EP4034171A1 - Anti-cd47 antibodies, activatable anti-cd47 antibodies, and methods of use thereof - Google Patents
Anti-cd47 antibodies, activatable anti-cd47 antibodies, and methods of use thereofInfo
- Publication number
- EP4034171A1 EP4034171A1 EP20789345.4A EP20789345A EP4034171A1 EP 4034171 A1 EP4034171 A1 EP 4034171A1 EP 20789345 A EP20789345 A EP 20789345A EP 4034171 A1 EP4034171 A1 EP 4034171A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- seq
- amino acid
- acid sequence
- antibody
- sequence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 86
- 101000868279 Homo sapiens Leukocyte surface antigen CD47 Proteins 0.000 claims abstract description 570
- 102100032913 Leukocyte surface antigen CD47 Human genes 0.000 claims abstract description 516
- 241000282567 Macaca fascicularis Species 0.000 claims abstract description 42
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 700
- 230000027455 binding Effects 0.000 claims description 386
- 239000003795 chemical substances by application Substances 0.000 claims description 247
- 239000000758 substrate Substances 0.000 claims description 224
- 239000000427 antigen Substances 0.000 claims description 195
- 239000012634 fragment Substances 0.000 claims description 188
- 108091007433 antigens Proteins 0.000 claims description 186
- 102000036639 antigens Human genes 0.000 claims description 186
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 claims description 123
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 claims description 112
- 102100035361 Cerebellar degeneration-related protein 2 Human genes 0.000 claims description 112
- 101000737796 Homo sapiens Cerebellar degeneration-related protein 2 Proteins 0.000 claims description 112
- 101000737793 Homo sapiens Cerebellar degeneration-related antigen 1 Proteins 0.000 claims description 111
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 104
- 210000004027 cell Anatomy 0.000 claims description 95
- 108091005804 Peptidases Proteins 0.000 claims description 78
- 239000004365 Protease Substances 0.000 claims description 78
- 150000001413 amino acids Chemical class 0.000 claims description 69
- 230000000873 masking effect Effects 0.000 claims description 68
- 238000010494 dissociation reaction Methods 0.000 claims description 67
- 230000005593 dissociations Effects 0.000 claims description 67
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 67
- 229920001184 polypeptide Polymers 0.000 claims description 62
- 150000007523 nucleic acids Chemical group 0.000 claims description 59
- 102000044459 human CD47 Human genes 0.000 claims description 56
- BLUGYPPOFIHFJS-UUFHNPECSA-N (2s)-n-[(2s)-1-[[(3r,4s,5s)-3-methoxy-1-[(2s)-2-[(1r,2r)-1-methoxy-2-methyl-3-oxo-3-[[(1s)-2-phenyl-1-(1,3-thiazol-2-yl)ethyl]amino]propyl]pyrrolidin-1-yl]-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]-3-methyl-2-(methylamino)butanamid Chemical group CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C=1SC=CN=1)CC1=CC=CC=C1 BLUGYPPOFIHFJS-UUFHNPECSA-N 0.000 claims description 48
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 47
- 231100000765 toxin Toxicity 0.000 claims description 41
- 239000003053 toxin Substances 0.000 claims description 41
- 230000000694 effects Effects 0.000 claims description 35
- 108010093470 monomethyl auristatin E Proteins 0.000 claims description 34
- 206010028980 Neoplasm Diseases 0.000 claims description 33
- IEDXPSOJFSVCKU-HOKPPMCLSA-N [4-[[(2S)-5-(carbamoylamino)-2-[[(2S)-2-[6-(2,5-dioxopyrrolidin-1-yl)hexanoylamino]-3-methylbutanoyl]amino]pentanoyl]amino]phenyl]methyl N-[(2S)-1-[[(2S)-1-[[(3R,4S,5S)-1-[(2S)-2-[(1R,2R)-3-[[(1S,2R)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-methylamino]-3-methyl-1-oxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-N-methylcarbamate Chemical group CC[C@H](C)[C@@H]([C@@H](CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)c1ccccc1)OC)N(C)C(=O)[C@@H](NC(=O)[C@H](C(C)C)N(C)C(=O)OCc1ccc(NC(=O)[C@H](CCCNC(N)=O)NC(=O)[C@@H](NC(=O)CCCCCN2C(=O)CCC2=O)C(C)C)cc1)C(C)C IEDXPSOJFSVCKU-HOKPPMCLSA-N 0.000 claims description 33
- 201000011510 cancer Diseases 0.000 claims description 29
- 201000010099 disease Diseases 0.000 claims description 26
- 102000039446 nucleic acids Human genes 0.000 claims description 26
- 108020004707 nucleic acids Proteins 0.000 claims description 26
- YUOCYTRGANSSRY-UHFFFAOYSA-N pyrrolo[2,3-i][1,2]benzodiazepine Chemical compound C1=CN=NC2=C3C=CN=C3C=CC2=C1 YUOCYTRGANSSRY-UHFFFAOYSA-N 0.000 claims description 26
- 229960005501 duocarmycin Drugs 0.000 claims description 24
- 230000006870 function Effects 0.000 claims description 23
- 208000035475 disorder Diseases 0.000 claims description 21
- VQNATVDKACXKTF-XELLLNAOSA-N duocarmycin Chemical compound COC1=C(OC)C(OC)=C2NC(C(=O)N3C4=CC(=O)C5=C([C@@]64C[C@@H]6C3)C=C(N5)C(=O)OC)=CC2=C1 VQNATVDKACXKTF-XELLLNAOSA-N 0.000 claims description 21
- 229930184221 duocarmycin Natural products 0.000 claims description 20
- 210000001519 tissue Anatomy 0.000 claims description 20
- MFRNYXJJRJQHNW-DEMKXPNLSA-N (2s)-2-[[(2r,3r)-3-methoxy-3-[(2s)-1-[(3r,4s,5s)-3-methoxy-5-methyl-4-[methyl-[(2s)-3-methyl-2-[[(2s)-3-methyl-2-(methylamino)butanoyl]amino]butanoyl]amino]heptanoyl]pyrrolidin-2-yl]-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CN[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 MFRNYXJJRJQHNW-DEMKXPNLSA-N 0.000 claims description 17
- 239000003814 drug Substances 0.000 claims description 17
- 108010059074 monomethylauristatin F Proteins 0.000 claims description 17
- 230000003405 preventing effect Effects 0.000 claims description 17
- WOWDZACBATWTAU-FEFUEGSOSA-N (2s)-2-[[(2s)-2-(dimethylamino)-3-methylbutanoyl]amino]-n-[(3r,4s,5s)-1-[(2s)-2-[(1r,2r)-3-[[(1s,2r)-1-hydroxy-1-phenylpropan-2-yl]amino]-1-methoxy-2-methyl-3-oxopropyl]pyrrolidin-1-yl]-3-methoxy-5-methyl-1-oxoheptan-4-yl]-n,3-dimethylbutanamide Chemical group CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C)[C@@H](O)C1=CC=CC=C1 WOWDZACBATWTAU-FEFUEGSOSA-N 0.000 claims description 16
- 239000003446 ligand Substances 0.000 claims description 16
- 208000024891 symptom Diseases 0.000 claims description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims description 15
- ANZJBCHSOXCCRQ-FKUXLPTCSA-N mertansine Chemical compound CO[C@@H]([C@@]1(O)C[C@H](OC(=O)N1)[C@@H](C)[C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(=O)CCS)CC(=O)N1C)\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 ANZJBCHSOXCCRQ-FKUXLPTCSA-N 0.000 claims description 14
- 230000001594 aberrant effect Effects 0.000 claims description 13
- 229930195731 calicheamicin Natural products 0.000 claims description 13
- 238000012258 culturing Methods 0.000 claims description 13
- 229960005558 mertansine Drugs 0.000 claims description 13
- 108010044540 auristatin Proteins 0.000 claims description 12
- HXCHCVDVKSCDHU-LULTVBGHSA-N calicheamicin Chemical compound C1[C@H](OC)[C@@H](NCC)CO[C@H]1O[C@H]1[C@H](O[C@@H]2C\3=C(NC(=O)OC)C(=O)C[C@](C/3=C/CSSSC)(O)C#C\C=C/C#C2)O[C@H](C)[C@@H](NO[C@@H]2O[C@H](C)[C@@H](SC(=O)C=3C(=C(OC)C(O[C@H]4[C@@H]([C@H](OC)[C@@H](O)[C@H](C)O4)O)=C(I)C=3C)OC)[C@@H](O)C2)[C@@H]1O HXCHCVDVKSCDHU-LULTVBGHSA-N 0.000 claims description 12
- 229930188854 dolastatin Natural products 0.000 claims description 11
- 230000003993 interaction Effects 0.000 claims description 11
- AMRJKAQTDDKMCE-UHFFFAOYSA-N dolastatin Chemical compound CC(C)C(N(C)C)C(=O)NC(C(C)C)C(=O)N(C)C(C(C)C)C(OC)CC(=O)N1CCCC1C(OC)C(C)C(=O)NC(C=1SC=CN=1)CC1=CC=CC=C1 AMRJKAQTDDKMCE-UHFFFAOYSA-N 0.000 claims description 10
- SVVGCFZPFZGWRG-OTKBOCOUSA-N maytansinoid dm4 Chemical group CO[C@@H]([C@@]1(O)C[C@H](OC(=O)N1)C(C)(C)[C@@H]1O[C@@]1(C)[C@@H](OC(=O)[C@H](C)N(C)C(=O)CCC(C)(C)S)CC(=O)N1C)\C=C\C=C(C)\CC2=CC(OC)=C(Cl)C1=C2 SVVGCFZPFZGWRG-OTKBOCOUSA-N 0.000 claims description 10
- 239000013598 vector Substances 0.000 claims description 10
- JSHOVKSMJRQOGY-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-(pyridin-2-yldisulfanyl)butanoate Chemical group O=C1CCC(=O)N1OC(=O)CCCSSC1=CC=CC=N1 JSHOVKSMJRQOGY-UHFFFAOYSA-N 0.000 claims description 9
- 206010027476 Metastases Diseases 0.000 claims description 8
- 230000012010 growth Effects 0.000 claims description 8
- 230000009401 metastasis Effects 0.000 claims description 8
- 230000035755 proliferation Effects 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 229940124597 therapeutic agent Drugs 0.000 claims description 7
- 206010006187 Breast cancer Diseases 0.000 claims description 6
- 208000026310 Breast neoplasm Diseases 0.000 claims description 6
- 229940122255 Microtubule inhibitor Drugs 0.000 claims description 6
- 206010060862 Prostate cancer Diseases 0.000 claims description 6
- 239000000032 diagnostic agent Substances 0.000 claims description 6
- 229940039227 diagnostic agent Drugs 0.000 claims description 6
- 230000002401 inhibitory effect Effects 0.000 claims description 6
- 231100000782 microtubule inhibitor Toxicity 0.000 claims description 6
- 206010041823 squamous cell carcinoma Diseases 0.000 claims description 6
- 208000017572 squamous cell neoplasm Diseases 0.000 claims description 6
- 108010087819 Fc receptors Proteins 0.000 claims description 5
- 102000009109 Fc receptors Human genes 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 5
- 206010009944 Colon cancer Diseases 0.000 claims description 4
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 4
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 4
- 206010039509 Scab Diseases 0.000 claims description 4
- 230000001394 metastastic effect Effects 0.000 claims description 4
- 206010061289 metastatic neoplasm Diseases 0.000 claims description 4
- 206010005003 Bladder cancer Diseases 0.000 claims description 3
- 206010008342 Cervix carcinoma Diseases 0.000 claims description 3
- 208000000461 Esophageal Neoplasms Diseases 0.000 claims description 3
- 208000032612 Glial tumor Diseases 0.000 claims description 3
- 206010018338 Glioma Diseases 0.000 claims description 3
- 208000008839 Kidney Neoplasms Diseases 0.000 claims description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 3
- 206010025323 Lymphomas Diseases 0.000 claims description 3
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 3
- 206010033128 Ovarian cancer Diseases 0.000 claims description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 claims description 3
- 206010061902 Pancreatic neoplasm Diseases 0.000 claims description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims description 3
- 206010038389 Renal cancer Diseases 0.000 claims description 3
- 208000000453 Skin Neoplasms Diseases 0.000 claims description 3
- 206010041067 Small cell lung cancer Diseases 0.000 claims description 3
- 208000005718 Stomach Neoplasms Diseases 0.000 claims description 3
- 208000024313 Testicular Neoplasms Diseases 0.000 claims description 3
- 206010057644 Testis cancer Diseases 0.000 claims description 3
- 208000024770 Thyroid neoplasm Diseases 0.000 claims description 3
- 208000003721 Triple Negative Breast Neoplasms Diseases 0.000 claims description 3
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 claims description 3
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 claims description 3
- 208000009956 adenocarcinoma Diseases 0.000 claims description 3
- 210000000013 bile duct Anatomy 0.000 claims description 3
- 208000002458 carcinoid tumor Diseases 0.000 claims description 3
- 201000010881 cervical cancer Diseases 0.000 claims description 3
- 208000006990 cholangiocarcinoma Diseases 0.000 claims description 3
- 201000004101 esophageal cancer Diseases 0.000 claims description 3
- 206010017758 gastric cancer Diseases 0.000 claims description 3
- 201000010536 head and neck cancer Diseases 0.000 claims description 3
- 208000014829 head and neck neoplasm Diseases 0.000 claims description 3
- 201000010982 kidney cancer Diseases 0.000 claims description 3
- 208000032839 leukemia Diseases 0.000 claims description 3
- 201000007270 liver cancer Diseases 0.000 claims description 3
- 208000014018 liver neoplasm Diseases 0.000 claims description 3
- 201000005202 lung cancer Diseases 0.000 claims description 3
- 208000020816 lung neoplasm Diseases 0.000 claims description 3
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 claims description 3
- 201000001441 melanoma Diseases 0.000 claims description 3
- 208000002154 non-small cell lung carcinoma Diseases 0.000 claims description 3
- 201000002528 pancreatic cancer Diseases 0.000 claims description 3
- 208000008443 pancreatic carcinoma Diseases 0.000 claims description 3
- 201000001514 prostate carcinoma Diseases 0.000 claims description 3
- 201000000849 skin cancer Diseases 0.000 claims description 3
- 201000011549 stomach cancer Diseases 0.000 claims description 3
- 201000003120 testicular cancer Diseases 0.000 claims description 3
- 201000002510 thyroid cancer Diseases 0.000 claims description 3
- 206010044412 transitional cell carcinoma Diseases 0.000 claims description 3
- 208000022679 triple-negative breast carcinoma Diseases 0.000 claims description 3
- 201000005112 urinary bladder cancer Diseases 0.000 claims description 3
- 206010005949 Bone cancer Diseases 0.000 claims description 2
- 208000018084 Bone neoplasm Diseases 0.000 claims description 2
- 208000001333 Colorectal Neoplasms Diseases 0.000 claims description 2
- 206010014733 Endometrial cancer Diseases 0.000 claims description 2
- 206010014759 Endometrial neoplasm Diseases 0.000 claims description 2
- 206010031096 Oropharyngeal cancer Diseases 0.000 claims description 2
- 206010057444 Oropharyngeal neoplasm Diseases 0.000 claims description 2
- 206010039491 Sarcoma Diseases 0.000 claims description 2
- 208000008385 Urogenital Neoplasms Diseases 0.000 claims description 2
- 208000029742 colonic neoplasm Diseases 0.000 claims description 2
- 201000006958 oropharynx cancer Diseases 0.000 claims description 2
- 208000000587 small cell lung carcinoma Diseases 0.000 claims description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 claims description 2
- 208000037964 urogenital cancer Diseases 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 6
- 101150036449 SIRPA gene Proteins 0.000 claims 6
- 230000005888 antibody-dependent cellular phagocytosis Effects 0.000 claims 6
- 230000001225 therapeutic effect Effects 0.000 abstract description 14
- 230000000069 prophylactic effect Effects 0.000 abstract description 4
- 125000005647 linker group Chemical group 0.000 description 165
- 235000001014 amino acid Nutrition 0.000 description 74
- 102000035195 Peptidases Human genes 0.000 description 72
- 229940024606 amino acid Drugs 0.000 description 68
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 66
- 230000002829 reductive effect Effects 0.000 description 36
- 125000006850 spacer group Chemical group 0.000 description 35
- 230000021615 conjugation Effects 0.000 description 34
- 108700012359 toxins Proteins 0.000 description 33
- 238000005859 coupling reaction Methods 0.000 description 31
- 108090000623 proteins and genes Proteins 0.000 description 31
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 30
- 108091028043 Nucleic acid sequence Proteins 0.000 description 30
- 230000008878 coupling Effects 0.000 description 30
- 238000010168 coupling process Methods 0.000 description 30
- 239000000203 mixture Substances 0.000 description 30
- -1 phosphoroselerloate Chemical compound 0.000 description 29
- 210000002966 serum Anatomy 0.000 description 28
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 239000012642 immune effector Substances 0.000 description 26
- 229940121354 immunomodulator Drugs 0.000 description 26
- 210000001744 T-lymphocyte Anatomy 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 23
- 230000008685 targeting Effects 0.000 description 23
- 239000003638 chemical reducing agent Substances 0.000 description 21
- 102000004190 Enzymes Human genes 0.000 description 19
- 108090000790 Enzymes Proteins 0.000 description 19
- 108060003951 Immunoglobulin Proteins 0.000 description 19
- 229940088598 enzyme Drugs 0.000 description 19
- 102000018358 immunoglobulin Human genes 0.000 description 19
- 230000009870 specific binding Effects 0.000 description 17
- 125000003396 thiol group Chemical group [H]S* 0.000 description 17
- 238000003776 cleavage reaction Methods 0.000 description 15
- 230000007017 scission Effects 0.000 description 15
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 14
- 239000000562 conjugate Substances 0.000 description 14
- 102000040430 polynucleotide Human genes 0.000 description 14
- 108091033319 polynucleotide Proteins 0.000 description 14
- 239000002157 polynucleotide Substances 0.000 description 14
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 13
- 238000011282 treatment Methods 0.000 description 13
- 108091034117 Oligonucleotide Proteins 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 241000894007 species Species 0.000 description 12
- 230000000295 complement effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 11
- 150000003573 thiols Chemical class 0.000 description 11
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 10
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 10
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 9
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 9
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 9
- 239000004472 Lysine Substances 0.000 description 9
- 239000000178 monomer Substances 0.000 description 9
- 102000005927 Cysteine Proteases Human genes 0.000 description 8
- 108010005843 Cysteine Proteases Proteins 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- 239000002202 Polyethylene glycol Substances 0.000 description 8
- 102100037942 Suppressor of tumorigenicity 14 protein Human genes 0.000 description 8
- 108090000190 Thrombin Proteins 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 125000000524 functional group Chemical group 0.000 description 8
- 210000004408 hybridoma Anatomy 0.000 description 8
- 238000001727 in vivo Methods 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- RPENMORRBUTCPR-UHFFFAOYSA-M sodium;1-hydroxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].ON1C(=O)CC(S([O-])(=O)=O)C1=O RPENMORRBUTCPR-UHFFFAOYSA-M 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229960004072 thrombin Drugs 0.000 description 8
- 102000030431 Asparaginyl endopeptidase Human genes 0.000 description 7
- 239000004971 Cross linker Substances 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 7
- 108010028275 Leukocyte Elastase Proteins 0.000 description 7
- 108010091175 Matriptase Proteins 0.000 description 7
- 102100033174 Neutrophil elastase Human genes 0.000 description 7
- 102100031358 Urokinase-type plasminogen activator Human genes 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 108010055066 asparaginylendopeptidase Proteins 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229960002173 citrulline Drugs 0.000 description 7
- 230000001268 conjugating effect Effects 0.000 description 7
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 7
- 235000018417 cysteine Nutrition 0.000 description 7
- 229940079593 drug Drugs 0.000 description 7
- 150000002148 esters Chemical class 0.000 description 7
- 210000002540 macrophage Anatomy 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 238000006467 substitution reaction Methods 0.000 description 7
- 238000012384 transportation and delivery Methods 0.000 description 7
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 101000851370 Homo sapiens Tumor necrosis factor receptor superfamily member 9 Proteins 0.000 description 6
- 101000863873 Homo sapiens Tyrosine-protein phosphatase non-receptor type substrate 1 Proteins 0.000 description 6
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 6
- 102100029948 Tyrosine-protein phosphatase non-receptor type substrate 1 Human genes 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 239000000611 antibody drug conjugate Substances 0.000 description 6
- 229940049595 antibody-drug conjugate Drugs 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 230000024203 complement activation Effects 0.000 description 6
- 230000003862 health status Effects 0.000 description 6
- 230000001900 immune effect Effects 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 238000009533 lab test Methods 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 239000002502 liposome Substances 0.000 description 6
- 210000005087 mononuclear cell Anatomy 0.000 description 6
- 230000001613 neoplastic effect Effects 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 125000004434 sulfur atom Chemical group 0.000 description 6
- 210000002700 urine Anatomy 0.000 description 6
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Substances CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 5
- 208000007934 ACTH-independent macronodular adrenal hyperplasia Diseases 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 5
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 239000002246 antineoplastic agent Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 229940127089 cytotoxic agent Drugs 0.000 description 5
- 239000002254 cytotoxic agent Substances 0.000 description 5
- 231100000599 cytotoxic agent Toxicity 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 235000005772 leucine Nutrition 0.000 description 5
- 210000000265 leukocyte Anatomy 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 229940002612 prodrug Drugs 0.000 description 5
- 239000000651 prodrug Substances 0.000 description 5
- 230000001988 toxicity Effects 0.000 description 5
- 231100000419 toxicity Toxicity 0.000 description 5
- 102100029822 B- and T-lymphocyte attenuator Human genes 0.000 description 4
- 102100027207 CD27 antigen Human genes 0.000 description 4
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 4
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- 102100034458 Hepatitis A virus cellular receptor 2 Human genes 0.000 description 4
- 101000864344 Homo sapiens B- and T-lymphocyte attenuator Proteins 0.000 description 4
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 4
- 101001068133 Homo sapiens Hepatitis A virus cellular receptor 2 Proteins 0.000 description 4
- 101001137987 Homo sapiens Lymphocyte activation gene 3 protein Proteins 0.000 description 4
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 description 4
- 101000831007 Homo sapiens T-cell immunoreceptor with Ig and ITIM domains Proteins 0.000 description 4
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 4
- 101000801234 Homo sapiens Tumor necrosis factor receptor superfamily member 18 Proteins 0.000 description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 4
- 102000017578 LAG3 Human genes 0.000 description 4
- 108010061593 Member 14 Tumor Necrosis Factor Receptors Proteins 0.000 description 4
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 description 4
- 206010057249 Phagocytosis Diseases 0.000 description 4
- 101710089372 Programmed cell death protein 1 Proteins 0.000 description 4
- 102100040678 Programmed cell death protein 1 Human genes 0.000 description 4
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 4
- 102000012479 Serine Proteases Human genes 0.000 description 4
- 108010022999 Serine Proteases Proteins 0.000 description 4
- 108091008874 T cell receptors Proteins 0.000 description 4
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 4
- 102100024834 T-cell immunoreceptor with Ig and ITIM domains Human genes 0.000 description 4
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 4
- 239000004473 Threonine Substances 0.000 description 4
- 102100028785 Tumor necrosis factor receptor superfamily member 14 Human genes 0.000 description 4
- 102100033728 Tumor necrosis factor receptor superfamily member 18 Human genes 0.000 description 4
- 102100022153 Tumor necrosis factor receptor superfamily member 4 Human genes 0.000 description 4
- 101710165473 Tumor necrosis factor receptor superfamily member 4 Proteins 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 235000004279 alanine Nutrition 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 229940034982 antineoplastic agent Drugs 0.000 description 4
- 229940009098 aspartate Drugs 0.000 description 4
- 230000004071 biological effect Effects 0.000 description 4
- 150000001720 carbohydrates Chemical group 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 108091008042 inhibitory receptors Proteins 0.000 description 4
- 235000014705 isoleucine Nutrition 0.000 description 4
- 229960000310 isoleucine Drugs 0.000 description 4
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- VPKDCDLSJZCGKE-UHFFFAOYSA-N methanediimine Chemical compound N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 210000000822 natural killer cell Anatomy 0.000 description 4
- 230000008782 phagocytosis Effects 0.000 description 4
- 239000008177 pharmaceutical agent Substances 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 239000004474 valine Substances 0.000 description 4
- 235000014393 valine Nutrition 0.000 description 4
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 108010088842 Fibrinolysin Proteins 0.000 description 3
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 3
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 3
- 101000917826 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-a Proteins 0.000 description 3
- 101000917824 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor II-b Proteins 0.000 description 3
- 101000917858 Homo sapiens Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 description 3
- 101000581981 Homo sapiens Neural cell adhesion molecule 1 Proteins 0.000 description 3
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 3
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 3
- 101000666896 Homo sapiens V-type immunoglobulin domain-containing suppressor of T-cell activation Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 3
- 102100029204 Low affinity immunoglobulin gamma Fc region receptor II-a Human genes 0.000 description 3
- 102100029193 Low affinity immunoglobulin gamma Fc region receptor III-A Human genes 0.000 description 3
- 241001529936 Murinae Species 0.000 description 3
- 102100027347 Neural cell adhesion molecule 1 Human genes 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 3
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 3
- 108010079206 V-Set Domain-Containing T-Cell Activation Inhibitor 1 Proteins 0.000 description 3
- 102100038929 V-set domain-containing T-cell activation inhibitor 1 Human genes 0.000 description 3
- 102100038282 V-type immunoglobulin domain-containing suppressor of T-cell activation Human genes 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229940124691 antibody therapeutics Drugs 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 235000009582 asparagine Nutrition 0.000 description 3
- 229960001230 asparagine Drugs 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- IJJVMEJXYNJXOJ-UHFFFAOYSA-N fluquinconazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1N1C(=O)C2=CC(F)=CC=C2N=C1N1C=NC=N1 IJJVMEJXYNJXOJ-UHFFFAOYSA-N 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- 229940049906 glutamate Drugs 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 208000027866 inflammatory disease Diseases 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 210000000066 myeloid cell Anatomy 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 210000001539 phagocyte Anatomy 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 235000008729 phenylalanine Nutrition 0.000 description 3
- 229940012957 plasmin Drugs 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 3
- GKSPIZSKQWTXQG-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-[1-(pyridin-2-yldisulfanyl)ethyl]benzoate Chemical compound C=1C=C(C(=O)ON2C(CCC2=O)=O)C=CC=1C(C)SSC1=CC=CC=N1 GKSPIZSKQWTXQG-UHFFFAOYSA-N 0.000 description 2
- JARGNLJYKBUKSJ-KGZKBUQUSA-N (2r)-2-amino-5-[[(2r)-1-(carboxymethylamino)-3-hydroxy-1-oxopropan-2-yl]amino]-5-oxopentanoic acid;hydrobromide Chemical compound Br.OC(=O)[C@H](N)CCC(=O)N[C@H](CO)C(=O)NCC(O)=O JARGNLJYKBUKSJ-KGZKBUQUSA-N 0.000 description 2
- LGNCNVVZCUVPOT-FUVGGWJZSA-N (2s)-2-[[(2r,3r)-3-[(2s)-1-[(3r,4s,5s)-4-[[(2s)-2-[[(2s)-2-(dimethylamino)-3-methylbutanoyl]amino]-3-methylbutanoyl]-methylamino]-3-methoxy-5-methylheptanoyl]pyrrolidin-2-yl]-3-methoxy-2-methylpropanoyl]amino]-3-phenylpropanoic acid Chemical compound CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H]([C@@H](C)CC)[C@H](OC)CC(=O)N1CCC[C@H]1[C@H](OC)[C@@H](C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 LGNCNVVZCUVPOT-FUVGGWJZSA-N 0.000 description 2
- VPFUWHKTPYPNGT-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)-1-(5-hydroxy-2,2-dimethylchromen-6-yl)propan-1-one Chemical compound OC1=C2C=CC(C)(C)OC2=CC=C1C(=O)CCC1=CC=C(O)C(O)=C1 VPFUWHKTPYPNGT-UHFFFAOYSA-N 0.000 description 2
- 102100034452 Alternative prion protein Human genes 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 229940045513 CTLA4 antagonist Drugs 0.000 description 2
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 description 2
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 150000008574 D-amino acids Chemical class 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 239000012623 DNA damaging agent Substances 0.000 description 2
- 239000012625 DNA intercalator Substances 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- JXOFEBNJOOEXJY-QNCIAAGJSA-N Dolastatin 16 Chemical compound C([C@@H](C)[C@H]1C(=O)N2CCC[C@H]2C(=O)N[C@@H]([C@H](C(=O)O[C@@H](C)C(=O)N2CCC[C@H]2C(=O)O[C@@H](C(=O)N(C)[C@H](C(C)C)C(=O)N2CCC[C@H]2C(=O)N1)C(C)C)C)C(C)C)C1=CC=CC=C1 JXOFEBNJOOEXJY-QNCIAAGJSA-N 0.000 description 2
- JXOFEBNJOOEXJY-UHFFFAOYSA-N Dolastatin 16 Natural products N1C(=O)C2CCCN2C(=O)C(C(C)C)N(C)C(=O)C(C(C)C)OC(=O)C2CCCN2C(=O)C(C)OC(=O)C(C)C(C(C)C)NC(=O)C2CCCN2C(=O)C1C(C)CC1=CC=CC=C1 JXOFEBNJOOEXJY-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 108010053070 Glutathione Disulfide Proteins 0.000 description 2
- BCCRXDTUTZHDEU-VKHMYHEASA-N Gly-Ser Chemical compound NCC(=O)N[C@@H](CO)C(O)=O BCCRXDTUTZHDEU-VKHMYHEASA-N 0.000 description 2
- 101000945318 Homo sapiens Calponin-1 Proteins 0.000 description 2
- 101001013150 Homo sapiens Interstitial collagenase Proteins 0.000 description 2
- 101001011906 Homo sapiens Matrix metalloproteinase-14 Proteins 0.000 description 2
- 101000595925 Homo sapiens Plasminogen-like protein B Proteins 0.000 description 2
- 101000652736 Homo sapiens Transgelin Proteins 0.000 description 2
- 102000008100 Human Serum Albumin Human genes 0.000 description 2
- 108091006905 Human Serum Albumin Proteins 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- 102000009786 Immunoglobulin Constant Regions Human genes 0.000 description 2
- 108010009817 Immunoglobulin Constant Regions Proteins 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 101710098610 Leukocyte surface antigen CD47 Proteins 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 102100030216 Matrix metalloproteinase-14 Human genes 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 108091008877 NK cell receptors Proteins 0.000 description 2
- 102000010648 Natural Killer Cell Receptors Human genes 0.000 description 2
- 102100035195 Plasminogen-like protein B Human genes 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 108010039491 Ricin Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 101710084578 Short neurotoxin 1 Proteins 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 108010046722 Thrombospondin 1 Proteins 0.000 description 2
- 102100036034 Thrombospondin-1 Human genes 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 101710182532 Toxin a Proteins 0.000 description 2
- 102100031013 Transgelin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- MJQUEDHRCUIRLF-YCVQJEHTSA-N bryostatins Chemical class C([C@@H]1CC(/[C@@H]([C@@](C(C)(C)/C=C/2)(O)O1)OC(=O)/C=C/C=C/CCC)=C\C(=O)OC)C([C@@H](C)O)OC(=O)C[C@H](O)C[C@@H](O1)C[C@H](OC(C)=O)C(C)(C)[C@]1(O)C[C@@H]1C\C(=C\C(=O)OC)C[C@H]\2O1 MJQUEDHRCUIRLF-YCVQJEHTSA-N 0.000 description 2
- 244000309466 calf Species 0.000 description 2
- 229940127093 camptothecin Drugs 0.000 description 2
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 description 2
- 150000007942 carboxylates Chemical group 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 description 2
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 2
- 108010045604 dolastatin 16 Proteins 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 108010044804 gamma-glutamyl-seryl-glycine Proteins 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- YPZRWBKMTBYPTK-BJDJZHNGSA-N glutathione disulfide Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@H](C(=O)NCC(O)=O)CSSC[C@@H](C(=O)NCC(O)=O)NC(=O)CC[C@H](N)C(O)=O YPZRWBKMTBYPTK-BJDJZHNGSA-N 0.000 description 2
- 108700026078 glutathione trisulfide Proteins 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000002132 lysosomal effect Effects 0.000 description 2
- 108091005446 macrophage receptors Proteins 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 235000006109 methionine Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 235000013930 proline Nutrition 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 150000003335 secondary amines Chemical class 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 229960000268 spectinomycin Drugs 0.000 description 2
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- JJAHTWIKCUJRDK-UHFFFAOYSA-N succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate Chemical compound C1CC(CN2C(C=CC2=O)=O)CCC1C(=O)ON1C(=O)CCC1=O JJAHTWIKCUJRDK-UHFFFAOYSA-N 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 229960001322 trypsin Drugs 0.000 description 2
- DZGWFCGJZKJUFP-UHFFFAOYSA-N tyramine Chemical compound NCCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-N 0.000 description 2
- AADVCYNFEREWOS-UHFFFAOYSA-N (+)-DDM Natural products C=CC=CC(C)C(OC(N)=O)C(C)C(O)C(C)CC(C)=CC(C)C(O)C(C)C=CC(O)CC1OC(=O)C(C)C(O)C1C AADVCYNFEREWOS-UHFFFAOYSA-N 0.000 description 1
- KQODQNJLJQHFQV-UHFFFAOYSA-N (-)-hemiasterlin Natural products C1=CC=C2C(C(C)(C)C(C(=O)NC(C(=O)N(C)C(C=C(C)C(O)=O)C(C)C)C(C)(C)C)NC)=CN(C)C2=C1 KQODQNJLJQHFQV-UHFFFAOYSA-N 0.000 description 1
- SFLSHLFXELFNJZ-QMMMGPOBSA-N (-)-norepinephrine Chemical compound NC[C@H](O)C1=CC=C(O)C(O)=C1 SFLSHLFXELFNJZ-QMMMGPOBSA-N 0.000 description 1
- HQXKELRFXWJXNP-UHFFFAOYSA-N (1R)-N,N'-dicarbamimidoyl-O4-[3-formyl-O2-(O4-alpha-D-mannopyranosyl-2-methylamino-2-deoxy-alpha-L-glucopyranosyl)-5-deoxy-alpha-L-lyxofuranosyl]-streptamine Natural products OCC1OC(OC2C(C(C)OC2OC2C(C(O)C(N=C(N)N)C(O)C2O)N=C(N)N)(O)C=O)C(NC)C(O)C1OC1OC(CO)C(O)C(O)C1O HQXKELRFXWJXNP-UHFFFAOYSA-N 0.000 description 1
- WCZBBVLCJJAASE-UHFFFAOYSA-N (2,3-dihydroxy-4-methoxyphenyl)-(3,4,5-trimethoxyphenyl)methanone Chemical compound OC1=C(O)C(OC)=CC=C1C(=O)C1=CC(OC)=C(OC)C(OC)=C1 WCZBBVLCJJAASE-UHFFFAOYSA-N 0.000 description 1
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 1
- QYEAAMBIUQLHFQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 6-[3-(pyridin-2-yldisulfanyl)propanoylamino]hexanoate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCNC(=O)CCSSC1=CC=CC=N1 QYEAAMBIUQLHFQ-UHFFFAOYSA-N 0.000 description 1
- RCGXNDQKCXNWLO-WLEIXIPESA-N (2r)-n-[(2s)-5-amino-1-[[(2r,3r)-1-[[(3s,6z,9s,12r,15r,18r,19s)-9-benzyl-15-[(2r)-butan-2-yl]-6-ethylidene-19-methyl-2,5,8,11,14,17-hexaoxo-3,12-di(propan-2-yl)-1-oxa-4,7,10,13,16-pentazacyclononadec-18-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxopent Chemical compound N([C@@H](CCCN)C(=O)N[C@H]([C@H](C)CC)C(=O)N[C@H]1C(N[C@@H](C(=O)N[C@@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)NC(/C(=O)N[C@H](C(=O)O[C@H]1C)C(C)C)=C\C)C(C)C)[C@H](C)CC)=O)C(=O)[C@H]1CCCN1C(=O)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](NC(=O)CCCC(C)C)C(C)C)[C@@H](C)O)C(C)C)C(C)C RCGXNDQKCXNWLO-WLEIXIPESA-N 0.000 description 1
- AGGWFDNPHKLBBV-YUMQZZPRSA-N (2s)-2-[[(2s)-2-amino-3-methylbutanoyl]amino]-5-(carbamoylamino)pentanoic acid Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(O)=O)CCCNC(N)=O AGGWFDNPHKLBBV-YUMQZZPRSA-N 0.000 description 1
- KUHSEZKIEJYEHN-BXRBKJIMSA-N (2s)-2-amino-3-hydroxypropanoic acid;(2s)-2-aminopropanoic acid Chemical compound C[C@H](N)C(O)=O.OC[C@H](N)C(O)=O KUHSEZKIEJYEHN-BXRBKJIMSA-N 0.000 description 1
- XSAKVDNHFRWJKS-IIZANFQQSA-N (2s)-n-benzyl-1-[(2s)-1-[(2s)-2-[[(2s)-2-[[(2s)-2-(dimethylamino)-3-methylbutanoyl]amino]-3-methylbutanoyl]-methylamino]-3-methylbutanoyl]pyrrolidine-2-carbonyl]pyrrolidine-2-carboxamide Chemical class CC(C)[C@H](N(C)C)C(=O)N[C@@H](C(C)C)C(=O)N(C)[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(=O)NCC=2C=CC=CC=2)CCC1 XSAKVDNHFRWJKS-IIZANFQQSA-N 0.000 description 1
- IEUUDEWWMRQUDS-UHFFFAOYSA-N (6-azaniumylidene-1,6-dimethoxyhexylidene)azanium;dichloride Chemical compound Cl.Cl.COC(=N)CCCCC(=N)OC IEUUDEWWMRQUDS-UHFFFAOYSA-N 0.000 description 1
- KQODQNJLJQHFQV-MKWZWQCGSA-N (e,4s)-4-[[(2s)-3,3-dimethyl-2-[[(2s)-3-methyl-2-(methylamino)-3-(1-methylindol-3-yl)butanoyl]amino]butanoyl]-methylamino]-2,5-dimethylhex-2-enoic acid Chemical compound C1=CC=C2C(C(C)(C)[C@@H](C(=O)N[C@H](C(=O)N(C)[C@H](\C=C(/C)C(O)=O)C(C)C)C(C)(C)C)NC)=CN(C)C2=C1 KQODQNJLJQHFQV-MKWZWQCGSA-N 0.000 description 1
- VILFTWLXLYIEMV-UHFFFAOYSA-N 1,5-difluoro-2,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C(F)C=C1F VILFTWLXLYIEMV-UHFFFAOYSA-N 0.000 description 1
- FUHCFUVCWLZEDQ-UHFFFAOYSA-N 1-(2,5-dioxopyrrolidin-1-yl)oxy-1-oxo-4-(pyridin-2-yldisulfanyl)butane-2-sulfonic acid Chemical compound O=C1CCC(=O)N1OC(=O)C(S(=O)(=O)O)CCSSC1=CC=CC=N1 FUHCFUVCWLZEDQ-UHFFFAOYSA-N 0.000 description 1
- FPKVOQKZMBDBKP-UHFFFAOYSA-N 1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 FPKVOQKZMBDBKP-UHFFFAOYSA-N 0.000 description 1
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical group COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- YBBNVCVOACOHIG-UHFFFAOYSA-N 2,2-diamino-1,4-bis(4-azidophenyl)-3-butylbutane-1,4-dione Chemical compound C=1C=C(N=[N+]=[N-])C=CC=1C(=O)C(N)(N)C(CCCC)C(=O)C1=CC=C(N=[N+]=[N-])C=C1 YBBNVCVOACOHIG-UHFFFAOYSA-N 0.000 description 1
- ASNTZYQMIUCEBV-UHFFFAOYSA-N 2,5-dioxo-1-[6-[3-(pyridin-2-yldisulfanyl)propanoylamino]hexanoyloxy]pyrrolidine-3-sulfonic acid Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCNC(=O)CCSSC1=CC=CC=N1 ASNTZYQMIUCEBV-UHFFFAOYSA-N 0.000 description 1
- GVJXGCIPWAVXJP-UHFFFAOYSA-N 2,5-dioxo-1-oxoniopyrrolidine-3-sulfonate Chemical compound ON1C(=O)CC(S(O)(=O)=O)C1=O GVJXGCIPWAVXJP-UHFFFAOYSA-N 0.000 description 1
- 150000003923 2,5-pyrrolediones Chemical class 0.000 description 1
- FZDFGHZZPBUTGP-UHFFFAOYSA-N 2-[[2-[bis(carboxymethyl)amino]-3-(4-isothiocyanatophenyl)propyl]-[2-[bis(carboxymethyl)amino]propyl]amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(N(CC(O)=O)CC(O)=O)CC1=CC=C(N=C=S)C=C1 FZDFGHZZPBUTGP-UHFFFAOYSA-N 0.000 description 1
- FBUTXZSKZCQABC-UHFFFAOYSA-N 2-amino-1-methyl-7h-purine-6-thione Chemical compound S=C1N(C)C(N)=NC2=C1NC=N2 FBUTXZSKZCQABC-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- BRMWTNUJHUMWMS-UHFFFAOYSA-N 3-Methylhistidine Natural products CN1C=NC(CC(N)C(O)=O)=C1 BRMWTNUJHUMWMS-UHFFFAOYSA-N 0.000 description 1
- MPXTYZZFIJTPPA-UHFFFAOYSA-N 3beta,16beta,17alpha-trihydroxycholest-5-en-22-one 16-O-(2-O-(4-methoxybenzoyl)-beta-D-xylopyranosyl)-(1-3)-(2-O-acetyl-alpha-arabinopyranoside) Natural products C1=CC(OC)=CC=C1C(=O)OC1C(OC2C(C(OC3C(C4(C)CCC5C6(C)CCC(O)CC6=CCC5C4C3)(O)C(C)C(=O)CCC(C)C)OCC2O)OC(C)=O)OCC(O)C1O MPXTYZZFIJTPPA-UHFFFAOYSA-N 0.000 description 1
- CQXXYOLFJXSRMT-UHFFFAOYSA-N 5-diazocyclohexa-1,3-diene Chemical class [N-]=[N+]=C1CC=CC=C1 CQXXYOLFJXSRMT-UHFFFAOYSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- WYWHKKSPHMUBEB-UHFFFAOYSA-N 6-Mercaptoguanine Natural products N1C(N)=NC(=S)C2=C1N=CN2 WYWHKKSPHMUBEB-UHFFFAOYSA-N 0.000 description 1
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 1
- 102100026802 72 kDa type IV collagenase Human genes 0.000 description 1
- 108010066676 Abrin Proteins 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 101800002638 Alpha-amanitin Proteins 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- 101000669426 Aspergillus restrictus Ribonuclease mitogillin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101800001415 Bri23 peptide Proteins 0.000 description 1
- 101800000655 C-terminal peptide Proteins 0.000 description 1
- 102400000107 C-terminal peptide Human genes 0.000 description 1
- 102100038078 CD276 antigen Human genes 0.000 description 1
- 102000006355 CD47 Antigen Human genes 0.000 description 1
- 108010058590 CD47 Antigen Proteins 0.000 description 1
- 101710158575 Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase Proteins 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 102000005600 Cathepsins Human genes 0.000 description 1
- 108010084457 Cathepsins Proteins 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 102100027995 Collagenase 3 Human genes 0.000 description 1
- 108010060123 Conjugate Vaccines Proteins 0.000 description 1
- 108700032819 Croton tiglium crotin II Proteins 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- 102100039498 Cytotoxic T-lymphocyte protein 4 Human genes 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- AADVCYNFEREWOS-OBRABYBLSA-N Discodermolide Chemical compound C=C\C=C/[C@H](C)[C@H](OC(N)=O)[C@@H](C)[C@H](O)[C@@H](C)C\C(C)=C/[C@H](C)[C@@H](O)[C@@H](C)\C=C/[C@@H](O)C[C@@H]1OC(=O)[C@H](C)[C@@H](O)[C@H]1C AADVCYNFEREWOS-OBRABYBLSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 101710082714 Exotoxin A Proteins 0.000 description 1
- 101710089384 Extracellular protease Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 108700004714 Gelonium multiflorum GEL Proteins 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 101000884279 Homo sapiens CD276 antigen Proteins 0.000 description 1
- 101000577887 Homo sapiens Collagenase 3 Proteins 0.000 description 1
- 101000889276 Homo sapiens Cytotoxic T-lymphocyte protein 4 Proteins 0.000 description 1
- 101001011887 Homo sapiens Matrix metalloproteinase-17 Proteins 0.000 description 1
- 101001011896 Homo sapiens Matrix metalloproteinase-19 Proteins 0.000 description 1
- 101000990902 Homo sapiens Matrix metalloproteinase-9 Proteins 0.000 description 1
- 101001131840 Homo sapiens Pregnancy zone protein Proteins 0.000 description 1
- 101001117317 Homo sapiens Programmed cell death 1 ligand 1 Proteins 0.000 description 1
- 101001117312 Homo sapiens Programmed cell death 1 ligand 2 Proteins 0.000 description 1
- 101000990915 Homo sapiens Stromelysin-1 Proteins 0.000 description 1
- 101000577877 Homo sapiens Stromelysin-3 Proteins 0.000 description 1
- 101000661807 Homo sapiens Suppressor of tumorigenicity 14 protein Proteins 0.000 description 1
- 101000638251 Homo sapiens Tumor necrosis factor ligand superfamily member 9 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- 101710123134 Ice-binding protein Proteins 0.000 description 1
- 101710082837 Ice-structuring protein Proteins 0.000 description 1
- 102000002698 KIR Receptors Human genes 0.000 description 1
- 108010043610 KIR Receptors Proteins 0.000 description 1
- PWKSKIMOESPYIA-BYPYZUCNSA-N L-N-acetyl-Cysteine Chemical compound CC(=O)N[C@@H](CS)C(O)=O PWKSKIMOESPYIA-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000000380 Matrix Metalloproteinase 1 Human genes 0.000 description 1
- 108010016165 Matrix Metalloproteinase 2 Proteins 0.000 description 1
- 102100030219 Matrix metalloproteinase-17 Human genes 0.000 description 1
- 102100030218 Matrix metalloproteinase-19 Human genes 0.000 description 1
- 102100030412 Matrix metalloproteinase-9 Human genes 0.000 description 1
- 244000302512 Momordica charantia Species 0.000 description 1
- 235000009811 Momordica charantia Nutrition 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- DTERQYGMUDWYAZ-ZETCQYMHSA-N N(6)-acetyl-L-lysine Chemical compound CC(=O)NCCCC[C@H]([NH3+])C([O-])=O DTERQYGMUDWYAZ-ZETCQYMHSA-N 0.000 description 1
- JDHILDINMRGULE-LURJTMIESA-N N(pros)-methyl-L-histidine Chemical compound CN1C=NC=C1C[C@H](N)C(O)=O JDHILDINMRGULE-LURJTMIESA-N 0.000 description 1
- JJIHLJJYMXLCOY-BYPYZUCNSA-N N-acetyl-L-serine Chemical compound CC(=O)N[C@@H](CO)C(O)=O JJIHLJJYMXLCOY-BYPYZUCNSA-N 0.000 description 1
- PYUSHNKNPOHWEZ-YFKPBYRVSA-N N-formyl-L-methionine Chemical compound CSCC[C@@H](C(O)=O)NC=O PYUSHNKNPOHWEZ-YFKPBYRVSA-N 0.000 description 1
- 101800000597 N-terminal peptide Proteins 0.000 description 1
- 102400000108 N-terminal peptide Human genes 0.000 description 1
- WTBIAPVQQBCLFP-UHFFFAOYSA-N N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O Chemical compound N.N.N.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O WTBIAPVQQBCLFP-UHFFFAOYSA-N 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- KRWMERLEINMZFT-UHFFFAOYSA-N O6-benzylguanine Chemical class C=12NC=NC2=NC(N)=NC=1OCC1=CC=CC=C1 KRWMERLEINMZFT-UHFFFAOYSA-N 0.000 description 1
- MAGWLGAJMLWPLZ-UHFFFAOYSA-N OSW-1 Natural products COc1ccc(cc1)C(=O)OC2C(O)C(O)COC2OC3C(O)COC(OC4CC5C6CC=C7CC(O)CCC7(C)C6CCC5(C)C4(O)OC(C)C(=O)CCC(C)C)C3OC(=O)C MAGWLGAJMLWPLZ-UHFFFAOYSA-N 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 101100413173 Phytolacca americana PAP2 gene Proteins 0.000 description 1
- 102000013566 Plasminogen Human genes 0.000 description 1
- 108010051456 Plasminogen Proteins 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 102100024216 Programmed cell death 1 ligand 1 Human genes 0.000 description 1
- 102100024213 Programmed cell death 1 ligand 2 Human genes 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- 101100005699 Rattus norvegicus Cd47 gene Proteins 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- RXGJTYFDKOHJHK-UHFFFAOYSA-N S-deoxo-amaninamide Natural products CCC(C)C1NC(=O)CNC(=O)C2Cc3c(SCC(NC(=O)CNC1=O)C(=O)NC(CC(=O)N)C(=O)N4CC(O)CC4C(=O)NC(C(C)C(O)CO)C(=O)N2)[nH]c5ccccc35 RXGJTYFDKOHJHK-UHFFFAOYSA-N 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- JOEPUFOWFXWEDN-UHFFFAOYSA-N Spongistatin 5 Natural products C1C(=O)C(C)C(C2C)OCC2=CC(O2)CC(C)(O)CC2(O2)CC(O)CC2CC(=O)OC(C(C(CC(=C)CC(O)C=CC(Cl)=C)O2)O)C(C)C2C(O)C(O2)(O)CC(O)C(C)C2CCCC=CC(O2)CC(O)CC22CC(OC)CC1O2 JOEPUFOWFXWEDN-UHFFFAOYSA-N 0.000 description 1
- BTCJGYMVVGSTDN-UHFFFAOYSA-N Spongistatin 7 Natural products C1C(=O)C(C)C(C2C)OCC2=CC(O2)CC(C)(O)CC2(O2)CC(O)CC2CC(=O)OC(C(C(CC(=C)CC(O)C=CC=C)O2)O)C(C)C2C(O)C(O2)(O)CC(O)C(C)C2CCCC=CC(O2)CC(O)CC22CC(OC)CC1O2 BTCJGYMVVGSTDN-UHFFFAOYSA-N 0.000 description 1
- 101710145796 Staphylokinase Proteins 0.000 description 1
- HQXKELRFXWJXNP-ABOIPUQESA-N Streptomycin B Chemical compound O([C@@H]1[C@@H](O)[C@@H]([C@@H](O[C@H]1CO)O[C@@H]1[C@@]([C@H](C)O[C@H]1O[C@@H]1[C@H]([C@H](O)[C@@H](N=C(N)N)[C@H](O)[C@H]1O)N=C(N)N)(O)C=O)NC)[C@H]1O[C@@H](CO)[C@@H](O)[C@H](O)[C@@H]1O HQXKELRFXWJXNP-ABOIPUQESA-N 0.000 description 1
- 102100030416 Stromelysin-1 Human genes 0.000 description 1
- 102100028847 Stromelysin-3 Human genes 0.000 description 1
- 229940123237 Taxane Drugs 0.000 description 1
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 description 1
- 102100023935 Transmembrane glycoprotein NMB Human genes 0.000 description 1
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 description 1
- 101710107540 Type-2 ice-structuring protein Proteins 0.000 description 1
- 229940127174 UCHT1 Drugs 0.000 description 1
- HSRXSKHRSXRCFC-WDSKDSINSA-N Val-Ala Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(O)=O HSRXSKHRSXRCFC-WDSKDSINSA-N 0.000 description 1
- 240000001866 Vernicia fordii Species 0.000 description 1
- 229940122803 Vinca alkaloid Drugs 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- MPXTYZZFIJTPPA-JOQRFCRPSA-N [(2s,3r,4s,5r)-2-[(2s,3r,4s,5s)-3-acetyloxy-2-[[(3r,8s,9r,10r,13s,14r,16r,17s)-3,17-dihydroxy-10,13-dimethyl-17-[(2s)-6-methyl-3-oxoheptan-2-yl]-1,2,3,4,7,8,9,11,12,14,15,16-dodecahydrocyclopenta[a]phenanthren-16-yl]oxy]-5-hydroxyoxan-4-yl]oxy-4,5-dihydro Chemical compound C1=CC(OC)=CC=C1C(=O)O[C@H]1[C@H](O[C@@H]2[C@H]([C@H](O[C@H]3[C@]([C@@]4(C)CC[C@H]5[C@@]6(C)CC[C@@H](O)CC6=CC[C@@H]5[C@H]4C3)(O)[C@H](C)C(=O)CCC(C)C)OC[C@@H]2O)OC(C)=O)OC[C@@H](O)[C@@H]1O MPXTYZZFIJTPPA-JOQRFCRPSA-N 0.000 description 1
- OFLXLNCGODUUOT-UHFFFAOYSA-N acetohydrazide Chemical class C\C(O)=N\N OFLXLNCGODUUOT-UHFFFAOYSA-N 0.000 description 1
- 229960004308 acetylcysteine Drugs 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 229940009456 adriamycin Drugs 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229940098174 alkeran Drugs 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 239000004007 alpha amanitin Substances 0.000 description 1
- CIORWBWIBBPXCG-SXZCQOKQSA-N alpha-amanitin Chemical compound O=C1N[C@@H](CC(N)=O)C(=O)N2C[C@H](O)C[C@H]2C(=O)N[C@@H]([C@@H](C)[C@@H](O)CO)C(=O)N[C@@H](C2)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@H]1C[S@@](=O)C1=C2C2=CC=C(O)C=C2N1 CIORWBWIBBPXCG-SXZCQOKQSA-N 0.000 description 1
- CIORWBWIBBPXCG-UHFFFAOYSA-N alpha-amanitin Natural products O=C1NC(CC(N)=O)C(=O)N2CC(O)CC2C(=O)NC(C(C)C(O)CO)C(=O)NC(C2)C(=O)NCC(=O)NC(C(C)CC)C(=O)NCC(=O)NC1CS(=O)C1=C2C2=CC=C(O)C=C2N1 CIORWBWIBBPXCG-UHFFFAOYSA-N 0.000 description 1
- 108010001818 alpha-sarcin Proteins 0.000 description 1
- WOLHOYHSEKDWQH-UHFFFAOYSA-N amantadine hydrochloride Chemical compound [Cl-].C1C(C2)CC3CC2CC1([NH3+])C3 WOLHOYHSEKDWQH-UHFFFAOYSA-N 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 238000011230 antibody-based therapy Methods 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 239000003443 antiviral agent Substances 0.000 description 1
- 229940121357 antivirals Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000002358 autolytic effect Effects 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 229950008548 bisantrene Drugs 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 229960005520 bryostatin Drugs 0.000 description 1
- LWBYEMQYZANTAM-UHFFFAOYSA-N c1ccc2ncccc2c1.C1=Nc2ccc3N=CN=c3c2=C1 Chemical class c1ccc2ncccc2c1.C1=Nc2ccc3N=CN=c3c2=C1 LWBYEMQYZANTAM-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- YMNCVRSYJBNGLD-KURKYZTESA-N cephalotaxine Chemical compound C([C@@]12C=C([C@H]([C@H]2C2=C3)O)OC)CCN1CCC2=CC1=C3OCO1 YMNCVRSYJBNGLD-KURKYZTESA-N 0.000 description 1
- DSRNKUZOWRFQFO-UHFFFAOYSA-N cephalotaxine Natural products COC1=CC23CCCN2CCc4cc5OCOc5cc4C3=C1O DSRNKUZOWRFQFO-UHFFFAOYSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000005081 chemiluminescent agent Substances 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 150000004814 combretastatins Chemical class 0.000 description 1
- 230000004154 complement system Effects 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229940031670 conjugate vaccine Drugs 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- REAZZDPREXHWNV-HJUJCDCNSA-N debromoaplysiatoxin Chemical compound C1([C@H](CC[C@H](C)[C@@H]2[C@H]([C@@H]3C[C@@]4(O[C@@](O)(CC(=O)O[C@H](CC(=O)O3)[C@@H](C)O)[C@H](C)CC4(C)C)O2)C)OC)=CC=CC(O)=C1 REAZZDPREXHWNV-HJUJCDCNSA-N 0.000 description 1
- REAZZDPREXHWNV-UHFFFAOYSA-N debromoaplysiatoxin Natural products O1C2(OC(O)(CC(=O)OC(CC(=O)O3)C(C)O)C(C)CC2(C)C)CC3C(C)C1C(C)CCC(OC)C1=CC=CC(O)=C1 REAZZDPREXHWNV-UHFFFAOYSA-N 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011026 diafiltration Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 229930191339 dianthin Natural products 0.000 description 1
- PGUYAANYCROBRT-UHFFFAOYSA-N dihydroxy-selanyl-selanylidene-lambda5-phosphane Chemical compound OP(O)([SeH])=[Se] PGUYAANYCROBRT-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 206010013023 diphtheria Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- ZWIBGKZDAWNIFC-UHFFFAOYSA-N disuccinimidyl suberate Chemical compound O=C1CCC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)CCC1=O ZWIBGKZDAWNIFC-UHFFFAOYSA-N 0.000 description 1
- 239000003534 dna topoisomerase inhibitor Substances 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000002357 endometrial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 108010028531 enomycin Proteins 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000002337 glycosamines Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- SIDSGVZYNDYICD-UHFFFAOYSA-N halistatin 1 Natural products O1C2CC(C(O)CC(O)CO)OC2C(C)CC1(OC1C2)CC(C)C1OC2(OC1CC2OC3CC4C(=C)C(C)CC(O4)CCC4C(=C)CC(O4)CC4)CC1OC2C(C)C3OC(=O)CC(O1)CCC2C1C(O1)C3OC5CC14OC5C3(O)O2 SIDSGVZYNDYICD-UHFFFAOYSA-N 0.000 description 1
- ULZJMXRIKBUHTO-UHFFFAOYSA-N halistatin 2 Natural products O1C2C(C)CC3(OC4CC5OC(CC5OC4C(C)C3)C(O)CO)OC2CC1(OC1CC2OC3CC4C(=C)C(C)CC(O4)CCC4C(=C)CC(O4)CC4)CC1OC2C(C)C3OC(=O)CC(O1)CCC2C1C(O1)C3OC5CC14OC5C3(O)O2 ULZJMXRIKBUHTO-UHFFFAOYSA-N 0.000 description 1
- 125000005179 haloacetyl group Chemical group 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 108010057806 hemiasterlin Proteins 0.000 description 1
- 229930187626 hemiasterlin Natural products 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- HYFHYPWGAURHIV-UHFFFAOYSA-N homoharringtonine Natural products C1=C2CCN3CCCC43C=C(OC)C(OC(=O)C(O)(CCCC(C)(C)O)CC(=O)OC)C4C2=CC2=C1OCO2 HYFHYPWGAURHIV-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 102000045682 human PZP Human genes 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229940042795 hydrazides for tuberculosis treatment Drugs 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000002443 hydroxylamines Chemical class 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002540 isothiocyanates Chemical class 0.000 description 1
- 108010091711 kahalalide F Proteins 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 description 1
- 108010010621 modeccin Proteins 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- NJSMWLQOCQIOPE-OCHFTUDZSA-N n-[(e)-[10-[(e)-(4,5-dihydro-1h-imidazol-2-ylhydrazinylidene)methyl]anthracen-9-yl]methylideneamino]-4,5-dihydro-1h-imidazol-2-amine Chemical compound N1CCN=C1N\N=C\C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1\C=N\NC1=NCCN1 NJSMWLQOCQIOPE-OCHFTUDZSA-N 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- HYFHYPWGAURHIV-JFIAXGOJSA-N omacetaxine mepesuccinate Chemical compound C1=C2CCN3CCC[C@]43C=C(OC)[C@@H](OC(=O)[C@@](O)(CCCC(C)(C)O)CC(=O)OC)[C@H]4C2=CC2=C1OCO2 HYFHYPWGAURHIV-JFIAXGOJSA-N 0.000 description 1
- 229960002230 omacetaxine mepesuccinate Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- FVFZSVRSDNUCGG-UHFFFAOYSA-M p-mercuribenzoate Chemical group [O-]C(=O)C1=CC=C([Hg])C=C1 FVFZSVRSDNUCGG-UHFFFAOYSA-M 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 108010076042 phenomycin Proteins 0.000 description 1
- HKOOXMFOFWEVGF-UHFFFAOYSA-N phenylhydrazine Chemical compound NNC1=CC=CC=C1 HKOOXMFOFWEVGF-UHFFFAOYSA-N 0.000 description 1
- 229940067157 phenylhydrazine Drugs 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000012846 protein folding Effects 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003653 radioligand binding assay Methods 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 108010073863 saruplase Proteins 0.000 description 1
- DUIOPKIIICUYRZ-UHFFFAOYSA-N semicarbazide Chemical compound NNC(N)=O DUIOPKIIICUYRZ-UHFFFAOYSA-N 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- VUFNRPJNRFOTGK-UHFFFAOYSA-M sodium;1-[4-[(2,5-dioxopyrrol-1-yl)methyl]cyclohexanecarbonyl]oxy-2,5-dioxopyrrolidine-3-sulfonate Chemical compound [Na+].O=C1C(S(=O)(=O)[O-])CC(=O)N1OC(=O)C1CCC(CN2C(C=CC2=O)=O)CC1 VUFNRPJNRFOTGK-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 229950005244 streptomycin b Drugs 0.000 description 1
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 1
- FDDDEECHVMSUSB-UHFFFAOYSA-N sulfanilamide Chemical compound NC1=CC=C(S(N)(=O)=O)C=C1 FDDDEECHVMSUSB-UHFFFAOYSA-N 0.000 description 1
- 229940124530 sulfonamide Drugs 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- GKLVYJBZJHMRIY-UHFFFAOYSA-N technetium atom Chemical compound [Tc] GKLVYJBZJHMRIY-UHFFFAOYSA-N 0.000 description 1
- 150000007970 thio esters Chemical class 0.000 description 1
- CNHYKKNIIGEXAY-UHFFFAOYSA-N thiolan-2-imine Chemical compound N=C1CCCS1 CNHYKKNIIGEXAY-UHFFFAOYSA-N 0.000 description 1
- 238000006177 thiolation reaction Methods 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- BRWIZMBXBAOCCF-UHFFFAOYSA-N thiosemicarbazide group Chemical group NNC(=S)N BRWIZMBXBAOCCF-UHFFFAOYSA-N 0.000 description 1
- 229960001196 thiotepa Drugs 0.000 description 1
- MNRILEROXIRVNJ-UHFFFAOYSA-N tioguanine Chemical compound N1C(N)=NC(=S)C2=NC=N[C]21 MNRILEROXIRVNJ-UHFFFAOYSA-N 0.000 description 1
- 229960003087 tioguanine Drugs 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- 229940044693 topoisomerase inhibitor Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 108091007466 transmembrane glycoproteins Proteins 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- WBPYTXDJUQJLPQ-VMXQISHHSA-N tylosin Chemical compound O([C@@H]1[C@@H](C)O[C@H]([C@@H]([C@H]1N(C)C)O)O[C@@H]1[C@@H](C)[C@H](O)CC(=O)O[C@@H]([C@H](/C=C(\C)/C=C/C(=O)[C@H](C)C[C@@H]1CC=O)CO[C@H]1[C@@H]([C@H](OC)[C@H](O)[C@@H](C)O1)OC)CC)[C@H]1C[C@@](C)(O)[C@@H](O)[C@H](C)O1 WBPYTXDJUQJLPQ-VMXQISHHSA-N 0.000 description 1
- 229960003732 tyramine Drugs 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 238000012447 xenograft mouse model Methods 0.000 description 1
- 229960005502 α-amanitin Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6849—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6891—Pre-targeting systems involving an antibody for targeting specific cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/72—Increased effector function due to an Fc-modification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/94—Stability, e.g. half-life, pH, temperature or enzyme-resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/50—Fusion polypeptide containing protease site
Definitions
- the invention relates generally to antibodies that specifically bind to CD47, activatable antibodies that specifically bind to CD47, and methods of making and using these antibodies and activatable antibodies in a variety of therapeutic, prophylactic, and diagnostic contexts.
- prodrugs of an active chemical entity are administered in a relatively inactive (or significantly less active) form. Once administered, the prodrug is metabolized in vivo into the active compound.
- prodrug strategies can provide for increased selectivity of the drug for its intended target and for a reduction of adverse effects.
- BRIEF SUMMARY OF THE INVENTION Provided herein are activatable antibodies that bind to CD47 and methods of making and using these activatable antibodies in a variety of therapeutic, prophylactic, and diagnostic contexts.
- the activatable antibodies bind human and cynomolgus monkey CD47.
- an activatable antibody that, in an activated state, binds CD47 comprising: (a) an antibody or an antigen binding fragment thereof (AB) that specifically binds to human CD47 and cynomolgus monkey CD47; (b) a masking moiety (MM) coupled to the AB, wherein the MM inhibits the binding of the AB to CD47 when the activatable antibody is in an uncleaved (unactivated state) state, and wherein the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 16- 29; and (c) a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
- AB antibody or an antigen binding fragment thereof
- MM masking moiety
- any one of the activatable antibodies provided herein are conjugated to an agent, generating a conjugated activatable antibody.
- the agent is a toxin or fragment thereof.
- the agent is a microtubule inhibitor.
- the agent is a nucleic acid damaging agent.
- the agent is a detectable moiety. In some embodiments, the detectable moiety is a diagnostic agent.
- a conjugated activatable antibody comprising: an antibody or antigen binding fragment thereof (AB) that, in an activated state, binds CD47; and a toxin conjugated to the AB via a linker, wherein the conjugated activatable antibody comprises amino acid sequences, a linker, and a toxin selected from a single row in Table D, wherein for the given combination: (a) the AB comprises a heavy chain comprising the amino acid sequence of the heavy chain sequence or heavy chain variable domain sequence corresponding to the given combination in the single row listed in Table D; (b) the AB comprises a light chain comprising the amino acid sequence of the light chain sequence or light chain variable domain sequence corresponding to the given combination in the single row listed in Table D; and (c) the linker and the toxin comprise the linker and the toxin corresponding to the given combination in the single row listed in Table D.
- AB antibody or antigen binding fragment thereof
- a pharmaceutical composition comprising any of the activatable antibodies or conjugated activatable antibodies provided herein; and a carrier.
- the pharmaceutical composition of comprises an additional agent.
- the additional agent is a therapeutic agent.
- an isolated nucleic acid molecule encoding any one of the activatable antibodies described herein.
- a vector comprising the isolated nucleic acid molecule.
- a method of producing an activatable antibody by culturing a cell under conditions that lead to expression of the activatable antibody, wherein the cell comprises the nucleic acid molecules or the vectors provided herein.
- a method of manufacturing any one of the activatable antibodies provided herein that, in an activated state, binds CD47 comprising: (a) culturing a cell comprising a nucleic acid construct that encodes the activatable antibody under conditions that lead to the expression of any one of the activatable antibodies described herein, and (b) recovering the activatable antibody.
- provided herein is a method of preventing, treating, alleviating a symptom of, delaying the progression of, or otherwise ameliorating a disorder or disease in which diseased cells express CD47 or a CD47-medidated disease or disorder comprising administering a therapeutically effective amount of any one of the activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
- provided herein is a method of preventing, treating, alleviating a symptom of, delaying the progression of, or otherwise ameliorating a disorder or disease associated with cells expressing CD47 or a CD47-medidated disease or disorder comprising administering a therapeutically effective amount of any one of the activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
- the disorder or disease is cancer.
- the cancer is an adenocarcinoma, a bile duct (biliary) cancer, a bladder cancer, a bone cancer, a breast cancer, a triple-negative breast cancer, a Her2- negative breast cancer, a carcinoid cancer, a cervical cancer, a cholangiocarcinoma, a colorectal cancer, a colon cancer, an endometrial cancer, an esophageal cancer, a glioma, a head and neck cancer, a head and neck squamous cell cancer, a leukemia, a liver cancer, a lung cancer, a non- small cell lung cancer, a small cell lung cancer, a lymphoma, a melanoma, an oropharyngeal cancer, an ovarian cancer, a pancreatic cancer, a prostate cancer, a metastatic castration-resistant prostate carcinoma, a renal cancer, a sarcoma, a skin cancer, a squamous cell
- a method of inhibiting or reducing the growth, proliferation, or metastasis of cells expressing CD47 comprising administering a therapeutically effective amount of any one of activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
- the expression and/or activity of the CD47 is aberrant.
- a method of inhibiting, blocking, or preventing the binding of a natural ligand to CD47 comprising administering a therapeutically effective amount of any one of the activatable antibodies or conjugated activatable antibodies provided herein, or pharmaceutical compositions of the same to a subject in need thereof.
- the expression and/or activity of the CD47 is aberrant.
- activatable antibodies, conjugated activatable antibody, pharmaceutical composition thereof, and methods of use thereof wherein the activatable antibodies or conjugated activatable when bound to CD47, blocks the interaction of CD47 with SIRPa.
- FIGS.1A and 1B are graphs depicting exemplary in vitro studies of the ability of anti-human CD47 activatable antibodies of the disclosure to bind human CD47 antigen.
- FIG.2 is a graph depicting exemplary in vitro studies of the ability of anti-human CD47 activatable antibodies of the disclosure to activate antibody-dependent cell phagocytosis (ADCP).
- FIGS.3A-3D are graphs depicting exemplary in vitro studies of the ability of anti- human CD47 antibodies and anti-CD47 activatable antibodies of the disclosure to activate ADCP.
- FIGS.4A-4C are graphs depicting exemplary in vitro studies of the ability of anti- human CD47 antibodies of the disclosure to activate ADCP.
- FIGS.5A and 5B are graphs depicting an exemplary study of the in vivo efficacy of anti-human CD47 antibodies in mouse xenograft models.
- CD47 also known as integrin associated protein (IAP) is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. CD47 has been shown to interact with membrane integrins on other cells. CD47 has also been shown to bind the ligands thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRPa). CD47 can protect cancer cells from the immune system by preventing consumption of the cells by myeloid cells, such as a macrophages. CD47 has been shown to be expressed in human cells and overexpressed on many tumor cells.
- IAP integrin associated protein
- Blocking of the interaction between CD47 on a target cell and the SIRPa on a macrophage or other phagocytic cell can induce phagocytosis of the target cell.
- blocking of the interaction between CD47 on a target cell and the SIRPa on a macrophage or other phagocytic cell can induce phagocytosis of the target cell along with engagement by the Fc receptor on the phagocytic cell.
- the Fc receptor engagement can be performed by a Fc domain on a CD47-binding antibody.
- the present disclosure provides antibodies, activatable antibodies, conjugated antibodies, and conjugated activatable antibodies that specifically bind mammalian CD47, methods of making and use thereof.
- the disclosure provides anti-mammalian CD47 antibodies and fragments thereof (interchangeably referred to herein as CD47 antibodies, or ABs), conjugated CD47 antibodies, activatable CD47 antibodies, and conjugated activatable CD47 antibodies that are useful in methods of treating, preventing, delaying the progression of, ameliorating and/or alleviating a symptom of a disease or disorder associated with cells expressing CD47.
- the cells are associated with normal CD47 expression and/or activity.
- the cells are associated with aberrant CD47 expression and/or activity. In some embodiments, the cells are associated with CD47 expression and/or activity in diseased cells.
- any of the antibodies/activatable antibodies described herein can be used in methods of treating, preventing, delaying the progression of, ameliorating and/or alleviating a symptom of a cancer or other neoplastic condition. Any of the antibodies/activatable antibodies described herein can also be used for detection/diagnostic applications.
- the antibodies and activatable antibodies specifically bind human CD47 and cynomolgus monkey CD47. In some embodiments, the antibodies and activatable antibodies bind human CD47.
- the antibodies and activatable antibodies bind cynomolgus monkey CD47. In some embodiments, the antibodies and activatable antibodies are internalized by CD47-containing cells. In some embodiments, the antibodies and activatable antibodies bind both the glycosylated and deglycosylated forms of the CD47 antigen. [00028] In some embodiments of the disclosure, the antibodies and activatable antibodies specifically bind human CD47 and cynomolgus monkey CD47 and block interaction with SIRPa. In some embodiments of the disclosure, the antibodies and activatable antibodies specifically bind human CD47 and cynomolgus monkey CD47 and activate antibody-dependent cell phagocytosis.
- the antibodies and activatable antibodies specifically bind human CD47 and cynomolgus monkey CD47 and engage Fc receptor pathway.
- the term “a” entity or “an” entity refers to one or more of that entity.
- a compound refers to one or more compounds.
- the terms “a”, “an”, “one or more” and “at least one” can be used interchangeably.
- singular terms shall include pluralities and plural terms shall include the singular.
- the term “antibody” refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen.
- immunoglobulin immunoglobulin
- Ig immunoglobulin
- bind or “immunoreacts with” or “immunospecifically bind” is meant that the antibody reacts with one or more antigenic determinants of the desired antigen and does not react with other polypeptides or binds at much lower affinity (Kd > 10 -6 ).
- Antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, domain antibody, single chain, Fab, and F(ab’) 2 fragments, scFvs, and an Fab expression library.
- the antibodies provided herein can be of any of the IgG, IgM, IgA, IgE and IgD classes (or subclasses thereof).
- the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population.
- MAbs contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.
- the term “antigen-binding site” or “binding portion” refers to the part of the immunoglobulin molecule that participates in antigen binding.
- the antigen binding site is formed by amino acid residues of the N-terminal variable (“V”) regions of the heavy (“H”) and light (“L ” ains.
- FR refers to amino acid sequences that are naturally found between, and adjacent to, hypervariable regions in immunoglobulins.
- the three hypervariable regions of a light chain and the three hypervariable regions of a heavy chain are disposed relative to each other in three-dimensional space to form an antigen-binding surface.
- the antigen-binding surface is complementary to the three- dimensional surface of a bound antigen, and the three hypervariable regions of each of the heavy and light chains are referred to as “complementarity-determining regions,” or “CDRs.”
- CDRs complementarity-determining regions
- epitopic determinants includes any protein determinant capable of specific binding to an immunoglobulin, a scFv, or a T-cell receptor.
- epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics. For example, antibodies can be raised against N-terminal or C-terminal peptides of a polypeptide.
- an antibody is said to specifically bind an antigen when the dissociation constant is £ 1 ⁇ M; in some embodiments, £ 100 nM and in some embodiments, £ 10 nM.
- the terms “specific binding,” “immunological binding,” and “immunological binding properties” refer to the non-covalent interactions of the type which occur between an immunoglobulin molecule and an antigen for which the immunoglobulin is specific. The strength, or affinity of immunological binding interactions can be expressed in terms of the dissociation constant (Kd) of the interaction, wherein a smaller Kd represents a greater affinity. Immunological binding properties of selected polypeptides can be quantified using methods well known in the art.
- One such method entails measuring the rates of antigen- binding site/antigen complex formation and dissociation, wherein those rates depend on the concentrations of the complex partners, the affinity of the interaction, and geometric parameters that equally influence the rate in both directions.
- both the on rate constant (Kon) and the “off rate constant” (K off ) can be determined by calculation of the concentrations and the actual rates of association and dissociation.
- the ratio of K off /K on enables the cancellation of all parameters not related to affinity, and is equal to the dissociation constant Kd. (See, generally, Davies et al. (1990) Annual Rev Biochem 59:439-473).
- An antibody of the present disclosure is said to specifically bind to the target, when the binding constant (Kd) is £ 1 ⁇ M, in some embodiments £100 nM, in some embodiments ⁇ 10 nM, and in some embodiments £ 100 pM to about 1 pM, as measured by assays such as radioligand binding assays or similar assays known to those skilled in the art.
- Kd binding constant
- isolated polynucleotide shall mean a polynucleotide of genomic, cDNA, or synthetic origin or some combination thereof, which by virtue of its origin the “isolated polynucleotide” (1) is not associated with all or a portion of a polynucleotide in which the “isolated polynucleotide” is found in nature, (2) is operably linked to a polynucleotide which it is not linked to in nature, or (3) does not occur in nature as part of a larger sequence.
- polynucleotides in accordance with the disclosure include the nucleic acid molecules encoding the heavy chain immunoglobulin molecules shown herein, and nucleic acid molecules encoding the light chain immunoglobulin molecules shown herein.
- isolated protein means a protein of cDNA, recombinant RNA, or synthetic origin or some combination thereof, which by virtue of its origin, or source of derivation, the “isolated protein” (1) is not associated with proteins found in nature, (2) is free of other proteins from the same source, e.g., free of murine proteins, (3) is expressed by a cell from a different species, or (4) does not occur in nature.
- polypeptide is used herein as a generic term to refer to native protein, fragments, or analogs of a polypeptide sequence. Hence, native protein fragments, and analogs are species of the polypeptide genus. Polypeptides in accordance with the disclosure comprise the heavy chain immunoglobulin molecules shown herein, and the light chain immunoglobulin molecules shown herein, as well as antibody molecules formed by combinations comprising the heavy chain immunoglobulin molecules with light chain immunoglobulin molecules, such as kappa light chain immunoglobulin molecules, and vice versa, as well as fragments and analogs thereof. [00039]
- the term naturally-occurring as used herein as applied to an object refers to the fact that an object can be found in nature.
- control sequence refers to polynucleotide sequences that are necessary to affect the expression and processing of coding sequences to which they are ligated.
- control sequences differs depending upon the host organism in prokaryotes, such control sequences generally include promoter, ribosomal binding site, and transcription termination sequence in eukaryotes, generally, such control sequences include promoters and transcription termination sequence.
- control sequences is intended to include, at a minimum, all components whose presence is essential for expression and processing, and can also include additional components whose presence is advantageous, for example, leader sequences and fusion partner sequences.
- polynucleotide as referred to herein means nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide.
- oligonucleotide includes naturally occurring, and modified nucleotides linked together by naturally occurring, and non-naturally occurring oligonucleotide linkages. Oligonucleotides are a polynucleotide subset generally comprising a length of 200 bases or fewer. In some embodiments, oligonucleotides are 10 to 60 bases in length and in some embodiments, 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 bases in length.
- Oligonucleotides are usually single stranded, e.g., for probes, although oligonucleotides may be double stranded, e.g., for use in the construction of a gene mutant. Oligonucleotides of the disclosure are either sense or antisense oligonucleotides.
- the term “naturally occurring nucleotides” referred to herein includes deoxyribonucleotides and ribonucleotides.
- modified nucleotides referred to herein includes nucleotides with modified or substituted sugar groups and the like.
- oligonucleotide linkages includes oligonucleotide linkages such as phosphorothioate, phosphorodithioate, phosphoroselerloate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate, phosphoronmidate, and the like. See e.g., LaPlanche et al. Nucl. Acids Res.14:9081 (1986); Stec et al. J. Am. Chem. Soc.106:6077 (1984), Stein et al. Nucl. Acids Res.16:3209 (1988), Zon et al.
- oligonucleotide can include a label for detection, if desired.
- the twenty conventional amino acids and their abbreviations follow conventional usage. See Immunology - A Synthesis (2nd Edition, E.S. Golub and D.R. Green, Eds., Sinauer Associates, Sunderland, Mass. (1991)).
- Stereoisomers e.g., D-amino acids of the twenty conventional amino acids, unnatural amino acids such as a-, a-disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components for polypeptides of the present disclosure.
- Examples of unconventional amino acids include: 4 hydroxyproline, g-carboxyglutamate, e-N,N,N-trimethyllysine, e -N- acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5- hydroxylysine, s-N-methylarginine, and other similar amino acids and imino acids (e.g., 4- hydroxyproline).
- the left-hand direction is the amino terminal direction and the right-hand direction is the carboxy-terminal direction, in accordance with standard usage and convention.
- the left-hand end of single-stranded polynucleotide sequences is the 5’ end the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5’ direction.
- the direction of 5’ to 3’ addition of nascent RNA transcripts is referred to as the transcription direction sequence regions on the DNA strand having the same sequence as the RNA and that are 5’ to the 5’ end of the RNA transcript are referred to as “upstream sequences”, sequence regions on the DNA strand having the same sequence as the RNA and that are 3’ to the 3’ end of the RNA transcript are referred to as “downstream sequences”.
- the term substantial identity means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 80 percent sequence identity, in some embodiments, at least 90 percent sequence identity, in some embodiments, at least 95 percent sequence identity, and in some embodiments, at least 99 percent sequence identity. [00047] In some embodiments, residue positions that are not identical differ by conservative amino acid substitutions.
- amino acid sequences of antibodies or immunoglobulin molecules are contemplated as being encompassed by the present disclosure, providing that the variations in the amino acid sequence maintain at least 75%, in some embodiments, at least 80%, 90%, 95%, and in some embodiments, 99%.
- conservative amino acid replacements are contemplated. Conservative replacements are those that take place within a family of amino acids that are related in their side chains.
- amino acids are generally divided into families: (1) acidic amino acids are aspartate, glutamate; (2) basic amino acids are lysine, arginine, histidine; (3) non-polar amino acids are alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan, and (4) uncharged polar amino acids are glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine.
- the hydrophilic amino acids include arginine, asparagine, aspartate, glutamine, glutamate, histidine, lysine, serine, and threonine.
- the hydrophobic amino acids include alanine, cysteine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, tyrosine and valine.
- Other families of amino acids include (i) serine and threonine, which are the aliphatic-hydroxy family; (ii) asparagine and glutamine, which are the amide containing family; (iii) alanine, valine, leucine and isoleucine, which are the aliphatic family; and (iv) phenylalanine, tryptophan, and tyrosine, which are the aromatic family.
- Suitable amino- and carboxy-termini of fragments or analogs occur near boundaries of functional domains.
- Structural and functional domains can be identified by comparison of the nucleotide and/or amino acid sequence data to public or proprietary sequence databases.
- computerized comparison methods are used to identify sequence motifs or predicted protein conformation domains that occur in other proteins of known structure and/or function. Methods to identify protein sequences that fold into a known three- dimensional structure are known. Bowie et al. Science 253:164 (1991).
- Suitable amino acid substitutions are those that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinities, and (5) confer or modify other physicochemical or functional properties of such analogs.
- Analogs can include various muteins of a sequence other than the naturally occurring peptide sequence. For example, single or multiple amino acid substitutions (for example, conservative amino acid substitutions) can be made in the naturally occurring sequence (for example, in the portion of the polypeptide outside the domain(s) forming intermolecular contacts.
- a conservative amino acid substitution should not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence).
- Examples of art-recognized polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed., W. H. Freeman and Company, New York (1984)); Introduction to Protein Structure (C. Branden and J. Tooze, eds., Garland Publishing, New York, N.Y. (1991)); and Thornton et at. Nature 354:105 (1991).
- polypeptide fragment refers to a polypeptide that has an amino terminal and/or carboxy-terminal deletion and/or one or more internal deletion(s), but where the remaining amino acid sequence is identical to the corresponding positions in the naturally-occurring sequence deduced, for example, from a full length cDNA sequence. Fragments typically are at least 5, 6, 8 or 10 amino acids long, in some embodiments, at least 14 amino acids long, in some embodiments, at least 20 amino acids long, usually at least 50 amino acids long, and in some embodiments, at least 70 amino acids long.
- analog refers to polypeptides that are comprised of a segment of at least 25 amino acids that has substantial identity to a portion of a deduced amino acid sequence and that has specific binding to the target, under suitable binding conditions.
- polypeptide analogs comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally occurring sequence.
- Analogs typically are at least 20 amino acids long, in some embodiments, at least 50 amino acids long or longer, and can often be as long as a full-length naturally occurring polypeptide.
- agent is used herein to denote a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials.
- label refers to incorporation of a detectable marker, e.g., by incorporation of a radiolabeled amino acid or attachment to a polypeptide of biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or calorimetric methods). In certain situations, the label or marker can also be therapeutic. Various methods of labeling polypeptides and glycoproteins are known in the art and can be used.
- labels for polypeptides include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, p- galactosidase, luciferase, alkaline phosphatase), chemiluminescent, biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags).
- radioisotopes or radionuclides e.g., 3 H, 14 C, 15 N, 35 S, 90 Y, 99 Tc, 111 In, 125 I, 131 I
- labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
- pharmaceutical agent or drug refers to a chemical compound or composition capable of inducing a desired therapeutic effect when properly administered to a patient.
- Other chemistry terms herein are used according to conventional usage in the art, as exemplified by The McGraw-Hill Dictionary of Chemical Terms (Parker, S., Ed., McGraw- Hill, San Francisco (1985)).
- substantially pure means an object species is the predominant species present (i.e., on a molar basis it is more abundant than any other individual species in the composition), and in some embodiments, a substantially purified fraction is a composition wherein the object species comprises at least about 50 percent (on a molar basis) of all macromolecular species present.
- a substantially pure composition will comprise more than about 80 percent of all macromolecular species present in the composition, in some embodiments, more than about 85%, 90%, 95%, and 99%.
- the object species is purified to essential homogeneity (contaminant species cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single macromolecular species.
- patient includes human and veterinary subjects.
- CD47 Antibodies Provided herein are antibodies and antigen binding fragments thereof (ABs) that specifically bind to mammalian CD47. In some embodiments, the AB specifically binds human CD47 and cynomolgus monkey CD47.
- the ABs provided herein that bind CD47 includes a monoclonal antibody, a domain antibody, a single chain antibody, a Fab fragment, a F(ab’) 2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, or a single domain light chain antibody.
- such an ABs that binds CD47 is a mouse, other rodent, chimeric, humanized or fully human monoclonal antibody.
- activatable CD47 antibodies that include an antibody or antigen-binding fragment thereof (AB) that specifically binds CD47 coupled to a masking moiety (MM), such that coupling of the MM reduces the ability of the antibody or antigen- binding fragment thereof to bind CD47.
- the MM is coupled via a sequence that includes a substrate for a protease (cleavable moiety, CM), for example, a protease that is co-localized with CD47 at a treatment site in a subject.
- CM protease
- the activatable CD47 antibodies of the disclosure are described in greater detail in a below section).
- the CD47 antibodies of the disclosure specifically bind a mammalian CD47 target, such as, for example, human CD47. Also included in the disclosure are CD47 antibodies and ABs that bind to the same CD47 epitope as an antibody of the disclosure and/or an activated activatable antibody described herein. Also included in the disclosure are CD47 antibodies compete with a CD47 antibody described herein for binding to a CD47 target, e.g., human CD47. Also included in the disclosure are CD47 antibodies that cross-compete with (inhibit the binding of) a CD47 antibody and/or an activated CD47 activatable antibody described herein for binding to a CD47 target, e.g., human CD47.
- Antibodies and/or activatable antibodies of the disclosure specifically bind a mammalian CD47, e.g. human CD47 and cynomologous CD47. Also included in the disclosure are antibodies and/or activatable antibodies that bind to the same epitope as any of the antibodies and/or activatable antibodies described herein. Also included in the disclosure are antibodies and/or antibodies activatable antibodies that compete with a CD47 antibody (inhibit the binding of) and/or a CD47 activatable antibody described herein for binding to CD47, e.g., human CD47.
- the mammalian CD47 is selected from the group consisting of a human CD47, a murine CD47, a rat CD47, and a cynomolgus monkey CD47.
- the AB specifically binds to human CD47, murine CD47 or cynomolgus monkey CD47 with a dissociation constant of less than 1 nM.
- the mammalian CD47 is a human CD47.
- the AB has one or more of the following characteristics: (a) the AB specifically binds to human CD47; and (b) the AB specifically binds to human CD47 and cynomolgus monkey CD47.
- the AB has one or more of the following characteristics: (a) the AB specifically binds human CD47 and cynomolgus monkey CD47; (b) the AB inhibits binding of one or more of the natural mammalian ligands of CD47 to mammalian CD47; (c) the AB inhibits binding of one or more of the natural human ligands of CD47 to human CD47; and (d) the AB inhibits binding of one or more of the natural cynomolgus monkey ligands of CD47 to cynomolgus monkey CD47. [00065] In some embodiments the AB binds both glycosylated and deglycosylated forms of CD47.
- the AB blocks the ability of a natural ligand to bind to the mammalian CD47 with an EC 50 less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 50 nM, less than or equal to 100 nM, less than or equal to 500 nM, and/or less than or equal to 1000 nM.
- the AB blocks the ability of a natural ligand to bind to the mammalian CD47 with an EC50 less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 50 nM, less than or equal to 100 nM, less than or equal to 500 nM, and/or less than or equal to 1000 nM.
- the AB blocks the ability of a natural ligand to bind to the mammalian CD47 with an EC 50 of 5 nM to 1000 nM, 5 nM to 500 nM, 5 nM to 100 nM 5 nM to 50 nM, 5 nM to 10 nM, 10 nM to 1000 nM, 10 nM to 500 nM, 10 nM to 100 nM 10 nM to 50 nM, 50 nM to 1000 nM, 50 nM to 500 nM, 50 nM to 100 nM, 100 nM to 1000 nM, 100 nM to 500 nM, 500 nM to 1000 nM.
- the AB blocks the ability of a natural ligand to bind to the mammalian CD47 with an EC 50 of 5 nM to 1000 nM, 5 nM to 500 nM, 5 nM to 100 nM 5 nM to 50 nM, 5 nM to 10 nM, 10 nM to 1000 nM, 10 nM to 500 nM, 10 nM to 100 nM 10 nM to 50 nM, 50 nM to 1000 nM, 50 nM to 500 nM, 50 nM to 100 nM, 100 nM to 1000 nM, 100 nM to 500 nM, 500 nM to 1000 nM.
- the AB of the present disclosure inhibits or reduces the growth, proliferation, and/or metastasis of cells expressing mammalian CD47. Without intending to be bound by any theory, the AB of the present disclosure may inhibit or reduce the growth, proliferation, and/or metastasis of cells expressing mammalian CD47 by specifically binding to CD47 and inhibiting, blocking, and/or preventing the binding of a natural ligand to mammalian CD47. [00069] In some embodiments, the AB has a dissociation constant of about 100 nM or less for binding to mammalian CD47. In some embodiments, the AB has a dissociation constant of about 10 nM or less for binding to mammalian CD47.
- the AB has a dissociation constant of about 5 nM or less for binding to CD47. In some embodiments, the AB has a dissociation constant of about 1 nM or less for binding to CD47. In some embodiments, the AB has a dissociation constant of about 0.5 nM or less for binding to CD47. In some embodiments, the AB has a dissociation constant of about 0.1 nM or less for binding to CD47.
- the AB has a dissociation constant of 0.01 nM to 100 nM, 0.01 nM to 10 nM, 0.01 nM to 5 nM, 0.01 nM to 1 nM, 0.01 to 0.5 nM, 0.01 nm to 0.1 nM, 0.01 nm to 0.05 nM, 0.05 nM to 100 nM, 0.05 nM to 10 nM, 0.05 nM to 5 nM, 0.05 nM to 1 nM, 0.05 to 0.5 nM, 0.05 nm to 0.1 nM, 0.1 nM to 100 nM, 0.1 nM to 10 nM, 0.1 nM to 5 nM, 0.1 nM to 1 nM, 0.1 to 0.5 nM, 0.5 nM to 100 nM, 0.1 nM to 10 nM, 0.1 nM to 5 nM, 0.1 nM to 1 nM, 0.1 to
- Exemplary CD47 antibodies and activatable CD47 antibodies of the invention may include a heavy chain and a light chain that are, or are derived from, the heavy chain variable and light chain variable sequences shown below (CDR sequences are shown in bold and underline): hu H4L2 H4 VH: QVQLVQSGAEVKKPGSSVKLSCKASGYTFTNYWMTWVRQAPGQGLEWIGRIDPYDVETHYAQKFQGRATL TVDKSTSTAYMELSSLRSEDTAVYYCARGGVGGMDYWGQGTLVTVSS (SEQ ID NO: 1) hu H4L2 L2 VL: DVVMTQSPDSLAVSLGERATINCRSSQSIVHSNGNTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGS GSGTDFTLTISSVQAEDVGVYYCFQGSHVPRTFGQGTKLEIK (SEQ ID NO: 2) [00071] In some embodiments, the antibody
- the antibody or antigen-binding fragment thereof of the CD47 antibody/activatable antibody comprises a light chain variable region amino acid sequence of any one of SEQ ID NOs: 2 and 76-79. [00073] In some embodiments, the antibody or antigen-binding fragment thereof of the CD47 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1. [00074] In some embodiments, the antibody or antigen-binding fragment thereof of the CD47 antibody/activatable antibody comprises a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the antibody or antigen-binding fragment thereof of the CD47 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the antibody or antigen-binding fragment thereof of the CD47 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 1.
- the antibody or antigen-binding fragment thereof of the CD47 antibody/activatable antibody comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 2.
- the antibody or antigen-binding fragment thereof of the CD47 antibody/activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 2.
- Exemplary CD47 antibodies and activatable CD47 antibodies of the invention include a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid
- the CD47 antibody or antigen-binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence comprising the amino acid sequence DPY
- the CD47 antibody or antigen-binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, comprising a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO:
- the CD47 antibody or antigen-binding fragment thereof comprises an amino acid sequence comprising a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8); a VL CDR2 sequence comprising the amino acid sequence RVSKRFS (SEQ ID NO: 9); and a VL CDR3 sequence comprising the amino acid sequence FQGSHVPRT (SEQ ID NO: 10).
- the CD47 antibody or antigen-binding fragment thereof comprises an amino acid sequence comprising the VH CDR1 sequence comprising the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8); a VL CDR2 sequence comprising the amino acid sequence RVSKRFS (SEQ ID NO: 9); and a VL CDR3 sequence comprising the amino acid sequence FQGSHVPRT (SEQ ID NO: 10).
- the CD47 antibody or antigen-binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, comprising a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid
- Suitable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD47 and/or cynomolgus monkey CD47 as a CD47 antibody comprising a heavy chain variable region amino acid sequence of any one of SEQ ID NOs: 1 and 57-59, and a light chain variable region amino acid sequence of any one of SEQ ID NOs: 2 and 76-79.
- Suitable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD47 and/or cynomolgus monkey CD47 as a CD47 antibody comprising a heavy chain variable region amino acid sequence SEQ ID NO: 1, and a light chain variable region amino acid sequence SEQ ID NO: 2.
- Suitable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD47 and/or cynomolgus monkey CD47 as a CD47 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQS
- Suitable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD47 and/or cynomolgus monkey CD47 as a CD47 antibody comprising a heavy chain variable region amino acid sequence of any one of SEQ ID NOs: 1 and 57-59, and a light chain variable region amino acid sequence of any one of SEQ ID NOs: 2 and 76-79.
- Suitable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD47 and/or cynomolgus monkey CD47 to a CD47 antibody comprising a heavy chain variable region amino acid sequence SEQ ID NO: 1, and a light chain variable region amino acid sequence SEQ ID NO: 2..
- Suitable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD47 and/or cynomolgus monkey CD47 to a CD47 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO:
- the CD47 antibody of the disclosure comprises an isolated antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically binds human CD47 and cynomolgus monkey CD47.
- AB antigen binding fragment thereof
- the antibody or antigen binding fragment thereof comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQSIVHSSGQTYLE (SEQ ID NO: 55) or RSSQSIVHSSGSTYLE (SEQ ID NO: 56); a VL CDR2 sequence comprising the amino acid sequence GYT
- the antibody or antigen binding fragment thereof comprises a heavy chain variable region comprising an amino acid sequence of SEQ ID NO: 1, and a light chain variable region comprising an amino acid sequence of SEQ ID NO: 2.
- the isolated antibody or antigen binding fragment thereof binds to the same epitope on human CD47 and/or cynomolgus monkey CD47 as an isolated antibody that comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence
- the antibody or antigen binding fragment thereof comprises a heavy chain variable region comprising an amino acid sequence of SEQ ID NO: 1, and a light chain variable region comprising an amino acid sequence of SEQ ID NO: 2.
- the isolated antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTY
- the antibody or antigen binding fragment thereof comprises a heavy chain variable region comprising an amino acid sequence of SEQ ID NO: 1, and a light chain variable region comprising an amino acid sequence of SEQ ID NO: 2.
- the CD47 antibody/activatable CD47 antibody comprises or is derived from an antibody that is manufactured, secreted or otherwise produced by a hybridoma, such as, for example, the hybridoma(s) disclosed in US Patent No.5,330,896 and deposited at ATCC under deposit number HB 8214.
- the CD47 antibody/activatable CD47 antibody comprises or is derived from an antibody that is manufactured, secreted or otherwise produced by a hybridoma, such as, for example, the hybridoma(s) designated BA120 as disclosed in US Patent No.7,736,647 and deposited at the Collection Nationale de Cultures de Microorganismes (CNCM) (Institut Pasteur, Paris, France, 25, Rue du Dondel Roux, F-75724, Paris, Cedex 15) on Jun.14, 2005, under number CNCM I-3449; the hybridoma(s) disclosed in US Patent No. 7,572,895 and deposited at the ATCC under PTA-6055; the hybridoma(s) disclosed in PCT Publication No.
- CNCM Collection Nationale de Cultures de Microorganismes
- the CD47 antibody/activatable CD47 antibody includes a heavy chain that comprises or is derived from a heavy chain amino acid sequence shown in PCT Publication Nos. WO 2014/144060, WO 2014/189973, WO 2014/020140, in US Patent Nos.
- the disclosure also provides methods for producing a CD47 AB of the disclosure by culturing a cell under conditions that lead to expression of the antibody or fragment thereof, wherein the cell comprises a nucleic acid molecule of the disclosure or a vector of the disclosure.
- the CD47 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence comprising an amino acid sequence of SEQ ID NO: 1.
- the antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 11-14.
- the CD47 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2.
- the antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain amino acid sequence come rising an amino acid sequence of SEQ ID NO: 15.
- the CD47 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain variable region amino acid sequence comprising an amino acid sequence of SEQ ID NO: 1.
- the antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 11-14.
- the CD47 antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain variable region amino acid sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 2.
- the antibody or antigen-binding fragment thereof is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light chain amino acid sequence come rising an amino acid sequence of SEQ ID NO: 15.
- Activatable CD47 Antibodies As described above, the disclosure also provides activatable antibodies that include an antibody or antigen-binding fragment thereof that specifically binds CD47 coupled to a masking moiety (MM), such that coupling of the MM reduces the ability of the antibody or antigen-binding fragment thereof to bind CD47.
- MM masking moiety
- the MM is coupled via a sequence that includes a substrate for a protease (CM, cleavable moiety), for example, a protease that is active in diseased tissue and/or a protease that is co-localized with CD47 at a treatment site in a subject.
- CM protease
- the activatable CD47 antibodies provided herein are stable in circulation, activated at intended sites of therapy and/or diagnosis but not in normal, e.g., healthy tissue or other tissue not targeted for treatment and/or diagnosis, and, when activated, exhibit binding to CD47 that is at least comparable to the corresponding, unmodified antibody, also referred to herein as the parental antibody.
- the activatable CD47 antibodies described herein overcome a limitation of antibody therapeutics, particularly antibody therapeutics that are known to be toxic to at least some degree in vivo. Target-mediated toxicity constitutes a major limitation for the development of therapeutic antibodies.
- the activatable CD47 antibodies provided herein are designed to address the toxicity associated with the inhibition of the target in normal tissues by traditional therapeutic antibodies. These activatable CD47 antibodies remain masked until proteolytically activated at the site of disease. Starting with a CD47 antibody as a parental therapeutic antibody, the activatable CD47 antibodies of the invention were engineered by coupling the antibody to an inhibitory mask through a linker that incorporates a protease substrate.
- cleaved state of the activatable antibody refers to the condition of the activatable antibodies following modification of the CM by at least one protease.
- uncleaved state refers to the condition of the activatable antibodies in the absence of cleavage of the CM by a protease.
- activatable antibodies is used herein to refer to an activatable antibody in both its uncleaved (native) state, as well as in its cleaved state.
- a cleaved activatable antibody may lack an MM due to cleavage of the CM by protease, resulting in release of at least the MM (e.g., where the MM is not joined to the activatable antibodies by a covalent bond (e.g., a disulfide bond between cysteine residues).
- a covalent bond e.g., a disulfide bond between cysteine residues
- activatable or switchable By activatable or switchable is meant that the activatable antibody exhibits a first level of binding to a target when the activatable antibody is in a inhibited, masked or uncleaved state (i.e., a first conformation), and a second level of binding to the target in the uninhibited, unmasked and/or cleaved state (i.e., a second conformation), where the second level of target binding is greater than the first level of binding.
- the access of target to the AB of the activatable antibody is greater in the presence of a cleaving agent capable of cleaving the CM, i.e., a protease, than in the absence of such a cleaving agent.
- the CM and AB of the activatable antibodies are selected so that the AB represents a binding moiety for a given target, and the CM represents a substrate for a protease.
- the protease is co-localized with the target at a treatment site or diagnostic site in a subject. As used herein, co-localized refers to being at the same site or relatively close nearby.
- a protease cleaves a CM yielding an activated antibody that binds to a target located nearby the cleavage site.
- the activatable antibodies disclosed herein find particular use where, for example, a protease capable of cleaving a site in the CM, i.e., a protease, is present at relatively higher levels in target-containing tissue of a treatment site or diagnostic site than in tissue of non-treatment sites (for example in healthy tissue).
- a CM of the disclosure is also cleaved by one or more other proteases.
- activatable antibodies provide for reduced toxicity and/or adverse side effects that could otherwise result from binding of the AB at non-treatment sites if the AB were not masked or otherwise inhibited from binding to the target.
- an activatable antibody can be designed by selecting an AB of interest (such as any CD47 antibody or fragment thereof described herein) and constructing the remainder of the activatable antibody so that, when conformationally constrained, the MM provides for masking of the AB or reduction of binding of the AB to its target.
- Structural design criteria can be to be taken into account to provide for this functional feature.
- Activatable antibodies exhibiting a switchable phenotype of a desired dynamic range for target binding in an inhibited versus an uninhibited conformation are provided.
- Dynamic range generally refers to a ratio of (a) a maximum detected level of a parameter under a first set of conditions to (b) a minimum detected value of that parameter under a second set of conditions.
- the dynamic range refers to the ratio of (a) a maximum detected level of target protein binding to an activatable antibody in the presence of at least one protease capable of cleaving the CM of the activatable antibodies to (b) a minimum detected level of target protein binding to an activatable antibody in the absence of the protease.
- the dynamic range of an activatable antibody can be calculated as the ratio of the dissociation constant of an activatable antibody cleaving agent (e.g., enzyme) treatment to the dissociation constant of the activatable antibodies cleaving agent treatment. The greater the dynamic range of an activatable antibody, the better the switchable phenotype of the activatable antibody.
- Activatable antibodies having relatively higher dynamic range values exhibit more desirable switching phenotypes such that target protein binding by the activatable antibodies occurs to a greater extent (e.g., predominantly occurs) in the presence of a cleaving agent (e.g., enzyme) capable of cleaving the CM of the activatable antibodies than in the absence of a cleaving agent.
- a cleaving agent e.g., enzyme
- the activatable CD47 antibodies provided herein include a masking moiety (MM).
- the masking moiety is an amino acid sequence that is coupled or otherwise attached to the CD47 antibody and is positioned within the activatable CD47 antibody construct such that the masking moiety reduces the ability of the CD47 antibody to specifically bind CD47.
- Suitable masking moieties are identified using any of a variety of known techniques. For example, peptide masking moieties are identified using the methods described in PCT Publication No. WO 2009/025846 by Daugherty et al., the contents of which are hereby incorporated by reference in their entirety.
- the activatable CD47 antibodies provided herein include a cleavable moiety (CM).
- the cleavable moiety includes an amino acid sequence that is a substrate for a protease, usually an extracellular protease.
- Suitable substrates are identified using any of a variety of known techniques. For example, peptide substrates are identified using the methods described in U.S.
- Exemplary substrates include but are not limited to substrates cleavable by one or more of the following enzymes or proteases listed in Table A. Table A: Exemplary Proteases and/or Enzymes
- the activatable antibodies in an activated state bind CD47 and include (i) an antibody or an antigen binding fragment thereof (AB) that specifically binds to CD47; (ii) a masking moiety (MM) that, when the activatable antibody is in an uncleaved state, inhibits the binding of the AB to CD47; and (c) a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM- MM.
- the activatable antibody comprises a linking peptide between the MM and the CM.
- the activatable antibody comprises a linking peptide between the CM and the AB.
- the activatable antibody comprises a first linking peptide (LP1) and a second linking peptide (LP2), and wherein the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-LP1-CM- LP2-AB or AB-LP2-CM-LP1-MM.
- the two linking peptides need not be identical to each other.
- At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of (GS) n , (GGS) n , (GSGGS) n (SEQ ID NO: 116) and (GGGS) n (SEQ ID NO: 117), where n is an integer of at least one.
- At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of GGSG (SEQ ID NO: 118), GGSGG (SEQ ID NO: 119), GSGSG (SEQ ID NO: 120), GSGGG (SEQ ID NO: 121), GGGSG (SEQ ID NO: 122), and GSSSG (SEQ ID NO: 123).
- LP1 comprises the amino acid sequence GSSGGSGGSGGSG (SEQ ID NO: 124), GSSGGSGGSGG (SEQ ID NO: 125), GSSGGSGGSGGS (SEQ ID NO: 126), GSSGGSGGSGGSGGGS (SEQ ID NO: 127), GSSGGSGGSG (SEQ ID NO: 128), GSSGGSGGSGS (SEQ ID NO: 129), or GGGSSGGS (SEQ ID NO: 134).
- LP2 comprises the amino acid sequence GSS, GGS, GGGS (SEQ ID NO: 130), GSSGT (SEQ ID NO: 131) or GSSG (SEQ ID NO: 132).
- the antibody or antigen-binding fragment thereof that binds CD47 is a monoclonal antibody, domain antibody, single chain, Fab fragment, a F(ab’) 2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, or a single domain light chain antibody.
- such an antibody or antigen-binding fragment thereof that binds CD47 is a mouse, other rodent, chimeric, humanized or fully human monoclonal antibody.
- the activatable antibody in an uncleaved state specifically binds to the mammalian CD47 with a dissociation constant less than or equal to 1 nM, less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 15 nM, less than or equal to 20 nM, less than or equal to 25 nM, less than or equal to 50 nM, less than or equal to 100 nM, less than or equal to 150 nM, less than or equal to 250 nM, less than or equal to 500 nM, less than or equal to 750 nM, less than or equal to 1000 nM, and/or less than or equal to 2000 nM.
- a dissociation constant less than or equal to 1 nM, less than or equal to 5 nM, less than or equal to 10 nM, less than or equal to 15 nM, less than or equal to 20 nM, less than or equal to 25 nM, less than or equal to 50 nM, less
- the activatable antibody in an uncleaved state specifically binds to the mammalian CD47 with a dissociation constant in the range of 1 nM to 2000 nM, 1 nM to 1000 nM, 1 nM to 750 nM, 1 nM to 500 nM, 1 nM to 250 nM, 1 nM to 150 nM, 1 nM to 100 nM, 1 nM to 50 nM, 1 nM to 25 nM, 1 nM to 15 nM, 1 nM to 10 nM, 1 nM to 5 nM, 5 nM to 2000 nM, 5 nM to 1000 nM, 5 nM to 750 nM, 5 nM to 500 nM, 5 nM to 250 nM, 5 nM to 150 nM, 5 nM to 100 nM, 5 nM to 50 nM, 5 nM to 25 nM
- the activatable antibody in an activated state specifically binds to the mammalian CD47 with a dissociation constant is less than or equal to 0.01 nM, 0.05 nM, 0.1 nM, 0.5 nM, 1 nM, 5 nM, or 10 nM.
- the activatable antibody in an activated state specifically binds to the mammalian CD47 with a dissociation constant in the range of 0.01 nM to 100 nM, 0.01 nM to 10 nM, 0.01 nM to 5 nM, 0.01 nM to 1 nM, 0.01 to 0.5 nM, 0.01 nm to 0.1 nM, 0.01 nm to 0.05 nM, 0.05 nM to 100 nM, 0.05 nM to 10 nM, 0.05 nM to 5 nM, 0.05 nM to 1 nM, 0.05 to 0.5 nM, 0.05 nm to 0.1 nM, 0.1 nM to 100 nM, 0.1 nM to 10 nM, 0.1 nM to 5 nM, 0.1 nM to 1 nM, 0.1 to 0.5 nM, 0.5 nM to 100 nM, 0.1 nM to 10 nM, 0.1 n
- the Kd of the AB modified with a MM towards the CD47 target is at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10-100, 10-1,000, 10-10,000, 10- 100,000, 10-1,000,000, 10-10,000,000, 100-1,000, 100-10,000, 100-100,000, 100-1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000- 100,000, 10,000-1,000,000, 10,000-10,000,000, 100,000-1,000,000, or 100,000-10,000,000 times greater than the K d of the AB not modified with an MM or of the parental AB towards the CD47 target.
- the binding affinity of the AB modified with a MM towards the CD47 target is at least 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10- 100, 10-1,000, 10-10,000, 10-100,000, 10-1,000,000, 10-10,000,000, 100-1,000, 100-10,000, 100-100,000, 100-1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000-100,000, 10,000-1,000,000, 10,000-10,000,000, 100,000-1,000,000, or 100,000-10,000,000 times lower than the binding affinity of the AB not modified with an MM or of the parental AB towards the CD47 target.
- the dissociation constant (Kd) of the MM towards the AB is generally greater than the K d of the AB towards the CD47 target.
- the K d of the MM towards the AB can be at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 100,000, 1,000,000 or even 10,000,000 times greater than the Kd of the AB towards the CD47 target.
- the binding affinity of the MM towards the AB is generally lower than the binding affinity of the AB towards the CD47 target.
- the binding affinity of MM towards the AB can be at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 100,000, 1,000,000 or even 10,000,000 times lower than the binding affinity of the AB towards the CD47 target.
- the dissociation constant (K d ) of the MM towards the AB is approximately equal to the Kd of the AB towards the CD47 target. In some embodiments, the dissociation constant (K d ) of the MM towards the AB is no more than the dissociation constant of the AB towards the CD47 target. In some embodiments, the dissociation constant (K d ) of the MM towards the AB is equivalent to the dissociation constant of the AB towards the CD47 target. [000131] In some embodiments, the dissociation constant (K d ) of the MM towards the AB is less than the dissociation constant of the AB towards the CD47 target.
- the dissociation constant (Kd) of the MM towards the AB is greater than the dissociation constant of the AB towards the CD47 target.
- the MM has a K d for binding to the AB that is no more than the Kd for binding of the AB to the target.
- the MM has a Kd for binding to the AB that is no less than the Kd for binding of the AB to the target.
- the MM has a K d for binding to the AB that is approximately equal to the Kd for binding of the AB to the target.
- the MM has a Kd for binding to the AB that is less than the K d for binding of the AB to the target. [000137] In some embodiments, the MM has a K d for binding to the AB that is greater than the Kd for binding of the AB to the target. [000138] In some embodiments, the MM has a K d for binding to the AB that is no more than 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, or 1,000 fold greater than the K d for binding of the AB to the target.
- the MM has a Kd for binding to the AB that is between 1-5, 2-5, 2-10, 5-10, 5-20, 5-50, 5-100, 10-100, 10-1,000, 20-100, 20-1000, or 100-1,000 fold greater than the K d for binding of the AB to the target.
- the MM has an affinity for binding to the AB that is less than the affinity of binding of the AB to the target.
- the MM has an affinity for binding to the AB that is no more than the affinity of binding of the AB to the target.
- the MM has an affinity for binding to the AB that is approximately equal of the affinity of binding of the AB to the target.
- the MM has an affinity for binding to the AB that is no less than the affinity of binding of the AB to the target. [000143] In some embodiments, the MM has an affinity for binding to the AB that is greater than the affinity of binding of the AB to the target. [000144] In some embodiments, the MM has an affinity for binding to the AB that is 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, or 1,000 less than the affinity of binding of the AB to the target.
- the MM has an affinity for binding to the AB that is between 1-5, 2-5, 2- 10, 5-10, 5-20, 5-50, 5-100, 10-100, 10-1,000, 20-100, 20-1000, or 100-1,000 fold less than the affinity of binding of the AB to the target. In some embodiments, the MM has an affinity for binding to the AB that is 2 to 20-fold less than the affinity of binding of the AB to the target. In some embodiments, a MM not covalently linked to the AB and at equimolar concentration to the AB does not inhibit the binding of the AB to the target.
- the AB’s ability to bind the target when modified with an MM can be reduced by at least 50%, 60%, 70%, 80%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and even 100% for at least 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, or 96 hours, or 5, 10, 15, 30, 45, 60, 90, 120, 150, or 180 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months or more when measured in vivo or in an in vitro assay.
- the MM inhibits the binding of the AB to the target.
- the MM binds the antigen binding domain of the AB and inhibits binding of the AB to the target.
- the MM can sterically inhibit the binding of the AB to the target.
- the MM can allosterically inhibit the binding of the AB to its target.
- the AB when the AB is modified or coupled to a MM and in the presence of target there is no binding or substantially no binding of the AB to the target, or no more than 0.001%, 0.01%, 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, or 50% binding of the AB to the target, as compared to the binding of the AB not modified with an MM, the parental AB, or the AB not coupled to an MM to the target, for at least 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, or 96 hours, or 5, 10, 15, 30, 45, 60, 90, 120, 150, or 180 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months or longer when measured in vivo or in an in vitro assay.
- the MM ‘masks’ or reduces or otherwise inhibits the specific binding of the AB to the target.
- such coupling or modification can effect a structural change that reduces or inhibits the ability of the AB to specifically bind its target.
- An AB coupled to or modified with an MM can be represented by the following formulae (in order from an amino (N) terminal region to carboxyl (C) terminal region: (MM)-(AB) (AB)-(MM) (MM)-L-(AB) (AB)-L-(MM) where MM is a masking moiety, the AB is an antibody or antibody fragment thereof, and the L is a linker.
- the MM is not a natural binding partner of the AB.
- the MM contains no or substantially no homology to any natural binding partner of the AB. In some embodiments, the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% similar to any natural binding partner of the AB. In some embodiments, the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 25% identical to any natural binding partner of the AB.
- the MM is no more than 50% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 20% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 10% identical to any natural binding partner of the AB.
- the activatable antibodies include an AB that is modified by an MM and also includes one or more cleavable moieties (CM). Such activatable antibodies exhibit activatable/switchable binding, to the AB’s target. Activatable antibodies generally include an antibody or antibody fragment (AB), modified by or coupled to a masking moiety (MM) and a modifiable or cleavable moiety (CM).
- the CM contains an amino acid sequence that serves as a substrate for at least one protease.
- the elements of the activatable antibodies are arranged so that the MM and CM are positioned such that in a cleaved (or relatively active) state and in the presence of a target, the AB binds a target while the activatable antibody is in an uncleaved (or relatively inactive) state in the presence of the target, specific binding of the AB to its target is reduced or inhibited.
- the specific binding of the AB to its target can be reduced due to the inhibition or masking of the AB’s ability to specifically bind its target by the MM.
- the Kd of the AB modified with a MM and a CM towards the CD47 target is at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10-100, 10-1,000, 10- 10,000, 10-100,000, 10-1,000,000, 10-10,000,000, 100-1,000, 100-10,000, 100-100,000, 100- 1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000-100,000, 10,000-1,000,000, 10,000-10,000,000, 100,000-1,000,000, or 100,000- 10,000,000 times greater than the Kd of the AB not modified with an MM and a CM or of the parental AB towards the CD47 target.
- the binding affinity of the AB modified with a MM and a CM towards the CD47 target is at least 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 or greater, or between 5-10, 10-100, 10-1,000, 10-10,000, 10-100,000, 10-1,000,000, 10- 10,000,000, 100-1,000, 100-10,000, 100-100,000, 100-1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000-1,000,000, 1000-10,000,000, 10,000-100,000, 10,000-1,000,000, 10,000- 10,000,000, 100,000-1,000,000, or 100,000-10,000,000 times lower than the binding affinity of the AB not modified with an MM and a CM or of the parental AB towards the CD47 target.
- the AB is modified with a MM and a CM and is in the presence of the target but not in the presence of a modifying agent (for example at least one protease)
- a modifying agent for example at least one protease
- the AB’s ability to bind the target when modified with an MM and a CM can be reduced by at least 50%, 60%, 70%, 80%, 90%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% and even 100% for at least 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, or 96 hours or 5, 10, 15, 30, 45, 60, 90, 120, 150, or 180 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 months or longer when measured in vivo or in an in vitro assay.
- Activatable antibodies can be provided in a variety of structural configurations. Exemplary formulae for activatable antibodies are provided below. It is specifically contemplated that the N- to C-terminal order of the AB, MM and CM can be reversed within an activatable antibody. It is also specifically contemplated that the CM and MM may overlap in amino acid sequence, e.g., such that the CM is contained within the MM.
- activatable antibodies can be represented by the following formula (in order from an amino (N) terminal region to carboxyl (C) terminal region: (MM)-(CM)-(AB) (AB)-(CM)-(MM) where MM is a masking moiety, CM is a cleavable moiety, and AB is an antibody or fragment thereof.
- MM and CM are indicated as distinct components in the formulae above, in all exemplary embodiments (including formulae) disclosed herein it is contemplated that the amino acid sequences of the MM and the CM could overlap, e.g., such that the CM is completely or partially contained within the MM.
- the MM is not a natural binding partner of the AB. In some embodiments, the MM contains no or substantially no homology to any natural binding partner of the AB. In some embodiments, the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% similar to any natural binding partner of the AB.
- the MM is no more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, or 80% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 50% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 25% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 20% identical to any natural binding partner of the AB. In some embodiments, the MM is no more than 10% identical to any natural binding partner of the AB.
- linkers e.g., flexible linkers
- the AB, MM, and/or CM may not contain a sufficient number of residues (e.g., Gly, Ser, Asp, Asn, especially Gly and Ser, particularly Gly) to provide the desired flexibility.
- the switchable phenotype of such activatable antibody constructs may benefit from introduction of one or more amino acids to provide for a flexible linker.
- an activatable antibody comprises one of the following formulae (where the formula below represents an amino acid sequence in either N- to C-terminal direction or C- to N-terminal direction): (MM)-L1-(CM)-(AB) (MM)-(CM)-L2-(AB) (MM)-L1-(CM)-L2-(AB) wherein MM, CM, and AB are as defined above; wherein L1 and L2 are each independently and optionally present or absent, are the same or different flexible linkers that include at least 1 flexible amino acid (e.g., Gly).
- the formulae above provide for additional amino acid sequences that can be positioned N-terminal or C-terminal to the activatable antibodies elements.
- targeting moieties e.g., a ligand for a receptor of a cell present in a target tissue
- serum half-life extending moieties e.g., polypeptides that bind serum proteins, such as immunoglobulin (e.g., IgG) or serum albumin (e.g., human serum albumin (HAS)).
- the CM is specifically cleaved by at least one protease at a rate of about 0.001- 1500 x 10 4 M -1 S -1 or at least 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2.5, 5, 7.5, 10, 15, 20, 25, 50, 75, 100, 125, 150, 200, 250, 500, 750, 1000, 1250, or 1500 x 10 4 M -1 S -1 .
- the CM is specifically cleaved at a rate of about 100,000 M -1 S -1 .
- the CM is specifically cleaved at a rate from about 1x10E2 to about 1x10E6 M -1 S -1 (i.e., from about 1x10 2 to about 1x10 6 M -1 S -1 ).
- contact between the enzyme and CM is made.
- the activatable antibody comprising an AB coupled to a MM and a CM is in the presence of target and sufficient enzyme activity, the CM can be cleaved.
- Sufficient enzyme activity can refer to the ability of the enzyme to make contact with the CM and effect cleavage.
- Linkers suitable for use in compositions described herein are generally ones that provide flexibility of the modified AB or the activatable antibodies to facilitate the inhibition of the binding of the AB to the target. Such linkers are generally referred to as flexible linkers.
- Suitable linkers can be readily selected and can be of any of a suitable of different lengths, such as from 1 amino acid (e.g., Gly) to 20 amino acids, from 2 amino acids to 15 amino acids, from 3 amino acids to 12 amino acids, including 4 amino acids to 10 amino acids, 5 amino acids to 9 amino acids, 6 amino acids to 8 amino acids, or 7 amino acids to 8 amino acids, and can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 3 or 4, 5 or 6, 7, 14, 15, 16, 17, 18, 19, or 20 amino acids in length.
- 1 amino acid e.g., Gly
- Exemplary flexible linkers include glycine polymers (G)n, glycine-serine polymers (including, for example, (GS)n, (GSGGS)n (SEQ ID NO: 116) and (GGGS)n (SEQ ID NO: 117), where n is an integer of at least one), glycine-alanine polymers, alanine-serine polymers, and other flexible linkers known in the art.
- Glycine and glycine-serine polymers are relatively unstructured, and therefore may be able to serve as a neutral tether between components.
- Exemplary flexible linkers include, but are not limited to Gly-Gly-Ser-Gly (SEQ ID NO: 118), Gly-Gly-Ser-Gly-Gly (SEQ ID NO: 119), Gly-Ser-Gly-Ser-Gly (SEQ ID NO: 120), Gly-Ser-Gly-Gly-Gly (SEQ ID NO: 121), Gly-Gly-Gly-Ser-Gly (SEQ ID NO: 122), Gly-Ser-Ser-Ser-Gly (SEQ ID NO: 123), and the like.
- an activatable antibodies can include linkers that are all or partially flexible, such that the linker can include a flexible linker as well as one or more portions that confer less flexible structure to provide for a desired activatable antibodies structure.
- the disclosure also provides compositions and methods that include an activatable CD47 antibody that includes an antibody or antibody fragment (AB) that specifically binds CD47, where the AB is coupled to a masking moiety (MM) that decreases the ability of the AB to bind its target.
- the activatable CD47 antibody further includes a cleavable moiety (CM) that is a substrate for a protease.
- compositions and methods provided herein enable the attachment of one or more agents to one or more cysteine residues in the AB without compromising the activity (e.g., the masking, activating or binding activity) of the activatable CD47 antibody.
- the compositions and methods provided herein enable the attachment of one or more agents to one or more cysteine residues in the AB without reducing or otherwise disturbing one or more disulfide bonds within the MM.
- compositions and methods provided herein produce an activatable CD47 antibody that is conjugated to one or more agents, e.g., any of a variety of therapeutic, diagnostic and/or prophylactic agents, for example, in some embodiments, without any of the agent(s) being conjugated to the MM of the activatable CD47 antibody.
- the compositions and methods provided herein produce conjugated activatable CD47 antibodies in which the MM retains the ability to effectively and efficiently mask the AB of the activatable antibody in an uncleaved state.
- the compositions and methods provided herein produce conjugated activatable CD47 antibodies in which the activatable antibody is still activated, i.e., cleaved, in the presence of a protease that can cleave the CM.
- the activatable antibody comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1. In some embodiments, the activatable antibody comprises a light chain variable region amino acid sequence of SEQ ID NO: 2. [000165] In some embodiments, the activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 1. In some embodiments, the activatable antibody comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 2.
- the activatable antibody comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected of SEQ ID NO: 2.
- the activatable antibody comprises a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 3) or
- the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO
- the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIV
- the activatable antibody comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence that includes a sequence
- the MM has a dissociation constant for binding to the AB which is greater than the dissociation constant of the AB to CD47. [000172] In some embodiments, the MM has a dissociation constant for binding to the AB which is no more than the dissociation constant of the AB to CD47. [000173] In some embodiments, the MM has a dissociation constant for binding to the AB is equivalent to the dissociation constant of the AB to CD47. [000174] In some embodiments, the MM has a dissociation constant for binding to the AB which is less than the dissociation constant of the AB to CD47.
- the dissociation constant (Kd) of the MM towards the AB is no more than 2, 3, 4, 5, 10, 25, 50, 100, 250, 500, 1,000, 2,500, 5,000, 10,000, 50,000, 100,000, 500,000, 1,000,000, 5,000,000, 10,000,000, 50,000,000 times or greater, or between 1- 5, 5-10, 10-100, 10-1,000, 10-10,000, 10-100,000, 10-1,000,000, 10-10,000,000, 100-1,000, 100- 10,000, 100-100,000, 100-1,000,000, 100-10,000,000, 1,000-10,000, 1,000-100,000, 1,000- 1,000,000, 1000-10,000,000, 10,000-100,000, 10,000-1,000,000, 10,000-10,000,000, 100,000- 1,000,000, or 100,000-10,000,000 times or greater than the dissociation constant of the AB towards the CD47 target.
- the MM does not interfere or compete with the AB for binding to CD47 when the activatable antibody is in a cleaved state.
- the MM is a polypeptide of about 2 to 40 amino acids in length. In some embodiments, the MM is a polypeptide of up to about 40 amino acids in length.
- the MM polypeptide sequence is different from that of CD47. In some embodiments, the MM polypeptide sequence is no more than 50% identical to any natural binding partner of the AB.
- the MM polypeptide sequence is different from that of CD47 and is no more than 40%, 30%, 25%, 20%, 15%, or 10% identical to any natural binding partner of the AB.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (K d ) of the AB when coupled to the MM towards CD47 is at least two times greater than the Kd of the AB when not coupled to the MM towards CD47.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD47 is at least five times greater than the Kd of the AB when not coupled to the MM towards CD47.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD47 is at least 10 times greater than the Kd of the AB when not coupled to the MM towards CD47.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD47 is at least 20 times greater than the Kd of the AB when not coupled to the MM towards CD47.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD47 is at least 40 times greater than the K d of the AB when not coupled to the MM towards CD47.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (Kd) of the AB when coupled to the MM towards CD47 is at least 100 times greater than the K d of the AB when not coupled to the MM towards CD47.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (K d ) of the AB when coupled to the MM towards CD47 is at least 1000 times greater than the K d of the AB when not coupled to the MM towards CD47.
- the coupling of the MM to the AB reduces the ability of the AB to bind CD47 such that the dissociation constant (K d ) of the AB when coupled to the MM towards CD47 is at least 10,000 times greater than the Kd of the AB when not coupled to the MM towards CD47.
- the MM reduces the ability of the AB to bind CD47 by at least 90% when the CM is uncleaved, as compared to when the CM is cleaved when assayed in vitro using a target displacement assay such as, for example, the assay described in PCT Publication No.
- MM comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 16-29. In some embodiments, the MM comprises an amino acid sequence of SEQ ID NO: 17. In some embodiments, the MM comprises an amino acid sequence of SEQ ID NO: 23. In some embodiments, the MM comprises an amino acid sequence of SEQ ID NO: 24. In some embodiments, the MM comprises an amino acid sequence of SEQ ID NO: 26. In some embodiments, the MM comprises an amino acid sequence of SEQ ID NO: 27.
- the protease that cleaves the CM is active, e.g., up- regulated or otherwise unregulated, in diseased tissue, and the protease cleaves the CM in the activatable antibody when the activatable antibody is exposed to the protease.
- the protease is co-localized with CD47 in a tissue, and the protease cleaves the CM in the activatable antibody when the activatable antibody is exposed to the protease.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least twofold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD47.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least fivefold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD47.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least 10-fold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD47.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least 20-fold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state (i.e., when the activatable antibody is in the cleaved state), the AB binds CD47.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least 40-fold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state, the AB binds CD47.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least 50-fold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state, the AB binds CD47.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least 100-fold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state, the AB binds CD47.
- the CM is positioned in the activatable antibody such that when the activatable antibody is in the uncleaved state, binding of the activatable antibody to CD47 is reduced to occur with a dissociation constant that is at least 200-fold greater than the dissociation constant of an unmodified AB binding to CD47, whereas in the cleaved state, the AB binds CD47.
- the CM is a polypeptide of up to 15 amino acids in length.
- the CM is a polypeptide that includes a first cleavable moiety (CM1) that is a substrate for at least one matrix metalloprotease (MMP) and a second cleavable moiety (CM2) that is a substrate for at least one serine protease (SP).
- MMP matrix metalloprotease
- SP serine protease
- each of the CM1 substrate sequence and the CM2 substrate sequence of the CM1- CM2 substrate is independently a polypeptide of up to 15 amino acids in length.
- the CM is a substrate for at least one protease that is or is believed to be up-regulated or otherwise unregulated in cancer.
- the CM is a substrate for at least one protease selected from the group consisting of a matrix metalloprotease (MMP), thrombin, a neutrophil elastase, a cysteine protease, legumain, and a serine protease, such as matriptase (MT-SP1), and urokinase (uPA).
- MMP matrix metalloprotease
- thrombin thrombin
- neutrophil elastase a neutrophil elastase
- cysteine protease cysteine protease
- legumain and a serine protease
- uPA urokinase
- Exemplary substrates include but are not limited to substrates cleavable by one or more of the following enzymes or proteases listed in Table A.
- the CM is selected for use with a specific protease, for example a protease that is known to be co-localized with the target of the activatable antibody.
- the CM is a substrate for at least one MMP. Examples of MMPs include the MMPs listed in the Table A.
- the CM is a substrate for a protease selected from the group consisting of MMP 9, MMP14, MMP1, MMP3, MMP13, MMP17, MMP11, and MMP19.
- the CM is a substrate for MMP9.
- the CM is a substrate for MMP14.
- the CM is a substrate that includes the sequence TGRGPSWV (SEQ ID NO: 356); SARGPSRW (SEQ ID NO: 357); TARGPSFK (SEQ ID NO: 358); LSGRSDNH (SEQ ID NO: 359); GGWHTGRN (SEQ ID NO: 360); HTGRSGAL (SEQ ID NO: 361); PLTGRSGG (SEQ ID NO: 362); AARGPAIH (SEQ ID NO: 363); RGPAFNPM (SEQ ID NO: 364); SSRGPAYL (SEQ ID NO: 365); RGPATPIM (SEQ ID NO: 366); RGPA (SEQ ID NO: 367); GGQPSGMWGW (SEQ ID NO: 368); FPRPLGITGL (SEQ ID NO: 369); VHMPLGFLGP (SEQ ID NO: 370); SPLTGRSG (SEQ ID NO: 371); SAGFSLPA (SEQ ID NO: 372
- the CM comprises the amino acid sequence LSGRSDNH (SEQ ID NO: 359). In some embodiments, the CM comprises the amino acid sequence TGRGPSWV (SEQ ID NO: 356). In some embodiments, the CM comprises the amino acid sequence PLTGRSGG (SEQ ID NO: 362). In some embodiments, the CM comprises the amino acid sequence GGQPSGMWGW (SEQ ID NO: 368). In some embodiments, the CM comprises the amino acid sequence FPRPLGITGL (SEQ ID NO: 369). In some embodiments, the CM comprises the amino acid sequence VHMPLGFLGP (SEQ ID NO: 370).
- the CM comprises the amino acid sequence PLGL (SEQ ID NO: 375). In some embodiments, the CM comprises the amino acid sequence SARGPSRW (SEQ ID NO: 357). In some embodiments, the CM comprises the amino acid sequence TARGPSFK (SEQ ID NO: 358). In some embodiments, the CM comprises the amino acid sequence GGWHTGRN (SEQ ID NO: 360). In some embodiments, the CM comprises the amino acid sequence HTGRSGAL (SEQ ID NO: 361). In some embodiments, the CM comprises the amino acid sequence AARGPAIH (SEQ ID NO: 363). In some embodiments, the CM comprises the amino acid sequence RGPAFNPM (SEQ ID NO: 364).
- the CM comprises the amino acid sequence SSRGPAYL (SEQ ID NO: 365). In some embodiments, the CM comprises the amino acid sequence RGPATPIM (SEQ ID NO: 366). In some embodiments, the CM comprises the amino acid sequence RGPA (SEQ ID NO: 367). In some embodiments, the CM comprises the amino acid sequence LSGRSGNH (SEQ ID NO: 789). In some embodiments, the CM comprises the amino acid sequence SGRSANPRG (SEQ ID NO: 790). In some embodiments, the CM comprises the amino acid sequence LSGRSDDH (SEQ ID NO: 791). In some embodiments, the CM comprises the amino acid sequence LSGRSDIH (SEQ ID NO: 792).
- the CM comprises the amino acid sequence LSGRSDQH (SEQ ID NO: 793). In some embodiments, the CM comprises the amino acid sequence LSGRSDTH (SEQ ID NO: 794). In some embodiments, the CM comprises the amino acid sequence LSGRSDYH (SEQ ID NO: 795). In some embodiments, the CM comprises the amino acid sequence LSGRSDNP (SEQ ID NO: 796). In some embodiments, the CM comprises the amino acid sequence LSGRSANP (SEQ ID NO: 797). In some embodiments, the CM comprises the amino acid sequence LSGRSANI (SEQ ID NO: 798). In some embodiments, the CM comprises the amino acid sequence LSGRSDNI (SEQ ID NO: 799).
- the CM comprises the amino acid sequence MIAPVAYR (SEQ ID NO: 800). In some embodiments, the CM comprises the amino acid sequence RPSPMWAY (SEQ ID NO: 801). In some embodiments, the CM comprises the amino acid sequence WATPRPMR (SEQ ID NO: 802). In some embodiments, the CM comprises the amino acid sequence FRLLDWQW (SEQ ID NO: 803). In some embodiments, the CM comprises the amino acid sequence ISSGL (SEQ ID NO: 804). In some embodiments, the CM comprises the amino acid sequence ISSGLLS (SEQ ID NO: 805). In some embodiments, the CM comprises the amino acid sequence and/or ISSGLL (SEQ ID NO: 806).
- the CM is a substrate for an MMP and includes the sequence ISSGLSS (SEQ ID NO: 376); QNQALRMA (SEQ ID NO: 377); AQNLLGMV (SEQ ID NO: 378); STFPFGMF (SEQ ID NO: 379); PVGYTSSL (SEQ ID NO: 380); DWLYWPGI (SEQ ID NO: 381), ISSGLLSS (SEQ ID NO: 382), LKAAPRWA (SEQ ID NO: 383); GPSHLVLT (SEQ ID NO: 384); LPGGLSPW (SEQ ID NO: 385); MGLFSEAG (SEQ ID NO: 386); SPLPLRVP (SEQ ID NO: 387); RMHLRSLG (SEQ ID NO: 388); LAAPLGLL (SEQ ID NO: 389); AVGLLAPP (SEQ ID NO: 390); LLAPSHRA (SEQ ID NO: 391); PAGLWLDP (SEQ ID NO: 392
- the CM comprises the amino acid sequence ISSGLSS (SEQ ID NO: 376). In some embodiments, the CM comprises the amino acid sequence QNQALRMA (SEQ ID NO: 377). In some embodiments, the CM comprises the amino acid sequence AQNLLGMV (SEQ ID NO: 378). In some embodiments, the CM comprises the amino acid sequence STFPFGMF (SEQ ID NO: 379). In some embodiments, the CM comprises the amino acid sequence PVGYTSSL (SEQ ID NO: 380). In some embodiments, the CM comprises the amino acid sequence DWLYWPGI (SEQ ID NO: 381). In some embodiments, the CM comprises the amino acid sequence ISSGLLSS (SEQ ID NO: 382).
- the CM comprises the amino acid sequence LKAAPRWA (SEQ ID NO: 383). In some embodiments, the CM comprises the amino acid sequence GPSHLVLT (SEQ ID NO: 384). In some embodiments, the CM comprises the amino acid sequence LPGGLSPW (SEQ ID NO: 385). In some embodiments, the CM comprises the amino acid sequence MGLFSEAG (SEQ ID NO: 386). In some embodiments, the CM comprises the amino acid sequence SPLPLRVP (SEQ ID NO: 387). In some embodiments, the CM comprises the amino acid sequence RMHLRSLG (SEQ ID NO: 388). In some embodiments, the CM comprises the amino acid sequence LAAPLGLL (SEQ ID NO: 389).
- the CM comprises the amino acid sequence AVGLLAPP (SEQ ID NO: 390). In some embodiments, the CM comprises the amino acid sequence LLAPSHRA (SEQ ID NO: 391). In some embodiments, the CM comprises the amino acid sequence PAGLWLDP (SEQ ID NO: 392). In some embodiments, the CM comprises the amino acid sequence ALAHGLF (SEQ ID NO: 424). In some embodiments, the CM comprises the amino acid sequence DLAHPLL (SEQ ID NO: 425). In some embodiments, the CM comprises the amino acid sequence AFRHLR (SEQ ID NO: 426). In some embodiments, the CM comprises the amino acid sequence PHGFFQ (SEQ ID NO: 427).
- the CM comprises the amino acid sequence SVHHLI (SEQ ID NO: 428). In some embodiments, the CM comprises the amino acid sequence RGPKLYW (SEQ ID NO: 429). In some embodiments, the CM comprises the amino acid sequence RFPYGVW (SEQ ID NO: 430). In some embodiments, the CM comprises the amino acid sequence HVPRQV (SEQ ID NO: 431). In some embodiments, the CM comprises the amino acid sequence SNPFKY (SEQ ID NO: 432). In some embodiments, the CM comprises the amino acid sequence RFPLKV (SEQ ID NO: 433). In some embodiments, the CM comprises the amino acid sequence PFHLSR (SEQ ID NO: 434).
- the CM comprises the amino acid sequence STVFHM (SEQ ID NO: 435). In some embodiments, the CM comprises the amino acid sequence MGPWFM (SEQ ID NO: 436). In some embodiments, the CM comprises the amino acid sequence RHLAKL (SEQ ID NO: 437). In some embodiments, the CM comprises the amino acid sequence PLGVRGK (SEQ ID NO: 438). In some embodiments, the CM comprises the amino acid sequence QNQALRIA (SEQ ID NO: 439). [000210] In some embodiments, the CM is a substrate for thrombin.
- the CM is a substrate for thrombin and includes the sequence GPRSFGL (SEQ ID NO: 393) or GPRSFG (SEQ ID NO: 394). In some embodiments, the CM comprises the amino acid sequence GPRSFGL (SEQ ID NO: 393). In some embodiments, the CM comprises the amino acid sequence GPRSFG (SEQ ID NO: 394).
- the CM comprises an amino acid sequence selected from the group consisting of NTLSGRSENHSG (SEQ ID NO: 395); NTLSGRSGNHGS (SEQ ID NO: 396); TSTSGRSANPRG (SEQ ID NO: 397); TSGRSANP (SEQ ID NO: 398); VAGRSMRP (SEQ ID NO: 399); VVPEGRRS (SEQ ID NO: 400); ILPRSPAF (SEQ ID NO: 401); MVLGRSLL (SEQ ID NO: 402); QGRAITFI (SEQ ID NO: 403); SPRSIMLA (SEQ ID NO: 404); and SMLRSMPL (SEQ ID NO: 405).
- NTLSGRSENHSG SEQ ID NO: 395
- NTLSGRSGNHGS SEQ ID NO: 396
- TSTSGRSANPRG SEQ ID NO: 397
- TSGRSANP SEQ ID NO: 398
- VAGRSMRP SEQ ID NO: 399
- VVPEGRRS SEQ ID
- the CM comprises the amino acid sequence NTLSGRSENHSG (SEQ ID NO: 395). In some embodiments, the CM comprises the amino acid sequence NTLSGRSGNHGS (SEQ ID NO: 396). In some embodiments, the CM comprises the amino acid sequence TSTSGRSANPRG (SEQ ID NO: 397). In some embodiments, the CM comprises the amino acid sequence TSGRSANP (SEQ ID NO: 398). In some embodiments, the CM comprises the amino acid sequence VAGRSMRP (SEQ ID NO: 399). In some embodiments, the CM comprises the amino acid sequence VVPEGRRS (SEQ ID NO: 400).
- the CM comprises the amino acid sequence ILPRSPAF (SEQ ID NO: 401). In some embodiments, the CM comprises the amino acid sequence MVLGRSLL (SEQ ID NO: 402). In some embodiments, the CM comprises the amino acid sequence QGRAITFI (SEQ ID NO: 403). In some embodiments, the CM comprises the amino acid sequence SPRSIMLA (SEQ ID NO: 404). In some embodiments, the CM comprises the amino acid sequence SMLRSMPL (SEQ ID NO: 405). [000213] In some embodiments, the CM is a substrate for a neutrophil elastase. In some embodiments, the CM is a substrate for a serine protease.
- the CM is a substrate for uPA. In some embodiments, the CM is a substrate for legumain. In some embodiments, the CM is a substrate for matriptase. In some embodiments, the CM is a substrate for a cysteine protease. In some embodiments, the CM is a substrate for a cysteine protease, such as a cathepsin.
- the CM is a CM1-CM2 substrate and includes the sequence ISSGLLSGRSDNH (SEQ ID NO: 406); ISSGLLSSGGSGGSLSGRSDNH (SEQ ID NO: 407); AVGLLAPPGGTSTSGRSANPRG (SEQ ID NO: 408); TSTSGRSANPRGGGAVGLLAPP (SEQ ID NO: 409); VHMPLGFLGPGGTSTSGRSANPRG (SEQ ID NO: 410); TSTSGRSANPRGGGVHMPLGFLGP (SEQ ID NO: 411); AVGLLAPPGGLSGRSDNH (SEQ ID NO: 412); LSGRSDNHGGAVGLLAPP (SEQ ID NO: 413); VHMPLGFLGPGGLSGRSDNH (SEQ ID NO: 414); LSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 415); LSGRSDNHGGSGGSISSGLLSS (SEQ ID NO: 416); LSGRSGNHGGSGGSISSGLLSS (SEQ ID NO: 416); L
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSDNH (SEQ ID NO: 406), which is also referred to herein as substrate 2001.
- the CM1-CM2 substrate includes the sequence ISSGLLSSGGSGGSLSGRSDNH (SEQ ID NO: 407), which is also referred to herein as substrate 1001/LP'/0001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGTSTSGRSANPRG (SEQ ID NO: 408), which is also referred to herein as substrate 2015 and/or substrate 1004/LP'/0003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence TSTSGRSANPRGGGAVGLLAPP (SEQ ID NO: 409), which is also referred to herein as substrate 0003/LP'/1004, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence VHMPLGFLGPGGTSTSGRSANPRG (SEQ ID NO: 410), which is also referred to herein as substrate 1003/ LP'/0003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence TSTSGRSANPRGGGVHMPLGFLGP (SEQ ID NO: 411), which is also referred to herein as substrate 0003/LP'/1003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDNH (SEQ ID NO: 412), which is also referred to herein as substrate 3001 and/or substrate 1004/LP'/0001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence LSGRSDNHGGAVGLLAPP (SEQ ID NO: 413), which is also referred to herein as substrate 0001/LP'/1004, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence VHMPLGFLGPGGLSGRSDNH (SEQ ID NO: 414), which is also referred to herein as substrate 1003/LP’/0001, wherein LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence LSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 415), which is also referred to herein as substrate 0001/ LP'/1003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence LSGRSDNHGGSGGSISSGLLSS (SEQ ID NO: 416), which is also referred to herein as substrate 0001/LP'/1001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence LSGRSGNHGGSGGSISSGLLSS (SEQ ID NO: 417), which is also referred to herein as substrate 0002/LP'/1001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence ISSGLLSSGGSGGSLSGRSGNH (SEQ ID NO: 418), which is also referred to herein as substrate 1001/LP'/0002, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence LSGRSDNHGGSGGSQNQALRMA (SEQ ID NO: 419), which is also referred to herein as substrate 0001/LP'/1002, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence QNQALRMAGGSGGSLSGRSDNH (SEQ ID NO: 420), which is also referred to herein as substrate 1002/LP'/0001, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence LSGRSGNHGGSGGSQNQALRMA (SEQ ID NO: 421), which is also referred to herein as substrate 0002/LP'/1002, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence QNQALRMAGGSGGSLSGRSGNH (SEQ ID NO: 422), which is also referred to herein as substrate 1002/LP'/0002, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GGSGGS (SEQ ID NO: 133).
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSGNH (SEQ ID NO: 423), which is also referred to herein as substrate 2002.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSANPRG (SEQ ID NO: 680), which is also referred to herein as substrate 2003.
- the CM1-CM2 substrate includes the sequence AVGLLAPPTSGRSANPRG (SEQ ID NO: 681), which is also referred to herein as substrate 2004.
- the CM1-CM2 substrate includes the sequence AVGLLAPPSGRSANPRG (SEQ ID NO: 682), which is also referred to herein as substrate 2005.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSDDH (SEQ ID NO: 683), which is also referred to herein as substrate 2006.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSDIH (SEQ ID NO: 684), which is also referred to herein as substrate 2007.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSDQH (SEQ ID NO: 685), which is also referred to herein as substrate 2008.
- the CM1- CM2 substrate includes the sequence ISSGLLSGRSDTH (SEQ ID NO: 686), which is also referred to herein as substrate 2009.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSDYH (SEQ ID NO: 687), which is also referred to herein as substrate 2010.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSDNP (SEQ ID NO: 688), which is also referred to herein as substrate 2011.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSANP (SEQ ID NO: 689), which is also referred to herein as substrate 2012.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSANI (SEQ ID NO: 690), which is also referred to herein as substrate 2013.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDDH (SEQ ID NO: 691), which is also referred to herein as substrate 3006.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDIH (SEQ ID NO: 692), which is also referred to herein as substrate 3007.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDQH (SEQ ID NO: 693), which is also referred to herein as substrate 3008.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDTH (SEQ ID NO: 694), which is also referred to herein as substrate 3009.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDYH (SEQ ID NO: 695), which is also referred to herein as substrate 3010.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDNP (SEQ ID NO: 696), which is also referred to herein as substrate 3011.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSANP (SEQ ID NO: 697), which is also referred to herein as substrate 3012.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSANI (SEQ ID NO: 698), which is also referred to herein as substrate 3013.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSDNI (SEQ ID NO: 713), which is also referred to herein as substrate 2014.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSDNI (SEQ ID NO: 714), which is also referred to herein as substrate 3014.
- the CM1-CM2 substrate includes the sequence GLSGRSDNHGGAVGLLAPP (SEQ ID NO: 807), which is also referred to herein as substrate 0001/LP'/1004, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM1-CM2 substrate includes the sequence GLSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 808), which is also referred to herein as substrate 0001/LP'/1003, where LP' as used in this CM1-CM2 substrate is the amino acid sequence GG.
- the CM is a CM1-CM2 substrate and includes the sequence LSGRSALAHGLF (SEQ ID NO: 440); ALAHGLFSGRSAN (SEQ ID NO: 441); HVPRQVLSGRS (SEQ ID NO: 442); HVPRQVLSGRSAN (SEQ ID NO: 443); TARGPALAHGLF (SEQ ID NO: 444); TARGPVPRQV (SEQ ID NO: 445); APRSALAHGLF (SEQ ID NO: 446); ALAHGLFAPRSF (SEQ ID NO: 447); HVPRQVAPRSF (SEQ ID NO: 448); ALAHGLPTFVHL (SEQ ID NO: 449); GLPTFVHLPRQV (SEQ ID NO: 450); AANALAHGLF (SEQ ID NO: 451); GPTNALAHGLF (SEQ ID NO: 452); ISSGLLSGRSNI (SEQ ID NO: 453); AVGLLAPPGGLSGRSNI (SEQ ID NO: 453);
- the CM is a CM1-CM2 substrate and includes the sequence LSGRSALAHGLF (SEQ ID NO: 440), which is also referred to herein as substrate 5001.
- the CM is a CM1-CM2 substrate and includes the sequence ALAHGLFSGRSAN (SEQ ID NO: 441), which is also referred to herein as substrate 5002.
- the CM1-CM2 substrate includes the sequence HVPRQVLSGRS (SEQ ID NO: 442), which is also referred to herein as substrate 5003.
- the CM1- CM2 substrate includes the sequence HVPRQVLSGRSAN (SEQ ID NO: 443), which is also referred to herein as substrate 5004.
- the CM1-CM2 substrate includes the sequence TARGPALAHGLF (SEQ ID NO: 444), which is also referred to herein as substrate 5005.
- the CM1-CM2 substrate includes the sequence TARGPVPRQV (SEQ ID NO: 445), which is also referred to herein as substrate 5006.
- the CM1-CM2 substrate includes the sequence APRSALAHGLF (SEQ ID NO: 446), which is also referred to herein as substrate 5007.
- the CM1-CM2 substrate includes the sequence ALAHGLFAPRSF (SEQ ID NO: 447), which is also referred to herein as substrate 5008.
- the CM1-CM2 substrate includes the sequence HVPRQVAPRSF (SEQ ID NO: 448), which is also referred to herein as substrate 5009.
- the CM1-CM2 substrate includes the sequence ALAHGLPTFVHL (SEQ ID NO: 449), which is also referred to herein as substrate 5010.
- the CM1-CM2 substrate includes the sequence GLPTFVHLPRQV (SEQ ID NO: 450), which is also referred to herein as substrate 5011.
- the CM1-CM2 substrate includes the sequence AANALAHGLF (SEQ ID NO: 451), which is also referred to herein as substrate 5012.
- the CM1-CM2 substrate includes the sequence GPTNALAHGLF (SEQ ID NO: 452), which is also referred to herein as substrate 5013.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSNI (SEQ ID NO: 453), which is also referred to herein as substrate 5014.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSNI (SEQ ID NO: 454), which is also referred to herein as substrate 5015.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSNIGS (SEQ ID NO: 455), which is also referred to herein as substrate 5016.
- the CM1- CM2 substrate includes the sequence AVGLLAPPGGLSGRSNIGS (SEQ ID NO: 456), which is also referred to herein as substrate 5017.
- the CM1-CM2 substrate includes the sequence ISSGLLSGRSNIG (SEQ ID NO: 457), which is also referred to herein as substrate 5018.
- the CM1-CM2 substrate includes the sequence AVGLLAPPGGLSGRSNIG (SEQ ID NO: 458), which is also referred to herein as substrate 5019.
- the CM is a substrate for at least two proteases.
- each protease is selected from the group consisting of those shown in Table A.
- the CM is a substrate for at least two proteases, wherein one of the proteases is selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain and matriptase and the other protease is selected from the group consisting of those shown in Table A.
- the CM is a substrate for at least two proteases selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain and matriptase.
- the activatable antibody includes at least a first CM and a second CM.
- the first CM and the second CM are each polypeptides of no more than 15 amino acids long.
- the first CM and the second CM in the activatable antibody in the uncleaved state have the structural arrangement from N-terminus to C-terminus as follows: MM-CM1-CM2-AB or AB-CM2-CM1-MM.
- at least one of the first CM and the second CM is a polypeptide that functions as a substrate for a protease selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase.
- the first CM is cleaved by a first cleaving agent selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase in a target tissue and the second CM is cleaved by a second cleaving agent in a target tissue.
- a first cleaving agent selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase in a target tissue
- the second CM is cleaved by a second cleaving agent in a target tissue.
- the other protease is selected from the group consisting of those shown in Table A.
- the first cleaving agent and the second cleaving agent are the same protease selected from the group consisting of a MMP, thrombin, a neutrophil elastase, a cysteine protease, uPA, legumain, and matriptase, and the first CM and the second CM are different substrates for the enzyme.
- the first cleaving agent and the second cleaving agent are the same protease selected from the group consisting of those shown in Table A.
- the first cleaving agent and the second cleaving agent are different proteases.
- the first cleaving agent and the second cleaving agent are co-localized in the target tissue.
- the first CM and the second CM are cleaved by at least one cleaving agent in the target tissue.
- the activatable antibody is exposed to and cleaved by a protease such that, in the activated or cleaved state, the activated antibody includes a light chain amino acid sequence that includes at least a portion of LP2 and/or CM sequence after the protease has cleaved the CM.
- Suitable activatable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD47 and/or cynomolgus monkey CD47 as a CD47 antibody comprising a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- Suitable activatable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that binds to the same epitope on human CD47 and/or cynomolgus monkey CD47 as a CD47 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or
- Suitable activatable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD47 and/or cynomolgus monkey CD47 to a CD47 antibody comprising a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- Suitable activatable CD47 antibodies of the disclosure also include an antibody or antigen binding fragment thereof that cross-competes for binding to (inhibits the binding of) human CD47 and/or cynomolgus monkey CD47 to a CD47 antibody comprising a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ
- the activatable CD47 antibody is an activatable antibody that, in an activated state, binds CD47 comprising: an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically binds human CD47 and cynomolgus monkey CD47; a masking moiety (MM) that inhibits the binding of the AB to CD47 when the activatable antibody is in an uncleaved state; and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
- AB antibody or an antigen binding fragment thereof
- MM masking moiety
- CM cleavable moiety
- the MM has a dissociation constant for binding to the AB that is greater than the dissociation constant of the AB to CD47. In some embodiments, the MM does not interfere or compete with the AB for binding to CD47 when the activatable antibody is in a cleaved state. In some embodiments, the MM is a polypeptide of no more than 40 amino acids in length. In some embodiments, the MM polypeptide sequence is different from that of human CD47. In some embodiments, the MM polypeptide sequence is no more than 50% identical to any natural binding partner of the AB. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 16-109.
- the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 107-109.
- the CM is a substrate for a protease that is active in diseased tissue.
- the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-458, 680-698, 713, 714, and 789-808.
- the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-425, 429, 430, 446, 447, 450, 680-698, 713, 714, and 807-808.
- the activatable antibody comprises an antigen binding fragment thereof is selected from the group consisting of a Fab fragment, a F(ab’)2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody.
- the AB of the activatable antibody specifically binds human CD47.
- the AB comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQSIVHSSGQTYLE (SEQ ID NO: 55) or RSSQSIVHSSGSTYLE (SEQ ID NO: 56); a VL CDR2 sequence comprising the amino acid sequence RVSKRFS
- the AB comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the AB is linked to the CM.
- the AB is linked directly to the CM.
- the AB is linked to the CM via a linking peptide.
- the MM is linked to the CM such that the activatable antibody in an uncleaved state comprises the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM.
- the activatable antibody comprises a linking peptide between the MM and the CM.
- the activatable antibody comprises a linking peptide between the CM and the AB.
- the activatable antibody comprises a first linking peptide (LP1) and a second linking peptide (LP2), and wherein the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-LP1-CM-LP2-AB or AB-LP2-CM-LP1-MM.
- the two linking peptides need not be identical to each other.
- each of LP1 and LP2 is a peptide of about 1 to 20 amino acids in length.
- the activatable antibody comprises the heavy chain sequence selected from the group consisting of SEQ ID NOs: 11-14 and a light chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 15, 41-54, 61-74, 81-94, and 16-114.
- the activatable antibody comprises a combination of amino acid sequences, wherein the combination of amino acid sequences is selected from a single row in Table B, wherein for a given combination, (a) the heavy chain of the AB comprises the amino acid sequences of the VH CDR sequences corresponding to the given combination in the single row listed in Table B, (b) the light chain of the AB comprises the amino acid sequences of the VL CDR sequences corresponding to the given combination in the single row listed in Table B, (c) the MM comprises the amino acid sequence of the mask sequence (MM) corresponding to the given combination in the single row listed in Table B, and (d) the CM comprises the amino acid sequence of the substrate sequence (CM) corresponding to the given combination in the single row listed in Table B.
- the activatable antibody comprises a combination of amino acid sequences, wherein for a given combination of amino acid sequences, (a) the heavy chain of the AB comprises the amino acid sequences of the VH sequence or VH CDR sequences selected from the group consisting of: the VH sequence or VH CDR sequences listed in the corresponding column of Table C, (b) the light chain of the AB comprises the amino acid sequences of the VL sequence or VL CDR sequences selected from the group consisting of: the VL sequence or VL CDR sequences listed in the corresponding column of Table C, (c) the MM comprises the amino acid sequence of the mask sequence (MM) selected from the group consisting of: the MM sequences listed in the corresponding column of Table C, and (d) the CM comprises the amino acid sequence of the substrate sequence (CM) selected from the group consisting of: the CM sequences listed in the corresponding column of Table C.
- the heavy chain of the AB comprises the amino acid sequences of the VH sequence or VH CDR sequences selected from
- the activatable CD47 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, a MM, and a CM, wherein the activatable antibody comprises: a heavy chain sequence of SEQ ID NOs: 11-14; and a light chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 15, 41-54, 61-74, 81-94, and 16-114.
- AB antigen binding fragment thereof
- the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 16-29
- the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-425, 429, 430, 446, 447, 450, 680-698, 713, 714, and 807-808.
- the AB comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQSIVHSSGQTYLE (SEQ ID NO: 55) or RSSQSIVHSSGSTYLE (SEQ ID NO: 56); a VL CDR2 sequence comprising the amino acid sequence RVSKRFS
- the AB comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the activatable CD47 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, a MM comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 16-29, and a CM comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-458, 680-698, 713, 714, and 789-808.
- the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 16-29
- the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-425, 429, 430, 446, 447, 450, 680-698, 713, 714, and 807-808.
- the AB comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQSIVHSSGQTYLE (SEQ ID NO: 55) or RSSQSIVHSSGSTYLE (SEQ ID NO: 56); a VL CDR2 sequence comprising the amino acid sequence RVSKRFS
- the AB comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the activatable CD47 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically binds to the same epitope on human CD47 and/or cynomolgus monkey CD47 as an isolated antibody of the disclosure; a masking moiety (MM) that inhibits the binding of the AB to CD47 when the activatable antibody is in an uncleaved state; and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
- AB antigen binding fragment thereof
- the CD47 activatable antibody of the disclosure comprises an isolated antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically binds human CD47 and cynomolgus monkey CD47.
- AB antigen binding fragment thereof
- the antibody or antigen binding fragment thereof comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQSIVHSSGQTYLE (SEQ ID NO: 55) or RSSQSIVHSSGSTYLE (SEQ ID NO: 56); a VL CDR2 sequence comprising the amino acid sequence GYT
- the AB comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the activatable CD47 antibody comprises an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically cross-competes with (inhibits the binding of) an isolated antibody of the disclosure for binding to human CD47 and/or cynomolgus monkey CD47; a masking moiety (MM) that inhibits the binding of the AB to CD47 when the activatable antibody is in an uncleaved state; and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
- AB antigen binding fragment thereof
- the CD47 activatable antibody of the disclosure comprises an isolated antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically binds human CD47 and cynomolgus monkey CD47.
- AB antigen binding fragment thereof
- the antibody or antigen binding fragment thereof comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQSIVHSSGQTYLE (SEQ ID NO: 55) or RSSQSIVHSSGSTYLE (SEQ ID NO: 56); a VL CDR2 sequence comprising the amino acid sequence GYT
- the AB comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the activatable antibody also includes an agent conjugated to the AB.
- the agent conjugated to the AB or the AB of an activatable antibody is a therapeutic agent.
- the agent is an antineoplastic agent.
- the agent is a toxin or fragment thereof. As used herein, a fragment of a toxin is a fragment that retains toxic activity.
- the agent is conjugated to the AB via a cleavable linker.
- the agent is conjugated to the AB via a linker that includes at least one CM1-CM2 substrate sequence. In some embodiments, the agent is conjugated to the AB via a noncleavable linker. In some embodiments, the agent is conjugated to the AB via a linker that is cleavable in an intracellular or lysosomal environment. In some embodiments, the agent is a microtubule inhibitor. In some embodiments, the agent is a nucleic acid damaging agent, such as a DNA alkylator, a DNA cleaving agent, a DNA cross-linker, a DNA intercalator, or other DNA damaging agent. In some embodiments, the agent is an agent selected from the group listed in Table E.
- the agent is a dolastatin. In some embodiments, the agent is an auristatin or derivative thereof. In some embodiments, the agent is auristatin E or a derivative thereof. In some embodiments, the agent is monomethyl auristatin E (MMAE). In some embodiments, the agent is monomethyl auristatin D (MMAD). In some embodiments, the agent is a maytansinoid or maytansinoid derivative. In some embodiments, the agent is DM1 or DM4. In some embodiments, the agent is a duocarmycin or derivative thereof. In some embodiments, the agent is a calicheamicin or derivative thereof. In some embodiments, the agent is a pyrrolobenzodiazepine.
- the agent is a pyrrolobenzodiazepine dimer.
- the activatable antibody is conjugated to one or more equivalents of an agent. In some embodiments, the activatable antibody is conjugated to one equivalent of the agent. In some embodiments, the activatable antibody is conjugated to two, three, four, five, six, seven, eight, nine, ten, or greater than ten equivalents of the agent. In some embodiments, the activatable antibody is part of a mixture of activatable antibodies having a homogeneous number of equivalents of conjugated agents. In some embodiments, the activatable antibody is part of a mixture of activatable antibodies having a heterogeneous number of equivalents of conjugated agents.
- the mixture of activatable antibodies is such that the average number of agents conjugated to each activatable antibody is between zero to one, between one to two, between two and three, between three and four, between four and five, between five and six, between six and seven, between seven and eight, between eight and nine, between nine and ten, and ten and greater. In some embodiments, the mixture of activatable antibodies is such that the average number of agents conjugated to each activatable antibody is one, two, three, four, five, six, seven, eight, nine, ten, or greater.
- the activatable antibody comprises one or more site-specific amino acid sequence modifications such that the number of lysine and/or cysteine residues is increased or decreased with respect to the original amino acid sequence of the activatable antibody, thus in some embodiments correspondingly increasing or decreasing the number of agents that can be conjugated to the activatable antibody, or in some embodiments limiting the conjugation of the agents to the activatable antibody in a site-specific manner.
- the modified activatable antibody is modified with one or more non-natural amino acids in a site-specific manner, thus in some embodiments limiting the conjugation of the agents to only the sites of the non-natural amino acids.
- the agent is an anti-inflammatory agent.
- the activatable antibody also includes a detectable moiety. In some embodiments, the detectable moiety is a diagnostic agent. [000244] In some embodiments, the activatable antibody also includes a signal peptide. In some embodiments, the signal peptide is conjugated to the activatable antibody via a spacer. In some embodiments, the spacer is conjugated to the activatable antibody in the absence of a signal peptide. In some embodiments, the spacer is joined directly to the MM of the activatable antibody. In some embodiments, the spacer is joined directly to the MM of the activatable antibody in the structural arrangement from N-terminus to C-terminus of spacer-MM-CM-AB.
- QGQSGQ SEQ ID NO: 31
- Other examples of a spacer joined directly to the N-terminus of MM of the activatable antibody include QGQSGQG (SEQ ID NO: 30), QGQSG (SEQ ID NO: 32), QGQS (SEQ ID NO: 33), QGQ, QG, and Q.
- Other examples of a spacer joined directly to the N-terminus of MM of the activatable antibody include GQSGQG (SEQ ID NO: 34), QSGQG (SEQ ID NO: 35), SGQG (SEQ ID NO: 36), GQG, and G.
- the spacer includes at least the amino acid sequence QGQSGQ (SEQ ID NO: 31). In some embodiments, the spacer includes at least the amino acid sequence QGQSGQG (SEQ ID NO: 30). In some embodiments, the spacer includes at least the amino acid sequence QGQSG (SEQ ID NO: 32). In some embodiments, the spacer includes at least the amino acid sequence QGQS (SEQ ID NO: 33). In some embodiments, the spacer includes at least the amino acid sequence QGQ. In some embodiments, the spacer includes at least the amino acid sequence QG. In some embodiments, the spacer includes at least the amino acid residue Q.
- the spacer includes at least the amino acid sequence GQSGQG (SEQ ID NO: 34). In some embodiments, the spacer includes at least the amino acid sequence QSGQG (SEQ ID NO: 35). In some embodiments, the spacer includes at least the amino acid sequence SGQG (SEQ ID NO: 36). In some embodiments, the spacer includes at least the amino acid sequence GQG. In some embodiments, the spacer includes at least the amino acid sequence G. In some embodiments, the spacer is absent. [000245] In some embodiments, the AB of the activatable antibody naturally contains one or more disulfide bonds. In some embodiments, the AB can be engineered to include one or more disulfide bonds.
- activatable antibody or antigen binding fragment thereof is conjugated to an agent.
- the activatable antibody comprises an antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO:
- the activatable antibody comprises an antibody or antigen binding fragment thereof cross-competes with (inhibits the binding of) an isolated antibody that comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the agent is a toxin or fragment thereof.
- the agent is a microtubule inhibitor.
- the agent is a nucleic acid damaging agent.
- the agent is selected from the group consisting of a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, and a pyrrolobenzodiazepine or a derivative thereof.
- the agent is auristatin E or a derivative thereof.
- the agent is monomethyl auristatin E (MMAE).
- the agent is monomethyl auristatin D (MMAD).
- the agent is a maytansinoid selected from the group consisting of DM1 and DM4.
- the agent is maytansinoid DM4. In some embodiments, the agent is duocarmycin. In some embodiments, the agent is conjugated to the AB via a linker. In some embodiments, the linker with which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety. In some embodiments, the linker and toxin conjugated to the AB comprises an SPDB-DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2-vc-MMAD moiety. In some embodiments, the linker is a cleavable linker.
- the linker is a non-cleavable linker.
- the agent is a detectable moiety.
- the detectable moiety is a diagnostic agent.
- the conjugated activatable antibody comprises a conjugated activatable antibody that, in an activated state, binds CD47 comprising: an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically binds human CD47 and cynomolgus monkey CD47; a masking moiety (MM) that inhibits the binding of the AB to CD47 when the activatable antibody is in an uncleaved state; a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease; and an agent conjugated to the AB.
- AB antibody or an antigen binding fragment thereof
- MM masking moiety
- CM cleavable moiety
- the agent is selected from the group consisting of a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, and a pyrrolobenzodiazepine or a derivative thereof.
- the agent is selected from the group consisting of auristatin E, monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE), monomethyl auristatin D (MMAD), maytansinoid DM4, maytansinoid DM1, a duocarmycin, a pyrrolobenzodiazepine, and a pyrrolobenzodiazepine dimer.
- the agent is conjugated to the AB via a linker.
- the linker with which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety.
- the linker and toxin conjugated to the AB comprises an SPDB-DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2-vc- MMAD moiety.
- the AB of the conjugated activatable antibody or antigen binding fragment thereof comprises the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VL CDR1 sequence comprising the amino acid sequence RSSQSIVHSNGNTYLE (SEQ ID NO: 8) or RSSQSIVHSSGNTYLE (SEQ ID NO: 40) or RSSQSIVHSSGQTYLE (SEQ ID NO: 55) or RSSQSIVHSSGSTYLE (SEQ ID NO: 56); a VL
- the AB of the conjugated activatable antibody or antigen binding fragment thereof comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1, and a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 16- 29.
- the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 17, 23, 24, 25, 27, and 28.
- the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-458, 680-698, 713, 714, and 789-808.
- the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-425, 429, 430, 446, 447, 450, 680-698, 713, 714, and 807-808.
- the activatable antibody comprises a combination of amino acid sequences, wherein the combination of amino acid sequences is selected from a single row in Table B, wherein for a given combination, (a) the heavy chain of the AB comprises the amino acid sequences of the VH CDR sequences corresponding to the given combination in the single row listed in Table B, (b) the light chain of the AB comprises the amino acid sequences of the VL CDR sequences corresponding to the given combination in the single row listed in Table B, (c) the MM comprises the amino acid sequence of the mask sequence (MM) corresponding to the given combination in the single row listed in Table B, and (d) the CM comprises the amino acid sequence of the substrate sequence (CM) corresponding to the given combination in the single row listed in Table B.
- the activatable antibody comprises a combination of amino acid sequences, wherein for a given combination of amino acid sequences, (a) the heavy chain of the AB comprises the amino acid sequences of the VH sequence or VH CDR sequences selected from the group consisting of: the VH sequence or VH CDR sequences listed in the corresponding column of Table C, (b) the light chain of the AB comprises the amino acid sequences of the VL sequence or VL CDR sequences selected from the group consisting of: the VL sequence or VL CDR sequences listed in the corresponding column of Table C, (c) the MM comprises the amino acid sequence of the mask sequence (MM) selected from the group consisting of: the MM sequences listed in the corresponding column of Table C, and (d) the CM comprises the amino acid sequence of the substrate sequence (CM) selected from the group consisting of: the CM sequences listed in the corresponding column of Table C.
- the heavy chain of the AB comprises the amino acid sequences of the VH sequence or VH CDR sequences selected from
- the activatable antibody comprises: a heavy chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4; and a light chain comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 15, 41-54, 61-74, 81-94, and 16-114.
- the conjugated activatable antibody comprises a conjugated activatable antibody that, in an activated state, binds to CD47, comprising: an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB specifically binds human CD47 and cynomolgus monkey CD47; a masking moiety (MM) that inhibits the binding of the AB to CD47 when the activatable antibody is in an uncleaved state; a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease; and an agent conjugated to the AB, wherein the AB comprises: (i) the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (AB) that specifically binds to ma
- the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 16-29. In some embodiments, the MM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 17, 23, 24, 25, 27, and 28. In some embodiments, the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 356-458, 680-698, 713, 714, and 789-808. In some embodiments, the CM comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 359, 370, 377, 382, 390, 397, 406-425, 429, 430, 446, 447, 450, 680-698, 713, 714, and 807-808.
- the agent is conjugated to the AB via a linker, and wherein the linker to which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety.
- the linker and toxin conjugated to the AB comprises an SPDB- DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2-vc-MMAD moiety.
- the conjugated activatable antibody comprises a conjugated activatable antibody comprising: an antibody or antigen binding fragment thereof (AB) that, in an activated state, binds CD47; and a toxin conjugated to the AB via a linker, wherein the conjugated activatable antibody comprises amino acid sequences, a linker, and a toxin selected from a single row in Table D, wherein for the given combination: (a) the AB comprises a heavy chain comprising the amino acid sequence of the heavy chain sequence or heavy chain variable domain sequence corresponding to the given combination in the single row listed in Table D, (b) the AB comprises a light chain comprising the amino acid sequence of the light chain sequence or light chain variable domain sequence corresponding to the given combination in the single row listed in Table D, and (c) the linker and the toxin comprise the linker and the toxin corresponding to the given combination in the single row listed in Table D.
- AB antibody or antigen binding fragment thereof
- the conjugated activatable antibody comprises amino acid sequences,
- the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a heavy chain variable region amino acid sequence of SEQ ID NO: 1. In some embodiments, the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence encoding a light chain variable region amino acid sequence of SEQ ID NO: 2.
- the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a heavy chain variable region amino acid sequence of SEQ ID NO: 1.
- the activatable antibody is encoded by a nucleic acid sequence that comprises a nucleic acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequence encoding a light variable region chain amino acid of SEQ ID NO: 2.
- the disclosure also provides methods for producing an activatable antibody of the disclosure by culturing a cell under conditions that lead to expression of the activatable antibody, wherein the cell comprises a nucleic acid molecule of the disclosure or a vector of the disclosure.
- the disclosure also provides methods of manufacturing an activatable antibody that, in an activated state, binds CD47, the method comprising: (a) culturing a cell comprising a nucleic acid construct that encodes the activatable antibody under conditions that lead to expression of the activatable antibody, wherein the activatable antibody comprises an activatable antibody of the disclosure; and (b) recovering the activatable antibody.
- the activatable antibody includes one or more polypeptides that include the combination of sequences in a given row of Table B or any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table C.
- Table B CD47 Activatable Antibody Combinations
- Table C CD47 Activatable Antibody Components
- an activatable antibody of the present disclosure includes one or more polypeptides that include the combination of sequences selected from Table B or Table C, where the polypeptide includes a combination of a masking sequence selected from the column titled “Mask Sequence (MM)” of Table B or Table C, a substrate sequence from the column titled “Substrate Sequence (CM)” of Table B or Table C, a light chain variable domain or light chain CDRs from the column titled “VL or VL CDRs” or “VL CDRs SEQ ID NOs” of Table B or Table C, and a heavy chain variable domain or heavy chain CDRs from the column titled “VH or VH CDRs” or “VH CDRs SEQ ID Nos” of Table B or Table C.
- MM Mesk Sequence
- CM Substrate Sequence
- an activatable antibody of the present disclosure may include the amino acid sequences of combination no.147, which includes the masking sequence of SEQ ID NO: 17, the substrate sequence of SEQ ID NO: 412, a light chain variable domain that includes the VL CDR sequences of SEQ ID NOs: 15, 16, and 18, and a heavy chain variable domain that includes the VH CDR sequences of 11, 12, and 13. Therefore, an activatable antibody that includes at least the combination of sequences in any given row of Table B is described herein. Similarly, any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table C is described herein.
- An activatable antibody that includes at least any combination of a masking sequence, a substrate sequence, a variable heavy chain or variable heavy chain CDRs, and a variable light chain or variable light chain CDRs selected from the corresponding columns Table B or Table C is also described herein.
- an activatable antibody that includes at least the combination of sequences in any given row of Table B or any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table C can be combined with one or more toxins, including a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, or a pyrrolobenzodiazepine or a derivative thereof.
- toxins including a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, or a pyrrolobenzodiazepine or a derivative thereof.
- an activatable antibody that includes at least the combination of sequences in any given row of Table B or any combination of a mask sequence (MM), a substrate sequence (CM), a light chain variable domain sequence or light chain variable domain CDR sequences, and a heavy chain variable domain sequence or heavy chain variable domain CDR sequences of Table C can be combined with one or more toxins, including auristatin E, monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE), monomethyl auristatin D (MMAD), maytansinoid DM4, maytansinoid DM1, a pyrrolobenzodiazepine, a pyrrolobenzodiazepine dimer, and/or a duocarmycin.
- auristatin E monomethyl auristatin F
- MMAE monomethyl auristatin E
- MMAD monomethyl auristatin D
- maytansinoid DM4 maytansinoid DM1, a pyrrolobenzodia
- any of the combinations in Table B or Table C as described above can be combined with human immunoglobulin constant regions to result in fully human IgGs including IgG1, IgG2, IgG4 or mutated constant regions to result in human IgGs with altered functions such as IgG1 N297A, IgG1 N297Q, or IgG4 S228P.
- any mask sequence disclosed herein can be used in a combination.
- any CM disclosed herein can be used in a combination.
- any light chain variable region sequence or light chain CDR sequences disclosed herein can be used in a combination.
- any heavy chain variable region sequence or heavy chain CDR sequences disclosed herein can be used in a combination.
- the serum half-life of the activatable antibody is longer than that of the corresponding antibody, e.g., the pK of the activatable antibody is longer than that of the corresponding antibody. In some embodiments, the serum half-life of the activatable antibody is similar to that of the corresponding antibody.
- the serum half- life of the activatable antibody is at least 15 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 12 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 11 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 10 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 9 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 8 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 7 days when administered to an organism.
- the serum half-life of the activatable antibody is at least 6 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 5 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 4 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 3 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 2 days when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 24 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 20 hours when administered to an organism.
- the serum half-life of the activatable antibody is at least 18 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 16 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 14 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 12 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 10 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 8 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 6 hours when administered to an organism.
- the serum half-life of the activatable antibody is at least 4 hours when administered to an organism. In some embodiments, the serum half-life of the activatable antibody is at least 3 hours when administered to an organism. [000258]
- the disclosure also provides methods of producing an activatable CD47 antibody polypeptide by culturing a cell under conditions that lead to expression of the polypeptide, wherein the cell comprises an isolated nucleic acid molecule encoding an antibody and/or an activatable antibody described herein, and/or vectors that include these isolated nucleic acid sequences.
- the disclosure provides methods of producing an antibody and/or activatable antibody by culturing a cell under conditions that lead to expression of the antibody and/or activatable antibody, wherein the cell comprises an isolated nucleic acid molecule encoding an antibody and/or an activatable antibody described herein, and/or vectors that include these isolated nucleic acid sequences.
- the invention also provides a method of manufacturing activatable antibodies that in an activated state binds CD47 by (a) culturing a cell comprising a nucleic acid construct that encodes the activatable antibody under conditions that lead to expression of the activatable antibody, wherein the activatable antibody comprises a masking moiety (MM), a cleavable moiety (CM), and an antibody or an antigen binding fragment thereof (AB) that specifically binds CD47, (i) wherein the CM is a polypeptide that functions as a substrate for a protease; and (ii) wherein the CM is positioned in the activatable antibody such that, when the activatable antibody is in an uncleaved state, the MM interferes with specific binding of the AB to CD47 and in a cleaved state the MM does not interfere or compete with specific binding of the AB to CD47; and (b) recovering the activatable antibody.
- MM masking moiety
- CM cleavable moiety
- Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM- MM.
- the activatable antibody comprises a linking peptide between the MM and the CM.
- the activatable antibody comprises a linking peptide between the CM and the AB.
- the activatable antibody comprises a first linking peptide (LP1) and a second linking peptide (LP2), and wherein the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-LP1-CM-LP2-AB or AB-LP2-CM-LP1-MM.
- the two linking peptides need not be identical to each other.
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: spacer-MM-LP1-CM-LP2-AB or AB-LP2-CM-LP1-MM-spacer.
- At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of (GS) n , (GGS) n , (GSGGS) n (SEQ ID NO: 116) and (GGGS) n (SEQ ID NO: 117), where n is an integer of at least one.
- At least one of LP1 or LP2 comprises an amino acid sequence selected from the group consisting of GGSG (SEQ ID NO: 118), GGSGG (SEQ ID NO: 119), GSGSG (SEQ ID NO: 120), GSGGG (SEQ ID NO: 121), GGGSG (SEQ ID NO: 122), and GSSSG (SEQ ID NO: 123).
- LP1 comprises the amino acid sequence GSSGGSGGSGGSG (SEQ ID NO: 124), GSSGGSGGSGG (SEQ ID NO: 125), GSSGGSGGSGGS (SEQ ID NO: 126), GSSGGSGGSGGSGGGS (SEQ ID NO: 127), GSSGGSGGSG (SEQ ID NO: 128), GSSGGSGGSGS (SEQ ID NO: 129), or GGGSSGGS (SEQ ID NO: 134).
- LP2 comprises the amino acid sequence GSS, GGS, GGGS (SEQ ID NO: 130), GSSGT (SEQ ID NO: 131) or GSSG (SEQ ID NO: 132).
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: spacer-MM-LP1-CM-LP2-AB or AB-LP2-CM-LP1-MM-spacer, where LP1 comprises the amino acid sequence GGGSSGGS (SEQ ID NO: 134) and the LP2 comprises the amino acid sequence GGS.
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: spacer-MM-LP1-CM-LP2-AB or AB-LP2-CM-LP1-MM-spacer, where LP1 comprises the amino acid sequence GGGSSGGS (SEQ ID NO: 134) and the LP2 comprises the amino acid sequence GGGS (SEQ ID NO: 130).
- Conjugated CD47 Antibodies and Activatable Antibodies [000267]
- the CD47 antibodies and activatable antibodies described herein also include an agent conjugated to the antibody/activatable antibody.
- the conjugated agent is a therapeutic agent, such as an anti-inflammatory and/or an antineoplastic agent.
- the agent is conjugated to a carbohydrate moiety of the antibody/activatable antibody, for example, in some embodiments, where the carbohydrate moiety is located outside the antigen-binding region of the antibody or antigen-binding fragment in the activatable antibody.
- the agent is conjugated to a sulfhydryl group of the antibody or antigen-binding fragment in the antibody/activatable antibody.
- the agent is a cytotoxic agent such as a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
- a cytotoxic agent such as a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
- the agent is a detectable moiety such as, for example, a label or other marker.
- the agent is or includes a radiolabeled amino acid, one or more biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or calorimetric methods), one or more radioisotopes or radionuclides, one or more fluorescent labels, one or more enzymatic labels, and/or one or more chemiluminescent agents.
- detectable moieties are attached by spacer molecules.
- the disclosure also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
- a cytotoxic agent such as a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).
- cytotoxic agents include, for example, dolastatins and derivatives thereof (e.g. auristatin E, AFP, MMAF, MMAE, MMAD, DMAF, DMAE).
- the agent is monomethyl auristatin E (MMAE) or monomethyl auristatin D (MMAD).
- the agent is an agent selected from the group listed in Table E. In some embodiments, the agent is a dolastatin. In some embodiments, the agent is an auristatin or derivative thereof. In some embodiments, the agent is auristatin E or a derivative thereof. In some embodiments, the agent is monomethyl auristatin E (MMAE). In some embodiments, the agent is monomethyl auristatin D (MMAD). In some embodiments, the agent is a maytansinoid or maytansinoid derivative. In some embodiments, the agent is DM1 or DM4. In some embodiments, the agent is a duocarmycin or derivative thereof. In some embodiments, the agent is a calicheamicin or derivative thereof.
- the agent is a pyrrolobenzodiazepine. In some embodiments, the agent is a pyrrolobenzodiazepine dimer.
- Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes.
- the agent is a toxin or fragment thereof.
- the agent is a microtubule inhibitor.
- the agent is a nucleic acid damaging agent.
- the agent is selected from the group consisting of a dolastatin or a derivative thereof, an auristatin or a derivative thereof, a maytansinoid or a derivative thereof, a duocarmycin or a derivative thereof, a calicheamicin or a derivative thereof, and a pyrrolobenzodiazepine or a derivative thereof.
- the agent is auristatin E or a derivative thereof.
- the agent is monomethyl auristatin E (MMAE).
- the agent is monomethyl auristatin D (MMAD).
- the agent is a maytansinoid selected from the group consisting of DM1 and DM4.
- the agent is maytansinoid DM4. In some embodiments, the agent is duocarmycin. In some embodiments, the agent is conjugated to the AB via a linker. In some embodiments, the linker with which the agent is conjugated to the AB comprises an SPDB moiety, a vc moiety, or a PEG2-vc moiety. In some embodiments, the linker and toxin conjugated to the AB comprises an SPDB-DM4 moiety, a vc-MMAD moiety, a vc-MMAE moiety, vc-duocarmycin, or a PEG2-vc-MMAD moiety. In some embodiments, the linker is a cleavable linker.
- the linker is a non-cleavable linker.
- the agent is a detectable moiety.
- the detectable moiety is a diagnostic agent.
- the conjugated activatable antibody comprises an antibody comprising: (a) an antibody or an antigen binding fragment thereof (AB) that specifically binds to mammalian CD47, wherein the AB comprises: (i) the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7);
- the CD47 antibodies and activatable antibodies of the disclosure have at least one point of conjugation for an agent, but in the methods and compositions provided herein less than all possible points of conjugation are available for conjugation to an agent.
- the one or more points of conjugation are sulfur atoms involved in disulfide bonds.
- the one or more points of conjugation are sulfur atoms involved in interchain disulfide bonds.
- the one or more points of conjugation are sulfur atoms involved in interchain sulfide bonds, but not sulfur atoms involved in intrachain disulfide bonds.
- the one or more points of conjugation are sulfur atoms of cysteine or other amino acid residues containing a sulfur atom.
- Such residues may occur naturally in the antibody structure or can be incorporated into the antibody by site-directed mutagenesis, chemical conversion, or mis-incorporation of non-natural amino acids.
- Also provided are methods of preparing a conjugate of a CD47 antibody/CD47 activatable antibody having one or more interchain disulfide bonds in the AB and one or more intrachain disulfide bonds in the MM, and a drug reactive with free thiols is provided.
- the method generally includes partially reducing interchain disulfide bonds in the activatable antibody with a reducing agent, such as, for example, TCEP; and conjugating the drug reactive with free thiols to the partially reduced antibody/activatable antibody.
- partial reduction refers to situations where an act antibody/activatable antibody is contacted with a reducing agent and less than all disulfide bonds, e.g., less than all possible sites of conjugation are reduced. In some embodiments, less than 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10% or less than 5% of all possible sites of conjugation are reduced.
- a method of reducing and conjugating an agent, e.g., a drug, to a CD47 antibody/CD47 activatable antibody resulting in selectivity in the placement of the agent is provided.
- the method generally includes partially reducing the CD47 antibody/CD47 activatable antibody with a reducing agent such that any conjugation sites in the masking moiety or other non-AB portion of the CD47 antibody/CD47 activatable antibody are not reduced, and conjugating the agent to interchain thiols in the AB.
- the conjugation site(s) are selected so as to allow desired placement of an agent to allow conjugation to occur at a desired site.
- the reducing agent is, for example, TCEP.
- the reduction reaction conditions such as, for example, the ratio of reducing agent to antibody/activatable antibody, the length of incubation, the temperature during the incubation, the pH of the reducing reaction solution, etc., are determined by identifying the conditions that produce a conjugated antibody/activatable antibody e.g. under conditions that produce a conjugated activatable antibody in which the MM retains the ability to effectively and efficiently mask the AB of the activatable antibody in an uncleaved state.
- the ratio of reduction agent to antibody/activatable antibody will vary depending on the antibody/activatable antibody.
- the ratio of reducing agent to antibody/activatable antibody will be in a range from about 20:1 to 1:1, from about 10:1 to 1:1, from about 9:1 to 1:1, from about 8:1 to 1:1, from about 7:1 to 1:1, from about 6:1 to 1:1, from about 5:1 to 1:1, from about 4:1 to 1:1, from about 3:1 to 1:1, from about 2:1 to 1:1, from about 20:1 to 1:1.5, from about 10:1 to 1:1.5, from about 9:1 to 1:1.5, from about 8:1 to 1:1.5, from about 7:1 to 1:1.5, from about 6:1 to 1:1.5, from about 5:1 to 1:1.5, from about 4:1 to 1:1.5, from about 3:1 to 1:1.5, from about 2:1 to 1:1.5, from about 1.5:1 to 1:1.5, or from about 1:1 to 1:1.5.
- the ratio is in a range of from about 5:1 to 1:1. In some embodiments, the ratio is in a range of from about 5:1 to 1.5:1. In some embodiments, the ratio is in a range of from about 4:1 to 1:1. In some embodiments, the ratio is in a range from about 4:1 to 1.5:1. In some embodiments, the ratio is in a range from about 8:1 to about 1:1. In some embodiments, the ratio is in a range of from about 2.5:1 to 1:1. [000277] In some embodiments, the CD47 antibody undergoes conjugation first and is then further modified to include a CM and MM (resulting in an activatable antibody). In some embodiments, the CD47 activatable antibody is conjugated.
- a method of reducing interchain disulfide bonds in the AB of an activatable CD47 antibody and conjugating an agent, e.g., a thiol-containing agent such as a drug, to the resulting interchain thiols to selectively locate agent(s) on the AB is provided.
- the method generally includes partially reducing the AB with a reducing agent to form at least two interchain thiols without forming all possible interchain thiols in the activatable antibody; and conjugating the agent to the interchain thiols of the partially reduced AB.
- the AB of the activatable antibody is partially reduced for about 1 hour at about 37°C at a desired ratio of reducing agent:activatable antibody.
- the ratio of reducing agent to activatable antibody will be in a range from about 20:1 to 1:1, from about 10:1 to 1:1, from about 9:1 to 1:1, from about 8:1 to 1:1, from about 7:1 to 1:1, from about 6:1 to 1:1, from about 5:1 to 1:1, from about 4:1 to 1:1, from about 3:1 to 1:1, from about 2:1 to 1:1, from about 20:1 to 1:1.5, from about 10:1 to 1:1.5, from about 9:1 to 1:1.5, from about 8:1 to 1:1.5, from about 7:1 to 1:1.5, from about 6:1 to 1:1.5, from about 5:1 to 1:1.5, from about 4:1 to 1:1.5, from about 3:1 to 1:1.5, from about 2:1 to 1:1.5, from about 1.5:1 to 1:1.5, or from about 1:1 to 1:1.5.
- the ratio is in a range of from about 5:1 to 1:1. In some embodiments, the ratio is in a range of from about 5:1 to 1.5:1. In some embodiments, the ratio is in a range of from about 4:1 to 1:1. In some embodiments, the ratio is in a range from about 4:1 to 1.5:1. In some embodiments, the ratio is in a range from about 8:1 to about 1:1. In some embodiments, the ratio is in a range of from about 2.5:1 to 1:1. [000279]
- the thiol-containing reagent can be, for example, cysteine or N-acetyl cysteine.
- the reducing agent can be, for example, TCEP.
- the reduced activatable antibody can be purified prior to conjugation, using for example, column chromatography, dialysis, or diafiltration. Alternatively, the reduced antibody is not purified after partial reduction and prior to conjugation.
- the invention also provides partially reduced antibodies/activatable antibodies in which at least one interchain disulfide bond in the antibody/activatable antibody has been reduced with a reducing agent without disturbing any intrachain disulfide bonds in the antibody/activatable antibody, wherein the activatable antibody includes an antibody or an antigen binding fragment thereof (AB) that specifically binds to CD47, a masking moiety (MM) that inhibits the binding of the AB of the activatable antibody in an uncleaved state to the CD47 target, and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for a protease.
- AB antigen binding fragment thereof
- MM masking moiety
- CM cleavable moiety
- the MM is coupled to the AB via the CM.
- one or more intrachain disulfide bond(s) of the antibody/activatable antibody is not disturbed by the reducing agent.
- one or more intrachain disulfide bond(s) of the MM within the antibody/activatable antibody is not disturbed by the reducing agent.
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM.
- reducing agent is TCEP.
- a method of reducing and conjugating an agent, e.g., a drug, to a CD47 antibody/CD47 activatable antibody resulting in selectivity in the placement of the agent by providing an activatable CD47 antibody with a defined number and positions of lysine and/or cysteine residues.
- the defined number of lysine and/or cysteine residues is higher or lower than the number of corresponding residues in the amino acid sequence of the parent antibody or activatable antibody.
- the defined number of lysine and/or cysteine residues may result in a defined number of agent equivalents that can be conjugated to the CD47 antibody or activatable CD47 antibody.
- the defined number of lysine and/or cysteine residues may result in a defined number of agent equivalents that can be conjugated to the CD47 antibody or activatable CD47 antibody in a site-specific manner.
- the modified activatable antibody is modified with one or more non-natural amino acids in a site-specific manner, thus in some embodiments limiting the conjugation of the agents to only the sites of the non-natural amino acids.
- the CD47 antibody or activatable CD47 antibody with a defined number and positions of lysine and/or cysteine residues can be partially reduced with a reducing agent as discussed herein such that any conjugation sites in the masking moiety or other non-AB portion of the activatable antibody are not reduced, and conjugating the agent to interchain thiols in the AB.
- the disclosure also provides partially reduced activatable antibodies in which at least one interchain disulfide bond in the activatable antibody has been reduced with a reducing agent without disturbing any intrachain disulfide bonds in the activatable antibody, wherein the activatable antibody includes an antibody or an antigen binding fragment thereof (AB) that specifically binds to the target, e.g., CD47, a masking moiety (MM) that inhibits the binding of the AB of the activatable antibody in an uncleaved state to the target, and a cleavable moiety (CM) coupled to the AB, wherein the CM is a polypeptide that functions as a substrate for at least one protease.
- AB antigen binding fragment thereof
- MM masking moiety
- CM cleavable moiety
- the MM is coupled to the AB via the CM.
- one or more intrachain disulfide bond(s) of the activatable antibody is not disturbed by the reducing agent.
- one or more intrachain disulfide bond(s) of the MM within the activatable antibody is not disturbed by the reducing agent.
- the activatable antibody in the uncleaved state has the structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM.
- reducing agent is TCEP.
- the agent is linked to the AB using a maleimide caproyl- valine-citrulline linker or a maleimide PEG-valine-citrulline linker. In some embodiments, the agent is linked to the AB using a maleimide caproyl-valine-citrulline linker.
- the agent is linked to the AB using a maleimide PEG-valine-citrulline linker
- the agent is monomethyl auristatin D (MMAD) linked to the AB using a maleimide PEG-valine-citrulline-para-aminobenzyloxycarbonyl linker, and this linker payload construct is referred to herein as “vc-MMAD.”
- the agent is monomethyl auristatin E (MMAE) linked to the AB using a maleimide PEG-valine-citrulline-para- aminobenzyloxycarbonyl linker, and this linker payload construct is referred to herein as “vc- MMAE.”
- the agent is linked to the AB using a maleimide PEG-valine- citrulline linker
- the agent is monomethyl auristatin D (MMAD) linked to the AB using a maleimide bis-PEG-valine-
- PEG2-vc-MMAD [000284]
- the disclosure also provides conjugated activatable antibodies that include an activatable antibody linked to monomethyl auristatin D (MMAD) payload, wherein the activatable antibody includes an antibody or an antigen binding fragment thereof (AB) that specifically binds to a target, a masking moiety (MM) that inhibits the binding of the AB of the activatable antibody in an uncleaved state to the target, and cleavable moiety (CM) coupled to the AB, and the CM is a polypeptide that functions as a substrate for at least one MMP protease.
- MMAD monomethyl auristatin D
- the MMAD-conjugated activatable antibody can be conjugated using any of several methods for attaching agents to ABs: (a) attachment to the carbohydrate moieties of the AB, or (b) attachment to sulfhydryl groups of the AB, or (c) attachment to amino groups of the AB, or (d) attachment to carboxylate groups of the AB. [000286]
- the MMAD payload is conjugated to the AB via a linker.
- the MMAD payload is conjugated to a cysteine in the AB via a linker.
- the MMAD payload is conjugated to a lysine in the AB via a linker. In some embodiments, the MMAD payload is conjugated to another residue of the AB via a linker, such as those residues disclosed herein.
- the linker is a thiol-containing linker. In some embodiments, the linker is a cleavable linker. In some embodiments, the linker is a non- cleavable linker. In some embodiments, the linker is selected from the group consisting of the linkers shown in Tables 7 and 8. In some embodiments, the activatable antibody and the MMAD payload are linked via a maleimide caproyl-valine-citrulline linker.
- the activatable antibody and the MMAD payload are linked via a maleimide PEG-valine-citrulline linker. In some embodiments, the activatable antibody and the MMAD payload are linked via a maleimide caproyl-valine-citrulline-para-aminobenzyloxycarbonyl linker. In some embodiments, the activatable antibody and the MMAD payload are linked via a maleimide PEG-valine- citrulline-para-aminobenzyloxycarbonyl linker. In some embodiments, the MMAD payload is conjugated to the AB using the partial reduction and conjugation technology disclosed herein.
- the polyethylene glycol (PEG) component of a linker of the present disclosure is formed from 2 ethylene glycol monomers, 3 ethylene glycol monomers, 4 ethylene glycol monomers, 5 ethylene glycol monomers, 6 ethylene glycol monomers, 7 ethylene glycol monomers 8 ethylene glycol monomers, 9 ethylene glycol monomers, or at least 10 ethylene glycol monomers.
- the PEG component is a branched polymer. In some embodiments of the present disclosure, the PEG component is an unbranched polymer.
- the PEG polymer component is functionalized with an amino group or derivative thereof, a carboxyl group or derivative thereof, or both an amino group or derivative thereof and a carboxyl group or derivative thereof.
- the PEG component of a linker of the present disclosure is an amino-tetra-ethylene glycol-carboxyl group or derivative thereof.
- the PEG component of a linker of the present disclosure is an amino-tri-ethylene glycol-carboxyl group or derivative thereof.
- the PEG component of a linker of the present disclosure is an amino-di-ethylene glycol-carboxyl group or derivative thereof.
- an amino derivative is the formation of an amide bond between the amino group and a carboxyl group to which it is conjugated.
- a carboxyl derivative is the formation of an amide bond between the carboxyl group and an amino group to which it is conjugated.
- a carboxyl derivative is the formation of an ester bond between the carboxyl group and an hydroxyl group to which it is conjugated.
- Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis- diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4- dinitrobenzene).
- SPDP N-succinimidyl-3-(2-pyr
- a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238: 1098 (1987).
- Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. (See WO94/11026).
- Table E lists some of the exemplary pharmaceutical agents that can be employed in the herein described disclosure but in no way is meant to be an exhaustive list.
- Table E Exemplary Pharmaceutical Agents for Conjugation CYTOTOXIC AGENTS Auristatins Turbostatin Auristatin E Phenstatins Monomethyl auristatin D (MMAD) Hydroxyphenstatin Monomethyl auristatin E (MMAE) Spongistatin 5 Desmethyl auristatin E (DMAE) Spongistatin 7 Auristatin F Halistatin 1 Monomethyl auristatin F (MMAF) Halistatin 2 Desmethyl auristatin F (DMAF) Halistatin 3 Auristatin derivatives, e.g., amides thereof Modified Bryostatins Auristatin tyramine Halocomstatins Auristatin quinoline Pyrrolobenzimidazoles (PBI) Dolastatins Cibrostatin6 Dolastatin derivatives Doxaliform Dolastatin 16 DmJ Anthracyclins analogues Dolastatin 16 Dpv Maytansinoids, e.g.
- Coupling can be accomplished by any chemical reaction that will bind the two molecules so long as the antibody and the other moiety retain their respective activities. This linkage can include many chemical mechanisms, for instance covalent binding, affinity binding, intercalation, coordinate binding and complexation. In some embodiments, the binding is, however, covalent binding. Covalent binding can be achieved either by direct condensation of existing side chains or by the incorporation of external bridging molecules.
- bivalent or polyvalent linking agents are useful in coupling protein molecules, such as the antibodies of the present disclosure, to other molecules.
- representative coupling agents can include organic compounds such as thioesters, carbodiimides, succinimide esters, diisocyanates, glutaraldehyde, diazobenzenes and hexamethylene diamines.
- This listing is not intended to be exhaustive of the various classes of coupling agents known in the art but, rather, is exemplary of the more common coupling agents. (See Killen and Lindstrom, Jour. Immun.133:1335-2549 (1984); Jansen et al., Immunological Reviews 62:185-216 (1982); and Vitetta et al., Science 238:1098 (1987).
- the activatable antibody in addition to the compositions and methods provided herein, can also be modified for site-specific conjugation through modified amino acid sequences inserted or otherwise included in the activatable antibody sequence. These modified amino acid sequences are designed to allow for controlled placement and/or dosage of the conjugated agent within a conjugated activatable antibody.
- the activatable antibody can be engineered to include cysteine substitutions at positions on light and heavy chains that provide reactive thiol groups and do not negatively impact protein folding and assembly, nor alter antigen binding.
- the activatable antibody can be engineered to include or otherwise introduce one or more non-natural amino acid residues within the activatable antibody to provide suitable sites for conjugation.
- the activatable antibody can be engineered to include or otherwise introduce enzymatically activatable peptide sequences within the activatable antibody sequence.
- Suitable linkers are described in the literature. (See, for example, Ramakrishnan, S. et al., Cancer Res.44:201-208 (1984) describing use of MBS (M-maleimidobenzoyl-N- hydroxysuccinimide ester). See also, U.S. Patent No.5,030,719, describing use of halogenated acetyl hydrazide derivative coupled to an antibody by way of an oligopeptide linker.
- suitable linkers include: (i) EDC (1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride; (ii) SMPT (4-succinimidyloxycarbonyl-alpha-methyl-alpha-(2- pridyl-dithio)-toluene (Pierce Chem. Co., Cat. (21558G); (iii) SPDP (succinimidyl-6 [3-(2- pyridyldithio) propionamido]hexanoate (Pierce Chem.
- Additional linkers include, but are not limited to, SMCC ((succinimidyl 4- (N-maleimidomethyl)cyclohexane-1-carboxylate), sulfo-SMCC (sulfosuccinimidyl 4-(N- maleimidomethyl)cyclohexane-1-carboxylate), SPDB (N-succinimidyl-4-(2-pyridyldithio) butanoate), or sulfo-SPDB (N-succinimidyl-4-(2-pyridyldithio)-2-sulfo butanoate).
- SMCC succinimidyl 4- (N-maleimidomethyl)cyclohexane-1-carboxylate)
- sulfo-SMCC sulfosuccinimidyl 4-(N- maleimidomethyl)cyclohexane-1-carboxylate
- SPDB N-succinimidy
- linkers described above contain components that have different attributes, thus leading to conjugates with differing physio-chemical properties.
- sulfo-NHS esters of alkyl carboxylates are more stable than sulfo-NHS esters of aromatic carboxylates.
- NHS-ester containing linkers are less soluble than sulfo-NHS esters.
- the linker SMPT contains a sterically hindered disulfide bond, and can form conjugates with increased stability.
- Disulfide linkages are in general, less stable than other linkages because the disulfide linkage is cleaved in vitro, resulting in less conjugate available.
- the linkers are cleavable.
- the linkers are non-cleavable.
- two or more linkers are present. The two or more linkers are all the same, i.e., cleavable or non-cleavable, or the two or more linkers are different, i.e., at least one cleavable and at least one non-cleavable.
- ABs can be covalently attached to an agent through an intermediate linker having at least two reactive groups, one to react with AB and one to react with the agent.
- the linker which may include any compatible organic compound, can be chosen such that the reaction with AB (or agent) does not adversely affect AB reactivity and selectivity. Furthermore, the attachment of linker to agent might not destroy the activity of the agent.
- Suitable linkers for reaction with oxidized antibodies or oxidized antibody fragments include those containing an amine selected from the group consisting of primary amine, secondary amine, hydrazine, hydrazide, hydroxylamine, phenylhydrazine, semicarbazide and thiosemicarbazide groups. Such reactive functional groups may exist as part of the structure of the linker, or can be introduced by suitable chemical modification of linkers not containing such groups. [000298] According to the present disclosure, suitable linkers for attachment to reduced ABs include those having certain reactive groups capable of reaction with a sulfhydryl group of a reduced antibody or fragment.
- Such reactive groups include, but are not limited to: reactive haloalkyl groups (including, for example, haloacetyl groups), p-mercuribenzoate groups and groups capable of Michael-type addition reactions (including, for example, maleimides and groups of the type described by Mitra and Lawton, 1979, J. Amer. Chem. Soc.16: 3097-3110).
- suitable linkers for attachment to neither oxidized nor reduced Abs include those having certain functional groups capable of reaction with the primary amino groups present in unmodified lysine residues in the Ab.
- Such reactive groups include, but are not limited to, NHS carboxylic or carbonic esters, sulfo-NHS carboxylic or carbonic esters, 4-nitrophenyl carboxylic or carbonic esters, pentafluorophenyl carboxylic or carbonic esters, acyl imidazoles, isocyanates, and isothiocyanates.
- suitable linkers for attachment to neither oxidized nor reduced Abs include those having certain functional groups capable of reaction with the carboxylic acid groups present in aspartate or glutamate residues in the Ab, which have been activated with suitable reagents.
- Suitable activating reagents include EDC, with or without added NHS or sulfo-NHS, and other dehydrating agents utilized for carboxamide formation.
- the functional groups present in the suitable linkers would include primary and secondary amines, hydrazines, hydroxylamines, and hydrazides.
- the agent can be attached to the linker before or after the linker is attached to the AB. In certain applications it may be desirable to first produce an AB-linker intermediate in which the linker is free of an associated agent. Depending upon the particular application, a specific agent may then be covalently attached to the linker.
- the AB is first attached to the MM, CM and associated linkers and then attached to the linker for conjugation purposes.
- Branched Linkers In specific embodiments, branched linkers that have multiple sites for attachment of agents are utilized. For multiple site linkers, a single covalent attachment to an AB would result in an AB-linker intermediate capable of binding an agent at a number of sites. The sites can be aldehyde or sulfhydryl groups or any chemical site to which agents can be attached.
- higher specific activity or higher ratio of agents to AB
- This plurality of sites can be introduced into the AB by either of two methods. First, one may generate multiple aldehyde groups and/or sulfhydryl groups in the same AB. Second, one may attach to an aldehyde or sulfhydryl of the AB a "branched linker" having multiple functional sites for subsequent attachment to linkers.
- the functional sites of the branched linker or multiple site linker can be aldehyde or sulfhydryl groups, or can be any chemical site to which linkers can be attached. Still higher specific activities can be obtained by combining these two approaches, that is, attaching multiple site linkers at several sites on the AB.
- Cleavable Linkers Peptide linkers that are susceptible to cleavage by enzymes of the complement system, such as but not limited to u-plasminogen activator, tissue plasminogen activator, trypsin, plasmin, or another enzyme having proteolytic activity can be used in one embodiment of the present disclosure.
- an agent is attached via a linker susceptible to cleavage by complement.
- the antibody is selected from a class that can activate complement. The antibody-agent conjugate, thus, activates the complement cascade and releases the agent at the target site.
- an agent is attached via a linker susceptible to cleavage by enzymes having a proteolytic activity such as a u-plasminogen activator, a tissue plasminogen activator, plasmin, or trypsin.
- cleavable linkers are useful in conjugated activatable antibodies that include an extracellular toxin, e.g., by way of non-limiting example, any of the extracellular toxins shown in Table E.
- Non-limiting examples of cleavable linker sequences are provided in Table F.
- Table F Exemplary Linker Sequences for Conjugation Types of Cleavable Sequences Amino Acid Sequence Plasmin cleavable sequences Pro-urokinase PRFKIIGG (SEQ ID NO: 615) PRFRIIGG (SEQ ID NO: 616) TGFb SSRHRRALD (SEQ ID NO: 617) Plasminogen RKSSIIIRMRDVVL (SEQ ID NO: 618) Staphylokinase SSSFDKGKYKKGDDA (SEQ ID NO: 619) SSSFDKGKYKRGDDA (SEQ ID NO: 620) Factor Xa cleavable sequences IEGR (SEQ ID NO: 621) IDGR (SEQ ID NO: 622) GGSIDGR (SEQ ID NO: 623) MMP cleavable sequences Gelatinase A PLGLWA (SEQ ID NO: 624) Collagenase cleavable sequences Calf skin collagen
- the reducing agent that would modify a CM would also modify the linker of the conjugated activatable antibody.
- Spacers and Cleavable Elements In some embodiments, it may be necessary to construct the linker in such a way as to optimize the spacing between the agent and the AB of the activatable antibody.
- the linker may comprise a spacer element and a cleavable element.
- the spacer element serves to position the cleavable element away from the core of the AB such that the cleavable element is more accessible to the enzyme responsible for cleavage.
- Certain of the branched linkers described above may serve as spacer elements.
- linker to agent or of spacer element to cleavable element, or cleavable element to agent
- Any reaction providing a product of suitable stability and biological compatibility is acceptable.
- Serum Complement and Selection of Linkers according to one method of the present disclosure, when release of an agent is desired, an AB that is an antibody of a class that can activate complement is used. The resulting conjugate retains both the ability to bind antigen and activate the complement cascade.
- an agent is joined to one end of the cleavable linker or cleavable element and the other end of the linker group is attached to a specific site on the AB.
- the agent has an hydroxy group or an amino group, it can be attached to the carboxy terminus of a peptide, amino acid or other suitably chosen linker via an ester or amide bond, respectively.
- such agents can be attached to the linker peptide via a carbodimide reaction. If the agent contains functional groups that would interfere with attachment to the linker, these interfering functional groups can be blocked before attachment and deblocked once the product conjugate or intermediate is made.
- Linkers can be of any desired length, one end of which can be covalently attached to specific sites on the AB of the activatable antibody. The other end of the linker or spacer element can be attached to an amino acid or peptide linker.
- conjugates when administered to a subject, will accomplish delivery and release of the agent at the target site, and are particularly effective for the in vivo delivery of pharmaceutical agents, antibiotics, antimetabolites, antiproliferative agents and the like as presented in but not limited to those in Table E.
- Linkers for Release without Complement Activation In yet another application of targeted delivery, release of the agent without complement activation is desired since activation of the complement cascade will ultimately lyse the target cell. Hence, this approach is useful when delivery and release of the agent should be accomplished without killing the target cell. Such is the goal when delivery of cell mediators such as hormones, enzymes, corticosteroids, neurotransmitters, genes or enzymes to target cells is desired.
- conjugates can be prepared by attaching the agent to an AB that is not capable of activating complement via a linker that is mildly susceptible to cleavage by serum proteases.
- this conjugate is administered to an individual, antigen-antibody complexes will form quickly whereas cleavage of the agent will occur slowly, thus resulting in release of the compound at the target site.
- Biochemical Cross Linkers In some embodiments, the activatable antibody can be conjugated to one or more therapeutic agents using certain biochemical cross-linkers. Cross- linking reagents form molecular bridges that tie together functional groups of two different molecules. To link two different proteins in a step-wise manner, hetero-bifunctional cross-linkers can be used that eliminate unwanted homopolymer formation.
- Peptidyl linkers cleavable by lysosomal proteases are also useful, for example, Val-Cit, Val-Ala or other dipeptides.
- acid-labile linkers cleavable in the low-pH environment of the lysosome can be used, for example: bis-sialyl ether.
- Other suitable linkers include cathepsin-labile substrates, particularly those that show optimal function at an acidic pH.
- Exemplary hetero-bifunctional cross-linkers are referenced in Table G.
- Table G Exemplary Hetero-Bifunctional Cross Linkers HETERO-BIFUNCTIONAL CROSS-LINKERS Spacer Arm Length after cross-linking Linker Reactive Toward Advantages and Applications (Angstroms)
- SMPT Primary amines Greater stability 11.2 ⁇ Sulfhydryls SPDP Primary amines Thiolation 6.8 ⁇ Sulfhydryls Cleavable cross-linking LC-SPDP Primary amines Extended spacer arm 15.6 ⁇ Sulfhydryls Sulfo-LC-SPDP Primary amines Extender spacer arm 15.6 ⁇ Sulfhydryls Water-soluble SMCC Primary amines Stable maleimide reactive 11.6 ⁇ group Sulfhydryls Enzyme-antibody conjugation Hapten-carrier protein conjugation Sulfo-SMCC Primary amines Stable maleimide reactive 11.6 ⁇ group Sulfhydryls Water-soluble Enzyme-antibody conjugation MBS Primary amines Enzy
- Non-cleavable linkers may include amino acids, peptides, D-amino acids or other organic compounds that can be modified to include functional groups that can subsequently be utilized in attachment to ABs by the methods described herein.
- A-general formula for such an organic linker could be W – (CH 2 )n – Q wherein W is either --NH--CH 2 -- or --CH 2 --; Q is an amino acid, peptide; and n is an integer from 0 to 20.
- Non-Cleavable Conjugates In some embodiments, a compound can be attached to ABs that do not activate complement.
- the antibodies disclosed herein can also be formulated as immunoliposomes.
- Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc. Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos.4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S.
- Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG- derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter.
- Fab’ fragments of the antibody of the present disclosure can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction.
- the antibody drug conjugates (ADCs) and activatable antibody drug conjugates (AADCs) can include one or more polypeptides that include the combination of a light chain sequence or a light chain variable domain sequence, and a heavy chain sequence or a heavy chain variable domain sequence, a linker, and a toxin in a given row of Table D or any combination of a light chain sequence or a light chain variable domain sequence, and a heavy chain sequence or a heavy chain variable domain sequence, a linker, and a toxin of Table D.
- Combination No.1 comprises the heavy chain of SEQ ID No.1, the light chain of SEQ ID No.160, a vc linker, conjugated to MMAD toxin.
- Table D CD47 Activatable ADC Combinations
- any of the combinations in Table D that list a heavy chain and light chain variable region can be combined with human immunoglobulin constant regions to result in fully human IgGs including IgG1, IgG2, IgG4 or mutated constant regions to result in human IgGs with altered functions such as IgG1 N297A, IgG1 N297Q, or IgG4 S228P.
- the combinations described in Table D are not limited by the particular combinations shown in any given row, and thus can include any heavy chain sequence or heavy chain variable region sequence from column 2 of Table D combined with any light chain sequence or light chain variable region sequence from column 3 of Table D combined with any linker from column 4 combined with any toxin from column 5.
- any heavy chain sequence or heavy chain variable region sequence disclosed herein can be used in a combination.
- any light chain sequence or light chain variable region sequence disclosed herein can be used in a combination.
- any linker disclosed herein can be used in a combination.
- any toxin disclosed herein can be used in a combination.
- Multispecific Antibodies and Activatable Antibodies [000324] In some embodiments, the activatable CD47 antibody and/or conjugated activatable CD47 antibody is monospecific.
- the activatable CD47 antibody and/or conjugated activatable CD47 antibody is multispecific, e.g., by way of non- limiting example, bispecific or trifunctional.
- the activatable CD47 antibody and/or conjugated activatable CD47 antibody is formulated as part of a pro-Bispecific T Cell Engager (BITE) molecule.
- the activatable CD47 antibody and/or conjugated activatable CD47 antibody is formulated as part of a pro-Chimeric Antigen Receptor (CAR) modified T cell or other engineered receptor.
- BITE pro-Bispecific T Cell Engager
- CAR pro-Chimeric Antigen Receptor
- the multispecific antibodies provided herein are multispecific antibodies that recognize CD47 and at least one or more different antigens or epitopes.
- the disclosure also provides multispecific CD47 activatable antibodies.
- the multispecific activatable antibodies provided herein are multispecific antibodies that recognize CD47 and at least one or more different antigens or epitopes and that include at least one masking moiety (MM) linked to at least one antigen- or epitope-binding domain of the multispecific antibody such that coupling of the MM reduces the ability of the antigen- or epitope-binding domain to bind its target.
- MM masking moiety
- the MM is coupled to the antigen- or epitope-binding domain of the multispecific antibody via a cleavable moiety (CM) that functions as a substrate for at least one protease.
- CM cleavable moiety
- the activatable multispecific antibodies provided herein are stable in circulation, activated at intended sites of therapy and/or diagnosis but not in normal, i.e., healthy tissue, and, when activated, exhibit binding to a target that is at least comparable to the corresponding, unmodified multispecific antibody.
- the activatable antibody or antigen-binding fragment thereof is incorporated in a multispecific activatable antibody or antigen-binding fragment thereof, where at least one arm of the multispecific activatable antibody specifically binds CD47.
- the activatable antibody or antigen-binding fragment thereof is incorporated in a bispecific antibody or antigen-binding fragment thereof, where at least one arm of the bispecific activatable antibody specifically binds CD47.
- the antibody or antigen-binding fragment thereof is incorporated in a multispecific antibody or antigen-binding fragment thereof, where at least one arm of the multispecific antibody or antigen-binding fragment thereof specifically binds CD47.
- the antibody or antigen-binding fragment thereof is incorporated in a bispecific antibody or antigen-binding fragment thereof, where at least one arm of the bispecific antibody or antigen-binding fragment thereof specifically binds CD47.
- At least one arm of the multispecific antibody or antigen- binding fragment thereof comprises a heavy chain variable region amino acid sequence of SEQ ID NO: 1.
- at least one arm of the multispecific antibody or antigen-binding fragment thereof comprises a light chain variable region amino acid sequence of SEQ ID NO: 2.
- At least one arm of the multispecific antibody or antigen- binding fragment thereof comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence selected from the group consisting of SEQ ID NOs: 1-4.
- At least one arm of the multispecific antibody or antigen-binding fragment thereof comprises a heavy chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 1.
- At least one arm of the multispecific antibody or antigen-binding fragment thereof comprises a light chain variable region amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to an amino acid sequence of SEQ ID NO: 2.
- At least one arm of the multispecific antibody or antigen- binding fragment thereof comprises a combination of a variable heavy chain complementarity determining region 1 (VH CDR1, also referred to herein as CDRH1) sequence, a variable heavy chain complementarity determining region 2 (VH CDR2, also referred to herein as CDRH2) sequence, a variable heavy chain complementarity determining region 3 (VH CDR3, also referred to herein as CDRH3) sequence, a variable light chain complementarity determining region 1 (VL CDR1, also referred to herein as CDRL1) sequence, a variable light chain complementarity determining region 2 (VL CDR2, also referred to herein as CDRL2) sequence, and a variable light chain complementarity determining region 3 (VL CDR3, also referred to herein as CDRL3) sequence, wherein at least one complementarity determining region (CDR) sequence is selected from VH CDR1, also referred to herein as CDRH1
- At least one arm of the multispecific antibody or antigen- binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein at least one CDR sequence is selected from the group consisting of a VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 37) or GFTFSNYWMD (SEQ ID NO: 38); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 9
- At least one arm of the multispecific antibody or antigen- binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NYWMT (SEQ ID NO: 4); a VH CDR2 sequence comprising the amino acid sequence DPYDVE (SEQ ID NO: 5) or the amino acid sequence RIDPYDVETHYAQKFQG (SEQ ID NO: 6) or the amino acid sequence RIDPYDVETHYNHK (SEQ ID NO: 39); a VH CDR3 sequence comprising the amino acid sequence GGVGGMDY (SEQ ID NO: 7); a VH CDR1 sequence comprising the amino acid sequence GYTFTNY (SEQ ID NO: 3) or the amino acid sequence NY
- At least one arm of the multispecific antibody or antigen- binding fragment thereof comprises a combination of a VH CDR1 sequence, a VH CDR2 sequence, a VH CDR3 sequence, a VL CDR1 sequence, a VL CDR2 sequence, and a VL CDR3 sequence, wherein the VH CDR1 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR1 sequence comprising the amino acid sequence GFTFSNYWMN (SEQ ID NO: 37) or GFTFSNYWMD (SEQ ID NO: 38); a VH CDR2 sequence that includes a sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical to a VH CDR
- the multispecific antibodies/activatable antibodies are designed to engage immune effector cells, also referred to herein as immune-effector cell engaging multispecific activatable antibodies.
- the multispecific antibodies/activatable antibodies are designed to engage leukocytes, also referred to herein as leukocyte engaging multispecific activatable antibodies.
- the multispecific antibodies/activatable antibodies are designed to engage T cells, also referred to herein as T-cell engaging multispecific antibodies/activatable antibodies.
- the multispecific antibodies/activatable antibodies engage a surface antigen on a leukocyte, such as on a T cell, on a natural killer (NK) cell, on a myeloid mononuclear cell, on a macrophage, and/or on another immune effector cell.
- the immune effector cell is a leukocyte.
- the immune effector cell is a T cell.
- the immune effector cell is a NK cell.
- the immune effector cell is a mononuclear cell, such as a myeloid mononuclear cell.
- the multispecific activatable antibodies are designed to bind or otherwise interact with more than one target and/or more than one epitope, also referred to herein as multi-antigen targeting activatable antibodies.
- target and “antigen” are used interchangeably.
- immune effector cell engaging multispecific activatable antibodies of the disclosure include a targeting antibody or antigen-binding fragment thereof that binds CD47 and an immune effector cell engaging antibody or antigen-binding portion thereof, where at least one of the targeting antibody or antigen-binding fragment thereof and/or the immune effector cell engaging antibody or antigen-binding portion thereof is masked.
- the immune effector cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen-binding fragment thereof (AB1) that binds a first, immune effector cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target.
- the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD47, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD47.
- the immune effector cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen-binding fragment thereof (AB1) that binds a first, immune effector cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target, and the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD47, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD47.
- AB1 antibody or antigen-binding fragment thereof
- MM1 masking moiety
- the non-immune effector cell engaging antibody is a cancer targeting antibody. In some embodiments the non-immune cell effector antibody is an IgG. In some embodiments the immune effector cell engaging antibody is a scFv. In some embodiments the CD47-targeting antibody (e.g., non-immune cell effector antibody) is an IgG and the immune effector cell engaging antibody is a scFv. In some embodiments, the immune effector cell is a leukocyte. In some embodiments, the immune effector cell is a T cell. In some embodiments, the immune effector cell is a NK cell. In some embodiments, the immune effector cell is a myeloid mononuclear cell.
- T-cell engaging multispecific activatable antibodies of the disclosure include a CD47-targeting antibody or antigen-binding fragment thereof and a T-cell engaging antibody or antigen-binding portion thereof, where at least one of the CD47-targeting antibody or antigen-binding fragment thereof and/or the T-cell engaging antibody or antigen- binding portion thereof is masked.
- the T-cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen-binding fragment thereof (AB1) that binds a first, T-cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target.
- the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD47, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD47.
- AB2 second antibody or antigen-binding fragment thereof
- MM2 masking moiety
- the T- cell engaging antibody or antigen binding fragment thereof includes a first antibody or antigen- binding fragment thereof (AB1) that binds a first, T-cell engaging target, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind the first target, and the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen- binding fragment thereof (AB2) that binds CD47, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD47.
- AB1 antibody or antigen- binding fragment thereof
- MM1 masking moiety
- the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen- binding fragment thereof (AB2) that binds CD47, where the AB2 is attached to a masking moiety (MM2) such that coupling
- one antigen is CD47, and another antigen is typically a stimulatory or inhibitory receptor present on the surface of a T-cell, natural killer (NK) cell, myeloid mononuclear cell, macrophage, and/or other immune effector cell, such as, but not limited to, B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3, or VISTA.
- NK natural killer
- the antigen is a stimulatory receptor present on the surface of a T cell or NK cell; examples of such stimulatory receptors include, but are not limited to, CD3, CD27, CD28, CD137 (also referred to as 4-1BB), GITR, HVEM, ICOS, NKG2D, and OX40.
- the antigen is an inhibitory receptor present on the surface of a T-cell; examples of such inhibitory receptors include, but are not limited to, BTLA, CTLA-4, LAG3, PD-1, TIGIT, TIM3, and NK-expressed KIRs.
- the antibody domain conferring specificity to the T-cell surface antigen may also be substituted by a ligand or ligand domain that binds to a T-cell receptor, a NK-cell receptor, a macrophage receptor, and/or other immune effector cell receptor, such as, but not limited to, B7-1, B7-2, B7H3, PDL1, PDL2, or TNFSF9.
- a ligand or ligand domain that binds to a T-cell receptor, a NK-cell receptor, a macrophage receptor, and/or other immune effector cell receptor, such as, but not limited to, B7-1, B7-2, B7H3, PDL1, PDL2, or TNFSF9.
- the T-cell engaging multispecific activatable antibody includes an anti-CD3 epsilon (CD3e, also referred to herein as CD3e and CD3) scFv and a targeting antibody or antigen-binding fragment thereof, where at least one of the anti-CD3e scFv and/or the targeting antibody or antigen-binding portion thereof is masked.
- the CD3e scFv includes a first antibody or antigen-binding fragment thereof (AB1) that binds CD3e, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind CD3e.
- the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD47, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD47.
- AB2 second antibody or antigen-binding fragment thereof
- MM2 masking moiety
- the CD3e scFv includes a first antibody or antigen-binding fragment thereof (AB1) that binds CD3e, where the AB1 is attached to a masking moiety (MM1) such that coupling of the MM1 reduces the ability of the AB1 to bind CD3e, and the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD47, where the AB2 is attached to a masking moiety (MM2) such that coupling of the MM2 reduces the ability of the AB2 to bind CD47.
- AB1 first antibody or antigen-binding fragment thereof
- MM1 masking moiety
- the targeting antibody or antigen-binding fragment thereof includes a second antibody or fragment thereof that includes a second antibody or antigen-binding fragment thereof (AB2) that binds CD47
- AB2 is attached to a masking moiety
- the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies include at least a first antibody or antigen-binding fragment thereof that binds a first target and/or first epitope and a second antibody or antigen-binding fragment thereof that binds a second target and/or a second epitope.
- the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies bind two or more different targets.
- the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies bind two or more different epitopes on the same target.
- the multi-antigen targeting antibodies and/or multi-antigen targeting activatable antibodies bind a combination of two or more different targets and two or more different epitopes on the same target.
- a multispecific activatable antibody comprising an IgG has the IgG variable domains masked.
- a multispecific activatable antibody comprising a scFv has the scFv domains masked.
- a multispecific activatable antibody has both IgG variable domains and scFv domains, where at least one of the IgG variable domains is coupled to a masking moiety.
- a multispecific activatable antibody has both IgG variable domains and scFv domains, where at least one of the scFv domains is coupled to a masking moiety. In some embodiments, a multispecific activatable antibody has both IgG variable domains and scFv domains, where at least one of the IgG variable domains is coupled to a masking moiety and at least one of the scFv domains is coupled to a masking moiety. In some embodiments, a multispecific activatable antibody has both IgG variable domains and scFv domains, where each of the IgG variable domains and the scFv domains is coupled to its own masking moiety.
- one antibody domain of a multispecific activatable antibody has specificity for a target antigen and another antibody domain has specificity for a T-cell surface antigen. In some embodiments, one antibody domain of a multispecific activatable antibody has specificity for a target antigen and another antibody domain has specificity for another target antigen. In some embodiments, one antibody domain of a multispecific activatable antibody has specificity for an epitope of a target antigen and another antibody domain has specificity for another epitope of the target antigen.
- a scFv in a multispecific activatable antibody, can be fused to the carboxyl terminus of the heavy chain of an IgG activatable antibody, to the carboxyl terminus of the light chain of an IgG activatable antibody, or to the carboxyl termini of both the heavy and light chains of an IgG activatable antibody.
- a scFv in a multispecific activatable antibody, can be fused to the amino terminus of the heavy chain of an IgG activatable antibody, to the amino terminus of the light chain of an IgG activatable antibody, or to the amino termini of both the heavy and light chains of an IgG activatable antibody.
- a scFv can be fused to any combination of one or more carboxyl termini and one or more amino termini of an IgG activatable antibody.
- a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of the IgG.
- a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of at least one scFv.
- a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of an IgG and a masking moiety (MM) linked to a cleavable moiety (CM) is attached to and masks an antigen binding domain of at least one scFv.
- the disclosure provides examples of multispecific activatable antibody structures which include, but are not limited to, the following: (VL-CL)2:(VH-CH1-CH2-CH3-L4-VH*- L3-VL*-L2-CM-L1-MM)2; (VL-CL)2:(VH-CH1-CH2-CH3-L4-VL*-L3-VH*-L2-CM-L1- MM) 2 ; (MM-L1-CM-L2-VL-CL) 2 :(VH-CH1-CH2-CH3-L4-VH*-L3-VL*) 2 ; (MM-L1-CM-L2- VL-CL) 2 :(VH-CH1-CH2-CH3-L4-VL*-L3-VH*) 2 ; (VL-CL) 2 :(MM-L1-CM-L2-VL*-L3-VH*- L4-VH-CH1-CH
- the first and second specificities can be toward any antigen or epitope.
- one antigen is CD47, and another antigen is typically a stimulatory (also referred to herein as activating) or inhibitory receptor present on the surface of a T-cell, natural killer (NK) cell, myeloid mononuclear cell, macrophage, and/or other immune effector cell, such as, but not limited to, B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137 (also referred to as TNFRSF9), CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3, or VISTA.
- the antibody domain conferring specificity to the T-cell surface antigen may also be substituted by a ligand or ligand domain that binds to a T-cell receptor, a NK-cell receptor, a macrophage receptor, and/or other immune effector cell receptor.
- the targeting antibody is a CD47 antibody disclosed herein.
- the targeting antibody can be in the form an activatable antibody.
- the scFv(s) can be in the form of a Pro-scFv (see, e.g., WO 2009/025846, WO 2010/081173).
- the scFv is specific for binding CD3e, and comprises or is derived from an antibody or fragment thereof that binds CD3e, e.g., CH2527, FN18, H2C, OKT3, 2C11, UCHT1, or V9.
- the scFv is specific for binding CTLA-4 (also referred to herein as CTLA and CTLA4).
- the anti-CTLA-4 scFv includes the amino acid sequence: GGGSGGGGSGSGGGSGGGGSGGGEIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKP GQAPRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYYCQQYGSSPLTFGGGTKV EIKRSGGSTITSYNVYYTKLSSSGTQVQLVQTGGGVVQPGRSLRLSCAASGSTFSSYAMSWVRQ APGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCATNSLYW YFDLWGRGTLVTVSSAS (SEQ ID NO: 643) [000349] In some embodiments, the anti-CTLA-4 scFv includes the amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or
- the anti-CD3 ⁇ scFv includes the amino acid sequence: GGGSGGGGSGSGGGSGGGGSGGGQVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRP GQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYC LDYWGQGTTLTVSSGGGGSGGGGSGGGGSQIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWY QQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGS GTKLEINR (SEQ ID NO: 644) [000351] In some embodiments, the anti-CD3 ⁇ scFv includes the amino acid sequence that is at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or
- the scFv is specific for binding one or more T-cells, one or more NK-cells and/or one or more macrophages.
- the scFv is specific for binding a target selected from the group consisting of B7-H4, BTLA, CD3, CD4, CD8, CD16a, CD25, CD27, CD28, CD32, CD56, CD137, CTLA-4, GITR, HVEM, ICOS, LAG3, NKG2D, OX40, PD-1, TIGIT, TIM3, or VISTA.
- the multispecific antibody/activatable antibody also includes an agent conjugated to the AB.
- the agent is a therapeutic agent. In some embodiments, the agent is an antineoplastic agent. In some embodiments, the agent is a toxin or fragment thereof. In some embodiments, the agent is conjugated to the multispecific antibody/activatable antibody via a linker. In some embodiments, the agent is conjugated to the AB via a cleavable linker. In some embodiments, the linker is a non-cleavable linker. In some embodiments, the agent is a microtubule inhibitor. In some embodiments, the agent is a nucleic acid damaging agent, such as a DNA alkylator or DNA intercalator, or other DNA damaging agent. In some embodiments, the linker is a cleavable linker.
- the agent is an agent selected from the group listed in Table E. In some embodiments, the agent is a dolastatin. In some embodiments, the agent is an auristatin or derivative thereof. In some embodiments, the agent is auristatin E or a derivative thereof. In some embodiments, the agent is monomethyl auristatin E (MMAE). In some embodiments, the agent is monomethyl auristatin D (MMAD). In some embodiments, the agent is a maytansinoid or maytansinoid derivative. In some embodiments, the agent is DM1 or DM4. In some embodiments, the agent is a duocarmycin or derivative thereof. In some embodiments, the agent is a calicheamicin or derivative thereof.
- the agent is a pyrrolobenzodiazepine. In some embodiments, the agent is a pyrrolobenzodiazepine dimer.
- the multispecific antibody/activatable antibody also includes a detectable moiety. In some embodiments, the detectable moiety is a diagnostic agent. [000355] In some embodiments, the multispecific antibody/activatable antibody naturally contains one or more disulfide bonds. In some embodiments, the multispecific activatable antibody can be engineered to include one or more disulfide bonds.
- the disclosure also provides an isolated nucleic acid molecule encoding a multispecific antibody/activatable antibody described herein, as well as vectors that include these isolated nucleic acid sequences.
- the disclosure provides methods of producing a multispecific antibody/activatable antibody by culturing a cell under conditions that lead to expression of the antibody/activatable antibody, wherein the cell comprises such a nucleic acid molecule. In some embodiments, the cell comprises such a vector.
- the disclosure also provides a method of manufacturing multispecific CD47 antibodies of the disclosure by (a) culturing a cell comprising a nucleic acid construct that encodes the multispecific antibody under conditions that lead to expression of the multispecific antibody.
- the disclosure also provides a method of manufacturing multispecific activatable CD47 antibodies of the disclosure by (a) culturing a cell comprising a nucleic acid construct that encodes the multispecific activatable antibody under conditions that lead to expression of the multispecific activatable antibody, and (b) recovering the multispecific activatable antibody.
- Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
- the disclosure also provides multispecific activatable antibodies and/or multispecific activatable antibody compositions that include at least a first antibody or antigen- binding fragment thereof (AB1) that specifically binds a first target or first epitope and a second antibody or antigen-biding fragment thereof (AB2) that binds a second target or a second epitope, where at least AB1 is coupled or otherwise attached to a masking moiety (MM1), such that coupling of the MM1 reduces the ability of AB1 to bind its target.
- AB1 antibody or antigen- binding fragment thereof
- AB2 second antibody or antigen-biding fragment thereof
- the MM1 is coupled to AB1 via a first cleavable moiety (CM1) sequence that includes a substrate for a protease, for example, a protease that is co-localized with the target of AB1 at a treatment site or a diagnostic site in a subject.
- CM1 first cleavable moiety
- the multispecific activatable antibodies provided herein are stable in circulation, activated at intended sites of therapy and/or diagnosis but not in normal, i.e., healthy tissue, and, when activated, exhibit binding to the target of AB1 that is at least comparable to the corresponding, unmodified multispecific antibody.
- Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
- compositions and methods that include a multispecific activatable antibody that includes at least a first antibody or antibody fragment (AB1) that specifically binds a target and a second antibody or antibody fragment (AB2), where at least the first AB in the multispecific activatable antibody is coupled to a masking moiety (MM1) that decreases the ability of AB1 to bind its target.
- a multispecific activatable antibody that includes at least a first antibody or antibody fragment (AB1) that specifically binds a target and a second antibody or antibody fragment (AB2), where at least the first AB in the multispecific activatable antibody is coupled to a masking moiety (MM1) that decreases the ability of AB1 to bind its target.
- MM1 masking moiety
- each AB is coupled to a MM that decreases the ability of its corresponding AB to each target.
- AB1 is coupled to a first masking moiety (MM1) that decreases the ability of AB1 to bind its target
- AB2 is coupled to a second masking moiety (MM2) that decreases the ability of AB2 to bind its target.
- the multispecific activatable antibody comprises more than two AB regions; in such embodiments, AB1 is coupled to a first masking moiety (MM1) that decreases the ability of AB1 to bind its target, AB2 is coupled to a second masking moiety (MM2) that decreases the ability of AB2 to bind its target, AB3 is coupled to a third masking moiety (MM3) that decreases the ability of AB3 to bind its target, and so on for each AB in the multispecific activatable antibody.
- Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
- the multispecific activatable antibody further includes at least one cleavable moiety (CM) that is a substrate for a protease, where the CM links a MM to an AB.
- the multispecific activatable antibody includes at least a first antibody or antibody fragment (AB1) that specifically binds a target and a second antibody or antibody fragment (AB2), where at least the first AB in the multispecific activatable antibody is coupled via a first cleavable moiety (CM1) to a masking moiety (MM1) that decreases the ability of AB1 to bind its target.
- AB1 is coupled via CM1 to MM1, and AB2 is coupled via a second cleavable moiety (CM2) to a second masking moiety (MM2) that decreases the ability of AB2 to bind its target.
- the multispecific activatable antibody comprises more than two AB regions; in some of these embodiments, AB1 is coupled via CM1 to MM1, AB2 is coupled via CM2 to MM2, and AB3 is coupled via a third cleavable moiety (CM3) to a third masking moiety (MM3) that decreases the ability of AB3 to bind its target, and so on for each AB in the multispecific activatable antibody.
- Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
- Activatable Antibodies Having Non-Binding Steric Moieties or Binding Partners for Non-Binding Steric Moieties [000362]
- the disclosure also provides activatable antibodies that include non-binding steric moieties (NB) or binding partners (BP) for non-binding steric moieties, where the BP recruits or otherwise attracts the NB to the activatable antibody.
- NB non-binding steric moieties
- BP binding partners
- the activatable antibodies provided herein include, for example, an activatable antibody that includes a non-binding steric moiety (NB), a cleavable linker (CL) and antibody or antibody fragment (AB) that binds a target; an activatable antibody that includes a binding partner for a non-binding steric moiety (BP), a CL and an AB; and an activatable antibody that includes a BP to which an NB has been recruited, a CL and an AB that binds the target.
- NB non-binding steric moiety
- CL cleavable linker
- AB antibody or antibody fragment
- NB-containing activatable antibodies Activatable antibodies in which the NB is covalently linked to the CL and AB of the activatable antibody or is associated by interaction with a BP that is covalently linked to the CL and AB of the activatable antibody are referred to herein as “NB-containing activatable antibodies.”
- activatable or switchable is meant that the activatable antibody exhibits a first level of binding to a target when the activatable antibody is in an inhibited, masked or uncleaved state (i.e., a first conformation), and a second level of binding to the target when the activatable antibody is in an uninhibited, unmasked and/or cleaved state (i.e., a second conformation, i.e., activated antibody), where the second level of target binding is greater than the first level of target binding.
- activatable antibody compositions can exhibit increased bioavailability and more favorable biodistribution compared to conventional antibody therapeutics.
- activatable antibodies provide for reduced toxicity and/or adverse side effects that could otherwise result from binding of the at non-treatment sites and/or non-diagnostic sites if the AB were not masked or otherwise inhibited from binding to such a site.
- CD47 activatable antibodies that include a non-binding steric moiety (NB) can be made using the methods set forth in PCT Publication No. WO 2013/192546, the contents of which are hereby incorporated by reference in their entirety.
- the invention provides methods of preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating a CD47-mediated disease in a subject by administering a therapeutically effective amount of a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody described herein to a subject in need thereof.
- a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody for use in preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating a CD47-mediated disease.
- the invention also provides methods of preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating cancer in a subject by administering a therapeutically effective amount of a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody described herein to a subject in need thereof.
- a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody for use in preventing, delaying the progression of, treating, alleviating a symptom of, or otherwise ameliorating cancer.
- the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with aberrant expression and/or activity of CD47 in a subject using antibodies/activatable antibodies that bind CD47, particularly activatable antibodies that bind and neutralize or otherwise inhibit at least one biological activity of CD47 and/or CD47-mediated signaling.
- antibodies/activatable antibodies that bind CD47 for use in treating, preventing and/or delaying the onset or progression of, ameliorating, or alleviating a symptom associated with aberrant expression and/or activity of CD47.
- the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with the presence, growth, proliferation, metastasis, and/or activity of cells which are expressing CD47 or aberrantly expressing CD47 in a subject using antibodies/activatable antibodies that bind CD47, particularly activatable antibodies that bind, target, neutralize, kill, or otherwise inhibit at least one biological activity of cells which are expressing or aberrantly expressing CD47.
- the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with the presence, growth, proliferation, metastasis, and/or activity of cells which are expressing CD47 in a subject using antibodies/activatable antibodies that bind CD47, particularly antibodies/activatable antibodies that bind, target, neutralize, kill, or otherwise inhibit at least one biological activity of cells which are expressing CD47.
- the invention also provides methods of treating, preventing and/or delaying the onset or progression of, or alleviating a symptom associated with the presence, growth, proliferation, metastasis, and/or activity of cells which are aberrantly expressing CD47 in a subject using antibodies/activatable antibodies that bind CD47, particularly antibodies/activatable antibodies that bind, target, neutralize, kill, or otherwise inhibit at least one biological activity of cells which are aberrantly expressing CD47.
- CD47 is known to be expressed in a variety of cancers, such as, by way of non- limiting example, adenocarcinoma, bile duct (biliary) cancer, bladder cancer, breast cancer, e.g., triple-negative breast cancer and Her2-negative breast cancer; carcinoid cancer; cervical cancer; cholangiocarcinoma; colorectal; endometrial; esophageal cancer; glioma; head and neck cancer, e.g., head and neck squamous cell cancer; leukemia; liver cancer; lung cancer, e.g., NSCLC, SCLC; lymphoma; melanoma; osopharyngeal cancer; ovarian cancer; pancreatic cancer; prostate cancer, e.g., metastatic castration-resistant prostate carcinoma; renal cancer; skin cancer; squamous cell cancer, stomach cancer; testis cancer; thyroid cancer; and urothelial cancer.
- adenocarcinoma bile
- the cancer is associated with a CD47-expressing tumor. In some embodiments, the cancer is due to a CD47-expressing tumor.
- a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody used in any of the embodiments of these methods and uses can be administered at any stage of the disease.
- such a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody can be administered to a patient suffering cancer of any stage, from early to metastatic.
- the terms subject and patient are used interchangeably herein.
- the subject is a mammal, such as a human, non-human primate, companion animal (e.g., cat, dog, horse), farm animal, work animal, or zoo animal.
- the subject is a human.
- the subject is a companion animal.
- the subject is an animal in the care of a veterinarian.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and therapeutic formulations thereof are administered to a subject suffering from or susceptible to a disease or disorder associated with aberrant CD47 expression and/or activity.
- a subject suffering from or susceptible to a disease or disorder associated with aberrant CD47 expression and/or activity is identified using any of a variety of methods known in the art.
- subjects suffering from cancer or other neoplastic condition are identified using any of a variety of clinical and/or laboratory tests such as, physical examination and blood, urine and/or stool analysis to evaluate health status.
- subjects suffering from inflammation and/or an inflammatory disorder are identified using any of a variety of clinical and/or laboratory tests such as physical examination and/or bodily fluid analysis, e.g., blood, urine and/or stool analysis, to evaluate health status.
- a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody to a patient suffering from a disease or disorder associated with aberrant CD47 expression and/or activity is considered successful if any of a variety of laboratory or clinical objectives is achieved.
- administration of a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody to a patient suffering from a disease or disorder associated with aberrant CD47 expression and/or activity is considered successful if one or more of the symptoms associated with the disease or disorder is alleviated, reduced, inhibited or does not progress to a further, i.e., worse, state.
- CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody is considered successful if the disease or disorder enters remission or does not progress to a further, i.e., worse, state.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and therapeutic formulations thereof are administered to a subject suffering from or susceptible to a disease or disorder, such as subjects suffering from cancer or other neoplastic condition, wherein the subject’s diseased cells are expressing CD47.
- the diseased cells are associated with aberrant CD47 expression and/or activity. In some embodiments, the diseased cells are associated with normal CD47 expression and/or activity.
- a subject suffering from or susceptible to a disease or disorder wherein the subject’s diseased cells express CD47 is identified using any of a variety of methods known in the art. For example, subjects suffering from cancer or other neoplastic condition are identified using any of a variety of clinical and/or laboratory tests such as, physical examination and blood, urine and/or stool analysis to evaluate health status. For example, subjects suffering from inflammation and/or an inflammatory disorder are identified using any of a variety of clinical and/or laboratory tests such as physical examination and/or bodily fluid analysis, e.g., blood, urine and/or stool analysis, to evaluate health status.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and therapeutic formulations thereof are administered to a subject suffering from or susceptible to a disease or disorder associated with cells expressing CD47 or the presence, growth, proliferation, metastasis, and/or activity of such cells, such as subjects suffering from cancer or other neoplastic conditions.
- the cells are associated with aberrant CD47 expression and/or activity.
- the cells are associated with normal CD47 expression and/or activity.
- a subject suffering from or susceptible to a disease or disorder associated with cells that express CD47 is identified using any of a variety of methods known in the art.
- subjects suffering from cancer or other neoplastic condition are identified using any of a variety of clinical and/or laboratory tests such as, physical examination and blood, urine and/or stool analysis to evaluate health status.
- subjects suffering from inflammation and/or an inflammatory disorder are identified using any of a variety of clinical and/or laboratory tests such as physical examination and/or bodily fluid analysis, e.g., blood, urine and/or stool analysis, to evaluate health status.
- Administration of a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody to a patient suffering from a disease or disorder associated with cells expressing CD47 is considered successful if any of a variety of laboratory or clinical objectives is achieved.
- a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody to a patient suffering from a disease or disorder associated with cells expressing CD47 is considered successful if one or more of the symptoms associated with the disease or disorder is alleviated, reduced, inhibited or does not progress to a further, i.e., worse, state.
- Administration of a CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody to a patient suffering from a disease or disorder associated with cells expressing CD47 is considered successful if the disease or disorder enters remission or does not progress to a further, i.e., worse, state.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody is administered during and/or after treatment in combination with one or more additional agents such as, for example, a chemotherapeutic agent, an anti-inflammatory agent, and/or an immunosuppressive agent.
- additional agents such as, for example, a chemotherapeutic agent, an anti-inflammatory agent, and/or an immunosuppressive agent.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent(s) are administered simultaneously.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent(s) can be formulated in a single composition or administered as two or more separate compositions.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent(s) are administered sequentially.
- the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease in which diseased cells express CD47 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the disorder or disease is cancer.
- the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease associated with cells expressing CD47 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the disorder or disease associated with cells expressing CD47 is cancer.
- the cancer is an adenocarcinoma, a bile duct (biliary) cancer, a bladder cancer, a bone cancer, a breast cancer, a triple-negative breast cancer, a Her2-negative breast cancer, a carcinoid cancer, a cervical cancer, a cholangiocarcinoma, a colorectal cancer, a colon cancer, an endometrial cancer, an esophageal cancer, a glioma, a head and neck cancer, a head and neck squamous cell cancer, a leukemia, a liver cancer, a lung cancer, a non-small cell lung cancer, a small cell lung cancer, a lymphoma, a melanoma, an oropharyngeal cancer, an ovarian cancer, a pancreatic cancer, a prostate cancer, a metastatic castration-resistant prostate carcinoma, a renal cancer, a sarcoma, a skin cancer, a squamous cell
- the expression and/or activity of the mammalian CD47 is aberrant.
- the method comprises administering an additional agent.
- the additional agent is a therapeutic agent.
- the disclosure also provides methods of inhibiting or reducing the growth, proliferation, or metastasis of cells expressing mammalian CD47 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the expression and/or activity of the mammalian CD47 is aberrant.
- the method comprises administering an additional agent.
- the additional agent is a therapeutic agent.
- the disclosure also provides methods of inhibiting, blocking, or preventing the binding of a natural ligand to mammalian CD47, comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the expression and/or activity of the mammalian CD47 is aberrant.
- the method comprises administering an additional agent.
- the additional agent is a therapeutic agent.
- the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease in which diseased cells express CD47 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the disorder or disease is cancer.
- the disclosure also provides methods of treating, alleviating a symptom of, or delaying the progression of a disorder or disease associated with cells expressing CD47 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the disorder or disease associated with cells expressing CD47 is cancer.
- the cancer is an adenocarcinoma, a bile duct (biliary) cancer, a bladder cancer, a bone cancer, a breast cancer, a triple-negative breast cancer, a Her2-negative breast cancer, a carcinoid cancer, a cervical cancer, a cholangiocarcinoma, a colorectal cancer, a colon cancer, an endometrial cancer, an esophageal cancer, a glioma, a head and neck cancer, a head and neck squamous cell cancer, a leukemia, a liver cancer, a lung cancer, a non-small cell lung cancer, a small cell lung cancer, a lymphoma, a melanoma, an oropharyngeal cancer, an ovarian cancer, a pancreatic cancer, a prostate cancer, a metastatic castration-resistant prostate carcinoma, a renal cancer, a sarcoma, a skin cancer, a squamous cell
- the expression and/or activity of the mammalian CD47 is aberrant.
- the method comprises administering an additional agent.
- the additional agent is a therapeutic agent.
- the disclosure also provides methods of inhibiting or reducing the growth, proliferation, or metastasis of cells expressing mammalian CD47 comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the expression and/or activity of the mammalian CD47 is aberrant.
- the method comprises administering an additional agent.
- the additional agent is a therapeutic agent.
- the disclosure also provides methods of inhibiting, blocking, or preventing the binding of a natural ligand to mammalian CD47, comprising administering a therapeutically effective amount of an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure or a pharmaceutical composition comprising an antibody/conjugated antibody/activatable antibody/conjugated activatable antibody of the disclosure to a subject in need thereof.
- the expression and/or activity of the mammalian CD47 is aberrant.
- the method comprises administering an additional agent.
- the additional agent is a therapeutic agent.
- suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
- a multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington’s Pharmaceutical Sciences (15th ed, Mack Publishing Company, Easton, PA (1975)), particularly Chapter 87 by Blaug, Seymour, therein.
- formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LipofectinTM), DNA conjugates, anhydrous absorption pastes, oil-in- water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. Any of the foregoing mixtures may be appropriate in treatments and therapies in accordance with the present disclosure, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration.
- Therapeutic formulations of the disclosure which include a CD47 antibody and/or activatable CD47 antibody, such as by way of non-limiting example, an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody, are used to prevent, treat or otherwise ameliorate a disease or disorder associated with aberrant target expression and/or activity.
- therapeutic formulations of the disclosure which include an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody, are used to treat or otherwise ameliorate a cancer or other neoplastic condition, inflammation, an inflammatory disorder, and/or an autoimmune disease.
- the cancer is a solid tumor or a hematologic malignancy where the target is expressed.
- the cancer is a solid tumor where the target is expressed. In some embodiments, the cancer is a hematologic malignancy where the target is expressed. In some embodiments, the target is expressed on parenchyma (e.g., in cancer, the portion of an organ or tissue that often carries out function(s) of the organ or tissue). In some embodiments, the target is expressed on a cell, tissue, or organ. In some embodiments, the target is expressed on stroma (i.e., the connective supportive framework of a cell, tissue, or organ). In some embodiments, the target is expressed on an osteoblast. In some embodiments, the target is expressed on the endothelium (vasculature). In some embodiments, the target is expressed on a cancer stem cell.
- parenchyma e.g., in cancer, the portion of an organ or tissue that often carries out function(s) of the organ or tissue.
- the target is expressed on a cell, tissue, or organ.
- the target is expressed on stroma (i.
- the agent to which the antibody and/or the activatable antibody is conjugated is a microtubule inhibitor. In some embodiments, the agent to which the antibody and/or the activatable antibody is conjugated is a nucleic acid damaging agent. [000394] Efficaciousness of prevention, amelioration or treatment is determined in association with any known method for diagnosing or treating the disease or disorder associated with target expression and/or activity, such as, for example, aberrant target expression and/or activity.
- an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody can be administered in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington : The Science And Practice Of Pharmacy 19th ed. (Alfonso R. Gennaro, et al., editors) Mack Pub.
- the smallest fragment that specifically binds to the binding domain of the target protein is selected.
- peptide molecules can be designed that retain the ability to bind the target protein sequence.
- Such peptides can be synthesized chemically and/or produced by recombinant DNA technology.
- the formulation can also contain more than one active compounds as necessary for the particular indication being treated, for example, in some embodiments, those with complementary activities that do not adversely affect each other.
- the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth- inhibitory agent.
- cytotoxic agent such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth- inhibitory agent.
- Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
- the active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.
- colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules
- the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
- Sustained-release preparations can be prepared.
- sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules.
- sustained-release matrices include polyesters, hydrogels (for example, poly(2- hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat.
- copolymers of L-glutamic acid and g ethyl-L-glutamate non-degradable ethylene-vinyl acetate
- degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate)
- poly- D-(-)-3-hydroxybutyric acid While polymers such as ethylene-vinyl acetate and lactic acid- glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
- the CD47 antibodies, conjugated CD47 antibodies, activatable CD47 antibodies and/or conjugated activatable CD47 antibodies described herein are used in conjunction with one or more additional agents or a combination of additional agents.
- additional agents include current pharmaceutical and/or surgical therapies for an intended application, such as, for example, cancer.
- the CD47 antibodies, conjugated CD47 antibodies, activatable CD47 antibodies and/or conjugated activatable CD47 antibodies can be used in conjunction with an additional chemotherapeutic agent, anti-neoplastic agent, anti-inflammatory agent, an immunosuppressive agent, an alkylating agent, an anti- metabolite, an anti-microtubule agent, a topoisomerase inhibitor, a cytotoxic antibiotic, and/or any other nucleic acid damaging agent.
- the additional agent(s) is a chemotherapeutic agent, such as a chemotherapeutic agent selected from the group consisting of docetaxel, paclitaxel, abraxane (i.e., albumin-conjugated paclitaxel), doxorubicin, oxaliplatin, carboplatin, cisplatin, irinotecan, and gemcitabine.
- the additional agent(s) is a checkpoint inhibitor, a kinase inhibitor, an agent targeting inhibitors in the tumor microenvironment, and/or a T cell or NK agonist.
- the additional agent(s) is radiation therapy, alone or in combination with another additional agent(s) such as a chemotherapeutic or anti-neoplastic agent.
- the additional agent(s) is a vaccine, an oncovirus, and/or a DC- activating agent such as, by way of non-limiting example, a toll-like receptor (TLR) agonist and/or a-CD40.
- the additional agent(s) is a tumor-targeted antibody designed to kill the tumor via ADCC or via direct conjugation to a toxin (e.g., an antibody drug conjugate (ADC).
- ADC antibody drug conjugate
- the checkpoint inhibitor is an inhibitor of a target selected from the group consisting of CTLA-4, LAG-3, PD-1, CD47, TIGIT, TIM-3, B7H4, and Vista.
- the kinase inhibitor is selected from the group consisting of B-RAFi, MEKi, and Btk inhibitors, such as ibrutinib.
- the kinase inhibitor is crizotinib.
- the tumor microenvironment inhibitor is selected from the group consisting of an IDO inhibitor, an a-CSF1R inhibitor, an a-CCR4 inhibitor, a TGF-beta, a myeloid-derived suppressor cell, or a T-regulatory cell.
- the agonist is selected from the group consisting of Ox40, GITR, CD137, ICOS, CD27, and HVEM.
- the inhibitor is a CTLA-4 inhibitor.
- the inhibitor is a LAG-3 inhibitor.
- the inhibitor is a PD-1 inhibitor.
- the inhibitor is a CD47 inhibitor.
- the inhibitor is a TIGIT inhibitor.
- the inhibitor is a TIM-3 inhibitor. In some embodiments, the inhibitor is a B7H4 inhibitor. In some embodiments, the inhibitor is a Vista inhibitor. In some embodiments, the inhibitor is a B-RAFi inhibitor. In some embodiments, the inhibitor is a MEKi inhibitor. In some embodiments, the inhibitor is a Btk inhibitor. In some embodiments, the inhibitor is ibrutinib. In some embodiments, the inhibitor is crizotinib. In some embodiments, the inhibitor is an IDO inhibitor. In some embodiments, the inhibitor is an a-CSF1R inhibitor. In some embodiments, the inhibitor is an a-CCR4 inhibitor. In some embodiments, the inhibitor is a TGF-beta.
- the inhibitor is a myeloid-derived suppressor cell. In some embodiments, the inhibitor is a T-regulatory cell. [000405] In some embodiments, the agonist is Ox40. In some embodiments, the agonist is GITR. In some embodiments, the agonist is CD137. In some embodiments, the agonist is ICOS. In some embodiments, the agonist is CD27. In some embodiments, the agonist is HVEM.
- the CD47 antibody, conjugated antibody, activatable antibody and/or conjugated activatable antibody is administered during and/or after treatment in combination with one or more additional agents such as, for example, a chemotherapeutic agent, an anti-inflammatory agent, and/or an immunosuppressive agent.
- additional agents such as, for example, a chemotherapeutic agent, an anti-inflammatory agent, and/or an immunosuppressive agent.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent are formulated into a single therapeutic composition, and the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and additional agent are administered simultaneously.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and additional agent are separate from each other, e.g., each is formulated into a separate therapeutic composition, and the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent are administered simultaneously, or the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent are administered at different times during a treatment regimen.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody is administered prior to the administration of the additional agent
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody is administered subsequent to the administration of the additional agent
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent are administered in an alternating fashion.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and additional agent are administered in single doses or in multiple doses.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent(s) are administered simultaneously.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent(s) can be formulated in a single composition or administered as two or more separate compositions.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent(s) are administered sequentially, or the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody and the additional agent are administered at different times during a treatment regimen.
- the CD47 antibody, conjugated CD47 antibody, activatable CD47 antibody and/or conjugated activatable CD47 antibody is administered during and/or after treatment in combination with one or more additional agents such as, by way of non- limiting example, a chemotherapeutic agent, an anti-inflammatory agent, and/or an immunosuppressive agent, such as an alkylating agent, an anti-metabolite, an anti-microtubule agent, a topoisomerase inhibitor, a cytotoxic antibiotic, and/or any other nucleic acid damaging agent.
- the additional agent is a taxane, such as paclitaxel (e.g., Abraxane®).
- the additional agent is an anti-metabolite, such as gemcitabine.
- the additional agent is an alkylating agent, such as platinum- based chemotherapy, such as carboplatin or cisplatin.
- the additional agent is a targeted agent, such as a kinase inhibitor, e.g., sorafenib or erlotinib.
- the additional agent is a targeted agent, such as another antibody, e.g., a monoclonal antibody (e.g., bevacizumab), a bispecific antibody, or a multispecific antibody.
- the additional agent is a proteosome inhibitor, such as bortezomib or carfilzomib.
- the additional agent is an immune modulating agent, such as lenolidominde or IL- 2.
- the additional agent is radiation.
- the additional agent is an agent considered standard of care by those skilled in the art.
- the additional agent is a chemotherapeutic agent well known to those skilled in the art. [000409]
- the additional agent is another antibody or antigen-binding fragment thereof, another conjugated antibody or antigen-binding fragment thereof, another activatable antibody or antigen-binding fragment thereof and/or another conjugated activatable antibody or antigen-binding fragment thereof.
- the additional agent is another antibody or antigen-binding fragment thereof, another conjugated antibody or antigen- binding fragment thereof, another activatable antibody or antigen-binding fragment thereof and/or another conjugated activatable antibody or antigen-binding fragment thereof against the same target as the first antibody or antigen-binding fragment thereof, the first conjugated antibody or antigen-binding fragment thereof, activatable antibody or antigen-binding fragment thereof and/or a conjugated activatable antibody or antigen-binding fragment thereof, e.g., against CD47.
- the additional agent is another antibody or antigen-binding fragment thereof, another conjugated antibody or antigen-binding fragment thereof, another activatable antibody or antigen-binding fragment thereof and/or another conjugated activatable antibody or antigen-binding fragment thereof against a target different than the target of the first antibody or antigen-binding fragment thereof, the first conjugated antibody or antigen-binding fragment thereof, activatable antibody or antigen-binding fragment thereof and/or a conjugated activatable antibody or antigen-binding fragment thereof.
- the antibody, antigen-binding fragment and/or the AB of an activatable antibody (of the additional agent) is a binding partner for any target listed in Table H. Table H: Exemplary Targets
- the antibody, antigen-binding fragment and/or the AB of an activatable antibody is or is derived from an antibody listed in Table J.
- Table J Exemplary sources for Abs
- the additional antibody or antigen binding fragment thereof, conjugated antibody or antigen binding fragment thereof, activatable antibody or antigen binding fragment thereof, and/or conjugated activatable antibody or antigen binding fragment thereof is a monoclonal antibody, domain antibody, single chain, Fab fragment, a F(ab’) 2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, or a single domain light chain antibody.
- the additional antibody or antigen binding fragment thereof, conjugated antibody or antigen binding fragment thereof, activatable antibody or antigen binding fragment thereof, and/or conjugated activatable antibody or antigen binding fragment thereof is a mouse, other rodent, chimeric, humanized or fully human monoclonal antibody. Detection, Diagnostics, Imaging, Patient Selection [000413]
- the invention also provides methods and kits for using the antibodies/conjugated antibodies/activatable antibodies/conjugated activatable antibodies provided herein in a variety of diagnostic and/or prophylactic indications.
- the invention provides methods and kits for detecting the presence or absence of a cleaving agent and a target of interest in a subject or a sample by (i) contacting a subject or sample with a CD47 activatable antibody, wherein the CD47 activatable antibody comprises a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, and an antigen binding domain or fragment thereof (AB) that specifically binds the target of interest, wherein the CD47 activatable antibody in an uncleaved, non-activated state comprises a structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM; (a) wherein the MM is a peptide that inhibits binding of the AB to CD47, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB and is not a modified form of a natural binding partner of the AB; and (b) wherein,
- the CD47 activatable antibody can bind both human and cynomolgus CD47.
- the activatable CD47 antibody is an activatable CD47 antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent.
- the activatable CD47 antibody comprises a detectable label. In some embodiments, the detectable label is positioned on the AB. In some embodiments, measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label. In some embodiments, the secondary reagent is an antibody comprising a detectable label.
- the activatable CD47 antibody includes a detectable label.
- the detectable label includes an imaging agent, a contrasting agent, an enzyme, a fluorescent label, a chromophore, a dye, one or more metal ions, or a ligand-based label.
- the imaging agent comprises a radioisotope.
- the radioisotope is indium or technetium.
- the contrasting agent comprises iodine, gadolinium or iron oxide.
- the enzyme comprises horseradish peroxidase, alkaline phosphatase, or b- galactosidase.
- the fluorescent label comprises yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), green fluorescent protein (GFP), modified red fluorescent protein (mRFP), red fluorescent protein tdimer2 (RFP tdimer2), HCRED, or a europium derivative.
- the luminescent label comprises an N-methylacrydium derivative.
- the label comprises an Alexa Fluor ® label, such as Alex Fluor ® 680 or Alexa Fluor ® 750.
- the ligand-based label comprises biotin, avidin, streptavidin or one or more haptens.
- the subject is a mammal. In some embodiments of these methods, the subject is a human. In some embodiments, the subject is a non-human mammal, such as a non-human primate, companion animal (e.g., cat, dog, horse), farm animal, work animal, or zoo animal. In some embodiments, the subject is a rodent.
- the method is an in vivo method. In some embodiments of these methods, the method is an in situ method.
- the method is an ex vivo method. In some embodiments of these methods, the method is an in vitro method. [000418] In some embodiments of the methods and kits, the method is used to identify or otherwise refine a patient population suitable for treatment with a CD47 activatable antibody of the disclosure, followed by treatment by administering that activatable CD47 antibody and/or conjugated activatable CD47 antibody to a subject in need thereof.
- patients that test positive for both the target (e.g., CD47) and a protease that cleaves the substrate in the cleavable moiety (CM) of CD47 activatable antibody being tested in these methods are identified as suitable candidates for treatment with such a CD47 activatable antibody comprising such a CM, and the patient is then administered a therapeutically effective amount of the activatable CD47 antibody and/or conjugated activatable CD47 antibody that was tested.
- patients that test negative for either or both of the target (e.g., CD47) and the protease that cleaves the substrate in the CM in the activatable antibody being tested using these methods might be identified as suitable candidates for another form of therapy.
- such patients can be tested with other CD47 activatable antibodies until a suitable CD47 activatable antibody for treatment is identified (e.g., a CD47 activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- a suitable CD47 activatable antibody for treatment e.g., a CD47 activatable antibody comprising a CM that is cleaved by the patient at the site of disease.
- the patient is then administered a therapeutically effective amount of the activatable CD47 antibody and/or conjugated for which the patient tested positive.
- Suitable AB, MM, and/or CM include any of the AB, MM, and/or CM disclosed herein.
- the antibody, the conjugated antibody, activatable antibody and/or conjugated activatable antibody contains a detectable label.
- an intact antibody, or a fragment thereof is used.
- labeled with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
- indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
- biological sample is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the term “biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the disclosure can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo. For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations.
- In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, immunochemical staining, and immunofluorescence.
- In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in “ELISA: Theory and Practice: Methods in Molecular Biology”, Vol.42, J. R. Crowther (Ed.) Human Press, Totowa, NJ, 1995; “Immunoassay”, E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, CA, 1996; and “Practice and Theory of Enzyme Immunoassays”, P.
- analyte protein in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti- analyte protein antibody.
- the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
- the antibodies, conjugated antibodies, activatable antibodies and/or conjugated activatable antibodies of the disclosure are also useful in a variety of diagnostic and prophylactic formulations.
- an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody is administered to patients that are at risk of developing one or more of the aforementioned disorders.
- a patient’s or organ’s predisposition to one or more of the aforementioned disorders can be determined using genotypic, serological or biochemical markers.
- an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody is administered to human individuals diagnosed with a clinical indication associated with one or more of the aforementioned disorders.
- an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody is administered to mitigate or reverse the effects of the clinical indication.
- an antibody, a conjugated antibody, an activatable antibody, and/or a conjugated activatable antibody of the disclosure is also useful in the detection of a target in patient samples and accordingly are useful as diagnostics.
- the antibodies and/or activatable antibodies, and conjugated versions thereof, of the disclosure are used in in vitro assays, e.g., ELISA, to detect target levels in a patient sample.
- an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody of the disclosure is immobilized on a solid support (e.g., the well(s) of a microtiter plate).
- the immobilized antibody, conjugated antibody, activatable antibody and/or conjugated activatable antibody serves as a capture antibody for any target that may be present in a test sample.
- the solid support Prior to contacting the immobilized antibody and/or activatable antibody, and/or conjugated versions thereof, with a patient sample, the solid support is rinsed and treated with a blocking agent such as milk protein or albumin to prevent nonspecific adsorption of the analyte.
- a test sample suspected of containing the antigen or with a solution containing a standard amount of the antigen.
- a sample is, e.g., a serum sample from a subject suspected of having levels of circulating antigen considered to be diagnostic of a pathology.
- the solid support After rinsing away the test sample or standard, the solid support is treated with a second antibody that is detectably labeled.
- the labeled second antibody serves as a detecting antibody.
- the level of detectable label is measured, and the concentration of target antigen in the test sample is determined by comparison with a standard curve developed from the standard samples.
- An antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody can also be used in diagnostic and/or imaging methods.
- such methods are in vitro methods.
- such methods are in vivo methods.
- such methods are in situ methods.
- such methods are ex vivo methods.
- activatable antibodies having an enzymatically cleavable CM can be used to detect the presence or absence of an enzyme that is capable of cleaving the CM.
- Such activatable antibodies can be used in diagnostics, which can include in vivo detection (e.g., qualitative or quantitative) of enzyme activity (or, in some embodiments, an environment of increased reduction potential such as that which can provide for reduction of a disulfide bond) through measured accumulation of activated antibodies (i.e., antibodies resulting from cleavage of an activatable antibody) in a given cell or tissue of a given host organism.
- activated antibodies i.e., antibodies resulting from cleavage of an activatable antibody
- Such accumulation of activated antibodies indicates not only that the tissue expresses enzymatic activity (or an increased reduction potential depending on the nature of the CM) but also that the tissue expresses target to which the activated antibody binds.
- the CM can be selected to be substrate for at least one protease found at the site of a tumor, at the site of a viral or bacterial infection at a biologically confined site (e.g., such as in an abscess, in an organ, and the like), and the like.
- the AB can be one that binds a target antigen.
- a detectable label e.g., a fluorescent label or radioactive label or radiotracer
- Suitable detectable labels are discussed in the context of the above screening methods and additional specific examples are provided below.
- activatable antibodies will exhibit an increased rate of binding to disease tissue relative to tissues where the CM specific enzyme is not present at a detectable level or is present at a lower level than in disease tissue or is inactive (e.g., in zymogen form or in complex with an inhibitor). Since small proteins and peptides are rapidly cleared from the blood by the renal filtration system, and because the enzyme specific for the CM is not present at a detectable level (or is present at lower levels in non-disease tissues or is present in inactive conformation), accumulation of activated antibodies in the disease tissue is enhanced relative to non-disease tissues.
- activatable antibodies can be used to detect the presence or absence of a cleaving agent in a sample.
- the activatable antibodies can be used to detect (either qualitatively or quantitatively) the presence of an enzyme in the sample.
- the activatable antibodies can be used to detect (either qualitatively or quantitatively) the presence of reducing conditions in a sample.
- the activatable antibodies can be detectably labeled, and can be bound to a support (e.g., a solid support, such as a slide or bead).
- the detectable label can be positioned on a portion of the activatable antibody that is not released following cleavage, for example, the detectable label can be a quenched fluorescent label or other label that is not detectable until cleavage has occurred.
- the assay can be conducted by, for example, contacting the immobilized, detectably labeled activatable antibodies with a sample suspected of containing an enzyme and/or reducing agent for a time sufficient for cleavage to occur, then washing to remove excess sample and contaminants.
- the presence or absence of the cleaving agent (e.g., enzyme or reducing agent) in the sample is then assessed by a change in detectable signal of the activatable antibodies prior to contacting with the sample e.g., the presence of and/or an increase in detectable signal due to cleavage of the activatable antibody by the cleaving agent in the sample.
- the detection methods can be adapted to also provide for detection of the presence or absence of a target that is capable of binding the AB of the activatable antibodies when cleaved.
- the assays can be adapted to assess the presence or absence of a cleaving agent and the presence or absence of a target of interest.
- Activatable antibodies are also useful in in situ imaging for the validation of activatable antibody activation, e.g., by protease cleavage, and binding to a particular target. In situ imaging is a technique that enables localization of proteolytic activity and target in biological samples such as cell cultures or tissue sections.
- a detectable label e.g., a fluorescent label.
- a detectable label e.g., a fluorescent label.
- an activatable antibody is labeled with a detectable label.
- the detectable label can be a fluorescent dye, (e.g.
- a fluorophore Fluorescein Isothiocyanate (FITC), Rhodamine Isothiocyanate (TRITC), an Alexa Fluor® label), a near infrared (NIR) dye (e.g., Qdot® nanocrystals), a colloidal metal, a hapten, a radioactive marker, biotin and an amplification reagent such as streptavidin, or an enzyme (e.g. horseradish peroxidase or alkaline phosphatase).
- Detection of the label in a sample that has been incubated with the labeled, activatable antibody indicates that the sample contains the target and contains a protease that is specific for the CM of the activatable antibody.
- the presence of the protease can be confirmed using broad spectrum protease inhibitors such as those described herein, and/or by using an agent that is specific for the protease, for example, an antibody such as A11, which is specific for the protease matriptase and inhibits the proteolytic activity of matriptase; see e.g., International Publication Number WO 2010/129609, published 11 November 2010.
- the same approach of using broad spectrum protease inhibitors such as those described herein, and/or by using a more selective inhibitory agent can be used to identify a protease that is specific for the CM of the activatable antibody.
- the presence of the target can be confirmed using an agent that is specific for the target, e.g., another antibody, or the detectable label can be competed with unlabeled target.
- unlabeled activatable antibody could be used, with detection by a labeled secondary antibody or more complex detection system.
- Similar techniques are also useful for in vivo imaging where detection of the fluorescent signal in a subject, e.g., a mammal, including a human, indicates that the disease site contains the target and contains a protease that is specific for the CM of the activatable antibody.
- These techniques are also useful in kits and/or as reagents for the detection, identification or characterization of protease activity in a variety of cells, tissues, and organisms based on the protease-specific CM in the activatable antibody.
- the disclosure provides methods of using the antibodies and/or activatable antibodies in a variety of diagnostic and/or prophylactic indications.
- the disclosure provides methods of detecting presence or absence of a cleaving agent and a target of interest in a subject or a sample by (i) contacting a subject or sample with an activatable antibody, wherein the activatable antibody comprises a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, e.g., a protease, and an antigen binding domain or fragment thereof (AB) that specifically binds the target of interest, wherein the activatable antibody in an uncleaved, non-activated state comprises a structural arrangement from N-terminus to C- terminus as follows: MM-CM-AB or AB-CM-MM; (a) wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB and is not a modified form of a natural binding partner of the AB; and (b)
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent. In some embodiments, the activatable antibody comprises a detectable label. In some embodiments, the detectable label is positioned on the AB. In some embodiments, measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label. In some embodiments, the secondary reagent is an antibody comprising a detectable label.
- the disclosure also provides methods of detecting presence or absence of a cleaving agent in a subject or a sample by (i) contacting a subject or sample with an activatable antibody in the presence of a target of interest, e.g., the target, wherein the activatable antibody comprises a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, e.g., a protease, and an antigen binding domain or fragment thereof (AB) that specifically binds the target of interest, wherein the activatable antibody in an uncleaved, non-activated state comprises a structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM; (a) wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB and is not a modified form
- MM
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent. In some embodiments, the activatable antibody comprises a detectable label. In some embodiments, the detectable label is positioned on the AB. In some embodiments, measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label. In some embodiments, the secondary reagent is an antibody comprising a detectable label.
- kits for use in methods of detecting presence or absence of a cleaving agent and the target in a subject or a sample where the kits include at least an activatable antibody comprises a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, e.g., a protease, and an antigen binding domain or fragment thereof (AB) that specifically binds the target of interest, wherein the activatable antibody in an uncleaved, non-activated state comprises a structural arrangement from N-terminus to C- terminus as follows: MM-CM-AB or AB-CM-MM; (a) wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB and is not a modified form of a natural binding partner of the AB; and (b) wherein, in an uncleaved
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent. In some embodiments, the activatable antibody comprises a detectable label. In some embodiments, the detectable label is positioned on the AB. In some embodiments, measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label. In some embodiments, the secondary reagent is an antibody comprising a detectable label.
- the disclosure also provides methods of detecting presence or absence of a cleaving agent in a subject or a sample by (i) contacting a subject or sample with an activatable antibody, wherein the activatable antibody comprises a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, e.g., a protease, an antigen binding domain (AB) that specifically binds the target, and a detectable label, wherein the activatable antibody in an uncleaved, non-activated state comprises a structural arrangement from N-terminus to C- terminus as follows: MM-CM-AB or AB-CM-MM; wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB and is not a modified form of a natural binding partner of the AB; wherein, in an uncleaved
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent. In some embodiments, the activatable antibody comprises a detectable label. In some embodiments, the detectable label is positioned on the AB. In some embodiments, measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label. In some embodiments, the secondary reagent is an antibody comprising a detectable label.
- kits for use in methods of detecting presence or absence of a cleaving agent and the target in a subject or a sample where the kits include at least an activatable antibody and/or conjugated activatable antibody (e.g., an activatable antibody to which a therapeutic agent is conjugated) described herein for use in contacting a subject or biological sample and means for detecting the level of activated activatable antibody and/or conjugated activatable antibody in the subject or biological sample, wherein a detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent and the target are present in the subject or biological sample and wherein no detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent, the target or both the cleaving agent and the target are absent and/or not sufficiently present in the subject or biological sample, such that the target binding and/or protease cleavage of the activatable antibody cannot be detected in the subject or biological sample.
- the disclosure also provides methods of detecting presence or absence of a cleaving agent in a subject or a sample by (i) contacting a subject or biological sample with an activatable antibody in the presence of the target, and (ii) measuring a level of activated activatable antibody in the subject or biological sample, wherein a detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent is present in the subject or biological sample and wherein no detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent is absent and/or not sufficiently present in the subject or biological sample at a detectable level, such that protease cleavage of the activatable antibody cannot be detected in the subject or biological sample.
- Such an activatable antibody includes a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, e.g., a protease, and an antigen binding domain or fragment thereof (AB) that specifically binds the target, wherein the activatable antibody in an uncleaved (i.e., non-activated) state comprises a structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM; (a) wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB; and (b) wherein the MM of the activatable antibody in an uncleaved state interferes with specific binding of the AB to the target, and wherein the MM of an activatable antibody in a cleaved (i.e., activated) state does not interfere or compete
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent.
- the detectable label is attached to the masking moiety. In some embodiments, the detectable label is attached to the cleavable moiety N-terminal to the protease cleavage site. In some embodiments, a single antigen binding site of the AB is masked. In some embodiments wherein an antibody of the disclosure has at least two antigen binding sites, at least one antigen binding site is masked and at least one antigen binding site is not masked. In some embodiments all antigen binding sites are masked.
- the measuring step includes use of a secondary reagent comprising a detectable label.
- kits for use in methods of detecting presence or absence of a cleaving agent and the target in a subject or a sample where the kits include at least an activatable antibody and/or conjugated activatable antibody described herein for use in contacting a subject or biological sample with an activatable antibody in the presence of the target, and measuring a level of activated activatable antibody in the subject or biological sample, wherein a detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent is present in the subject or biological sample and wherein no detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent is absent and/or not sufficiently present in the subject or biological sample at a detectable level, such that protease cleavage of the activatable antibody cannot be detected in the subject or biological sample.
- Such an activatable antibody includes a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, e.g., a protease, and an antigen binding domain or fragment thereof (AB) that specifically binds the target, wherein the activatable antibody in an uncleaved (i.e., non-activated) state comprises a structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM- MM; (a) wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB; and (b) wherein the MM of the activatable antibody in an uncleaved state interferes with specific binding of the AB to the target, and wherein the MM of an activatable antibody in a cleaved (i.e., activated) state does not interfere or
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent.
- the detectable label is attached to the masking moiety. In some embodiments, the detectable label is attached to the cleavable moiety N-terminal to the protease cleavage site. In some embodiments, a single antigen binding site of the AB is masked. In some embodiments wherein an antibody of the disclosure has at least two antigen binding sites, at least one antigen binding site is masked and at least one antigen binding site is not masked. In some embodiments all antigen binding sites are masked.
- the measuring step includes use of a secondary reagent comprising a detectable label.
- kits for use in methods of detecting presence or absence of a cleaving agent in a subject or a sample where the kits include at least an activatable antibody and/or conjugated activatable antibody described herein for use in contacting a subject or biological sample and means for detecting the level of activated activatable antibody and/or conjugated activatable antibody in the subject or biological sample, wherein the activatable antibody includes a detectable label that is positioned on a portion of the activatable antibody that is released following cleavage of the CM, wherein a detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent is absent and/or not sufficiently present in the subject or biological sample such that the target binding and/or protease cleavage of the activatable antibody cannot be detected in the subject or biological sample, and wherein no detectable level of activated activatable antibody in
- the disclosure provides methods of detecting presence or absence of a cleaving agent and the target in a subject or a sample by (i) contacting a subject or biological sample with an activatable antibody, wherein the activatable antibody includes a detectable label that is positioned on a portion of the activatable antibody that is released following cleavage of the CM and (ii) measuring a level of activated activatable antibody in the subject or biological sample, wherein a detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent, the target or both the cleaving agent and the target are absent and/or not sufficiently present in the subject or biological sample, such that the target binding and/or protease cleavage of the activatable antibody cannot be detected in the subject or biological sample, and wherein a reduced detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent and the target are present in the subject or biological sample.
- a reduced level of detectable label is, for example, a reduction of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% and/or about 100%.
- Such an activatable antibody includes a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, and an antigen binding domain or fragment thereof (AB) that specifically binds the target, wherein the activatable antibody in an uncleaved (i.e., non-activated) state comprises a structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM; (a) wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB; and (b) wherein the MM of the activatable antibody in an uncleaved state interferes with specific binding of the AB to the target, and wherein the MM of an activatable antibody in a cleaved (i.e., activated) state does not interfere or compete with specific binding of the AB to the target.
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent. In some embodiments, the activatable antibody comprises a detectable label. In some embodiments, the detectable label is positioned on the AB. In some embodiments, measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label. In some embodiments, the secondary reagent is an antibody comprising a detectable label.
- kits for use in methods of detecting presence or absence of a cleaving agent and the target in a subject or a sample where the kits include at least an activatable antibody and/or conjugated activatable antibody described herein for use in contacting a subject or biological sample and means for detecting the level of activated activatable antibody and/or conjugated activatable antibody in the subject or biological sample, wherein a detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent, the target or both the cleaving agent and the target are absent and/or not sufficiently present in the subject or biological sample, such that the target binding and/or protease cleavage of the activatable antibody cannot be detected in the subject or biological sample, and wherein a reduced detectable level of activated activatable antibody in the subject or biological sample indicates that the cleaving agent and the target are present in the subject or biological sample.
- a reduced level of detectable label is, for example, a reduction of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% and/or about 100%.
- the disclosure also provides methods of detecting presence or absence of a cleaving agent in a subject or a sample by (i) contacting a subject or biological sample with an activatable antibody, wherein the activatable antibody includes a detectable label that is positioned on a portion of the activatable antibody that is released following cleavage of the CM; and (ii) measuring a level of detectable label in the subject or biological sample, wherein a detectable level of the detectable label in the subject or biological sample indicates that the cleaving agent is absent and/or not sufficiently present in the subject or biological sample at a detectable level, such that protease cleavage of the activatable antibody cannot be detected in the subject or biological sample, and wherein a reduced detectable level of the detectable label in the subject or biological sample indicates that the cleaving agent is present in the subject or biological sample.
- a reduced level of detectable label is, for example, a reduction of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% and/or about 100%.
- Such an activatable antibody includes a masking moiety (MM), a cleavable moiety (CM) that is cleaved by the cleaving agent, and an antigen binding domain or fragment thereof (AB) that specifically binds the target, wherein the activatable antibody in an uncleaved (i.e., non-activated) state comprises a structural arrangement from N-terminus to C-terminus as follows: MM-CM-AB or AB-CM-MM; (a) wherein the MM is a peptide that inhibits binding of the AB to the target, and wherein the MM does not have an amino acid sequence of a naturally occurring binding partner of the AB; and (b) wherein the MM of the activatable antibody in an uncleaved state interferes with specific binding of the AB to the target, and wherein the MM of an activatable antibody in a cleaved (i.e., activated) state does not interfere or compete with specific binding of the AB to the target.
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated. In some embodiments, the activatable antibody is not conjugated to an agent. In some embodiments, the activatable antibody comprises a detectable label. In some embodiments, the detectable label is positioned on the AB. In some embodiments, measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label. In some embodiments, the secondary reagent is an antibody comprising a detectable label.
- kits for use in methods of detecting presence or absence of a cleaving agent of interest in a subject or a sample where the kits include at least an activatable antibody and/or conjugated activatable antibody described herein for use in contacting a subject or biological sample and means for detecting the level of activated activatable antibody and/or conjugated activatable antibody in the subject or biological sample, wherein the activatable antibody includes a detectable label that is positioned on a portion of the activatable antibody that is released following cleavage of the CM, wherein a detectable level of the detectable label in the subject or biological sample indicates that the cleaving agent, the target, or both the cleaving agent and the target are absent and/or not sufficiently present in the subject or biological sample, such that the target binding and/or protease cleavage of the activatable antibody cannot be detected in the subject or biological sample, and wherein a reduced detectable level of the detectable label in the subject or biological sample indicates that the
- a reduced level of detectable label is, for example, a reduction of about 5%, about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95% and/or about 100%.
- the activatable antibody includes a detectable label.
- the detectable label includes an imaging agent, a contrasting agent, an enzyme, a fluorescent label, a chromophore, a dye, one or more metal ions, or a ligand-based label.
- the imaging agent comprises a radioisotope.
- the radioisotope is indium or technetium.
- the contrasting agent comprises iodine, gadolinium or iron oxide.
- the enzyme comprises horseradish peroxidase, alkaline phosphatase, or b- galactosidase.
- the fluorescent label comprises yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), green fluorescent protein (GFP), modified red fluorescent protein (mRFP), red fluorescent protein tdimer2 (RFP tdimer2), HCRED, or a europium derivative.
- the luminescent label comprises an N-methylacrydium derivative.
- the label comprises an Alexa Fluor ® label, such as Alex Fluor ® 680 or Alexa Fluor ® 750.
- the ligand-based label comprises biotin, avidin, streptavidin or one or more haptens.
- the method is an in vivo method. In some embodiments of these methods, the method is an in situ method. In some embodiments of these methods, the method is an ex vivo method. In some embodiments of these methods, the method is an in vitro method.
- in situ imaging and/or in vivo imaging are useful in methods to identify which patients to treat. For example, in in situ imaging, the activatable antibodies are used to screen patient samples to identify those patients having the appropriate protease(s) and target(s) at the appropriate location, e.g., at a tumor site.
- in situ imaging is used to identify or otherwise refine a patient population suitable for treatment with an activatable antibody of the disclosure.
- patients that test positive for both the target (e.g., the target) and a protease that cleaves the substrate in the cleavable moiety (CM) of the activatable antibody being tested are identified as suitable candidates for treatment with such an activatable antibody comprising such a CM.
- patients that test negative for either or both of the target (e.g., the target) and the protease that cleaves the substrate in the CM in the activatable antibody being tested using these methods might be identified as suitable candidates for another form of therapy.
- such patients that test negative with respect to a first activatable antibody can be tested with other activatable antibodies comprising different CMs until a suitable activatable antibody for treatment is identified (e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- a suitable activatable antibody for treatment e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease.
- the patient is then administered a therapeutically effective amount of the activatable antibody for which the patient tested positive.
- in vivo imaging is used to identify or otherwise refine a patient population suitable for treatment with an activatable antibody of the disclosure.
- patients that test positive for both the target (e.g., the target) and a protease that cleaves the substrate in the cleavable moiety (CM) of the activatable antibody being tested are identified as suitable candidates for treatment with such an activatable antibody comprising such a CM.
- patients that test negative might be identified as suitable candidates for another form of therapy.
- such patients that test negative with respect to a first activatable antibody can be tested with other activatable antibodies comprising different CMs until a suitable activatable antibody for treatment is identified (e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- the patient is then administered a therapeutically effective amount of the activatable antibody for which the patient tested positive.
- the method or kit is used to identify or otherwise refine a patient population suitable for treatment with an activatable antibody of the disclosure. For example, patients that test positive for both the target (e.g., the target) and a protease that cleaves the substrate in the cleavable moiety (CM) of the activatable antibody being tested in these methods are identified as suitable candidates for treatment with such an activatable antibody comprising such a CM.
- the target e.g., the target
- CM cleavable moiety
- patients that test negative for both of the targets (e.g., the target) and the protease that cleaves the substrate in the CM in the activatable antibody being tested using these methods might be identified as suitable candidates for another form of therapy.
- such patients can be tested with other activatable antibodies until a suitable activatable antibody for treatment is identified (e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- patients that test negative for either of the target (e.g., the target) are identified as suitable candidates for treatment with such an activatable antibody comprising such a CM.
- patients that test negative for either of the target are identified as not being suitable candidates for treatment with such an activatable antibody comprising such a CM.
- such patients can be tested with other activatable antibodies until a suitable activatable antibody for treatment is identified (e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- the activatable antibody is an activatable antibody to which a therapeutic agent is conjugated.
- the activatable antibody is not conjugated to an agent.
- the activatable antibody comprises a detectable label.
- the detectable label is positioned on the AB.
- measuring the level of activatable antibody in the subject or sample is accomplished using a secondary reagent that specifically binds to the activated antibody, wherein the reagent comprises a detectable label.
- the secondary reagent is an antibody comprising a detectable label.
- a method or kit is used to identify or otherwise refine a patient population suitable for treatment with an anti-the target activatable antibody and/or conjugated activatable antibody (e.g., activatable antibody to which a therapeutic agent is conjugated) of the disclosure, followed by treatment by administering that activatable antibody and/or conjugated activatable antibody to a subject in need thereof.
- patients that test positive for both the targets (e.g., the target) and a protease that cleaves the substrate in the cleavable moiety (CM) of the activatable antibody and/or conjugated activatable antibody being tested in these methods are identified as suitable candidates for treatment with such antibody and/or such a conjugated activatable antibody comprising such a CM, and the patient is then administered a therapeutically effective amount of the activatable antibody and/or conjugated activatable antibody that was tested.
- patients that test negative for either or both of the target (e.g., the target) and the protease that cleaves the substrate in the CM in the activatable antibody being tested using these methods might be identified as suitable candidates for another form of therapy.
- such patients can be tested with other antibody and/or conjugated activatable antibody until a suitable antibody and/or conjugated activatable antibody for treatment is identified (e.g., an activatable antibody and/or conjugated activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- a suitable antibody and/or conjugated activatable antibody for treatment e.g., an activatable antibody and/or conjugated activatable antibody comprising a CM that is cleaved by the patient at the site of disease.
- the patient is then administered a therapeutically effective amount of the activatable antibody and/or conjugated activatable antibody for which the patient tested positive.
- the MM is a peptide having a length from about 4 to 40 amino acids.
- the activatable antibody comprises a linker peptide, wherein the linker peptide is positioned between the MM and the CM. In some embodiments of these methods and kits, the activatable antibody comprises a linker peptide, where the linker peptide is positioned between the AB and the CM. In some embodiments of these methods and kits, the activatable antibody comprises a first linker peptide (L1) and a second linker peptide (L2), wherein the first linker peptide is positioned between the MM and the CM and the second linker peptide is positioned between the AB and the CM.
- L1 linker peptide
- L2 second linker peptide
- each of L1 and L2 is a peptide of about 1 to 20 amino acids in length, and wherein each of L1 and L2 need not be the same linker.
- one or both of L1 and L2 comprises a glycine-serine polymer.
- at least one of L1 and L2 comprises an amino acid sequence selected from the group consisting of (GS)n, (GSGGS)n (SEQ ID NO: 116) and (GGGS)n (SEQ ID NO: 117), where n is an integer of at least one.
- At least one of L1 and L2 comprises an amino acid sequence having the formula (GGS)n, where n is an integer of at least one.
- at least one of L1 and L2 comprises an amino acid sequence selected from the group consisting of Gly-Gly-Ser-Gly (SEQ ID NO: 118), Gly-Gly-Ser-Gly-Gly (SEQ ID NO: 119), Gly-Ser-Gly-Ser-Gly (SEQ ID NO: 120), Gly-Ser-Gly-Gly-Gly (SEQ ID NO: 121), Gly-Gly-Gly-Ser-Gly (SEQ ID NO: 122), and Gly-Ser-Ser-Ser-Gly (SEQ ID NO: 123).
- the AB comprises an antibody or antibody fragment sequence selected from the cross-reactive antibody sequences presented herein.
- the AB comprises a Fab fragment, a scFv or a single chain antibody (scAb).
- the cleaving agent is a protease that is co-localized in the subject or sample with the target and the CM is a polypeptide that functions as a substrate for the protease, wherein the protease cleaves the CM in the activatable antibody when the activatable antibody is exposed to the protease.
- the CM is a polypeptide of up to 15 amino acids in length. In some embodiments of these methods and kits, the CM is coupled to the N-terminus of the AB. In some embodiments of these methods and kits, the CM is coupled to the C-terminus of the AB. In some embodiments of these methods and kits, the CM is coupled to the N-terminus of a VL chain of the AB. [000458]
- the antibodies, conjugated antibodies, activatable antibodies and/or conjugated activatable antibodies of the disclosure are used in diagnostic and prophylactic formulations. In one embodiment, an activatable antibody is administered to patients that are at risk of developing one or more of the aforementioned inflammation, inflammatory disorders, cancer or other disorders.
- a patient’s or organ’s predisposition to one or more of the aforementioned disorders can be determined using genotypic, serological or biochemical markers.
- an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody is administered to human individuals diagnosed with a clinical indication associated with one or more of the aforementioned disorders. Upon diagnosis, an antibody, a conjugated antibody, an activatable antibody and/or a conjugated activatable antibody is administered to mitigate or reverse the effects of the clinical indication.
- Antibodies, conjugated antibodies, activatable antibodies and/or conjugated activatable antibodies of the disclosure are also useful in the detection of the target in patient samples and accordingly are useful as diagnostics.
- the antibodies, conjugated antibodies, the activatable antibodies and/or conjugated activatable antibodies of the disclosure are used in in vitro assays, e.g., ELISA, to detect target levels in a patient sample.
- an antibody and/or activatable antibody of the disclosure is immobilized on a solid support (e.g., the well(s) of a microtiter plate).
- the immobilized antibody and/or activatable antibody serves as a capture antibody for any target that may be present in a test sample.
- the solid support Prior to contacting the immobilized antibody and/or activatable antibody with a patient sample, the solid support is rinsed and treated with a blocking agent such as milk protein or albumin to prevent nonspecific adsorption of the analyte.
- a blocking agent such as milk protein or albumin to prevent nonspecific adsorption of the analyte.
- the wells are treated with a test sample suspected of containing the antigen, or with a solution containing a standard amount of the antigen.
- a sample is, e.g., a serum sample from a subject suspected of having levels of circulating antigen considered to be diagnostic of a pathology.
- the solid support After rinsing away the test sample or standard, the solid support is treated with a second antibody that is detectably labeled.
- the labeled second antibody serves as a detecting antibody.
- the level of detectable label is measured, and the concentration of target antigen in the test sample is determined by comparison with a standard curve developed from the standard samples.
- Antibodies, conjugated antibodies, activatable antibodies and/or conjugated activatable antibodies can also be used in diagnostic and/or imaging methods.
- such methods are in vitro methods.
- such methods are in vivo methods.
- such methods are in situ methods.
- such methods are ex vivo methods.
- activatable antibodies having an enzymatically cleavable CM can be used to detect the presence or absence of an enzyme that is capable of cleaving the CM.
- Such activatable antibodies can be used in diagnostics, which can include in vivo detection (e.g., qualitative or quantitative) of enzyme activity (or, in some embodiments, an environment of increased reduction potential such as that which can provide for reduction of a disulfide bond) through measured accumulation of activated antibodies (i.e., antibodies resulting from cleavage of an activatable antibody) in a given cell or tissue of a given host organism.
- activated antibodies i.e., antibodies resulting from cleavage of an activatable antibody
- Such accumulation of activated antibodies indicates not only that the tissue expresses enzymatic activity (or an increased reduction potential depending on the nature of the CM) but also that the tissue expresses target to which the activated antibody binds.
- the CM can be selected to be a protease substrate for a protease found at the site of a tumor, at the site of a viral or bacterial infection at a biologically confined site (e.g., such as in an abscess, in an organ, and the like), and the like.
- the AB can be one that binds a target antigen.
- a detectable label e.g., a fluorescent label or radioactive label or radiotracer
- Suitable detectable labels are discussed in the context of the above screening methods and additional specific examples are provided below.
- activatable antibodies will exhibit an increased rate of binding to disease tissue relative to tissues where the CM specific enzyme is not present at a detectable level or is present at a lower level than in disease tissue or is inactive (e.g., in zymogen form or in complex with an inhibitor). Since small proteins and peptides are rapidly cleared from the blood by the renal filtration system, and because the enzyme specific for the CM is not present at a detectable level (or is present at lower levels in non-disease tissues or is present in inactive conformation), accumulation of activated antibodies in the disease tissue is enhanced relative to non-disease tissues.
- activatable antibodies can be used to detect the presence or absence of a cleaving agent in a sample.
- the activatable antibodies can be used to detect (either qualitatively or quantitatively) the presence of an enzyme in the sample.
- the activatable antibodies can be used to detect (either qualitatively or quantitatively) the presence of reducing conditions in a sample.
- the activatable antibodies can be detectably labeled, and can be bound to a support (e.g., a solid support, such as a slide or bead).
- the detectable label can be positioned on a portion of the activatable antibody that is not released following cleavage, for example, the detectable label can be a quenched fluorescent label or other label that is not detectable until cleavage has occurred.
- the assay can be conducted by, for example, contacting the immobilized, detectably labeled activatable antibodies with a sample suspected of containing an enzyme and/or reducing agent for a time sufficient for cleavage to occur, then washing to remove excess sample and contaminants.
- the presence or absence of the cleaving agent (e.g., enzyme or reducing agent) in the sample is then assessed by a change in detectable signal of the activatable antibodies prior to contacting with the sample e.g., the presence of and/or an increase in detectable signal due to cleavage of the activatable antibody by the cleaving agent in the sample.
- the detection methods can be adapted to also provide for detection of the presence or absence of a target that is capable of binding the AB of the activatable antibodies when cleaved.
- the assays can be adapted to assess the presence or absence of a cleaving agent and the presence or absence of a target of interest.
- Activatable antibodies are also useful in in situ imaging for the validation of activatable antibody activation, e.g., by protease cleavage, and binding to a particular target. In situ imaging is a technique that enables localization of proteolytic activity and target in biological samples such as cell cultures or tissue sections.
- a detectable label e.g., a fluorescent label.
- a detectable label e.g., a fluorescent label.
- an activatable antibody is labeled with a detectable label.
- the detectable label can be a fluorescent dye, (e.g.
- Fluorescein Isothiocyanate FITC
- Rhodamine Isothiocyanate TRITC
- NIR near infrared
- colloidal metal e.g., a hapten
- a radioactive marker e.g., biotin and an amplification reagent such as streptavidin
- an enzyme e.g. horseradish peroxidase or alkaline phosphatase.
- the presence of the protease can be confirmed using broad spectrum protease inhibitors such as those described herein, and/or by using an agent that is specific for the protease, for example, an antibody such as A11, which is specific for the protease matriptase and inhibits the proteolytic activity of matriptase; see e.g., International Publication Number WO 2010/129609, published 11 November 2010.
- an agent that is specific for the protease for example, an antibody such as A11, which is specific for the protease matriptase and inhibits the proteolytic activity of matriptase; see e.g., International Publication Number WO 2010/129609, published 11 November 2010.
- A11 an antibody
- the same approach of using broad spectrum protease inhibitors such as those described herein, and/or by using a more selective inhibitory agent can be used to identify a protease or class of proteases specific for the CM of the activatable antibody.
- the presence of the target can be confirmed using an agent that is specific for the target, e.g., another antibody, or the detectable label can be competed with unlabeled target.
- unlabeled activatable antibody could be used, with detection by a labeled secondary antibody or more complex detection system.
- Similar techniques are also useful for in vivo imaging where detection of the fluorescent signal in a subject, e.g., a mammal, including a human, indicates that the disease site contains the target and contains a protease that is specific for the CM of the activatable antibody.
- in situ imaging and/or in vivo imaging are useful in methods to identify which patients to treat.
- the activatable antibodies are used to screen patient samples to identify those patients having the appropriate protease(s) and target(s) at the appropriate location, e.g., at a tumor site.
- in situ imaging is used to identify or otherwise refine a patient population suitable for treatment with an activatable antibody of the disclosure.
- patients that test positive for both the target and a protease that cleaves the substrate in the cleavable moiety (CM) of the activatable antibody being tested are identified as suitable candidates for treatment with such an activatable antibody comprising such a CM.
- patients that test negative for either or both of the target and the protease that cleaves the substrate in the CM in the activatable antibody being tested using these methods are identified as suitable candidates for another form of therapy (i.e., not suitable for treatment with the activatable antibody being tested).
- such patients that test negative with respect to a first activatable antibody can be tested with other activatable antibodies comprising different CMs until a suitable activatable antibody for treatment is identified (e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- a suitable activatable antibody for treatment e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease.
- in vivo imaging is used to identify or otherwise refine a patient population suitable for treatment with an activatable antibody of the disclosure.
- CM cleavable moiety
- patients that test positive for both the target and a protease that cleaves the substrate in the cleavable moiety (CM) of the activatable antibody being tested are identified as suitable candidates for treatment with such an activatable antibody comprising such a CM.
- patients that test negative are identified as suitable candidates for another form of therapy (i.e., not suitable for treatment with the activatable antibody being tested).
- such patients that test negative with respect to a first activatable antibody can be tested with other activatable antibodies comprising different CMs until a suitable activatable antibody for treatment is identified (e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease).
- a suitable activatable antibody for treatment e.g., an activatable antibody comprising a CM that is cleaved by the patient at the site of disease.
- Pharmaceutical Compositions [000478]
- the antibodies, conjugated antibodies, activatable antibodies and/or conjugated activatable antibodies of the disclosure also referred to herein as “active compounds”
- derivatives, fragments, analogs and homologs thereof can be incorporated into pharmaceutical compositions suitable for administration.
- Such compositions typically comprise the antibody, the conjugated antibody, activatable antibody and/or conjugated activatable antibody and a pharmaceutically acceptable carrier.
- the term “pharmaceutically acceptable carrier” is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington’s Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Suitable examples of such carriers or diluents include, but are not limited to, water, saline, ringer’s solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art.
- compositions according to the invention can include an antibody/activatable antibody of the invention and a carrier. These pharmaceutical compositions can be included in kits, such as, for example, diagnostic kits.
- the pharmaceutical composition comprises an antibody of the disclosure, an activatable antibody of the disclosure, a conjugated antibody or the disclosure, and/or a conjugated activatable antibody of the disclosure, and a carrier.
- the pharmaceutical composition comprises an additional agent. In some embodiments, the additional agent is a therapeutic agent.
- a pharmaceutical composition of the disclosure is formulated to be compatible with its intended route of administration.
- routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration.
- Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
- the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
- compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
- suitable carriers include physiological saline, bacteriostatic water, Cremophor EL ⁇ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists.
- the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
- the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
- isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
- Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, aluminum monostearate and gelatin.
- Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- Oral compositions generally include an inert diluent or an edible carrier.
- compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.
- Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
- the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide
- the compounds are delivered in the form of an aerosol spray from pressured container or dispenser that contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
- a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
- Systemic administration can also be by transmucosal or transdermal means.
- penetrants appropriate to the barrier to be permeated are used in the formulation.
- penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
- Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
- the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
- the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
- the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
- Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid.
- compositions for preparation of such formulations will be apparent to those skilled in the art.
- the materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
- Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811. [000489] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage.
- Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
- the specification for the dosage unit forms of the disclosure are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
- the pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration. [000491] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims. EXAMPLES EXAMPLE 1.
- the studies provided herein were designed to evaluate binding of anti-human CD47 antibodies of the disclosure.
- An anti-human CD47 monoclonal antibody of the present disclosure was obtained using mouse hybridoma technology in accordance with techniques known in the art. Mice were immunized with human CD47 and subsequent hybridomas were screened for binding to human CD47 by ELISA and subsequently confirmed to be cytotoxic in a piggyback assay and confirmed to bind cell surfaces by FACS.
- the mouse anti-human CD47 H4L2 monoclonal antibody of the present disclosure includes a heavy chain variable region (VH) of SEQ ID NO: 1, and a light chain variable region (VL) of SEQ ID NO: 2.
- an exemplary antibody of the present disclosure includes a heavy chain having the H4L2 heavy chain variable region of SEQ ID NO: 1 and a light chain having the H4L2 light chain variable region of SEQ ID NO: 2.
- the mouse anti-human CD47 monoclonal antibody H4L2 was humanized to form humanized anti-human CD47 heavy and light chains.
- exemplary embodiments of these humanized antibody heavy chains of the present disclosure include H4L2- hIgG1 heavy chain with an human IgG1 Fc domain (SEQ ID NO: 11), H4L2-hIgG1-enhanced heavy chain with a modified human IgG1 Fc domain (SEQ ID NO: 12), H4L2-hIgG4 heavy chain with a human IgG4 Fc domain (SEQ ID NO: 13), and H4L2-hIgG2s heavy chain with a modified human IgG2 Fc domain (SEQ ID NO: 14).
- Exemplary embodiments of these humanized antibody light chains of the present disclosure include H4L2-h-kappa light chain with a human light chain kappa domain (SEQ ID NO: 15).
- the amino acids sequences of these exemplary heavy and light chains of the present disclosure are shown below in Table 1.
- an exemplary antibody of the present disclosure includes the heavy chain H4L2-hIgG1 of SEQ ID NO: 11 with the light chain H4L2-h-kappa of SEQ ID NO: 15.
- an exemplary antibody of the present disclosure includes the heavy chain H4L2-hIgG1-enhanced of SEQ ID NO: 12 with the light chain H4L2-h-kappa of SEQ ID NO: 15. In some embodiments of the present disclosure, an exemplary antibody of the present disclosure includes the heavy chain H4L2-hIgG4 of SEQ ID NO: 13 with the light chain H4L2-h-kappa of SEQ ID NO: 15. In some embodiments of the present disclosure, an exemplary antibody of the present disclosure includes the heavy chain H4L2-hIgG2s of SEQ ID NO: 14 with the light chain H4L2-h-kappa of SEQ ID NO: 15. Table 1.
- Anti-Human CD47 Mouse and Humanized Antibody Sequences 1. Anti-huCD47 H4L2-hIgG1 H4 Heavy Chain (amino acid sequence) QVQLVQSGAEVKKPGSSVKLSCKASGYTFTNYWMTWVRQAPGQGLEWIGRIDPYDVETHYAQKFQGRATL TVDKSTSTAYMELSSLRSEDTAVYYCARGGVGGMDYWGQGTLVTVSSASTKGPSVFPLAPSSKSTSGGTA ALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK VDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVD GVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT LPPSRE
- Anti-huCD47 H4L2-hkappa L2 Light Chain (amino acid sequence) DVVMTQSPDSLAVSLGERATINCRSSQSIVHSNGNTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGS GSGTDFTLTISSVQAEDVGVYYCFQGSHVPRTFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSGTASVVCL LNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPV TKSFNRGEC (SEQ ID NO: 15) 6.
- Anti-huCD47 H4L2 L2 VL domain (amino acid sequence) DVVMTQSPDSLAVSLGERATINCRSSQSIVHSNGNTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGS GSGTDFTLTISSVQAEDVGVYYCFQGSHVPRTFGQGTKLEIK (SEQ ID NO: 2) 8.
- Anti-huCD47 parental hybridoma M1-vh1 VH domain (amino acid sequence) QVQLQQPGAELVRPGASVKLSCRASGYTFTNYWMTWVKQRPEQGLEWIGRIDPYDVETHYNHKFQDKAIL TVDKSSSTAYMQLSSLTSEDSAVYYCARGGVGGMDYWGQGTSVTVSS (SEQ ID NO: 57) 9.
- Anti-huCD47 H1 VH domain (amino acid sequence) QVQLVQSGAEVKKPGSSVKVSCKASGYTFTNYWMTWVRQAPGQGLEWMGRIDPYDVETHYAQKFQGRVTI TADESTSTAYMELSSLRSEDTAVYYCARGGVGGMDYWGQGTLVTVSS (SEQ ID NO: 58) 10.
- Anti-huCD47 H2 VH domain (amino acid sequence) QVQLVQSGAEVKKPGSSVKVSCKASGYTFTNYWMTWVRQAPGQGLEWIGRIDPYDVETHYAQKFQGRVTI TVDESTSTAYMELSSLRSEDTAVYYCARGGVGGMDYWGQGTLVTVSS (SEQ ID NO: 59) 11.
- Anti-huCD47 H3 VH domain (amino acid sequence) QVQLVQSGAEVKKPGSSVKLSCKASGYTFTNYWMTWVRQAPGQGLEWIGRIDPYDVETHYAQKFQGRATL TVDESTSTAYMELSSLRSEDTAVYYCARGGVGGMDYWGQGTLVTVSS (SEQ ID NO: 60) 12.
- Anti-huCD47 parental hybridoma M1-vk1 VL domain (amino acid sequence) DVLMTQTPLSLPVSLGDQASISCRSSQSIVHSNGNTYLEWYLQKPGHSPNLLIYRVSKRFSGVPDRFSGS GSGTDFTLKITRVEAEDLGVYYCFQGSHVPRTFGGGTKLEIK (SEQ ID NO: 75) 13.
- Anti-huCD47 L1 VL domain (amino acid sequence) DIVMTQSPDSLAVSLGERATINCRSSQSIVHSNGNTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGS GSGTDFTLTISSLQAEDVAVYYCFQGSHVPRTFGQGTKLEIK (SEQ ID NO: 76) 14.
- Anti-huCD47 L3 VH domain (amino acid sequence) DVVMTQSPDSLAVSLGERATINCRSSQSIVHSSGNTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGS GSGTDFTLTISSVQAEDVGVYYCFQGSHVPRTFGQGTKLEIK (SEQ ID NO: 77) 15.
- Anti-huCD47 L4 VH domain (amino acid sequence) DVVMTQSPDSLAVSLGERATINCRSSQSIVHSSGQTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGS GSGTDFTLTISSVQAEDVGVYYCFQGSHVPRTFGQGTKLEIK (SEQ ID NO: 78) 16.
- Anti-huCD47 L5 VH domain (amino acid sequence) DVVMTQSPDSLAVSLGERATINCRSSQSIVHSSGSTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGS GSGTDFTLTISSVQAEDVGVYYCFQGSHVPRTFGQGTKLEIK (SEQ ID NO: 79)
- Exemplary anti-CD47 antibodies of the present disclosure were assayed for their affinity to human and cynomolgus CD47 antigens using standard ELISA methods. These binding affinities were compared to anti-CD47 antibodies B6H12-IgG1 and 5F9-IgG4.
- Table 3 Blocking Assay of human CD47-SIRPa interaction EXAMPLE 2.
- Mask Discovery [000498] The studies provided herein were designed to identify and characterize masking moieties for use in activatable anti-human CD47 antibodies of the disclosure.
- Humanized anti-human CD47 hu H4L2 monoclonal antibody of the present disclosure (VH of SEQ ID NO: 1 and VL of SEQ ID NO: 2), was used to screen a random X 15 peptide library with a total diversity of 4 x 16 0 , where X is any amino acid, using a method similar to that described in PCT International Publication Number WO 2010/081173, published 15 July 2010.
- the screening included magnetic-activated cell sorting (MACS) and fluorescence- activated cell sorting (FACS).
- Amino acid sequences of exemplary individual clones of masking peptides (MM) that were isolated and sequenced are shown in Table 4.
- these anti-human CD47 activatable antibodies include cleavable moiety 2001 (ISSGLLSGRSDNH; SEQ ID NO: 406), cleavable moiety 3001 (AVGLLAPPGGLSGRSDNH; SEQ ID NO: 412), cleavable moiety 2007 (ISSGLLSGRSDIH; SEQ ID NO: 684), cleavable moiety 2008 (ISSGLLSGRSDQH; SEQ ID NO: 685), cleavable moiety 2011 (ISSGLLSGRSDNP; SEQ ID NO: 688), cleavable moiety 2012 (ISSGLLSGRSANP; SEQ ID NO: 689), cleavable moiety 2013 (ISSGLLSGRSANI; SEQ ID NO: 690), cleavable moiety 3007 (AVGLLAPPGGLSGRSDIH; SEQ ID NO: 692), cleavable moiety 3008 (AVGLLAPP
- the activatable anti-human CD47 antibodies of the disclosure can include any suitable spacer sequence, such as, for example, a spacer sequence selected from the group consisting of QGQSGQG (SEQ ID NO: 30), QGQSGQ (SEQ ID NO: 31), QGQSG (SEQ ID NO: 32), QGQS (SEQ ID NO: 33), QGQ, QG, GQSGQG (SEQ ID NO: 34), QSGQG (SEQ ID NO: 35), SGQG (SEQ ID NO: 36), GQG, G, or Q.
- a spacer sequence selected from the group consisting of QGQSGQG (SEQ ID NO: 30), QGQSGQ (SEQ ID NO: 31), QGQSG (SEQ ID NO: 32), QGQS (SEQ ID NO: 33), QGQ, QG, GQSGQG (SEQ ID NO: 34), QSGQG (SEQ ID NO: 35), SGQG (SEQ ID NO: 36), GQ
- the activatable anti-human CD47 antibodies of the disclosure can have no spacer sequence joined to its N-terminus.
- Anti-Human CD47 Activatable Antibody Sequences 8 [Spacer (SEQ ID NO: 30)][huCD47 H4L2-47.1-5007 VL domain (SEQ ID NO: 41)] [QGQSGQG][LYDCYALSKSYCMGLGGGSSGGSAPRSALAHGLFGGGSDVVMTQSPDSLAVSLG ERATINCRSSQSIVHSNGNTYLEWYQQKPGQPPKLLIYRVSKRFSGVPDRFSGSGSGTDFTLTI SSVQAEDVGVYYCFQGSHVPRTFGQGTKLEIK] (SEQ ID NO: 61) 9.
- the activatable antibodies of the present disclosure that were assayed in this exemplary study were (a) hu H4L2-IgG4 HC / H4L2-47.1-5007 LC (VH of SEQ ID NO: 1 and VL of SEQ ID NO: 41), hu H4L2-IgG4 HC/ H4L2-47.2-5007 LC (VH of SEQ ID NO: 1 and VL of SEQ ID NO: 42), hu H4L2-IgG4 HC/ H4L2-47.1-5007 LC (VH of SEQ ID NO: 1 and VL of SEQ ID NO: 43), hu H4L2-IgG4 HC/ H4L2-47.1-5007 LC (VH of SEQ ID NO: 1 and VL of SEQ ID NO: 44), hu H4L2-IgG4 HC/ H4L2-47.1-5007 LC (VH of SEQ ID NO: 1 and VL of SEQ ID NO: 45), hu H4L2-Ig
- Humanized anti-human CD47 antibodies of the present disclosure hu H4L2-IgG4 HC/ H4L2 LC (VH of SEQ ID NO: 1 and VL of SEQ ID NO: 2) were used as a control.
- Masking efficiencies i.e., the ratio of the binding affinity of the activatable antibody to the binding affinity of the parental antibody
- Table 6 Masking efficiencies (i.e., the ratio of the binding affinity of the activatable antibody to the binding affinity of the parental antibody) of these masking peptides of the present disclosure were determined and shown in Table 6.
- Table 6 Masking Efficiencies of Anti-CD47 Activatable Antibodies [000503] As shown in Figure 1B, certain of the exemplary anti-CD47 activatable antibodies were treated with the protease matriptase (overnight at 37o C) and then assayed with ELISA to determine their binding affinity to human CD47 antigen. As shown in these exemplary results, cleavage of the activatable antibodies with a protease that can specifically cleave the cleavable moiety restored the binding affinity of the activatable antibodies such that they were essentially the same as the parental anti-CD47 antibody.
- exemplary anti-CD47 activatable antibodies of present disclosure when activated by matriptase, can specifically bind to their CD47 target with an affinity comparable to that of the parental antibody.
- EXAMPLE 3 Antibody-Dependent Cellular Phagocytosis (ADCP) Assays of Masking Peptides [000504] The studies provided herein were designed to assay the activatable anti-human CD47 antibodies of the present disclosure to induce antibody-dependent cellular phagocytosis (ADCP) via effecting the FcgRIIa receptor pathway.
- ADCP antibody-dependent cellular phagocytosis
- the assayed test articles were hu anti-CD47 H4L2-hIgG1 (“H4L2-IgG1”; HC of SEQ ID NO: 11, LC of SEQ ID NO: 15), hu anti-CD47 H4L2-hIgG1 enhanced (“H4L2-IgG1-en”; HC of SEQ ID NO: 12, LC of SEQ ID NO: 15), hu anti-CD47 H4L2-hIgG4 (“H4L2-IgG4”; HC of SEQ ID NO: 13, LC of SEQ ID NO: 15), hu anti- CD47 H4L2-hIgG1-47.3-5007 (“H4L2-IgG1”; HC of SEQ ID NO: 11, VL of SEQ ID NO: 83), hu anti-CD47 H4L2-hIgG1-47.10-5007 (“H4L2-IgG1”; HC of SEQ ID NO: 11, VL of SEQ ID NO: 90), and hu anti
- EXAMPLE 5 Antibody-Dependent Cellular Phagocytosis (ADCP) Assays of Fc Effector Domains
- ADCP antibody-dependent cellular phagocytosis
- the studies provided herein were designed to assay the activatable anti-human CD47 antibodies of the present disclosure to measure their ability to induce antibody-dependent cellular phagocytosis (ADCP). These exemplary results also show that antibodies and activatable antibodies of the present disclosure with IgG1 Fc effector domains showed higher levels of ADCP that those with IgG2s Fc effector domains.
- PBMCs peripheral blood mononuclear cells
- the PBMCs were sorted and purified using anti- CD14 micromagnetic beads and validated with anti-CD14 APC antibody and FACS analysis.
- the purified cells were cultured for 14 days and differentiated macrophages were validated using CD11b PE antibody followed with FACS analysis.
- Approximately 25,000 macrophage cells per well were plated into a 96 well plate.
- Each test article was prepared in PBS at the indicated concentration an added to the plate.
- Approximately 1x10 6 target cells were washed and labeled with the fluorescent dye and added to the 96 well plate containing the macrophages.
- the plates were scanned at 10x imaging for every 30 min using Incucyte S3 and the intensity was measured as shown.
- the assayed test articles were hu anti-CD47 H4L2- hIgG1 (“H4L2-IgG1”; HC of SEQ ID NO: 11, LC of SEQ ID NO: 15), hu anti-CD47 H4L2- hIgG1 enhanced (“H4L2-IgG1-en”; HC of SEQ ID NO: 12, LC of SEQ ID NO: 15), and hu anti- CD47 H4L2-hIgG2s (“H4L2-IgG2s”; HC of SEQ ID NO: 14, LC of SEQ ID NO: 15).
- the target cells tested in these assays were Daudi cells, derived from human B lymphoblast cells.
- FIGS.5A and 5B shows the efficacy of anti-human CD47 antibodies of the present disclosure hu anti-CD47 H4L2-hIgG1 (“H4L2-IgG1”; HC of SEQ ID NO: 11, LC of SEQ ID NO: 15), hu anti-CD47 H4L2-hIgG1 enhanced (“H4L2-IgG1 en”; HC of SEQ ID NO: 12, LC of SEQ ID NO: 15), hu anti-CD47 H4L2-hIgG4 (“H4L2-IgG4”; HC of SEQ ID NO: 13, LC of SEQ ID NO: 15), and hu anti-CD47 H4L2-hIgG2s (“H4L2-IgG2s”; HC of SEQ ID NO: 14, LC of SEQ ID NO: 15).
- the indicated anti-CD47 antibodies of the present disclosure were tested for in vivo efficacy in a NOD/SCID mice with CD20-expressing Raji cell xenografts (derived from human B-cell lymphoma). These antibodies of the present disclosure were tested against a PBS buffer vehicle control and the anti-CD20 antibody rituximab.
- the test articles were dosed at 10 mg/kg every other day for 4 weeks and the tumor size was measured at the indicated days.
- the test articles were also compared to rituximab, either alone or in combination with the H4L2-IgG4 antibody of the present disclosure.
Landscapes
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Cell Biology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962904534P | 2019-09-23 | 2019-09-23 | |
| PCT/US2020/052332 WO2021061867A1 (en) | 2019-09-23 | 2020-09-23 | Anti-cd47 antibodies, activatable anti-cd47 antibodies, and methods of use thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP4034171A1 true EP4034171A1 (en) | 2022-08-03 |
Family
ID=72811971
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20789345.4A Withdrawn EP4034171A1 (en) | 2019-09-23 | 2020-09-23 | Anti-cd47 antibodies, activatable anti-cd47 antibodies, and methods of use thereof |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP4034171A1 (en) |
| JP (1) | JP2022548310A (en) |
| CN (1) | CN114650844A (en) |
| WO (1) | WO2021061867A1 (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA3029902A1 (en) | 2016-07-07 | 2018-01-11 | The Board Of Trustees Of The Leland Stanford Junior University | Antibody adjuvant conjugates |
| EP3937984A1 (en) | 2019-03-15 | 2022-01-19 | Bolt Biotherapeutics, Inc. | Immunoconjugates targeting her2 |
| WO2023070353A1 (en) * | 2021-10-27 | 2023-05-04 | Adagene Pte. Ltd. | Anti-cd47 antibodies and methods of use thereof |
| US20250333539A1 (en) | 2022-03-23 | 2025-10-30 | Cytomx Therapeutics, Inc. | Activatable antigen-binding protein constructs and uses of the same |
| EP4499685A1 (en) | 2022-03-25 | 2025-02-05 | CytomX Therapeutics, Inc. | Activatable dual-anchored masked molecules and methods of use thereof |
| WO2023192606A2 (en) | 2022-04-01 | 2023-10-05 | Cytomx Therapeutics, Inc. | Cd3-binding proteins and methods of use thereof |
| US20250215110A1 (en) | 2022-04-01 | 2025-07-03 | Cytomx Therapeutics, Inc. | Activatable multispecific molecules and methods of use thereof |
| TW202424183A (en) | 2022-08-01 | 2024-06-16 | 美商Cytomx生物製藥公司 | Protease-cleavable substrates and methods of use thereof |
| TW202426637A (en) | 2022-08-01 | 2024-07-01 | 美商Cytomx生物製藥公司 | Protease-cleavable substrates and methods of use thereof |
| TW202423953A (en) | 2022-08-01 | 2024-06-16 | 美商Cytomx生物製藥公司 | Protease-cleavable moieties and methods of use thereof |
| AR130076A1 (en) | 2022-08-01 | 2024-10-30 | Cytomx Therapeutics Inc | PROTEASE-CLEAVABLE RESIDUES AND METHODS OF USING THEM |
| EP4565690A1 (en) | 2022-08-01 | 2025-06-11 | CytomX Therapeutics, Inc. | Protease-cleavable moieties and methods of use thereof |
| JP2025528468A (en) * | 2022-09-02 | 2025-08-28 | ノビミューン エスアー | Mutually masked antibody-cytokine fusion proteins and methods of use thereof |
| WO2024216170A2 (en) | 2023-04-12 | 2024-10-17 | Cytomx Therapeutics, Inc. | Activatable cytokine constructs and related compositions and methods |
| CN120936384A (en) | 2023-04-12 | 2025-11-11 | 西托姆克斯治疗公司 | Masking peptides, cytokine-activating constructs, and related compositions and methods |
| CN120958015A (en) | 2023-04-12 | 2025-11-14 | 西托姆克斯治疗公司 | Masking polypeptides, activatable cytokine constructs, and related compositions and methods |
| WO2025038668A1 (en) * | 2023-08-14 | 2025-02-20 | Voro Therapeutics, Inc. | Therapeutic binding agents that conditionally promote myeloid cell activity against target cells and uses thereof |
| WO2025240659A2 (en) | 2024-05-14 | 2025-11-20 | Cytomx Therapeutics, Inc. | Activatable constructs, compositions and methods |
Family Cites Families (37)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3773919A (en) | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
| US4485045A (en) | 1981-07-06 | 1984-11-27 | Research Corporation | Synthetic phosphatidyl cholines useful in forming liposomes |
| US4434156A (en) | 1981-10-26 | 1984-02-28 | The Salk Institute For Biological Studies | Monoclonal antibodies specific for the human transferrin receptor glycoprotein |
| US4522811A (en) | 1982-07-08 | 1985-06-11 | Syntex (U.S.A.) Inc. | Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides |
| US5330896A (en) | 1983-02-24 | 1994-07-19 | Billing Ronald J | Monoclonal antibodies to an autocrine growth factor antigen that binds to activated lymphocytes and cancer cells |
| US4544545A (en) | 1983-06-20 | 1985-10-01 | Trustees University Of Massachusetts | Liposomes containing modified cholesterol for organ targeting |
| EP0279862B1 (en) | 1986-08-28 | 1993-11-03 | Teijin Limited | Cytocidal antibody complex and process for its preparation |
| US5013556A (en) | 1989-10-20 | 1991-05-07 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
| US5151510A (en) | 1990-04-20 | 1992-09-29 | Applied Biosystems, Inc. | Method of synethesizing sulfurized oligonucleotide analogs |
| US5648469A (en) | 1992-04-20 | 1997-07-15 | The Salk Institute For Biological Studies | Monoclonal antibodies reactive with transferrin receptor cytoplasmic domain |
| DK0752248T3 (en) | 1992-11-13 | 2000-11-13 | Idec Pharma Corp | Therapeutic use of chimeric and radiolabeled antibodies against human B lymphocyte restricted differentiation antibody |
| US7976841B2 (en) | 2004-04-30 | 2011-07-12 | Institut National De La Sante Et De La Recherche | Anti TfR antibody |
| JP4824025B2 (en) | 2004-06-07 | 2011-11-24 | マクロジェニックス ウエスト,インコーポレイテッド | Transferrin receptor antibody |
| GB0521621D0 (en) | 2005-10-24 | 2005-11-30 | Domantis Ltd | Tumor necrosis factor receptor 1 antagonists for treating respiratory diseases |
| US7736647B2 (en) | 2005-06-15 | 2010-06-15 | Monoclonal Antibodies Therapeutics | Anti-CD71 monoclonal antibodies and uses thereof for treating malignant tumor cells |
| CA2620886C (en) | 2005-08-31 | 2017-03-14 | The Regents Of The University Of California | Cellular libraries of peptide sequences (clips) and methods of using the same |
| JP6035009B2 (en) | 2007-08-22 | 2016-11-30 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Activable binding polypeptides and methods for identification and use thereof |
| CA2749339A1 (en) * | 2009-01-12 | 2010-07-15 | Cytomx Therapeutics, Llc | Modified antibody compositions, methods of making and using thereof |
| EP2427479B1 (en) | 2009-05-07 | 2018-11-21 | The Regents of The University of California | Antibodies and methods of use thereof |
| FR2953841B1 (en) | 2009-12-16 | 2011-12-30 | Centre Nat Rech Scient | ANTIBODIES AGAINST THE TRANSFERRIN RECEPTOR AND THEIR USES FOR THE IMMUNOTHERAPY OF TUMORS THAT DEPEND ON IRON |
| FR2959416B1 (en) | 2010-05-03 | 2012-06-22 | Monoclonal Antibodies Therapeutics Mat Biopharma | USE OF ANTI-CD71 ANTIBODIES FOR THE PREPARATION OF A MEDICINAL PRODUCT |
| US20120282176A1 (en) | 2011-04-20 | 2012-11-08 | Roche Glycart Ag | Method and Constructs for the pH Dependent Passage of the Blood-brain-barrier |
| JP5980202B2 (en) | 2011-05-09 | 2016-08-31 | 株式会社ペルセウスプロテオミクス | Antibodies that can specifically recognize transferrin receptor |
| TWI450727B (en) | 2011-12-29 | 2014-09-01 | Ind Tech Res Inst | Single domain antibody against human transferrin receptor and its application |
| WO2013103800A1 (en) | 2012-01-06 | 2013-07-11 | Bioalliance C.V. | Anti-transferrin receptor antibodies and methods using same |
| WO2013163631A2 (en) * | 2012-04-27 | 2013-10-31 | Cytomx Therapeutics, Inc. | Activatable antibodies that bind epidermal growth factor receptor and methods of use thereof |
| WO2013192546A1 (en) | 2012-06-22 | 2013-12-27 | Cytomx Therapeutics, Inc. | Activatable antibodies having non-binding steric moieties and mehtods of using the same |
| US20150197574A1 (en) | 2012-08-02 | 2015-07-16 | Inserm (Institut National De La Sante Et De La Recherche Medicale) | Use of transferrin receptor antagonist for the treatment of thalassemia |
| US9309510B2 (en) | 2012-08-10 | 2016-04-12 | Cytomx Therapeutics, Inc. | Protease-resistant systems for polypeptide display and methods of making and using thereof |
| BR112015012014A2 (en) | 2012-12-04 | 2017-07-11 | Abbvie Inc | dual specific binding proteins penetrating the blood brain barrier (bbb) |
| EP2971047A4 (en) | 2013-03-15 | 2016-11-30 | Alper Biotech Llc | MONOCLONAL ANTIBODIES AGAINST TRANSFERRIN AND ANTIGENS OF THE TRANSFERRIN RECEPTOR, AND USES THEREOF |
| AU2014268726B2 (en) | 2013-05-20 | 2019-10-31 | Genentech, Inc. | Anti-transferrin receptor antibodies and methods of use |
| US10669337B2 (en) * | 2014-07-25 | 2020-06-02 | Cytomx Therapeutics, Inc. | Bispecific anti-CD3 antibodies, bispecific activatable anti-CD3 antibodies, and methods of using the same |
| SG10202110908WA (en) * | 2015-05-04 | 2021-11-29 | Cytomx Therapeutics Inc | Anti-cd166 antibodies, activatable anti-cd166 antibodies, and methods of use thereof |
| CN106245107A (en) | 2016-08-31 | 2016-12-21 | 宝鸡泰力松新材料有限公司 | A kind of surface polishing method of beryllium material |
| WO2019034895A1 (en) * | 2017-08-18 | 2019-02-21 | Ultrahuman Four Limited | Binding agents |
| GB201906685D0 (en) * | 2019-05-13 | 2019-06-26 | Ultrahuman Six Ltd | Activatable protein constructs and uses thereof |
-
2020
- 2020-09-23 WO PCT/US2020/052332 patent/WO2021061867A1/en not_active Ceased
- 2020-09-23 JP JP2022518171A patent/JP2022548310A/en active Pending
- 2020-09-23 EP EP20789345.4A patent/EP4034171A1/en not_active Withdrawn
- 2020-09-23 CN CN202080076276.1A patent/CN114650844A/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| JP2022548310A (en) | 2022-11-17 |
| WO2021061867A1 (en) | 2021-04-01 |
| CN114650844A (en) | 2022-06-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240076374A1 (en) | Anti-cd166 antibodies, activatable anti-cd166 antibodies, and methods of use thereof | |
| US20220306759A1 (en) | Anti-cd71 antibodies, activatable anti-cd71 antibodies, and methods of use thereof | |
| EP4034171A1 (en) | Anti-cd47 antibodies, activatable anti-cd47 antibodies, and methods of use thereof | |
| US10233244B2 (en) | Anti-ITGA3 antibodies, activatable anti-ITGA3 antibodies, and methods of use thereof | |
| US20180303952A1 (en) | Cd147 antibodies, activatable cd147 antibodies, and methods of making and use thereof | |
| EP3890764A2 (en) | Matrix metalloprotease-cleavable and serine or cysteine protease-cleavable substrates and methods of use thereof | |
| EP3762420A1 (en) | Activatable cd147 antibodies and methods of making and use thereof | |
| HK40038123A (en) | Anti-cd166 antibodies, activatable anti-cd166 antibodies, and methods of use thereof | |
| HK1250036B (en) | Activatable anti-cd166 antibodies, and methods of use thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20220329 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20240403 |