EP4114933A1 - Variantes de protéase à performance améliorée vii - Google Patents
Variantes de protéase à performance améliorée viiInfo
- Publication number
- EP4114933A1 EP4114933A1 EP21708613.1A EP21708613A EP4114933A1 EP 4114933 A1 EP4114933 A1 EP 4114933A1 EP 21708613 A EP21708613 A EP 21708613A EP 4114933 A1 EP4114933 A1 EP 4114933A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- amino acid
- protease
- positions
- acid substitutions
- correspond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108091005804 Peptidases Proteins 0.000 title claims abstract description 207
- 239000004365 Protease Substances 0.000 title claims abstract description 207
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 title claims 21
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract description 116
- 238000006467 substitution reaction Methods 0.000 claims abstract description 103
- 238000004140 cleaning Methods 0.000 claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 claims abstract description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 54
- 108090000623 proteins and genes Proteins 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 52
- 102000004169 proteins and genes Human genes 0.000 claims description 51
- 150000001413 amino acids Chemical class 0.000 claims description 41
- 238000005406 washing Methods 0.000 claims description 38
- 150000007523 nucleic acids Chemical class 0.000 claims description 37
- 108020004707 nucleic acids Proteins 0.000 claims description 33
- 102000039446 nucleic acids Human genes 0.000 claims description 33
- 239000012459 cleaning agent Substances 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 15
- 239000004753 textile Substances 0.000 claims description 13
- 238000012217 deletion Methods 0.000 claims description 9
- 230000037430 deletion Effects 0.000 claims description 9
- 238000003780 insertion Methods 0.000 claims description 9
- 230000037431 insertion Effects 0.000 claims description 9
- 238000002703 mutagenesis Methods 0.000 claims description 9
- 231100000350 mutagenesis Toxicity 0.000 claims description 9
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 8
- 238000013467 fragmentation Methods 0.000 claims description 5
- 238000006062 fragmentation reaction Methods 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 2
- 239000001963 growth medium Substances 0.000 claims description 2
- 102000035195 Peptidases Human genes 0.000 abstract description 186
- 235000019419 proteases Nutrition 0.000 description 132
- 102000004190 Enzymes Human genes 0.000 description 57
- 108090000790 Enzymes Proteins 0.000 description 57
- 229940088598 enzyme Drugs 0.000 description 57
- 210000004027 cell Anatomy 0.000 description 53
- 235000018102 proteins Nutrition 0.000 description 46
- 239000003599 detergent Substances 0.000 description 35
- 230000000694 effects Effects 0.000 description 23
- 239000000126 substance Substances 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000013598 vector Substances 0.000 description 14
- 238000000855 fermentation Methods 0.000 description 13
- 230000004151 fermentation Effects 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 241000194103 Bacillus pumilus Species 0.000 description 12
- 230000002255 enzymatic effect Effects 0.000 description 12
- 239000002609 medium Substances 0.000 description 11
- 241000894006 Bacteria Species 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 244000005700 microbiome Species 0.000 description 8
- 241000193830 Bacillus <bacterium> Species 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000002797 proteolythic effect Effects 0.000 description 7
- TYMLOMAKGOJONV-UHFFFAOYSA-N 4-nitroaniline Chemical compound NC1=CC=C([N+]([O-])=O)C=C1 TYMLOMAKGOJONV-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 102220475408 Acyl-coenzyme A thioesterase MBLAC2_S89A_mutation Human genes 0.000 description 5
- 101710135785 Subtilisin-like protease Proteins 0.000 description 5
- 108010056079 Subtilisins Proteins 0.000 description 5
- 102000005158 Subtilisins Human genes 0.000 description 5
- 239000012190 activator Substances 0.000 description 5
- 230000003197 catalytic effect Effects 0.000 description 5
- 239000013604 expression vector Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000004094 surface-active agent Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 244000063299 Bacillus subtilis Species 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 108090000787 Subtilisin Proteins 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 238000001212 derivatisation Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- -1 tiles Substances 0.000 description 4
- 230000014616 translation Effects 0.000 description 4
- 241000193422 Bacillus lentus Species 0.000 description 3
- 235000014469 Bacillus subtilis Nutrition 0.000 description 3
- 108700010070 Codon Usage Proteins 0.000 description 3
- 241000192125 Firmicutes Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000004851 dishwashing Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 229920001542 oligosaccharide Polymers 0.000 description 3
- 150000002482 oligosaccharides Chemical class 0.000 description 3
- 235000011837 pasties Nutrition 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 238000002708 random mutagenesis Methods 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 241000186361 Actinobacteria <class> Species 0.000 description 2
- 239000004382 Amylase Substances 0.000 description 2
- 108010065511 Amylases Proteins 0.000 description 2
- 102000013142 Amylases Human genes 0.000 description 2
- 102100032487 Beta-mannosidase Human genes 0.000 description 2
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 2
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 2
- 108010059892 Cellulase Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 239000004367 Lipase Substances 0.000 description 2
- 108090001060 Lipase Proteins 0.000 description 2
- 102000004882 Lipase Human genes 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 108010059820 Polygalacturonase Proteins 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 235000019418 amylase Nutrition 0.000 description 2
- 108010055059 beta-Mannosidase Proteins 0.000 description 2
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000007844 bleaching agent Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 210000003855 cell nucleus Anatomy 0.000 description 2
- 229940106157 cellulase Drugs 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 108010093305 exopolygalacturonase Proteins 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 235000019421 lipase Nutrition 0.000 description 2
- 239000012669 liquid formulation Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002887 multiple sequence alignment Methods 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000001236 prokaryotic cell Anatomy 0.000 description 2
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 2
- 238000001243 protein synthesis Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- IEQAICDLOKRSRL-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO IEQAICDLOKRSRL-UHFFFAOYSA-N 0.000 description 1
- 241000203809 Actinomycetales Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 241000186063 Arthrobacter Species 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 241000193375 Bacillus alcalophilus Species 0.000 description 1
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 1
- 241001328119 Bacillus gibsonii Species 0.000 description 1
- 241000194108 Bacillus licheniformis Species 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 108010084185 Cellulases Proteins 0.000 description 1
- 102000005575 Cellulases Human genes 0.000 description 1
- 241000186216 Corynebacterium Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 description 1
- 108010067770 Endopeptidase K Proteins 0.000 description 1
- 108010059378 Endopeptidases Proteins 0.000 description 1
- 102000005593 Endopeptidases Human genes 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108091092724 Noncoding DNA Proteins 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 102100038946 Proprotein convertase subtilisin/kexin type 6 Human genes 0.000 description 1
- 241000185994 Pseudarthrobacter oxydans Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000588746 Raoultella planticola Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000122971 Stenotrophomonas Species 0.000 description 1
- 241000122973 Stenotrophomonas maltophilia Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000187432 Streptomyces coelicolor Species 0.000 description 1
- 241000187398 Streptomyces lividans Species 0.000 description 1
- 108700037663 Subtilisin-like proteases Proteins 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000005576 amination reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 238000002869 basic local alignment search tool Methods 0.000 description 1
- 108010047754 beta-Glucosidase Proteins 0.000 description 1
- 102000006995 beta-Glucosidase Human genes 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 229940066758 endopeptidases Drugs 0.000 description 1
- 230000009088 enzymatic function Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000002256 galaktoses Chemical class 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 210000002064 heart cell Anatomy 0.000 description 1
- 229940059442 hemicellulase Drugs 0.000 description 1
- 108010002430 hemicellulase Proteins 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000013038 irreversible inhibitor Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 108020001775 protein parts Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000009991 scouring Methods 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 125000002730 succinyl group Chemical group C(CCC(=O)*)(=O)* 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 108010038851 tannase Proteins 0.000 description 1
- 108010031354 thermitase Proteins 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 108010083879 xyloglucan endo(1-4)-beta-D-glucanase Proteins 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/52—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea
- C12N9/54—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea bacteria being Bacillus
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21062—Subtilisin (3.4.21.62)
Definitions
- the washing process can take place for 60 minutes at a temperature of 40 ° C and the water has a water hardness between 15.5 and 16.5 ° (German hardness).
- the concentration of the protease in the detergent intended for this washing system is 0.001 to 0.1% by weight, preferably 0.01 to 0.06% by weight, based on active, purified protein.
- a liquid reference detergent for such a washing system can be composed as follows (all data in percent by weight): 4.4% alkylbenzenesulfonic acid, 5.6% other anionic surfactants, 2.4% C12-C18 Na salts of fatty acids (soaps) , 4.4% non-ionic surfactants, 0.2% phosphonates, 1.4% citric acid, 0.95% NaOH, 0.01% defoamer, 2% glycerine, 0.08% preservatives, 1% ethanol, the remainder demineralized Water.
- the dosage of the liquid detergent is preferably between 4.5 and 6.0 grams per liter of wash liquor, for example 4.7, 4.9 or 5.9 grams per liter of wash liquor. Washing is preferably carried out in a pH range between pH 7 and pH 10.5, preferably between pH 7.5 and pH 8.5.
- the cleaning performance is determined, for example, at 20 ° C. or 40 ° C. using a liquid detergent as indicated above, the washing process preferably taking place for 60 minutes at 600 rpm.
- the degree of whiteness i.e. the lightening of the soiling, as a measure of the cleaning performance, is determined using optical measuring methods, preferably photometrically.
- a suitable device for this is, for example, the Minolta CM508d spectrometer.
- the devices used for the measurement are usually calibrated beforehand with a white standard, preferably a supplied white standard.
- the use of the respective protease for the same level of activity ensures that the respective enzymatic properties, e.g. the cleaning performance on certain soiling, are compared even if there is a gap in the ratio of active substance to total protein (the values of the specific activity). In general, a low specific activity can be compensated for by adding a larger amount of protein.
- the protease activity can be determined via the release of the chromophore para-nitroaniline (pNA) from the substrate suc-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide (AAPF).
- pNA chromophore para-nitroaniline
- the protease cleaves the substrate and releases pNA.
- the release of the pNA causes an increase in the absorbance at 410 nm, whose the time course is a measure of the enzymatic activity (cf. Del Mar et al., 1979).
- the measurement is carried out at a temperature of 25 ° C., at pH 8.6, and a wavelength of 410 nm.
- the measurement time is 5 minutes and the measurement interval is 20 s to 60 s.
- the protease activity is usually specified in protease units (PU) . Suitable protease activities are, for example, 2.25, 5 or 10 PU per ml of wash liquor. However, the protease activity is not zero.
- proteases according to the invention can have further amino acid changes, in particular amino acid substitutions, insertions or deletions.
- Such proteases are further developed, for example, through targeted genetic modification, i.e. through mutagenesis processes, and optimized for specific purposes or with regard to special properties (for example with regard to their catalytic activity, stability, etc.).
- nucleic acids according to the invention can be introduced into recombination batches and thus used to generate completely new proteases or other polypeptides.
- amino acid substitutions first, the naturally present amino acid is designated in the form of the internationally common single-letter code, then the associated sequence position and finally the inserted amino acid. Multiple or alternative exchanges within the same polypeptide chain are separated from one another by slashes. “130D / V” therefore means that the remainder at position 130 can be D or V. In the case of insertions, additional amino acids are named after the sequence position. In the case of deletions, the missing amino acid is replaced by a symbol, for example an asterisk or a dash, or a D is given in front of the corresponding position.
- the invention therefore also provides a protease which is characterized in that it can be obtained from a protease as described above as the starting molecule by single or multiple conservative amino acid substitutions, the protease being those described above in the number according to SEQ ID NO: 1 Has amino acid substitutions.
- conservative amino acid substitution means the exchange (substitution) of an amino acid residue for another amino acid residue, whereby this exchange does not lead to a change in polarity or charge at the position of the exchanged amino acid, e.g. the exchange of a non-polar amino acid residue for another non-polar amino acid residue.
- the enzymes advantageously retain their proteolytic activity even after the mutagenesis, ie their proteolytic activity corresponds at least to that of the starting enzyme, ie in a preferred embodiment the proteolytic activity is at least 80%, preferably at least 90%, more preferably at least 100% of the activity of the starting enzyme. Further substitutions can also have advantageous effects. Both single and several connected amino acids can be exchanged for other amino acids.
- the protease or the protease produced with a method according to the invention is still at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90.5%, 91%, 91, 5%, 92%, 92 , 5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96.5% or 97%, identical to the amino acid sequence given in SEQ ID NO: 1 over their total length.
- the protease or the protease produced using a method according to the invention is still at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81 %, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 90.5%, 91%, 91, 5%, 92%, 92.5%, 93%, 93.5%, 94%, 94.5%, 95%, 95.5%, 96%, 96.5%, 97%, 97.5%, 98%, 98.5 or 99% identical to the amino acid sequence given in SEQ ID NO: 2 over its entire length.
- the protease or the protease produced with a method according to the invention has the amino acid substitutions 9T, 130D / V, 133A, 144K, 217M, 224A, 252T and 271 E at the positions corresponding to positions 9, 130, 133, 144, 224, 252 and correspond to 271; and at least one, preferably at least two, further amino acid substitution (s) in at least one of the positions which correspond to positions 89, 131 or 189, each based on the numbering according to SEQ ID NO: 1.
- Examples include the following amino acid substitution variants: P9T, N130D, T133A, N144K, Y217M, S224A, N252T and Q271 E combined with one of (i) S89A and S189T; (ii) S89A and G131 H, and (iii) S89A, G131 H and S189T.
- examples are those with P9T, N130V, T133A, N144K, Y217M, S224A, N252T and Q271 E combined with S89A, G131 H and S189T, the numbering in each case being based on the numbering according to SEQ ID NO: 1 and those in the examples described variants.
- any of those described herein Proteases in addition to 9T, 130D / V, 133A, 144K, 217M, 224A, 252T and 271E at positions corresponding to positions 9, 130, 133, 144, 224, 252 and 271, at least the substitution at position 89, in particular S89A.
- the invention also relates to a protease described above which is additionally stabilized, in particular by one or more mutations, for example substitutions, or by coupling to a polymer.
- An increase in the stability during storage and / or during use, for example during the washing process, means that the enzymatic activity lasts longer and thus the cleaning performance is improved.
- all stabilization options described and / or expedient in the prior art come into consideration. Stabilizations that are achieved via mutations of the enzyme itself are preferred, since such stabilizations do not require any further work steps following the recovery of the enzyme. Examples of sequence changes suitable for this are mentioned above. Further suitable sequence changes are known from the prior art.
- Changing the binding of metal ions, in particular the calcium binding sites for example by exchanging one or more of the amino acid (s) involved in calcium binding for one or more negatively charged amino acids and / or by introducing sequence changes in at least one of the consequences of the two amino acids arginine / glycine;
- Preferred embodiments are those in which the enzyme is stabilized in several ways, since several stabilizing mutations act additively or synergistically.
- Another object of the invention is a protease as described above, which is characterized in that it has at least one chemical modification.
- a protease with such a change is called a derivative, i.e. the protease is derivatized.
- derivatives are accordingly understood to mean those proteins whose pure amino acid chain has been chemically modified.
- derivatizations can take place, for example, in vivo by the host cell which expresses the protein.
- couplings of low molecular weight compounds such as lipids or oligosaccharides should be particularly emphasized.
- derivatizations can also be carried out in vitro, for example by chemical conversion of a side chain of an amino acid or by covalent ones Binding of another compound to the protein.
- Such a different compound can also be a further protein which is bound to a protein according to the invention, for example via bifunctional chemical compounds.
- derivatization is to be understood as the covalent bond to a macromolecular carrier, or also a non-covalent inclusion in suitable macromolecular cage structures.
- Derivatizations can, for example, influence the substrate specificity or the strength of the binding to the substrate or cause a temporary blocking of the enzymatic activity if the coupled substance is an inhibitor. This can be useful for the period of storage, for example.
- Such modifications can also affect the stability or the enzymatic activity. They can also serve to reduce the allergenicity and / or immunogenicity of the protein and thus, for example, to increase its skin tolerance.
- couplings with macromolecular compounds for example polyethylene glycol, can improve the protein with regard to stability and / or skin tolerance.
- derivatives of a protein according to the invention can also be understood to mean preparations of these proteins.
- a protein can be combined with various other substances, for example from the culture of the producing microorganisms.
- a protein can also have been specifically mixed with other substances, for example to increase its storage stability. All preparations of a protein according to the invention are therefore also in accordance with the invention. This is also independent of whether it actually displays this enzymatic activity in a particular preparation or not. This is because it may be desired that it has little or no activity during storage and that it only develops its enzymatic function at the time of use. This can be controlled, for example, via corresponding accompanying substances. In particular, the joint preparation of proteases with specific inhibitors is possible in this regard.
- proteases or protease variants and / or derivatives described above particularly preferred in the context of the present invention are those whose storage stability corresponds to at least one of that of the proteases according to SEQ ID NO: 2 or the variants tested in the examples, and / or their cleaning performance at least corresponds to one of those of the proteases according to SEQ ID NO: 2 or the variants tested in the examples, the cleaning performance being determined in a washing system as described above.
- nucleic acid which codes for a protease according to the invention
- a vector containing such a nucleic acid in particular a cloning vector or an expression vector.
- These can be DNA or RNA molecules. They can be present as a single strand, as a single strand complementary to this single strand, or as a double strand. In the case of DNA molecules in particular, the sequences of both complementary strands must be taken into account in all three possible reading frames. It should also be taken into account that different codons, ie base triplets, can code for the same amino acids, so that a certain amino acid sequence can be coded by several different nucleic acids.
- nucleic acid sequences are included in this subject matter of the invention which can code for one of the proteases described above.
- the person skilled in the art is able to determine these nucleic acid sequences unequivocally because, despite the degeneracy of the genetic code, defined amino acids have to be assigned to individual codons. The person skilled in the art can therefore easily determine nucleic acids coding for this amino acid sequence on the basis of an amino acid sequence.
- one or more codons can be replaced by synonymous codons. This aspect relates in particular to the heterologous expression of the enzymes according to the invention.
- Codon usage is understood to mean the translation of the genetic code into amino acids by the respective organism. Bottlenecks in protein biosynthesis can occur if the codons on the nucleic acid are compared to a comparatively small number of loaded tRNA molecules in the organism. Although coding for the same amino acid, this means that a codon is translated less efficiently in the organism than a synonymous codon which codes for the same amino acid. Due to the presence of a higher number of tRNA molecules for the synonymous codon, this can be translated more efficiently in the organism.
- a person skilled in the art is able to use known DNA and / or amino acid sequences to use known DNA and / or amino acid sequences to identify the corresponding nucleic acids up to complete genes using methods that are generally known nowadays, such as chemical synthesis or the polymerase chain reaction (PCR) in conjunction with standard molecular biological and / or protein chemical methods to manufacture.
- PCR polymerase chain reaction
- Such methods are for example from Sambrook, J., Fritsch, E.F. and Maniatis, T. 2001. Molecular cloning: a laboratory manual, 3rd Edition Cold Spring Laboratory Press.
- vectors are understood to mean elements consisting of nucleic acids which contain a nucleic acid according to the invention as the characterizing nucleic acid region. They are able to establish this as a stable genetic element in a species or a cell line over several generations or cell divisions.
- Vectors are special plasmids, i.e. circular genetic elements, especially when used in bacteria.
- a nucleic acid according to the invention is cloned into a vector.
- the vectors include, for example, those whose origin is bacterial plasmids, viruses or bacteriophages, or predominantly synthetic vectors or plasmids with elements of various origins. With the other genetic elements present in each case, vectors are able to establish themselves as stable units in the host cells concerned over several generations. They can exist extrachromosomally as separate units or can be integrated into a chromosome or chromosomal DNA.
- Expression vectors comprise nucleic acid sequences which enable them to replicate in the host cells containing them, preferably microorganisms, particularly preferably bacteria, and to express a nucleic acid contained there.
- the expression is influenced in particular by the promoter or promoters that regulate transcription.
- expression can take place through the natural promoter originally located in front of the nucleic acid to be expressed, but also through a promoter of the word cell provided on the expression vector or also through a modified or a completely different promoter from another organism or another word cell.
- at least one promoter is made available for the expression of a nucleic acid according to the invention and used for its expression.
- Expression vectors can also be regulatable, for example by changing the cultivation conditions or when a certain cell density of the word cells they contain has been reached or by adding certain substances, in particular activators of gene expression.
- An example of such a substance is the galactose derivative isopropyl- ⁇ -D-thiogalactopyranoside (IPTG), which is used as an activator of the bacterial lactose operon (lac operon).
- IPTG galactose derivative isopropyl- ⁇ -D-thiogalactopyranoside
- lac operon lac operon
- the invention also relates to a non-human host cell which contains a nucleic acid according to the invention or a vector according to the invention, or which contains a protease according to the invention, in particular one which secretes the protease into the medium surrounding the host cell.
- a nucleic acid according to the invention or a vector according to the invention is preferably transformed into a microorganism which then represents a word cell according to the invention.
- individual components, ie nucleic acid parts or fragments of a nucleic acid according to the invention can also be introduced into a word cell in such a way that the then resulting word cell contains a nucleic acid according to the invention or a vector according to the invention.
- This procedure is particularly suitable when the word cell already contains one or more components of a nucleic acid according to the invention or a vector according to the invention and the further components are then supplemented accordingly.
- Methods for transforming cells are established in the prior art and are sufficiently known to the person skilled in the art. In principle, all cells, that is, prokaryotic or eukaryotic cells, are suitable as host cells. Preference is given to those word cells which can be manipulated in a genetically advantageous manner, for example with regard to the transformation with the nucleic acid or the vector and its stable establishment, for example unicellular fungi or bacteria. Furthermore, preferred word cells are characterized by good microbiological and biotechnological manageability.
- Preferred host cells according to the invention secrete the (transgenically) expressed protein into the medium surrounding the host cells.
- the proteases can be modified by the cells producing them after they have been produced, for example by attaching sugar molecules, formylations, aminations, etc. Such post-translational modifications can functionally influence the protease.
- Further preferred embodiments are those host cells whose activity can be regulated on the basis of genetic regulatory elements which are provided, for example, on the vector, but can also be present in these cells from the outset. For example, by the controlled addition of chemical compounds that serve as activators, by changing the cultivation conditions or when a certain cell density is reached, these can be stimulated to express. This enables the proteins according to the invention to be produced economically.
- An example of such a connection is IPTG as described above.
- Preferred host cells are prokaryotic or bacterial cells. Bacteria are characterized by short generation times and low demands on the cultivation conditions. In this way, inexpensive cultivation processes or manufacturing processes can be established. In addition, the specialist in bacteria in fermentation technology has a wealth of experience. Gram-negative or Gram-positive bacteria may be suitable for a special production for a wide variety of reasons, to be determined experimentally in individual cases, such as nutrient sources, product formation rate, time required, etc.
- Host cells according to the invention can be changed with regard to their requirements for the culture conditions, have different or additional selection markers or still different or express additional proteins.
- these host cells can also be those which transgenically express several proteins or enzymes.
- the present invention can in principle be applied to all microorganisms, in particular to all fermentable microorganisms, particularly preferably to those of the genus Bacillus, and leads to the fact that proteins according to the invention can be produced by using such microorganisms. Such microorganisms then represent word cells within the meaning of the invention.
- the word cell is characterized in that it is a bacterium, preferably one selected from the group of the genera Escherichia, Klebsiella, Bacillus, Staphylococcus, Corynebacterium, Arthrobacter, Streptomyces, Stenotrophomonas and Pseudomonas, more preferably one which is selected from the group of Escherichia coli, Klebsiella planticola, Bacillus licheniformis, Bacillus lentus, Bacillus amyloliquefaciens, Bacillus subtilis, Bacillus alcalophilus, Bacillus globigii, Bacillus gibsonii, Bacillus clausumacterii, Bacillus halodurium, Bacillus paphumlocus, Bacillus paphumlocus Arthrobacter oxidans, Streptomyces lividans, Streptomyces coelicolor and Stenotrophomonas malt
- the host cell can, however, also be a eukaryotic cell, which is characterized in that it has a cell nucleus.
- a further subject matter of the invention therefore represents a word cell which is characterized in that it has a cell nucleus.
- eukaryotic cells are able to modify the protein produced post-translationally. Examples are fungi such as Actinomycetes or yeasts such as Saccharomyces or Kluyveromyces. This can be particularly advantageous, for example, if the proteins are to undergo specific modifications in connection with their synthesis, which make such systems possible.
- Host cells according to the invention are preferably used to produce proteases according to the invention.
- the invention therefore also relates to a method for producing a protease comprising a) culturing a host cell according to the invention, and b) isolating the protease from the culture medium or from the host cell.
- the detergents and cleaning agents within the scope of the invention also include washing aids that are added to the actual washing agent during manual or machine laundry in order to achieve a further effect.
- laundry detergents and cleaning agents in the context of the invention also include textile pretreatment and aftertreatment agents, i.e. those agents with which the item of laundry is brought into contact before the actual washing, for example to loosen stubborn dirt, and also those agents that are in one of the actual Textile washing, the subsequent step, give the laundry further desirable properties such as a pleasant grip, crease resistance or low static charge.
- Fabric softeners, among others, are included in the latter means.
- the detergents or cleaning agents according to the invention which can be present as pulverulent solids, in compacted particle form, as homogeneous solutions or suspensions, can contain, in addition to a protease according to the invention, all known ingredients that are customary in such agents, with at least one further ingredient preferably being present in the agent .
- the agents according to the invention can in particular contain surfactants, builders, peroxygen compounds or bleach activators. Furthermore, they can contain water-miscible organic solvents, further enzymes, sequestering agents, electrolytes, pH regulators and / or further auxiliaries such as optical brighteners, graying inhibitors, foam regulators and colorants and fragrances and combinations thereof.
- a combination of a protease according to the invention with one or more further ingredient (s) of the agent is advantageous, since such an agent in preferred embodiments according to the invention has an improved cleaning performance due to the resulting synergies.
- Such a synergism can be achieved in particular by combining a protease according to the invention with a surfactant and / or a builder and / or a peroxygen compound and / or a bleach activator.
- the agent according to the invention cannot contain any boric acid.
- Advantageous ingredients of agents according to the invention are disclosed in the international patent application WO 2009/121725, beginning there on page 5, penultimate paragraph, and ending on page 13 after the second paragraph. Reference is expressly made to this disclosure and the content of the disclosure therein is incorporated into the present patent application.
- An agent according to the invention advantageously contains the protease in an amount of 2 ⁇ g to 20 mg, preferably 5 ⁇ g to 17.5 mg, particularly preferably 20 ⁇ g to 15 mg and very particularly preferably 50 ⁇ g to 10 mg per g of the agent.
- the concentration of the protease (active enzyme) described herein in the agent is> 0 to 1% by weight, preferably 0.0001 or 0.001 to 0.1% by weight, based on the total weight of the agent or the composition.
- the protease contained in the agent and / or other ingredients of the agent can be coated with a substance which is impermeable to the enzyme at room temperature or in the absence of water and which becomes permeable to the enzyme under the conditions in which the agent is used.
- Such an embodiment of the invention is thus characterized in that the protease is coated with a substance which is impermeable to the protease at room temperature or in the absence of water.
- the washing or cleaning agent itself can also be packaged in a container, preferably an air-permeable container, from which it is released shortly before use or during the washing process.
- the agent is characterized in that it
- (a) is in solid form, in particular as a free-flowing powder with a bulk density of 300 g / l to 1200 g / l, in particular 500 g / l to 900 g / l, or
- (b) is present in pasty or liquid form, and / or
- inventions of the present invention include all solid, powdery, liquid, gel-like or pasty dosage forms of agents according to the invention, which can optionally also consist of several phases and can be in compressed or uncompressed form.
- the agent can be in the form of a free-flowing powder, in particular with a bulk density of 300 g / l to 1200 g / l, in particular 500 g / l to 900 g / l or 600 g / l to 850 g / l.
- the solid dosage forms of the agent also include extrudates, granules, tablets or pouches.
- the agent can also be liquid, gel-like or pasty, for example in the form of a non-aqueous liquid detergent or a non-aqueous paste or in the form of an aqueous liquid detergent or a water-containing paste. Liquid funds are generally preferred.
- the agent can be in the form of a one-component system. Such means consist of a phase. Alternatively, a remedy can also consist of several phases. Such a means is therefore divided into several components. Washing or cleaning agents according to the invention can exclusively contain a protease. Alternatively, they can also contain further hydrolytic enzymes or other enzymes in an appropriate concentration for the effectiveness of the agent. Agents which further comprise one or more further enzymes thus represent a further embodiment of the invention.
- enzymes that can preferably be used are all enzymes which can develop a catalytic activity in the agent according to the invention, in particular a lipase, amylase, cellulase, hemicellulase, mannanase, tannase, xylanase, xanthanase, xyloglucanase, ⁇ -glucosidase, pectinase, carrageenase, perhydrolase, Oxidase, oxidoreductase or other proteases - distinguishable from the proteases according to the invention - and mixtures thereof.
- Further enzymes are advantageously contained in the agent in an amount of 1 ⁇ 10 -8 to 5 percent by weight based on active protein.
- Each further enzyme is increasingly preferred in an amount of 1 ⁇ 10 -7 to 3% by weight, from 0.00001 to 1% by weight, from 0.00005 to 0.5% by weight, from 0.0001 up to 0.1% by weight and particularly preferably from 0.0001 to 0.05% by weight in agents according to the invention, based on active protein.
- the enzymes particularly preferably show synergistic cleaning performance with respect to certain soiling or stains, ie the enzymes contained in the agent composition mutually support one another in their cleaning performance.
- Such a synergism is very particularly preferably present between the protease contained according to the invention and a further enzyme of an agent according to the invention, including in particular between said protease and an amylase and / or a lipase and / or a mannanase and / or a cellulase and / or a pectinase .
- Synergistic effects can occur not only between different enzymes, but also between one or more enzymes and other ingredients of the agent according to the invention.
- the enzymes to be used can also be packaged together with accompanying substances, for example from fermentation.
- the enzymes are preferably used as liquid enzyme formulation (s).
- the enzymes are not provided in the form of the pure protein, but rather in the form of stabilized, storable and transportable preparations.
- These ready-made preparations include, for example, the solid preparations obtained by granulation, extrusion or lyophilization or, in particular in the case of liquid or gel-like agents, solutions of the enzymes, advantageously as concentrated as possible, with little water and / or with stabilizers or other auxiliaries.
- the enzymes can be encapsulated both for the solid and for the liquid dosage form, for example by spray drying or extrusion of the enzyme solution together with a preferably natural polymer or in the form of capsules, for example those in which the enzymes are enclosed as in a solidified gel or in those of the core-shell type, in which an enzyme-containing core with a water, air and / or chemical impermeable protective layer is coated.
- Additional active ingredients for example stabilizers, emulsifiers, pigments, bleaches or dyes, can also be applied in superimposed layers.
- Such capsules are applied by methods known per se, for example by pouring or rolling granulation or in fluid-bed processes. Such granules are advantageously low in dust, for example due to the application of polymeric film formers, and due to the coating are stable in storage.
- water-soluble films such as those used, for example, in the formulation of detergents and cleaning agents in unit dose form.
- Such a film enables the enzymes to be released after contact with water.
- water soluble refers to a film structure that is preferably completely water soluble.
- Such a film preferably consists of (completely or partially hydrolyzed) polyvinyl alcohol (PVA).
- the following table shows the detergent matrix (commercially available, without enzymes, optical brighteners, perfume and dyes) that was used for the wash festival:
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Enzymes And Modification Thereof (AREA)
- Detergent Compositions (AREA)
Abstract
L'invention concerne des protéases comprenant une séquence d'acides aminés partageant au moins 70 % d'identité de séquence avec la séquence d'acides aminés donnée dans SEQ ID NO : 1, sur toute leur longueur, et, par rapport à la numérotation selon SEQ ID NO : 1 : (a) comporte des substitutions d'acides aminés 9T, 133A, 224A, 252T et 271E à des positions correspondant aux positions 9T, 130D/V, 133A, 144K, 217M, 224A, 252T et 271 ; et (b) présente au moins une substitution supplémentaire d'acide aminé au moins à l'une des positions correspondant aux positions 89, 131 et 189. L'invention concerne également la production et l'utilisation desdites protéases. Les protéases de ce type présentent une très bonne performance de nettoyage.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102020105721.0A DE102020105721A1 (de) | 2020-03-03 | 2020-03-03 | Leistungsverbesserte Proteasevarianten VII |
| PCT/EP2021/054689 WO2021175697A1 (fr) | 2020-03-03 | 2021-02-25 | Variantes de protéase à performance améliorée vii |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP4114933A1 true EP4114933A1 (fr) | 2023-01-11 |
Family
ID=74797927
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP21708613.1A Pending EP4114933A1 (fr) | 2020-03-03 | 2021-02-25 | Variantes de protéase à performance améliorée vii |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20230159907A1 (fr) |
| EP (1) | EP4114933A1 (fr) |
| KR (1) | KR20220148187A (fr) |
| CN (1) | CN115516088A (fr) |
| DE (1) | DE102020105721A1 (fr) |
| WO (1) | WO2021175697A1 (fr) |
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP4525615A2 (fr) | 2022-05-14 | 2025-03-26 | Novozymes A/S | Compositions et procédés de prévention, de traitement, de suppression et/ou d'élimination d'infestations et d'infections phytopathogènes |
| DE102022205594A1 (de) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Leistungsverbesserte und lagerstabile protease-varianten |
| DE102022205588A1 (de) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel mit verbesserter enzymstabilität |
| DE102022205591A1 (de) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel mit verbesserter enzymstabilität |
| DE102022205593A1 (de) | 2022-06-01 | 2023-12-07 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel mit verbesserter enzymstabilität |
| EP4573195A1 (fr) | 2022-08-16 | 2025-06-25 | Henkel AG & Co. KGaA | Variants x de protéase à performance améliorée |
| DE102022208891A1 (de) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | Leistungsverbesserte protease-varianten x |
| DE102022208890A1 (de) | 2022-08-16 | 2024-02-22 | Henkel Ag & Co. Kgaa | Leistungsverbesserte protease-varianten ix |
| EP4573194A1 (fr) | 2022-08-16 | 2025-06-25 | Henkel AG & Co. KGaA | Variants ix de protéase à performance améliorée |
| EP4324900A1 (fr) | 2022-08-17 | 2024-02-21 | Henkel AG & Co. KGaA | Composition détergente comprenant des enzymes |
| JP2025529133A (ja) | 2022-09-02 | 2025-09-04 | ダニスコ・ユーエス・インク | サブチリシン変異体及びそれに関連する方法 |
| DE102022209245A1 (de) | 2022-09-06 | 2024-03-07 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel enthaltend tannase i |
| DE102022209246A1 (de) | 2022-09-06 | 2024-03-07 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel enthaltend tannase ii |
| DE102022131732A1 (de) | 2022-11-30 | 2024-06-06 | Henkel Ag & Co. Kgaa | Verbesserte Waschleistung durch den Einsatz einer Protease fusioniert mit speziellem Adhäsionsvermittlerpeptid |
| DE102022213537A1 (de) | 2022-12-13 | 2024-06-13 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel enthaltend protease |
| DE102022213538A1 (de) | 2022-12-13 | 2024-06-13 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel enthaltend protease |
| DE102023200106A1 (de) | 2023-01-10 | 2024-07-11 | Henkel Ag & Co. Kgaa | Enzymhaltiges wasch- und reinigungsmittel |
| DE102023201692A1 (de) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel mit dispersin und duftstoff |
| DE102023201695A1 (de) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel mit dispersin |
| DE102023201696A1 (de) | 2023-02-24 | 2024-08-29 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel mit dispersin |
| DE102023204055A1 (de) | 2023-05-03 | 2024-11-07 | Henkel Ag & Co. Kgaa | Leistungsverbesserte protease-varianten |
| DE102023205632A1 (de) | 2023-06-15 | 2024-12-19 | Henkel Ag & Co. Kgaa | Peptide mit schmutzablösender wirkung für wasch- und reinigungsmittel |
| DE102023211308A1 (de) | 2023-11-14 | 2025-05-15 | Henkel Ag & Co. Kgaa | Reinigungsmittel enthaltend protease |
| DE102023211746A1 (de) | 2023-11-24 | 2025-05-28 | Henkel Ag & Co. Kgaa | Wasch- und reinigungsmittel enthaltend antimikrobielles peptid |
| WO2025113890A1 (fr) | 2023-11-28 | 2025-06-05 | Henkel Ag & Co. Kgaa | Composition de lavage et de nettoyage avec une protéase |
| WO2025113889A1 (fr) | 2023-11-28 | 2025-06-05 | Henkel Ag & Co. Kgaa | Composition de lavage et de nettoyage avec une protéase |
| DE102023212361A1 (de) | 2023-12-07 | 2025-06-12 | Henkel Ag & Co. Kgaa | Protease-varianten mit verbesserter bleichestabilität |
| DE102024202187A1 (de) | 2024-03-08 | 2025-09-11 | Henkel Ag & Co. Kgaa | Verfahren zur Entfernung von Fett und/oder fett- und/oder ölhaltigen Anschmutzungen |
| WO2025186246A2 (fr) | 2024-03-08 | 2025-09-12 | Henkel Ag & Co. Kgaa | Agents de lavage et de nettoyage présentant une performance de nettoyage améliorée sur des salissures contenant des graisses |
| WO2025186242A2 (fr) | 2024-03-08 | 2025-09-12 | Henkel Ag & Co. Kgaa | Agents de lavage et de nettoyage présentant une performance de nettoyage améliorée sur des salissures contenant de la graisse |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102006022224A1 (de) | 2006-05-11 | 2007-11-15 | Henkel Kgaa | Subtilisin aus Bacillus pumilus und Wasch- und Reinigungsmittel enthaltend dieses neue Subtilisin |
| DE102008017103A1 (de) | 2008-04-02 | 2009-10-08 | Henkel Ag & Co. Kgaa | Wasch- und Reinigungsmittel enthaltend Proteasen aus Xanthomonas |
| DE102018208778A1 (de) | 2018-06-05 | 2019-12-05 | Henkel Ag & Co. Kgaa | Leistungsverbesserte Proteasevarianten IV |
| WO2019048495A1 (fr) * | 2017-09-05 | 2019-03-14 | Henkel Ag & Co. Kgaa | Variantes de protéases à performances améliorées |
| EP3679131B1 (fr) * | 2017-09-05 | 2024-09-04 | Henkel AG & Co. KGaA | Variantes de protéases à performances améliorées |
| DE102019111057A1 (de) | 2019-04-29 | 2020-10-29 | Henkel Ag & Co. Kgaa | Proteasen mit verbesserter Enzymstabilität in Wasch- und Reinigungsmitteln III |
-
2020
- 2020-03-03 DE DE102020105721.0A patent/DE102020105721A1/de not_active Withdrawn
-
2021
- 2021-02-25 WO PCT/EP2021/054689 patent/WO2021175697A1/fr not_active Ceased
- 2021-02-25 KR KR1020227030134A patent/KR20220148187A/ko active Pending
- 2021-02-25 EP EP21708613.1A patent/EP4114933A1/fr active Pending
- 2021-02-25 CN CN202180017727.9A patent/CN115516088A/zh active Pending
- 2021-02-25 US US17/908,554 patent/US20230159907A1/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| CN115516088A (zh) | 2022-12-23 |
| DE102020105721A1 (de) | 2021-09-09 |
| WO2021175697A1 (fr) | 2021-09-10 |
| US20230159907A1 (en) | 2023-05-25 |
| KR20220148187A (ko) | 2022-11-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP4114933A1 (fr) | Variantes de protéase à performance améliorée vii | |
| EP3660151B1 (fr) | Variants de protéases présentant une performance ameliorée et stabilité au stockage | |
| EP4114934A1 (fr) | Variants de protéase vi à stabilité améliorée | |
| EP3679133B1 (fr) | Variantes de protéases à performances améliorées | |
| EP3660146B1 (fr) | Variantes de prothèse stables au stockage et à la performance améliorée | |
| EP3963065A1 (fr) | Protéases présentant une stabilité enzymatique améliorée dans des détergents et produits de nettoyage iii | |
| EP3679131B1 (fr) | Variantes de protéases à performances améliorées | |
| EP3963064A1 (fr) | Performance de nettoyage améliorée contre des salissures vi sensibles aux protéines | |
| EP3963066A1 (fr) | Performance de nettoyage améliorée contre des salissures v sensibles à des protéines | |
| EP3433360B1 (fr) | Protéases présentant une meilleure stabilité enzymatique dans les détergents | |
| EP3679132B1 (fr) | Variantes de protéase à performances améliorées | |
| EP3458583B1 (fr) | Protéases à performances améliorées | |
| EP3433359B1 (fr) | Performance de nettoyage améliorée sur des salissures sensibles aux protéines | |
| DE102018208778A1 (de) | Leistungsverbesserte Proteasevarianten IV | |
| DE102018004207A1 (de) | Leistungsverbesserte Varianten der alkalischen Protease aus B. lentus | |
| DE102018208777A1 (de) | Leistungsverbesserte Proteasevarianten V | |
| DE102017215628A1 (de) | Leistungsverbesserte Proteasevarianten I | |
| DE102021207704A1 (de) | Leistungsverbesserte Proteasevarianten VIII | |
| EP3440203B1 (fr) | Nouvelle protéase à performance de lavage améliorée | |
| DE102017215631A1 (de) | Leistungsverbesserte Proteasevarianten II | |
| WO2019101417A1 (fr) | Amylase et détergent ou produit de nettoyage contenant une telle amylase |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20220805 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) |