire de la liaison montante
EP1335616B1 (fr) Procédé et système pour la planification et/ou l'évaluation de la couverture dans le sens descendant en (AMRC) réseaux radio
Zimmermann et al. ENCON: an evolutionary algorithm for the antenna placement problem
Eisenblätter et al. UMTS radio network evaluation and optimization beyond snapshots
CN102448071B (zh) 一种基于干扰温度的认知网络功率分配方法
US6925066B1 (en) Methods and apparatus for design, adjustment or operation of wireless networks using multi-stage optimization
Nwelih et al. Optimization of base station placement in 4G LTE broadband networks using adaptive variable length genetic algorithm
CN108064051B (zh) 确定网络射频优化方案的方法、装置及设备
EP4362525B1 (fr) Procédé mis en uvre par ordinateur pour optimiser la réception de signal dans un réseau de communication approprié pour un processeur de concept quantique
KR102414691B1 (ko) 무선망 최적화 방법 및 이를 위한 관리서버
Amine et al. Base station placement optimisation using genetic algorithms approach
CN117349993A (zh) 基站功率优化方法、装置、计算机存储介质及电子设备
EP1813125B1 (fr) Procede de planification d'un reseau de telecommunications, systeme de planification correspondant et progiciel
KR101475082B1 (ko) 가상 단말을 이용한 규칙 기반의 무선망 최적화 방법

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20230809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240604

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE TELEKOM AG

Owner name: FUJITSU GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240902

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602022010444

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250612

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250513

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20250212