EP4199879A1 - Biodegradable microbeads comprising alginate from algae - Google Patents
Biodegradable microbeads comprising alginate from algaeInfo
- Publication number
- EP4199879A1 EP4199879A1 EP21787333.0A EP21787333A EP4199879A1 EP 4199879 A1 EP4199879 A1 EP 4199879A1 EP 21787333 A EP21787333 A EP 21787333A EP 4199879 A1 EP4199879 A1 EP 4199879A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gel
- microbeads
- alginate
- algae
- biodegradable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011325 microbead Substances 0.000 title claims abstract description 335
- 241000195493 Cryptophyta Species 0.000 title claims abstract description 221
- 229920000615 alginic acid Polymers 0.000 title claims abstract description 212
- 235000010443 alginic acid Nutrition 0.000 title claims abstract description 205
- 229940072056 alginate Drugs 0.000 title claims abstract description 180
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 title claims abstract description 174
- 239000000203 mixture Substances 0.000 claims abstract description 163
- 238000000034 method Methods 0.000 claims abstract description 76
- 150000001768 cations Chemical class 0.000 claims abstract description 48
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 43
- 239000000843 powder Substances 0.000 claims description 62
- 150000003839 salts Chemical class 0.000 claims description 52
- 229960001126 alginic acid Drugs 0.000 claims description 32
- 239000000783 alginic acid Substances 0.000 claims description 32
- 150000004781 alginic acids Chemical class 0.000 claims description 32
- 238000005520 cutting process Methods 0.000 claims description 24
- 210000002421 cell wall Anatomy 0.000 claims description 23
- 239000000499 gel Substances 0.000 claims description 22
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical group CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 19
- 235000010413 sodium alginate Nutrition 0.000 claims description 19
- 239000000661 sodium alginate Substances 0.000 claims description 19
- 229940005550 sodium alginate Drugs 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 17
- -1 ulvan Polymers 0.000 claims description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 15
- 235000010418 carrageenan Nutrition 0.000 claims description 15
- 239000000679 carrageenan Substances 0.000 claims description 15
- 229920001525 carrageenan Polymers 0.000 claims description 15
- 229940113118 carrageenan Drugs 0.000 claims description 15
- 239000001913 cellulose Substances 0.000 claims description 15
- 235000010980 cellulose Nutrition 0.000 claims description 15
- 229920002678 cellulose Polymers 0.000 claims description 15
- 235000011149 sulphuric acid Nutrition 0.000 claims description 15
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 15
- 229910001422 barium ion Inorganic materials 0.000 claims description 14
- 229910001424 calcium ion Inorganic materials 0.000 claims description 13
- 229920001817 Agar Polymers 0.000 claims description 12
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 12
- 239000008272 agar Substances 0.000 claims description 12
- 235000010419 agar Nutrition 0.000 claims description 12
- XDFCIPNJCBUZJN-UHFFFAOYSA-N barium(2+) Chemical compound [Ba+2] XDFCIPNJCBUZJN-UHFFFAOYSA-N 0.000 claims description 12
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 10
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 9
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 8
- 229920000855 Fucoidan Polymers 0.000 claims description 8
- 229920002488 Hemicellulose Polymers 0.000 claims description 8
- 238000000227 grinding Methods 0.000 claims description 8
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 claims description 8
- DBTMGCOVALSLOR-DEVYUCJPSA-N (2s,3r,4s,5r,6r)-4-[(2s,3r,4s,5r,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,5-triol Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](CO)O[C@H](O)[C@@H]2O)O)O[C@H](CO)[C@H]1O DBTMGCOVALSLOR-DEVYUCJPSA-N 0.000 claims description 7
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 7
- 229920001543 Laminarin Polymers 0.000 claims description 7
- 239000005717 Laminarin Substances 0.000 claims description 7
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 7
- 229930195725 Mannitol Natural products 0.000 claims description 7
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 7
- 239000000594 mannitol Substances 0.000 claims description 7
- 235000010355 mannitol Nutrition 0.000 claims description 7
- 230000037303 wrinkles Effects 0.000 claims description 7
- 238000007670 refining Methods 0.000 claims description 6
- 230000036548 skin texture Effects 0.000 claims description 6
- 239000002028 Biomass Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 210000003491 skin Anatomy 0.000 description 62
- 239000000243 solution Substances 0.000 description 45
- 235000014633 carbohydrates Nutrition 0.000 description 39
- 239000002245 particle Substances 0.000 description 25
- 239000006071 cream Substances 0.000 description 23
- 239000002537 cosmetic Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 206010063836 Atrioventricular septal defect Diseases 0.000 description 13
- 238000001211 electron capture detection Methods 0.000 description 13
- 239000004033 plastic Substances 0.000 description 13
- 229920003023 plastic Polymers 0.000 description 13
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 10
- 239000011324 bead Substances 0.000 description 10
- 229920001282 polysaccharide Polymers 0.000 description 10
- 239000005017 polysaccharide Substances 0.000 description 10
- 150000004804 polysaccharides Chemical class 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- 238000003860 storage Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000005119 centrifugation Methods 0.000 description 6
- GSQKXUNYYCYYKT-UHFFFAOYSA-N cyclo-trialuminium Chemical compound [Al]1[Al]=[Al]1 GSQKXUNYYCYYKT-UHFFFAOYSA-N 0.000 description 6
- 230000001057 ionotropic effect Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000011859 microparticle Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000012266 salt solution Substances 0.000 description 6
- 159000000000 sodium salts Chemical class 0.000 description 6
- 230000000975 bioactive effect Effects 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 229910000029 sodium carbonate Inorganic materials 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 241001466453 Laminaria Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 206010040844 Skin exfoliation Diseases 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 235000013305 food Nutrition 0.000 description 4
- 238000001033 granulometry Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 235000010408 potassium alginate Nutrition 0.000 description 4
- 239000000737 potassium alginate Substances 0.000 description 4
- MZYRDLHIWXQJCQ-YZOKENDUSA-L potassium alginate Chemical compound [K+].[K+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O MZYRDLHIWXQJCQ-YZOKENDUSA-L 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 210000004927 skin cell Anatomy 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 235000017550 sodium carbonate Nutrition 0.000 description 4
- 238000001694 spray drying Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 3
- 235000017491 Bambusa tulda Nutrition 0.000 description 3
- 241000304829 Durvillaea Species 0.000 description 3
- 241001262084 Himanthalia Species 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 241001598113 Laminaria digitata Species 0.000 description 3
- 241000296380 Laminaria hyperborea Species 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 244000082204 Phyllostachys viridis Species 0.000 description 3
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 241000195474 Sargassum Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 239000011425 bamboo Substances 0.000 description 3
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 3
- 235000010410 calcium alginate Nutrition 0.000 description 3
- 239000000648 calcium alginate Substances 0.000 description 3
- 229960002681 calcium alginate Drugs 0.000 description 3
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000035618 desquamation Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 235000013399 edible fruits Nutrition 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000000887 hydrating effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 3
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000003716 rejuvenation Effects 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 239000000606 toothpaste Substances 0.000 description 3
- 229940034610 toothpaste Drugs 0.000 description 3
- 241000512259 Ascophyllum nodosum Species 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 2
- 241001392689 Ecklonia maxima Species 0.000 description 2
- 241000227647 Fucus vesiculosus Species 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 241000295519 Laminaria ochroleuca Species 0.000 description 2
- 241001260563 Lessonia nigrescens Species 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 241001491705 Macrocystis pyrifera Species 0.000 description 2
- 229920000057 Mannan Polymers 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 241000199919 Phaeophyceae Species 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 241000015177 Saccharina japonica Species 0.000 description 2
- 241000983746 Saccharina latissima Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 241001261506 Undaria pinnatifida Species 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 206010000496 acne Diseases 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000009418 agronomic effect Effects 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 235000010407 ammonium alginate Nutrition 0.000 description 2
- 239000000728 ammonium alginate Substances 0.000 description 2
- KPGABFJTMYCRHJ-YZOKENDUSA-N ammonium alginate Chemical compound [NH4+].[NH4+].O1[C@@H](C([O-])=O)[C@@H](OC)[C@H](O)[C@H](O)[C@@H]1O[C@@H]1[C@@H](C([O-])=O)O[C@@H](O)[C@@H](O)[C@H]1O KPGABFJTMYCRHJ-YZOKENDUSA-N 0.000 description 2
- 230000003712 anti-aging effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 235000015872 dietary supplement Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000003698 laser cutting Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 230000003020 moisturizing effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 229910052701 rubidium Inorganic materials 0.000 description 2
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 239000002453 shampoo Substances 0.000 description 2
- 239000008257 shaving cream Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 229920001221 xylan Polymers 0.000 description 2
- 150000004823 xylans Chemical class 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- NKEQOUMMGPBKMM-UHFFFAOYSA-N 2-hydroxy-2-[2-(2-hydroxy-3-octadecanoyloxypropoxy)-2-oxoethyl]butanedioic acid Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)COC(=O)CC(O)(C(O)=O)CC(O)=O NKEQOUMMGPBKMM-UHFFFAOYSA-N 0.000 description 1
- FVKRIDSRWFEQME-UHFFFAOYSA-N 3-methylbutyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCC(C)C FVKRIDSRWFEQME-UHFFFAOYSA-N 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 235000011331 Brassica Nutrition 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001512723 Ecklonia Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001251054 Formica truncorum Species 0.000 description 1
- 241000195480 Fucus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 241001466452 Laminariaceae Species 0.000 description 1
- 241001512709 Lessonia <stramenopiles> Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 206010051246 Photodermatosis Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241001261505 Undaria Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000002923 anti-melanogenic effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229940087068 glyceryl caprylate Drugs 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 238000012789 harvest method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229940078565 isoamyl laurate Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 235000001055 magnesium Nutrition 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 210000004940 nucleus Anatomy 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 230000008845 photoaging Effects 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- GHBFNMLVSPCDGN-UHFFFAOYSA-N rac-1-monooctanoylglycerol Chemical compound CCCCCCCC(=O)OCC(O)CO GHBFNMLVSPCDGN-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003297 rubidium Chemical class 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 238000005029 sieve analysis Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 230000008591 skin barrier function Effects 0.000 description 1
- 230000037067 skin hydration Effects 0.000 description 1
- 230000036560 skin regeneration Effects 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0241—Containing particulates characterized by their shape and/or structure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/73—Polysaccharides
- A61K8/733—Alginic acid; Salts thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/10—Washing or bathing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/20—Chemical, physico-chemical or functional or structural properties of the composition as a whole
- A61K2800/28—Rubbing or scrubbing compositions; Peeling or abrasive compositions; Containing exfoliants
Definitions
- the present invention relates to the field of biodegradable microbeads. More specifically, the present invention relates to biodegradable microbeads used in cosmetic applications, such as exfoliating compositions. The present invention further relates to exfoliating compositions comprising such biodegradable microbeads and processes to obtain them.
- Mi croplastics also known as plastic mi crobeads
- plastic mi crobeads are small, often m i croscopi c parti cles of plastic which make their way into our environment regularly via cosmetics, such as exfoliating facial and body washes.
- Nearly 8000 billion microbeads are dumped daily into the ocean. 663 marine animal species have been identified as negatively impacted by the arrival of these microspheres in the oceans, for example, as a result of marine animals not being able to distinguish between microbeads and food.
- these microbeads can act as "sponges" capturing harmful chemicals such as pesticides.
- biodegradable gel-microbeads of present invention are insoluble and stable in water as well as in oil. As a result thereof, if the biodegradable gel-microbeads of present inventions are used in an emulsion, they do not destabilize the emulsion.
- the biodegradable gel- microbeads of present invention are more user friendly than currently existing alternatives to plastic beads.
- the present inventors found that the microbeads based on algae can be used as an exfoliant in exfoliating compositions and can have beneficial effects on the skin or teeth by their combined mechanical and bioactive activities on the skin. Moreover, the biodegradable gel-microbeads of present invention can be produced at about the same cost as plastic microbeads. In addition, the production of biodegradable gel-microbeads of present invention requires less energy and results in less harmful byproducts. Furthermore, the biodegradable gel-microbeads of present invention can be produced with a variable hardness and size and with low size dispersion.
- a first aspect provides an exfoliating composition comprising biodegradable gel-microbeads, wherein said gel-microbeads comprise alginate from algae.
- a further aspect provides the use of biodegradable gel-microbeads, wherein said gel-microbeads comprise alginate from algae as exfoliant.
- a further aspect provides the use of biodegradable gel-microbeads, wherein said gel-microbeads comprise alginate from algae, for skin texture refining, wrinkle regression, and/or cleaning teeth.
- a further aspect provides a biodegradable gel-microbead comprising multivalent cation crosslinked alginate from algae.
- a further aspect provides a method for preparing an exfoliating composition comprising biodegradable gel-microbeads comprising the step of adding to a composition the gel-microbeads as taught herein.
- a further aspect provides a method for preparing biodegradable gel-microbeads comprising: reacting algae powder with an acid, thereby obtaining a mixture comprising alginic acid from insoluble salts of alginate in the algae powder; reacting the alginic acid in the mixture into a water-soluble monovalent salt of alginate, preferably sodium alginate; optionally adjusting the pH of the mixture comprising the water-soluble monovalent salt of alginate to a physiological pH; and o generating microdrops of the mixture comprising the water-soluble monovalent salt of alginate; and o contacting said microdrops with a solution comprising di- and/or trivalent cations, thereby obtaining the gel-microbeads; or o contacting the mixture comprising the water-soluble monovalent salt of alginate with a solution comprising di- and/or trivalent cations, thereby obtaining a gel; and o generating gel-microbeads of the gel.
- a further aspect provides a bio
- Figure 1 Schematic overview of an exemplary method for preparing biodegradable gel-microbeads using ionotropic gelification. (1) Raw material treatments and formulation; (2) microbead formation by ionotropic gelification; and (3) washing and drying of the gel-microbeads.
- Cream comprising a biodegradable gel-microbead comprising multivalent cation crosslinked alginate from algae and at least one carbohydrate of algae different from alginate
- FIG. 1 A) Biodegradability curve for Ca 2+ gel-microbeads. B) Biodegradability curve for Ba 2+ gel- microbeads.
- numeric values by means of ranges of figures comprises all values and fractions in these ranges, as well as the cited end points.
- the terms “about” and “approximately” as used when referring to a measurable value, such as a parameter, an amount, a time period, and the like, is intended to include variations of +/-10% or less, preferably +/-5% or less, more preferably +/-1% or less, and still more preferably +/-0.1% or less, of and from the specified value, in so far as the variations apply to the invention disclosed herein. It should be understood that the value to which the term “about” or “approximately” refers per se has also been disclosed.
- biodegradable gel-microbeads of present invention are insoluble and stable in water as well as in oil. As a result thereof, if the biodegradable gel-microbeads of present inventions are used in an emulsion, they do not destabilize the emulsion.
- the biodegradable gel-microbeads of present invention are more user friendly than currently existing alternatives to plastic beads.
- they have a better shape compared to crushed pits or fruit shells; are more skinfriendly than micro-particles of bamboo or stone; have a better abrasiveness than rice or silica microparticles; and are more ready to use compared to heavy micro-particles, such as pumice micro-particles, which need to be mixed before use when being incorporated into, for example, an exfoliating composition.
- the microbeads based on algae can be used as an exfoliant in exfoliating compositions and have beneficial effects on the skin or teeth by their combined mechanical and bioactive activities on the skin.
- the biodegradable gel-microbeads of present invention can be produced at about the same cost as plastic microbeads.
- the production of biodegradable gel- microbeads of present invention requires less energy and results in less harmful byproducts.
- the biodegradable gel-microbeads of present invention can be produced with a variable hardness and size and with low size dispersion.
- a first aspect provides an exfoliating composition comprising biodegradable gel-microbeads, wherein said microbeads comprise alginate from algae.
- biodegradable refers to the ability of a composition to get disintegrated by the action of micro-organisms, such as bacteria or fungi, in a biological manner while getting assimilated into the natural environment.
- the gel-microbeads as taught herein are biodegradable in water, preferably in salt water, such as in salt water having a salinity’ of about 3.5%.
- the biodegradability’ of the gel-microbeads as taught herein in salt water allows the gel-microbeads to disintegrate in the sea or ocean, which is the original habitat for some types of algae that can be used for the preparation of the gel-microbeads as taught herein, thereby resulting in a “sea-to-sea”, or “ocean-to-ocean” loop.
- microbead or “microparticle” as used herein refers to a small particle, wherein the particle size ranges from about 2.0 pm to about 2000.0 pm.
- the microbead can have a core-shell structure or can be homogeneous.
- the microbead as taught herein has a particle size defined by the area-equivalent diameter (ISO 9276-6:2008(E) section 7), also called Equivalent Circle Diameter (“ECD”, ASTM Fl 877-05 Section 11.3.2).
- ECD Equivalent Circle Diameter
- the particle size may be determined using a laser granulometer, such as the Mastersizer - Mavern 2000 (Sysmex).
- the mean ECD of an at random taken, representati ve, population, for example of at least 40 microbeads, is calculated as the average of respective ECDs of each microbead of the at random taken population.
- gel-microbead refers to a small particle of which the shell, the core and/or the entire particle consists essentially of or consist of a gelled or crosslinked polymer matrix, such as multivalent cation crosslinked alginate.
- gel refers to a non-fluid colloidal network or polymer network that is expanded throughout its whole volume by a fluid.
- the gel-microbead is made of one type of material and does not comprise a core/shell structure. Accordingly, in particular embodiments, the gel-microbead is homogenous.
- the biodegradable gel-microbeads are visible, preferably individually distinguishable, with the naked eye within the exfoliating composition.
- the biodegradable gel-microbeads are intact within the exfoliating composition, meaning that the gel-microbeads retain for at least 90%, preferably for at least 95%, its original shape during, for instance, the handling, the mixing, of the gel-microbeads.
- at least 90%, preferably for at least 95%, of (whole intact) gel-microbeads can be recovered from the exfoliating composition.
- at least 90%, preferably at least 95%, of gel- microbeads of an at random taken population of at least 40 gel-microbeads are intact within the exfoliating composition and/or can be recovered from the exfoliating composition.
- the gel-microbeads are homogeneously distributed within the exfoliating composition.
- the gel-microbeads have a homogeneous size distribution with a standard deviation normalized on average of an at random taken population of at least 40 beads lower than 30 %, lower than 25 %, lower than 20 %, lower than 15 %, lower than 10 %, such as lower than 9%, lower than 8 %, lower than 7 %, lower than 6 % or, lower than 5%, such as lower than 4 % , lower than 3%, lower than 2 % or lower than 1 %, preferably lower than 25 %.
- Said homogeneous size distribution improves the distribution of said gel-microbeads into the exfoliating composition.
- the gel-microbeads have a mean ECD from 2.0 pm to 2000.0 pm, from 2.0 pm to 1500.0 pm, from 2.0 pm to 1000.0 pm, from 10.0 pm to 1000.0 pm, from 50.0 pm to 1000.0 pm, from 100.0 pm to 1000.0 pm such as for example a mean ECD of about 100.0 pm, about 200.0 pm, about 300.0 pm, about 400.0 pm, about 500.0 pm, about 600.0 pm, about 700.0 pm, about 800.0 pm, about 900.0 pm, about 1000.0 pm, from 150.0 pm to 1000.0 pm, from 200.0 pm to 1000.0 pm, from 200.0 pm to 750.0 pm, from 250.0 pm to 750.0 pm, from 250.0 pm to 500.0 pm, from 300.0 pm to 500.0 pm, or from 200.0 pm to 800.0 pm, preferably from 200.0 pm to 800.0 pm, from 200.0 pm to 750.0 pm, from 250.0 pm to 750.0 pm, from 250.0 pm to 500.0 pm, or from 300.0 pm to 500.0 pm, more preferably from 300.0 pm to 500.0 pm.
- the mean ECD
- exfoliating composition refers to a composition comprising one or more mechanical (e.g. microbeads) and/or chemical means (e.g. salicylic acid, glucolic acid, fruit enzymes, citric acid or malic acid) suitable for removing undesired substances from a surface (such as removing dead skin cells from the skin surface or removing surface stains from teeth), also known as mechanical and/or chemical exfoliants.
- mechanical and/or chemical means e.g. salicylic acid, glucolic acid, fruit enzymes, citric acid or malic acid
- suitable for removing undesired substances from a surface such as removing dead skin cells from the skin surface or removing surface stains from teeth
- exfoliating compositions include skin cleansing compositions (e.g. face mask, face cleanser, face cream, body lotion, body wash, facial wash), exfoliating shower gels, exfoliating hair care compositions (e.g.
- the exfoliating composition is a skin cleansing composition, an exfoliating shower gel, an exfoliating hair care composition, a body or feet scrub composition, or a toothpaste.
- the exfoliating composition comprises from 0. 10 to 30.0 % (w/w), from 0.10 to 20.0 % (w/w), from 0.50 to 20.0 % (w/w), from 0.10 to 15.0 % (w/w), from 0.50 to 15.0 % (w/w), from 1.0 to 15.0 % (w/w), from 5.0 to 15.0 % (w/w), or from 10.0 to 15.0 % (w/w), preferably from 0.10 to 15.0 % (w/w) of said gel-microbeads, based on the weight of the composition.
- the exfoliating composition comprises at least 0.10 % (w/w), at least 0.20 % (w/w), at least 0.30 % (w/w), at least 0.40 % (w/w), at least 0.50 % (w/w), at least 1.0 % (w/w), or at least 5.0 % (w/w), preferably at least 1 % (w/w) of said gel-microbeads, based on the weight of the composition.
- the exfoliating composition comprises at most 30.0 % (w/w), at most 20.0 % (w/w), at most 15.0 % (w/w), or at most 10.0 % (w/w), preferably at most 15.0 % (w/w), of said gelmicrobeads, based on the weight of the composition.
- the exfoliating composition is in a liquid, solid or semisolid form.
- exfoliating composition may comprise other adjunct ingredients that may modify the physical, chemical cosmetic or aesthetic characteristics of the composition or serve as additional active ingredients when deposited on the skin.
- the exfoliating composition comprises one or more cosmetically acceptable additives selected from the group consisting of essential oil, antioxidant, emulsifier, preservative, vitamin, fragrance, colouring and a combination thereof.
- Mechanical exfoliants physically remove cells from the skin surface. Furthermore, mechanical exfoliants refine the texture of the skin and stimulate cell renewal . Mechanical exfoliants also benefit skin by preparing it for subsequent moisturizing treatments.
- the biodegradable gel-microbeads as taught herein are mild and gentle to the skin, while allowing a good exfoliation of the skin.
- a further aspect provides the use of biodegradable gel-microbeads, wherein said gel- microbeads comprise alginate from algae, as an exfoliant.
- a further aspect provides a method for exfoliating skin comprising applying biodegradable gel- microbeads comprising alginate from algae to the skin.
- the method for exfoliating skin further comprises a step of rubbing said skin after application of said biodegradable gel-microbeads and optionally a step of rinsing said skin.
- the outer layer of the skin consists of dead skin cells.
- the skin naturally sheds dead skin cells through a process called desquamation.
- desquamation does not take place regularly, the surface of the skin tends to become rougher and more wrinkles and other undesirable effects appear on the surface of the skin.
- the gel-microbeads comprising alginate from algae as taught herein not only exert beneficial effects on the skin by their mechanical activities on the skin, but also by their bioactive activities. More particularly, in addition to their potential ability to mechanically remove dead skin cells from the skin surface, the variety of types of algae components within the microbeads can exert beneficial bioactive effects (e.g.
- anti-oxidant, anti-melanogenic, anti -aging effects hydrating/moisturizing, skin-firming, protection of skin from photo-aging, anti-wrinkle, improvement of skin barrier function, remineralization, draining properties, antiseptic properties, skin regeneration skin emolliating, skin-soothing properties, anti-blackheads properties, anti-pollution properties and film-forming properties, preferably anti-aging effects, skin-soothing properties, anti-blackheads properties, and anti-pollution properties) on the skin thereby contributing to the overall skin beauty.
- a further aspect provides the use, preferably a cosmetic use, of biodegradable gelmicrobeads, wherein said gel-microbeads comprise alginate from algae, for skin texture refining, wrinkle regression, and/or for cleaning teeth.
- Also provided herein is a method for refining skin texture, regressing wrinkles, and/or cleaning teeth comprising applying biodegradable gel-microbeads comprising alginate from algae to the skin.
- the method for refining skin texture and/or regressing wrinkles further comprises a step of rubbing said skin after application of said biodegradable gel-microbeads and optionally a step of rinsing said skin.
- the method for cleaning teeth further comprises a step of rubbing said teeth after application of said biodegradable gel-microbeads and optionally a step of rinsing said teeth.
- said gel-microbeads comprise alginate from algae, for skin rejuvenation, for improving the general appearance of the skin, for improving skin smoothness, for unclogging pores, for skin hydration, for skin plumping, for inducing a skin-glow and/or for evening skin tone.
- Also provided herein is a method for rejuvenating skin, improving the general appearance of the skin, improving skin smoothness, unclogging pores, hydrating skin, plumping skin, inducing a skin-glow and/or for evening skin tone comprising applying biodegradable gel-microbeads comprising alginate from algae to the skin.
- the method for rejuvenating skin, improving the general appearance of the skin, improving skin smoothness, unclogging pores, hydrating skin, plumping skin, inducing a skinglow and/or for evening skin tone further comprises a step of rubbing said skin after application of said biodegradable gel-microbeads and optionally a step of rinsing said skin.
- the method for exfoliating skin further comprises a step of rubbing said skin after application of said biodegradable gel-microbeads and optionally rinsing said skin.
- Also provided herein is a method for cleaning teeth or for removing surface stains from the teeth comprising applying biodegradable gel-microbeads comprising alginate from algae to the teeth.
- a further aspect provides a biodegradable gel-microbead comprising, consisting essentially of, or consisting of multivalent cation crosslinked alginate from algae.
- said biodegradable gel-microbead further comprises at least one carbohydrate of algae different from alginate, preferably at least one carbohydrate of the cell wall of algae different from alginate.
- alginate as used herein may refer to any salt of alginic acid, including, but not limited to sodium alginate, calcium alginate, magnesium alginate and potassium alginate.
- alginate from algae refers to the alginic acid being extracted from algae, for example, by ion exchange.
- the alginate is multivalent cation crosslinked alginate.
- cation as used herein may be any cation suitable for inducing the gelling of alginate when added to the ingredient mixture or solution.
- Cations are preferably divalent or trivalent cations, preferably cosmetic grade divalent or trivalent cations.
- the multivalent cation is a di- and/or trivalent cation, preferably a di- and/or trivalent cation selected from the group consisting of Ca 2+ , Ba 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Zn 2+ , Cu 2+ , Al 3+ , Sr 2+ , and combinations thereof, preferably Ca 2+ , Ba 2+ , Fe 2+ , Fe 3+ , Cu 2+ , Al 3+ , Sr 2+ , and combinations thereof.
- the alginate is selected from the group consisting of calcium alginate, iron(II) alginate (Fe(II)-alginate), iron (III) alginate (Fe(III)-alginate), zinc alginate (Zn-alginate), manganese alginate (Mn-alginate), barium alginate (Ba-alginate), copper alginate (Cu-alginate), aluminium (Al- alginate), strontium alginate (Sr-alginate); preferably the alginate is calcium alginate.
- iron(II) alginate refers to iron-crosslinked alginate and that the same applies for all other alginate salts described herein.
- algae refers to photosynthetic eukaryotic organisms living in moist environments and include marine algae (e.g. seaweeds), freshwater algae and brackish water algae.
- the algae are marine algae. In particular embodiments, the algae are multicellular algae.
- the algae are brown algae (i.e. Phaeophyceae) .
- the algae are algae of a genus selected from the group consisting of Laminaria, Himanthalia, Fucus, Undaria, Macroocystis, Ecklonia, Lessonia, Durvillaea, Sargassum and any combination thereof, preferably Laminaria.
- the algae are algae having an alginate content of at least 10.0 % (w/w), at least 20.0 % (w/w), at least 25.0 % (w/w), such as at least 26.0 % (w/w), at least 27.0 % (w/w), at least 28.0 % (w/w), or at least 29.0 % (w/w), at least 30.0 % (w/w), at least 35.0 % (w/w), or at least 40.0 % (w/w), preferably at least 20.0% (w/w), based on total biomass dry weight.
- the algae are algae having an alginate content of from 10.0 % (w/w) to 45.0% (w/w), from 15.0% (w/w) to 40.0% (w/w), from 20.0% (w/w) to 40.0% (w/w), from 30.0% (w/w) to 40.0% (w/w), from 15.0% (w/w) to 30.0% (w/w), from 20.0% (w/w) to 30.0% (w/w), preferably from 20.0% (w/w) to 30.0% (w/w), based on total biomass dry weight.
- Non-limiting examples of algae having an alginate content of at least 20.0 % (w/w) based on total biomass dry weight include algae of the species Laminaria Hyperborea, Laminaria Digitata Ascophyllum nodosum, Laminaria saccharina, Himanthalia elongate, Laminaria ochroleuca, Fucus vesiculosus, Undaria pinnatifida, Macrocystis pyrifera, Laminaria japonica, Ecklonia maxima, Lessonia nigrescens, Durvillaea antartica or Sargassum spp.
- the person skilled in the art will understand that the alginate content of algae may depend on the conditions in which they are grown, such as the season, growth conditions, location and deepness.
- the amount of alginate in the algae is sufficient to allow the preparation of gel-microbeads from whole algae powder with a good stability and hardness.
- the whole algae powder is not enriched with exogenous alginate.
- the algae are algae selected from the group consisting of Laminaria hyperborea, Laminaria digitata, Ascophyllum nodosum, Laminaria saccharina, Himanthalia elongate, Laminaria ochroleuca, Fucus vesiculosus, Undaria pinnatifida, Macrocystis pyrifera, Laminaria japonica, Ecklonia maxima, Lessonia nigrescens, Durvillaea antartica, Sargassum spp and any combination thereof.
- These algae are available in Europe in large quantities, have a limited use in food industry and do not require a harvest method destructive for biodiversity.
- the algae are algae of the family Laminariaceae. In particular embodiments, the algae are algae of the genus Laminaria. In particular embodiments, the algae are algae of the species Laminaria Hyperborea, Laminaria Digitata, or a combination thereof.
- the gel-microbead as taught herein comprises at least one, such as at least two, at least three, at least four, at least five, at least six, at least seven, at least 8 or at least 9, preferably at least two, more preferably at least three, carbohydrates of algae different from alginate.
- the gel-microbead as taught herein comprises at least one carbohydrate of algae different from alginate.
- carbohydrates of algae different from alginate include cellulose, hemicellulose (e.g. xylan), ulvan, mannan, glycan, galactan (e.g. agar and carrageenan), fucoidan, laminarin and mannitol.
- the gel-microbead as taught herein further comprises at least one carbohydrate of algae different from alginate selected from the group consisting of cellulose, hemicellulose, carrageenan, agar, ulvan, fucoidan, laminarin, mannitol, and combinations thereof, preferably at least one carbohydrate of algae selected from the group consisting of cellulose, carrageenan, agar and a combination thereof.
- the gel-microbead as taught herein further comprises at least one carbohydrate (such as one, two, three, four, five, six or seven), preferably a structural carbohydrate, more preferably a structural polysaccharide, of the cell wall of algae different from alginate.
- carbohydrate such as one, two, three, four, five, six or seven
- a structural carbohydrate more preferably a structural polysaccharide, of the cell wall of algae different from alginate.
- Non-limiting examples of cell wall components of algae that are carbohydrates include cellulose, hemicellulose (e.g. xylan), ulvan, mannan, glycan, galactan (e.g. agar and carrageenan) and fucoidan.
- the gel-microbead as taught herein comprises at least one storage carbohydrate, preferably a storage polysaccharide, of algae, more preferably laminarin, mannitol or a combination thereof.
- the gel-microbead as taught herein comprises at least one carbohydrate of algae different from alginate, preferably at least one carbohydrate of the cell wall of algae different from alginate, which is not soluble in an acidic solution (e.g. a H2SO4 solution), or a monovalent salt solution, preferably not soluble in a sodium, potassium, or sodium potassium salt solution, more preferably not soluble in a sodium carbonate solution, even more preferably not soluble in a 0.2N H2SO4 solution or in a 2 % (w/v) Na2CC>3.
- an acidic solution e.g. a H2SO4 solution
- a monovalent salt solution preferably not soluble in a sodium, potassium, or sodium potassium salt solution, more preferably not soluble in a sodium carbonate solution, even more preferably not soluble in a 0.2N H2SO4 solution or in a 2 % (w/v) Na2CC>3.
- the gel-microbead as taught herein further comprises at least one structural carbohydrate, more preferably a structural polysaccharide, of the cell wall of algae different from alginate which is not soluble in an acidic solution (e.g. a H2SO4 solution), or a monovalent salt solution, preferably not soluble in a sodium, potassium, or sodium potassium salt solution, more preferably not soluble in a sodium carbonate solution, even more preferably not soluble in a 0.2N H2SO4 solution or in a 2 % (w/v) Na2CC>3.
- an acidic solution e.g. a H2SO4 solution
- a monovalent salt solution preferably not soluble in a sodium, potassium, or sodium potassium salt solution, more preferably not soluble in a sodium carbonate solution, even more preferably not soluble in a 0.2N H2SO4 solution or in a 2 % (w/v) Na2CC>3.
- the gel-microbead as taught herein further comprises at least one structural carbohydrate, preferably at least one structural polysaccharide, from the cell wall of algae selected from the group consisting of cellulose, hemicellulose, carrageenan, agar, ulvan, fucoidan, and a combination thereof, preferably at least one structural polysaccharide from the cell wall of algae selected from the group consisting of cellulose, carrageenan, agar and a combination thereof.
- the alginate and the at least one such as at least two, at least three, at least four, at least five, at least six, at least seven, at least 8 or at least 9, preferably at least two, more preferably at least three, carbohydrates of algae different from alginate are present in the gel of the gel-microbead in substantially the same ratios as they occur in the algae, preferably in the cell wall of algae, from which they are prepared.
- the cell wall of algae would comprise 1% (w/w) of carrageenan and 2% (w/w) of cellulose
- the gel-microbead of present invention would comprise twice as much cellulose than carrageenan.
- the gel-microbead as taught herein comprises at least 15.0 % (w/w), at least 20.0 % (w/w), at least 25.0 % (w/w), at least 30.0 % (w/w), at least 35.0 % (w/w), at least 40.0 % (w/w), at least 45.0 % (w/w), or at least 50.0 % (w/w), of alginate, based on the dry weight of the gel-microbead.
- the gel-microbead as taught herein comprises from 15.0 % (w/w) to 99.0 % (w/w), from 15.0 % (w/w) to 95.0 % (w/w), from 20.0 % (w/w) to 90.0 % (w/w), from 25.0 % (w/w) to 80.0 % (w/w), from 30.0 % (w/w) to 80.0 % (w/w), from 35.0 % (w/w) to 60.0 % (w/w), or from 40.0 % (w/w) to 50.0 % (w/w) of alginate, based on the dry weight of the gel-microbead.
- the gel-microbead as taught herein comprises at least 1.0 % (w/w), such as at least 2.0 % (w/w), at least 3.0 % (w/w), at least 4.0 % (w/w), or at least 5.0 % (w/w), at least 10.0 % (w/w), at least 15.0 % (w/w), at least 20.0 % (w/w), at least 25.0 % (w/w), at least 30.0 % (w/w), at least 35.0 % (w/w), at least 40.0 % (w/w), at least 45.0 % (w/w), or at least 50.0 % (w/w), preferably at least 5.0 % (w/w), more preferably at least 10.0 % (w/w) of at least one carbohydrate of algae different from alginate, preferably at least one carbohydrate of the cell wall of algae different from alginate, based on the dry weight of the gel-microbead.
- the gel-microbead as taught herein comprises at least 70.0 % (w/w), at least 75.0 % (w/w), at least 80.0 % (w/w), at least 85.0 % (w/w), at least 90.0 % (w/w), at least 95.0 % (w/w), such as at least 96.0 % (w/w), at least 97.0 % (w/w), at least 98.0 % (w/w) or at least 99.0 % (w/w), of components from algae, based on the dry weight of the gel-microbead.
- the gel-microbead as taught herein comprises from 70.0 % (w/w) to 85.0 % (w/w), such as from 75.0 % (w/w) to 85.0 % (w/w), or from 80.0 % (w/w) to 85.0 % (w/w), of components from algae, based on the dry weight of the gel-microbead.
- the components (e.g. the alginate) from algae within the gel- microbead as taught herein are preferably chemically treated (e.g. extracted from the algae) before being incorporated into the gel-microbead.
- the gel-microbead as taught herein comprises at least 70.0 % (w/w), at least 75.0 % (w/w), at least 80.0 % (w/w), at least 85.0 % (w/w), at least 90.0 % (w/w), at least 95.0 % (w/w), such as at least 96.0 % (w/w), at least 97.0 % (w/w), at least 98.0 % (w/w) or at least 99.0 % (w/w), of alginate and at least one carbohydrate different from alginate, based on the dry weight of the gel- microbead.
- the gel-microbead as taught herein comprises from 70.0 % (w/w) to 85.0 % (w/w), such as from75.0 % (w/w) to 85.0 % (w/w), or from 80.0 % (w/w) to 85.0 % (w/w), of alginate and at least one carbohydrate different from alginate, based on the dry weight of the gel- microbead.
- the gel-microbead as taught herein comprises at least 70.0 % (w/w), at least 75.0 % (w/w), at least 80.0 % (w/w), at least 85.0 % (w/w), at least 90.0 % (w/w), at least 95.0 % (w/w), such as at least 96.0 % (w/w), at least 97.0 % (w/w), at least 98.0 % (w/w) or at least 99.0 % (w/w), of carbohydrates of algae (i.e. including alginate), based on the dry weight of the gel-microbead.
- the gel-microbead as taught herein comprises from 70.0 % (w/w) to 85.0 % (w/w), such as from75.0 % (w/w) to 85.0 % (w/w), or from 80.0 % (w/w) to 85.0 % (w/w), of carbohydrates of algae (i.e. including alginate), based on the dry weight of the gel-microbead.
- the biodegradable gel-microbead as taught herein is prepared starting from whole algae powder.
- the algae are decoloured prior to grinding the algae into a whole algae powder or the whole algae powder is decoloured.
- the biodegradable gel-microbead has a particle size of from 2.0 pm to 2000.0 pm, from 2.0 pm to 1500.0 pm, from 2.0 pm to 1000.0 pm, from 10.0 pm to 1000.0 pm, from 50.0 pm to 1000.0 pm, from 100.0 pm to 1000.0 pm, from 150.0 pm to 1000.0 pm, from 200.0 pm to 1000.0 pm, from 200.0 pm to 750.0 pm, from 250.0 pm to 750.0 pm, from 250.0 pm to 500.0 pm, from 300.0 pm to 500.0 pm, or from 200.0 pm to 800.0 pm, preferably from 200.0 pm to 800.0 pm, from 200.0 pm to 750.0 pm, from 250.0 pm to 750.0 pm, from 250.0 pm to 500.0 pm, or from 300.0 pm to 500.0 pm, more preferably from 300.0 pm to 500.0 pm.
- the gel-microbead as taught herein has a particle size defined by the area-equivalent diameter (ISO 9276-6:2008(E) section 7), also called Equivalent Circle Diameter (“ECD”, ASTM Fl 77-05
- the biodegradable gel-microbeads (e.g. an at random taken, representative, population, for example of at least 40 microbeads) have a mean ECD from 2.0 pm to 2000.0 pm, from 2.0 pm to 1500.0 pm, from 2.0 pm to 1000.0 pm, from 10.0 pm to 1000.0 pm, from 50.0 pm to 1000.0 pm, from 100.0 pm to 1000.0 pm, from 150.0 pm to 1000.0 pm, from 200.0 pm to 1000.0 pm, from 200.0 pm to 750.0 pm, from 250.0 pm to 750.0 pm, from 250.0 pm to 500.0 pm, from 300.0 pm to 500.0 pm, or from 200.0 pm to 800.0 pm, preferably from 200.0 pm to 800.0 pm, from 200.0 pm to 750.0 pm, from 250.0 pm to 750.0 pm, from 250.0 pm to 500.0 pm, or from 300.0 pm to 500.0 pm, more preferably from 300.0 pm to 500.0 pm.
- a mean ECD from 2.0 pm to 2000.0 pm, from 2.0 pm to 1500.0 pm, from 2.0 pm to 1000.0 pm, from 10.0 pm
- the biodegradable gel-microbead if the biodegradable gel-microbead is intended for use as an exfoliant or in an exfoliating composition for the face, the biodegradable gel-microbead preferably has a particle size of from 2.0 pm to 300.0 pm, from 25.0 pm to 300.0 pm, from 50.0 pm to 300.0 pm, from 100.0 pm to 300.0 pm, from 200.0 pm to 300.0 pm, from 50.0 pm to 200.0 pm, or from 100.0 pm to 200.0 pm, preferably from 200.0 pm to 300.0 pm.
- the biodegradable gel-microbeads e.g.
- an at random taken, representative, population for example of at least 40 microbeads
- the biodegradable gel-microbead if the biodegradable gel-microbead is intended for use as an exfoliant or in an exfoliating composition for the body, the biodegradable gel-microbead preferably has a particle size of from 300.0 pm to 500.0 pm, from 350.0 pm to 500.0 pm, from 400.0 pm to 500.0 pm, from 300.0 pm to 400.0 pm, or from 350.0 pm to 450.0 pm.
- the biodegradable gel-microbeads e.g.
- an at random taken, representative, population for example of at least 40 microbeads
- the biodegradable gel-microbead if the biodegradable gel-microbead is intended for use as an exfoliant or in an exfoliating composition wherein the gel-microbead has to be individually distinguishable by eye within the exfoliating composition, the biodegradable gel-microbead preferably has a particle size of from 500.0 pm to 2000.0 pm, from 500.0 pm to 1500.0 pm, from 500.0 pm to 1000.0 pm, from 600.0 pm to 1000.0 pm, from 700.0 pm to 1000.0 pm, from 800.0 pm to 1000.0 pm, or from 900.0 pm to 1000.0 pm.
- the biodegradable gel-microbeads are intended for use as an exfoliant or in an exfoliating composition wherein the gel-microbeads have to be individually distinguishable by eye within the exfoliating composition
- the biodegradable gel-microbeads preferably have a mean ECD from 400.0 pm to 2000.0 pm, from 400.0 pm to 1500.0 pm, from 400.0 pm to 1000.0 pm, from 500.0 pm to 1000.0 pm, from 600.0 pm to 1000.0 pm, from 700.0 pm to 1000.0 pm, from 800.0 pm to 1000.0 pm, or from 900.0 pm to 1000.0 pm.
- the biodegradable gel-microbead if the biodegradable gel-microbead is intended for use as an exfoliant or in an exfoliating composition for teeth, the biodegradable gel-microbead preferably has a particle size of from 50.0 pm to 400.0 pm, from 500.0 pm to 2000.0 pm, from 500.0 pm to 1500.0 pm, from 500.0 pm to 1000.0 pm, from 600.0 pm to 1000.0 pm, from 700.0 pm to 1000.0 pm, from 800.0 pm to 1000.0 pm, or from 900.0 pm to 1000.0 pm.
- the biodegradable gel-microbeads are intended for use as an exfoliant or in an exfoliating composition for teeth, the biodegradable gel- microbeads (e.g.
- an at random taken, representative, population for example of at least 40 microbeads
- the biodegradable beads as taught herein have a symmetric and regular particle shape such as cubic beads, spherical beads, cylindrical beads, preferably spherical beads.
- biodegradable gel-microbeads comprising multivalent cation crosslinked alginate from algae and at least one component of the cell wall of algae different from alginate can have a wide variety of hardness, making them suitable for a wide range of applications.
- the microbead is preferably sufficiently hard to provide good cleansing performance while providing good skin or tooth feel acceptability.
- the biodegradable gel-microbead has a hardness that is typically used for exfoliants. The person skilled in the art will understand how to determine the hardness of a microbead, such as by nano-identation.
- the biodegradable gel-microbead has a hardness that corresponds to a MOHS hardness from 0.50 to 6.0, from 0.50 to 5.0, from 0.50 to 4.0, from 0.50 to 3.0, from 1.0 to 4.0, orfirom 1.0 to 3.0, preferably from 1.0 to 5.0, preferably when measured at room temperature, such as at a temperature from 20.0 to 22.0°C.
- the MOHS hardness scale is known in the art and is an internationally recognized scale for measuring the hardness of a compound versus a compound of known hardness, such as for example sodium with a MOHS hardness of from 0.5 to 0.6, talc with a MOHS hardness of 1, graphite with a MOHS hardness of 1.5, gypsum with a MOHS hardness of 2, gold with a MOHS hardness of from 2.5 to 3, calcite with a MOHS hardness of 3, platinum with a MOHS hardness of 3.5 and fluorite with a MOHS hardness of 4.
- the gel-microbeads as taught herein have a hardness of from 30.0 to 300.0 MPa, from 30.0 to 250.0 MPa, from 30.0 to 200.0 MPa, from 35.0 to 175.0 MPa, from 35.0 to 150.0 MPa, from 35.0 to 145.0 MPa, from 35.0 to 140.0 MPa, from 35.0 to 135.0 MPa or from 35.0 to 130.0 MPa.
- Polymer-crosslinking of the alginate from algae and optional at least one cell wall component obtained from algae different from alginate may be achieved by any method known in the art, such as iontropic gelification, coarcervation, interfacial polymerization, spray drying, atomisation, solvent evaporation, coating, prilling, sonication or extrusion.
- any method known in the art such as iontropic gelification, coarcervation, interfacial polymerization, spray drying, atomisation, solvent evaporation, coating, prilling, sonication or extrusion.
- the at least one cell wall component obtained from algae different from alginate may be cross-linked itself, such as for cellulose, or may become dispersed in the gel formed by the alginate.
- the biodegradable gel-microbead is prepared by ionotropic gelification, optionally in combination with jet-cutting.
- Ionotropic gelification refers to a commonly used method to produce micro- or nanoparticles which is based on the capability of polyelectrolytes to traverse link in the presence of counter ions. Ionotropic gelification may be achieved by any method known in the art. For example, as applied in the present context, by extruding or spraying an alginate solution into a solution comprising multivalent cations.
- jet-cutting refers to a method in which a flow of ingredients is cut with the aid of a cutting device, such as rotating wires.
- a suitable cutting system may be described in the following way: a cutting tool with a diameter of 70 mm and having at its circumference 24 to 48 strings of stainless-steel cable with a diameter of 90 pm to 200 pm is attached to the shaft of a motor; nozzles with an internal diameter of from 100 pm to 1200 pm, preferably from 200 pm to 800 pm, are positioned just above the cutting device, this can be in a specific angle; the ingredient mixture is passed through the nozzles with a pressure between 10 psi and 120 psi; and; the stator (rotating disk) rotates at a speed between 2000 and 10000 rpm, preferably between 4000 and 8000 rpm.
- jet cutting system parameters number and size of wires, nozzles diameters, extrusion pressure, stator rotation speed, etc. may be adjusted to make different sizes and shapes of microbeads.
- the final granulometry of the microbeads is close to the diameter of the nozzle of the jet-cutter.
- the nozzle diameter is from 300.0 to 800.0 pm.
- the stator rotation speed is between 2000 and 10000 rpm, preferably between 4000 and 8000 rpm.
- the biodegradable gel-microbead is prepared by spray drying.
- spray drying nebulization and evaporation is typically combined.
- particle formation, drying, and cross-linking of the alginate may occur in a single step.
- biodegradable gel-microbead as taught herein can be used for a variety of applications, including, but not limited to, chemical applications (e.g. paint, detergent, cleaner), food applications (e.g. dietary supplement, pet feed, gastronomy), cosmetic applications (e.g. personal care, face masks), agronomic applications (e.g. animal feed), and medical application (e.g. controlled release of medicaments).
- chemical applications e.g. paint, detergent, cleaner
- food applications e.g. dietary supplement, pet feed, gastronomy
- cosmetic applications e.g. personal care, face masks
- agronomic applications e.g. animal feed
- medical application e.g. controlled release of medicaments.
- biodegradable gel-microbead as taught herein in chemical applications (e.g. paint, detergent, cleaner), food applications (e.g. dietary supplement, pet feed, gastronomy), cosmetic applications (e.g. face masks, toothpaste) or agronomic applications (e.g. animal feed).
- chemical applications e.g. paint, detergent, cleaner
- food applications e.g. dietary supplement, pet feed, gastronomy
- cosmetic applications e.g. face masks, toothpaste
- agronomic applications e.g. animal feed.
- a medicament or bioactive molecule can be trapped between the polymeric chains of the gel-microbead, resulting in being captured inside the gel-microbead structure.
- Such formulation allows controlled release of the medicament.
- a further aspect provides the use of the biodegradable gel-microbead as taught herein as a medicament.
- a further aspect provides a method of treating a disease or condition in a subject, comprising administering the biodegradable gel-microbead as taught herein to the subject.
- the biodegradable gel-microbead as taught herein comprises one or more additi ves selected from the group consi sting of a fragrance and a colorant .
- the biodegradable gel-microbead as taught herein is cosmetic-grade.
- the biodegradable gel-microbead as taught herein does not comprise any plastic (e.g. polyethylene), fruit shells or pits, bamboo silica, polylactic acid, rice, stones, silica and/or waxes.
- the biodegradable gel-microbead as taught herein does not comprise chromium, nickel and/or arsenic.
- a further aspect provides a method for preparing an exfoliating composition comprising biodegradable gel-microbeads comprising the step of adding to a composition, preferably a cosmetic composition, the biodegradable gel-microbeads as taught herein.
- the method for preparing an exfoliating composition comprises mixing the biodegradable gel-microbeads as taught herein with a cosmetic composition or the ingredients thereof.
- the gel-microbeads as taught herein remain intact during the process of mixing.
- the biodegradable microbeads as taught herein are insoluble and stable in water as well as in oil.
- the cosmetic composition is an emulsion, the biodegradable gel-microbeads as taught herein do not destabilize the emulsion.
- cosmetic composition refers to a cosmetic grade (e.g. not deleterious to the recipient thereof) product designed to maintain, restore, improve or enhance a subject’s appearance, more particularly the appearance of the subject’s skin, including without limitation the tone, colour, complexion, texture, smoothness or softness of the subject’s skin.
- Cosmetic uses or methods as envisaged herein address normal, natural, or physiological processes, and can be distinguished from therapy including curative and prophylactic treatments, the purpose of which is to restore a subject from a pathological state to its original healthy condition, or to at least alleviate the symptoms of pain and suffering caused by the pathology, or to prevent pathology in the first place. Cosmetic uses or methods as intended herein can thus be denoted as “non-therapeutic”. Cosmetic uses or methods as intended herein generally employ cosmetic compositions configured for topical application to the skin.
- the cosmetic composition may be formulated as a gel, cream, ointment, lotion, drops, spray, foam, or powder.
- the cosmetic compositions may typically be intended as ‘wash- off composition.
- the cosmetic composition is a composition selected from the group consisting of face mask, face cleanser, face cream, body wash, facial wash, body lotion, shower gel, shampoo, shaving cream, hair mask, body scrub, feet scrub, and a combination thereof.
- Biodegradable microbeads wherein said microbeads comprise alginate from algae, can be prepared at about the same cost as plastic beads. Furthermore, the manufacturing process for biodegradable microbeads, wherein said microbeads comprise alginate from algae, requires less energy than the manufacturing process of plastic beads. Moreover, the environmental impact of the manufacturing process for biodegradable microbeads, wherein said microbeads comprise alginate from algae, is limited. In addition, the biodegradable gel-microbeads of present invention can be produced by various methods which allow a variable hardness and size, as well as a low size dispersion.
- a further aspect provides a method for preparing biodegradable gel-microbeads comprising: reacting algae powder with an acid, thereby obtaining a mixture comprising alginic acid from insoluble salts of alginate in the algae powder; reacting the alginic acid in the mixture into a water-soluble monovalent salt of alginate, preferably a water-soluble monovalent alkali metal salt of alginate selected from the group consisting of sodium alginate, potassium alginate, ammonium alginate, lithium alginate, rubidium alginate, and cesium alginate, more preferably sodium alginate; optionally adjusting the pH of the mixture comprising the water-soluble monovalent salt of alginate to a physiological pH; and o generating microdrops of the mixture comprising the water-soluble monovalent salt of alginate; and o contacting said microdrops with a solution comprising di- and/or trivalent cations, thereby obtaining the gel-microbeads; or o contacting the mixture compris
- the water-soluble monovalent salt of alginate is a water-soluble monovalent metal salt of alginate.
- the water-soluble monovalent metal salt of alginate is an alkali metal salt of alginate, preferably an alkali metal salt of alginate selected from the group consisting of sodium alginate, potassium alginate , ammonium alginate, lithium alginate, rubidium alginate, and cesium alginate, preferably sodium alginate or potassium alginate, more preferably sodium alginate.
- the algae powder comprises at least one carbohydrate of algae different from alginate, preferably wherein said at least one carbohydrate of algae is a component of the cell wall of algae.
- the algae powder comprises at least one carbohydrate of algae different from alginate selected from the group consisting of cellulose, hemicellulose, carrageenan, agar, ulvan, fucoidan, laminarin, mannitol, and combinations thereof, preferably at least one carbohydrate of algae selected from the group consisting of cellulose, carrageenan, agar and a combination thereof.
- the algae powder comprises at least one component, preferably a structural component, of the cell wall of algae different from alginate.
- the algae powder comprises at least one structural polysaccharide from the cell wall of algae selected from the group consisting of cellulose, hemicellulose, carrageenan, agar, ulvan, fucoidan, and a combination thereof, preferably at least one structural polysaccharide from the cell wall of algae selected from the group consisting of cellulose, carrageenan, agar and a combination thereof.
- the algae powder comprises a storage carbohydrate of algae, preferably a storage polysaccharide of algae, more preferably a storage polysaccharide selected from the group consisting of laminarin, mannitol and a combination thereof.
- the algae powder comprises at least 10.0 % (w/w), at least 20.0 % (w/w), at least 25.0 % (w/w), such as at least 26.0 % (w/w), at least 27.0 % (w/w), at least 28.0 % (w/w), or at least 29.0 % (w/w), at least 30.0 % (w/w), at least 35.0 % (w/w), or at least 40.0 % (w/w), preferably at least 20.0% (w/w), , of alginate, based on the dry weight of the algae powder.
- the algae powder comprises from 10.0 % (w/w) to 45.0% (w/w), from 15.0% (w/w) to 40.0% (w/w), from 20.0% (w/w) to 40.0% (w/w), from 30.0% (w/w) to 40.0% (w/w), from 15.0% (w/w) to 30.0% (w/w), from 20.0% (w/w) to 30.0% (w/w), preferably from 20.0% (w/w) to 30.0% (w/w), based on the dry weight of the algae powder.
- the algae powder comprises at least 20.0 % (w/w), at least 25.0 % (w/w) or at least 30.0 % (w/w), such as at least 31.0 % (w/w), at least 32.0 % (w/w), at least 33.0 % (w/w), , or at least 34.0 % (w/w), at least 35.0 % (w/w), or at least 40.0 % (w/w), preferably at least 30.0% (w/w), of alginate, based on the dry weight of the algae powder; and at least 1.0 % (w/w), such as at least 2.0 % (w/w), at least 3.0 % (w/w), at least 4.0 % (w/w), or at least 5.0 % (w/w), at least 10.0 % (w/w), at least 15.0 % (w/w), at least 20.0 % (w/w), at least 25.0 % (w/w), at least 30.0 % (w/w), such as
- the algae powder comprises, consists essentially of or consists of at least 90.0 % (w/w), at least 95.0 % (w/w), preferably at least 99.0 % (w/w), more preferably 100.0 % (w/w) of components of algae, based on the dry weight of the algae powder.
- the algae powder comprises, consists essentially of or consists of at least 80.0 % (w/w), at least 85.0 % (w/w), at least 90.0 % (w/w), or at least 95.0 % (w/w), of carbohydrates (e.g. alginate and at least one carbohydrate different from alginate) of algae, based on the dry weight of the algae powder.
- carbohydrates e.g. alginate and at least one carbohydrate different from alginate
- the algae powder is obtained by grinding or milling, preferably grinding, whole algae.
- the algae powder is prepared by a method comprising drying of algae and grinding or milling of the dried algae.
- the algae are considered dried when their water content is at most 15.0 % (w/w), at most 12.0 % (w/w), at most 10.0 % (w/w), at most 5.0 % (w/w), at most 4.0 % (w/w), at most 3.0 % (w/w), at most 2.0 % (w/w), preferably at most 5.0% (w/w).
- the water content of the algae powder is from 1.0 % to 15.0 % (w/w), from 2.0 % to 15.0% (w/w), preferably from 2.0% to 12.0% (w/w).
- the method for preparing biodegradable gel-microbeads as taught herein further comprises a step of drying and/or grinding algae.
- the entire (i.e. whole) algae including the cell wall, plasma membrane, cytoplasm and nucleus, is used to prepare the algae powder.
- the algae powder has a Z-average particle size of less than 100.0 pm, less than 95.0 pm, less than 90.0 pm, less than 85.0 pm, less than 80.0 pm, less than 75.0 pm, less than 70.0 pm, less than 65.0 pm, less than 50.0 pm, preferably less than 75.0 pm.
- the algae powder has a Z-average particle size of from 10.0 pm to 100.0 pm, from 10.0 pm to 95.0 pm, from 10.0 pm to 90.0 pm, from 10.0 pm to 85.0 pm, from 10.0 pm to 80.0 pm, from 10.0 pm to 75.0 pm, from 10.0 pm to 70.0 pm, from 10.0 pm to 65.0 pm, or from 10.0 pm to 50.0 pm.
- the algae powder has a granulometry lower than 100.0 pm, lower than 95.0 pm, lower than 90.0 pm, lower than 85.0 pm, lower than 80.0 pm, lower than 75.0 pm, lower than 70.0 pm, lower than 65.0 pm, lower than 50.0 pm, preferably lower than 75.0 pm.
- a granulometry lower than X pm indicates that at least 90% (w/w), preferably at least 95% (w/w) of the particles in the algae powder have a size lower than X pm.
- size of a particle refers to the particle size measured by means of sieve analysis.
- the acid used in the step of reacting algae powder with an acid is an organic or mineral (i.e. inorganic) acid, preferably an organic or mineral (i.e. inorganic) acid selected from the group consisting of H2SO4, citric acid and HC1, more preferably H2SO4.
- undiluted (i.e. concentrated) acid per gram of algae powder is used in the step of reacting the algae powder with the acid.
- the acid used in the step of reacting algae powder with an acid is a 0.2 N H2SO4 solution in water.
- the step of reacting algae powder with an acid comprises mixing algae powder with a H2SO4 solution.
- the algae powder is mixed with the H2SO4 solution during a period of at least 60 minutes, preferably at least 120 minutes.
- the algae powder is mixed with the H2SO4 solution by stirring.
- the algae powder is mixed with the H2SO4 solution at room temperature. The person skilled in the art will understand that the period can be shortened if the temperature during incubation is increased. For example, if the temperature is about 50°C, the period can be reduced to about 30 minutes.
- the mixture comprising alginic acid is centrifuged, thereby obtaining a pellet and a supernatant, wherein the pellet comprises substantially all (e.g. at least 95%, preferably at least 99%) of the alginic acid from the algae powder.
- the centrifugation is performed during a period of at least 5 minutes, more preferably at least 10 minutes, and/or at a speed of at least 664 ref, more preferably at least 1180 ref.
- the supernatant is removed after centrifugation.
- the step of reacting the alginic acid in the mixture into the water-soluble monovalent salt of alginate comprises contacting (e.g. mixing) the mixture comprising alginic acid with a water-soluble monovalent salt, preferably a water-soluble monovalent alkali metal salt selected from the group consisting of sodium salt, potassium salt, ammonium salt, lithium salt, rubidium salt and cesium salt, preferably sodium salt or potassium salt, more preferably sodium salt.
- a water-soluble monovalent salt selected from the group consisting of sodium salt, potassium salt, ammonium salt, lithium salt, rubidium salt and cesium salt, preferably sodium salt or potassium salt, more preferably sodium salt.
- the step of reacting the alginic acid in the mixture into the water-soluble monovalent salt of alginate comprises contacting (e.g. mixing) the mixture comprising alginic acid with an alkali hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide or cesium hydroxide.
- an alkali hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide or cesium hydroxide.
- the step of reacting the alginic acid in the mixture into the water-soluble monovalent salt of alginate comprises contacting (e.g. mixing) the mixture comprising alginic acid with a sodium salt, a potassium salt or a sodium potassium salt, such as Na2CO3, K2CO3, NaKCCh. or NaHCO 3 .
- the step of reacting the alginic acid in the mixture into the water-soluble monovalent salt of alginate comprises contacting (e.g. mixing) the mixture comprising alginic acid with a sodium salt, preferably a disodium salt, more preferably Na2CC>3, even more preferably a Na2CC>3 solution, even more preferably a 2% (w/v) Na2CC>3 solution in water.
- a sodium salt preferably a disodium salt, more preferably Na2CC>3, even more preferably a Na2CC>3 solution, even more preferably a 2% (w/v) Na2CC>3 solution in water.
- the method comprises a step of centrifugation before the step of reacting the alginic acid in the mixture into the water-soluble monovalent salt of alginate
- the pellet obtained after centrifugation is resuspended with a monovalent salt solution, such as an alkali metal salt solution.
- the method comprises a step of centrifugation before the step of reacting the alginic acid in the mixture into sodium alginate
- the pellet obtained after centrifugation is resuspended with a Na2CC>3 solution, preferably a 2 % (w/v) Na2CC>3 solution in water.
- the mixture comprising the alginic acid and the monovalent salt, such as the monovalent alkali metal salt, preferably disodium salt are incubated for a period of at least 1 hour, at least 2 hours, at least 3 hours, at least 4 hours, at least 5 hours, at least 6 hours, at least 8 hours, preferably at least 5 hours.
- the period can be shortened if the temperature during incubation is increased.
- the pH of the mixture comprising the water-soluble monovalent salt of alginate, preferably sodium alginate is adjusted to a pH from 3.0 to 8.0, such as from 4.0 to 8.0, from 5.0 to 8.0, from 6.0 to 8.0, or from 6.0 to 7.0.
- the pH of the mixture comprising the water-soluble monovalent salt of alginate, preferably sodium alginate is adjusted to a physiological pH, preferably to a pH from 6.0 to 7.50, preferably a pH from 6.50 to 7.0.
- the pH of the mixture can be adjusted using all known methods in the art.
- the pH of the mixture is adjusted using citric acid.
- the present inventors have shown that the presence of one or more carbohydrate of algae different from alginate, preferably at least one carbohydrate of the cell wall of algae different from alginate, in the mixture comprising the water-soluble monovalent salt of alginate do not negatively influence the ability of alginate from algae to cross-link into gel-microbeads.
- the method for preparing biodegradable gel-microbeads as taught herein does not comprise a step of (deliberately) removing any component, preferably any carbohydrate of algae, more preferably any structural polysaccharide of the cell wall of algae from the mixture comprising the alginic acid and/or from the mixture comprising the water-soluble monovalent salt of alginate.
- Carbohydrates of algae, such as carrageenan may reinforce the alginate structure of the gelmicrobead.
- the method of present invention allows obtaining gel-microbeads with a stronger core/ body compared to gel-microbeads only comprising alginate of algae.
- the stronger core/ body of the gel-microbeads of present invention allows to prepare gel-microbeads consisting entirely out of algae components (i.e. without the need of the addition of any exogenous components for strengthening the crosslinked alginate of algae). Furthermore, the gel of the gel- microbeads of present invention itself has abrasive properties, and therefore, the gel-microbeads of present invention do not require the presence of an abrasive material other than the gel comprising alginate from algae in the gel-microbead.
- the phrase “generating drops” particularly denotes creating a small quantity of fluid by allowing or forcing the mixture comprising the water-soluble monovalent salt of alginate, preferably sodium alginate, to fall.
- said drops are formed by forcing the mixture through a cylindrical device such as a tube, a needle or a nozzle, more particularly said drops are formed through extrusion.
- the drops may be formed in several ways.
- the drops may be formed by natural gravity, by vibration, by ultrasound, by laser cutting, by electrostatic enhanced dripping or by means of a cutting device such as a spinning disk, a rotating cutting jet, cutting surfaces or rotating cutting wires.
- the drops are formed by vibration, by ultrasound, by laser cutting, by electrostatic enhanced dripping or by mean of a cutting device such as a spinning disk, a rotating cutting jet, cutting surfaces or rotating cutting wires.
- the microdrops are generated by jet-cutting. In more particular embodiments, the microdrops are generated by cutting a flow of the mixture with the aid of a cutting device, preferably rotating wires, as described elsewhere herein.
- the phrase “contacting said microdrops with a solution” as used herein particularly denotes bringing the drops according to the invention in immediate proximity with a solution. Upon contact of the microdrops with the solution, the microdrops instantly jellify into gel-microbeads.
- the shape of the microdrops may change from a drop-like shape immediately after cutting the flow of the mixture to a spherical shape before being contacted with the solution comprising di- and/or trivalent cations.
- the phrase “contacting the mixture comprising the water-soluble monovalent salt of alginate with a solution comprising di- and/or trivalent cations” as used herein particularly denotes bringing the mixture comprising the water-soluble monovalent salt of alginate in immediate proximity with a solution comprising di- and/or trivalent cations. Upon contact of the mixture with the solution, the mixture instantly jellifies into a gel.
- the microdrops of the mixture comprising the water-soluble monovalent salt of alginate are let in the solution comprising di- and/or trivalent cations for a time period of at least 1 minute, at least 2 minutes, at least 3 minutes, at least 4 minutes, at least 5 minutes, at least 10 minutes, at least 15 minutes, or at least 20 minutes, preferably at least 20 minutes.
- the mixture comprising the water-soluble monovalent salt of alginate is let in the solution comprising di- and/or trivalent cations for a time period of at least 1 minute, at least 2 minutes, at least 3 minutes, at least 4 minutes, at least 5 minutes, at least 10 minutes, at least 15 minutes, or at least 20 minutes, preferably at least 20 minutes.
- said di- and/or trivalent cations in the solution with which the microdrops are contacted can be alkali metals, alkali-earth metals, transition metals or other metals.
- said di- and/or trivalent cations in the solution with which the microdrops are contacted are selected from the group consisting of Ca 2+ , Ba 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Zn 2+ , Cu 2+ , Al 3+ , Sr 2+ , and combinations thereof.
- said di- and/or trivalent cations in the solution with which the mixture comprising the water-soluble monovalent salt of alginate is contacted can be alkali metals, alkali-earth metals, transition metals or other metals.
- said di- and/or trivalent cations in the solution with which the mixture comprising the water-soluble monovalent salt of alginate is contacted are selected from the group consisting of Ca 2+ , Ba 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Zn 2+ , Cu 2+ , Al 3+ , Sr 2+ , and combinations thereof.
- the contacting of the mixture comprising the water-soluble monovalent salt of alginate with a solution comprising di- and/or trivalent cations, thereby obtaining a gel; and generating gel-microbeads of the gel is performed in one step, such as by spray drying.
- a bi-fluidic nozzle may be used to mix the mixture comprising the water-soluble monovalent salt of alginate and the solution comprising di- and/or trivalent cations and disperse them in the form of microbeads.
- the method for preparing biodegradable gel-microbeads further comprises a step of washing and/or drying the gel-microbeads, such as for storage.
- Methods of washing and/or drying gel-microbeads are known in the art.
- the gel-microbeads may be washed with demineralized water and/or dried at a temperature from 35°C to 45°C, preferably 40.0°C.
- the method for preparing biodegradable gel-microbeads comprises a step of drying the gel-microbeads until a final water content of at most 20 % (w/w), at most 15 % (w/w), at most 10 % (w/w), at most 5 % (w/w), preferably at most (w/w), is reached.
- the method for preparing biodegradable gel-microbeads comprises a step of drying the gel-microbeads until a final water content of from 1 to 30 % (w/w), from 5 to 30 % (w/w), from 10 to 30 % (w/w), from 15 to 30 % (w/w), from 5 to 25 % (w/w), from 5 to 20 % (w/w), from 10 to 20 % (w/w) or from 15 to 20 % (w/w), preferably from 15 to 30% (w/w), is reached.
- the microbeads do not have any colour. Accordingly, the algae might be decoloured prior to grinding the algae into an algae powder or the algae powder might be decoloured prior to reacting it with the acid. Alternatively, the method as taught herein might further comprise a step of decolouring the microbeads.
- the method further comprises a step of decolouring the gel-microbeads.
- Decolouring of microbeads might be achieved by any method known in the art such as using ultraviolet radiation, hydrogen peroxide oxidation and/or activated carbon.
- the step of decolouring the gel-microbeads comprises exposing the microbeads to ultraviolet (UV) radiation, such as UV at a wavelength of from 200 to 400 nm, from 200 nm to 300 nm or from 300 nm to 400 nm, preferably from 250 to 370 nm, such as 254 nm, 312 nm or 365 nm, more preferably from 200 to 300 nm, such as about 254 nm.
- UV radiation such as UV at a wavelength of from 200 to 400 nm, from 200 nm to 300 nm or from 300 nm to 400 nm, preferably from 250 to 370 nm, such as 254 nm, 312 nm or 365 nm, more preferably from 200 to 300 nm, such as about 254 nm.
- the step of decolouring the gel-microbeads comprises contacting the gel- microbeads with a hydrogen peroxide solution, preferably a 0.6 % (v/v) hydrogen peroxide solution.
- a hydrogen peroxide solution preferably a 0.6 % (v/v) hydrogen peroxide solution.
- the contacting of the gel-microbeads with the hydrogen peroxide solution is performed at a temperature from 35.0 °C to 45.0 °C, preferably at a temperature from 40.0 °C.
- the step of decolouring the gel-microbeads comprises contacting the gelmicrobeads with a hydrogen peroxide solution, preferably a 0.6 % (v/v) hydrogen peroxide solution, and exposing the gel-microbeads to UV radiation.
- the step of decolouring the gel-microbeads comprises contacting the gel- microbeads with activated carbon.
- a further aspect provides a biodegradable gel-microbead obtainable by the method as taught herein.
- biodegradable gel-microbeads used in any preceding aspects, such as the compositions, methods and uses described above, are as described elsewhere, such as in the particular embodiments of the biodegradable gel-microbeads of the invention.
- An exfoliating composition comprising biodegradable gel-microbeads, wherein said gel-microbeads comprise alginate from algae.
- Statement 2 The exfoliating composition according to statement 1, wherein the exfoliating composition is a skin cleansing composition, an exfoliating shower gel, an exfoliating hair care composition, or a body or feet scrub composition.
- a biodegradable gel-microbead comprising multivalent cation crosslinked alginate from algae.
- Statement 8 The exfoliating composition according to any one of statements 1 to 3 or 6, the use according to any one of statements 4 to 6, or the biodegradable gel-microbead according to statement 7, wherein the gel-microbead(s) further comprise(s) at least one carbohydrate of algae different from alginate, preferably wherein said at least one carbohydrate of algae is a component of the cell wall of algae.
- Statement 9. The exfoliating composition according to any one of statements 1 to 3 or 6, the use according to any one of statements 4 to 6, or the biodegradable gel-microbead according to statement 7, wherein the gel-microbead(s) further comprise(s) at least one carbohydrate of algae different from alginate, preferably wherein said at least one carbohydrate of algae is a component of the cell wall of algae.
- the exfoliating composition according to statement 8 the use according to statement 8, or the biodegradable gel-microbead according to statement 8, wherein the at least one carbohydrate of algae different from alginate is selected from the group consisting of cellulose, hemicellulose, carrageenan, agar, ulvan, fucoidan, laminarin, mannitol, and combinations thereof.
- Statement 14 A method for preparing an exfoliating composition comprising biodegradable gel- microbeads comprising the step of adding to a composition the gel-microbeads according to any one of statements 7 to 13.
- a method for preparing biodegradable gel-microbeads comprising: reacting algae powder with an acid, thereby obtaining a mixture comprising alginic acid from insoluble salts of alginate in the algae powder; reacting the alginic acid in the mixture into a water-soluble monovalent salt of alginate; optionally adjusting the pH of the mixture comprising the water-soluble monovalent salt of alginate to a physiological pH; and o generating microdrops of the mixture comprising the water-soluble monovalent salt of alginate; and o contacting said microdrops with a solution comprising di- and/or trivalent cations, thereby obtaining the gel-microbeads; or o contacting the mixture comprising the water-soluble monovalent salt of alginate with a solution comprising di- and/or trivalent cations, thereby obtaining a gel; and o generating gel-microbeads of the gel.
- Statement 16 The method according to statement 15, wherein the algae powder is obtained by grinding whole algae.
- Statement 20 The method according to any one of statements 15 to 19, wherein the method further comprises a step of decolouring the gel-microbeads, preferably by ultraviolet and hydrogen peroxide oxidation.
- Statement 21 The method according to any one of statements 15 to 20, wherein the microdrops are generated by jet-cutting.
- alginate is present in an insoluble salt form.
- the first step of the chemical treatment allows turning the insoluble salt form of alginate into alginic acid.
- Alginic acid is also insoluble.
- the second step of the chemical treatment is an alkaline extraction.
- the reagent is sodium carbonate.
- the mixture comprising sodium alginate (as obtained at the end of section 1.2 above) was transformed into microbeads using jet cutting and pressurized air.
- Alginate solidifies by ionotropic gelation. In contact with multivalent ions, a hydrophilic and reticulated polymer is formed.
- the mixture comprising sodium alginate (as obtained at the end of section 1.2 above) was put in the tank of the jet-cutter and closed. The tank was put under pressure. Next, a 2% (w/v) CaC’h solution was poured into a tub while stirring and placed underneath the tank. Then, the rotation speed of the spinning disk of the jet-cutter was adjusted and the valve of the jet-cutter tank was opened to allow drops of the mixture comprising sodium alginate to fall into the tub comprising the 2% (w/v) CaC’h solution, thereby obtaining gel-microbeads. Table 1. Tested ions and results thereof.
- the gelling bath was poured into the bowl of a fluidized bed.
- the CaC’h was discarded.
- the gel-microbeads were washed in the fluidized bed bowl with demineralized water.
- the microbeads were put in a bowl for 2 hours in a stove at 40.0°C.
- the bowl was put on the fluidized bed at a temperature of 40.0°C, at an air flow of 70, for a period of 10 minutes.
- the gel-microbeads were mixed and placed at a temperature of 40.0°C, at a maximum air flow, for a period of 10 minutes. This step was repeated until drying.
- the granulometry, viscosity, weight, colour, smell, texture and form of the biodegradable gel- microbeads were tested in a stability study.
- the gel-microbeads are incorporated into a cream.
- a cream without gel-microbeads was used as a control.
- the study was conducted for three months.
- the stability study was conducted in 5 different conditions (A/O/F/E/C):
- Aesthetic properties colour; smell; tacky; flow; hardness.
- Microbiological properties aerobic mesophilic bacteria; yeast and mold.
- the algae powder and microbeads do not comprise chromium, nickel or arsenic.
- the microbeads prepared with BaCCF contain 15.7% (w/w) of Ba 2+ . Results:
- the biodegradable microbeads obtained by the process as described in Example 1 are decoloured. This is achieved by suspending the biodegradable microbeads in a 0.6% (v/v) H2O2 solution and exposing the suspended biodegradable microbeads to UV light at a temperature of about 40.0°C for 72 hours.
- An exfoliating cream is prepared by mixing 3 % (w/w) of biodegradable microbeads comprising multivalent cation crosslinked alginate from algae and at least one carbohydrate of algae different from alginate as taught herein having a mean particle size of about 400+/-80 pm, water, isoamyl laurate, glyceryl stearate citrate, brassica alcohols, glycerin, glyceryl caprylate, glycine soja oil, lecithin, sodium hydroxy de, tocopherol, and xanthan gum.
- FIG 3 shows the exfoliating cream comprising the biodegradable microbeads as taught herein.
- the biodegradable microbeads are individually distinguishable by the eye within the cream.
- the OECD 301F method (version of July 26, 2013), which is a manometric respirometry test, was performed by Scanae (laboratory with expertise in biodegradability; Mons, Belgium) to determine the biodegradability of the gel-microbeads.
- This method measures the oxygen consumption consumed by bacteria in order to mineralize the test substance, in this case the gel-microbeads are the sole source of carbon. The amount of oxygen consumed is deduced via the pressure variation in the test flask using the OxiTop® device.
- Test parameters Target load: 100 mN
- the Ba 2+ microbeads had a hardness of 124.662 ( ⁇ 6.877) MPa and an elasticity of 4.487 ( ⁇ 0.442) Gpa.
- the Ca 2+ microbeads had a hardness of 53.351 ( ⁇ 3.820) MPa and an elasticity of 1.987 ( ⁇ 0.215).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP20199319 | 2020-09-30 | ||
| PCT/EP2021/077024 WO2022069674A1 (en) | 2020-09-30 | 2021-09-30 | Biodegradable microbeads comprising alginate from algae |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP4199879A1 true EP4199879A1 (en) | 2023-06-28 |
Family
ID=72709138
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP21787333.0A Withdrawn EP4199879A1 (en) | 2020-09-30 | 2021-09-30 | Biodegradable microbeads comprising alginate from algae |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP4199879A1 (en) |
| WO (1) | WO2022069674A1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119488504A (en) * | 2024-12-06 | 2025-02-21 | 四川大学 | Preparation method and application of spirulina gel beads loaded with Nisin |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2015269678B2 (en) * | 2014-06-04 | 2019-12-05 | Likarda, Inc. | Microencapsulation technique and products thereof |
| US20170340527A1 (en) * | 2016-05-27 | 2017-11-30 | Corning Incorporated | Biodegradable microbeads |
| US12036326B2 (en) * | 2018-03-19 | 2024-07-16 | Wake Forest University Health Sciences | Method of encapsulating cells using a microfluidic encapsulation device |
-
2021
- 2021-09-30 EP EP21787333.0A patent/EP4199879A1/en not_active Withdrawn
- 2021-09-30 WO PCT/EP2021/077024 patent/WO2022069674A1/en not_active Ceased
Non-Patent Citations (4)
| Title |
|---|
| DATABASE GNPD [online] MINTEL; 13 March 2009 (2009-03-13), ANONYMOUS: "Coffee Firming Lift Massage SPA Body Scrub", XP055812992, retrieved from https://www.gnpd.com/sinatra/recordpage/1068193/ Database accession no. 1068193 * |
| DATABASE GNPD [online] MINTEL; 21 August 2013 (2013-08-21), ANONYMOUS: "Marine Brightening Peeling Gel", XP055812995, retrieved from https://www.gnpd.com/sinatra/recordpage/2153055/ Database accession no. 2153055 * |
| DATABASE GNPD [online] MINTEL; 28 September 2013 (2013-09-28), ANONYMOUS: "Skin Smoothing Scrub", XP055812997, retrieved from https://www.gnpd.com/sinatra/recordpage/2190294/ Database accession no. 2190294 * |
| See also references of WO2022069674A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2022069674A1 (en) | 2022-04-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kozlowska et al. | Microparticles based on natural and synthetic polymers for cosmetic applications | |
| KR102630762B1 (en) | Organic-inorganic composite particles and cosmetic product | |
| WO2007076396A2 (en) | Cleaning and/or polishing compositions and methods for use thereof | |
| KR0169807B1 (en) | Cosmetic composition | |
| CN103705428B (en) | For the nonionic composition and method of making the same of cutin of dispelling | |
| WO2008034549A1 (en) | Peeling capsule with integrated care effect | |
| CN110603223B (en) | Hollow Particles and Cosmetics | |
| CN117084953A (en) | Hair care or hair cleansing compositions or skin care or skin cleansing compositions | |
| AU2020364515A1 (en) | Nanofibre matrix made of natural polymers with natural functional ingredients for cosmetic products | |
| CN103215149A (en) | Natural ecological loofah-sandwiched petal soap and preparation method of soap | |
| CN109922785B (en) | Ivory fruit powder and mannan from ivory fruit | |
| CN106727042A (en) | A kind of tender white MASQUE APAISANT HYDRATANT containing Margarita extract | |
| JP2018118917A (en) | Scrubbing agent and skin cleansing composition | |
| EP4199879A1 (en) | Biodegradable microbeads comprising alginate from algae | |
| CN105147563B (en) | A kind of anti-saccharification particle for powder class cosmetics and preparation method thereof | |
| CN106726892A (en) | A kind of frosted facial washing milk of gentle oil control and acne removal and preparation method thereof | |
| CN114401705A (en) | Set for the care of keratin materials | |
| KR101112716B1 (en) | Cosmetic composition and preparation of peel-off nutrition mask pack containing loess powder and herb extracts | |
| JP2001131054A (en) | Scrub agent and method for producing the same | |
| CN106214611A (en) | A kind of face cleaning salt composite, its preparation method and the method that skin of face is carried out | |
| RU2120273C1 (en) | Cosmetic cleansing mask for face skin care "leda-plyus" | |
| CN105456078B (en) | A kind of bark of eucommia exfoliating abrasive particle and preparation method and application | |
| LU500373B1 (en) | Hemp oil nanomicrocapsules and their preparation methods and applications | |
| RU2195259C1 (en) | Remedy for body and face skin care "michlun" | |
| EP3525749B1 (en) | Polished talc microbeads |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20230324 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20230731 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20230913 |