EP4029388B1 - Atomizer and electronic atomizing device having the same - Google Patents
Atomizer and electronic atomizing device having the same Download PDFInfo
- Publication number
- EP4029388B1 EP4029388B1 EP21217925.3A EP21217925A EP4029388B1 EP 4029388 B1 EP4029388 B1 EP 4029388B1 EP 21217925 A EP21217925 A EP 21217925A EP 4029388 B1 EP4029388 B1 EP 4029388B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- atomizer
- groove
- wall surface
- hole
- air guiding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/46—Shape or structure of electric heating means
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/48—Fluid transfer means, e.g. pumps
- A24F40/485—Valves; Apertures
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
Definitions
- Electronic atomizing device generally includes an atomizer and a power supply.
- the power supply supplies power to the atomizer.
- the atomizer converts electrical energy into heat to atomize the liquid to form an aerosol that can be inhaled by the user.
- the aerosol is inhaled at a nozzle at an end of an inhaling passage of the atomizer, the user may sometimes inhale the liquid from the inhaling passage.
- the atomizer may be inverted or tilted, such that the nozzle faces downward, causing the liquid in the inhaling passage to leak out of the atomizer via the nozzle.
- Known devices are disclosed in, for example, documents CN109393570A and WO2016/154994A1 .
- the present application provides an atomizer and an electronic atomizing device including the same.
- the invention relates to an atomizer including a top cover assembly provided with a guiding passage as set out in claim 1.
- An electronic atomizing device includes a power supply and the atomizer electrically connected to the power supply.
- an electronic atomizing device includes an atomizer 10 and a power supply (not labeled).
- the atomizer 10 is detachably and electrically connected to the power supply.
- the atomizer 10 and the power supply can also be packaged in the same housing, and cannot be detached from each other.
- the power supply can supply power to the atomizer 10.
- the atomizer 10 converts electrical power into heat, so as to atomize liquid in the atomizer 10 to form an aerosol that can be inhaled by the user.
- the liquids can be e-liquid and other aerosol generating substrates.
- the atomizer 10 includes a housing 100, a top cover assembly 200, a sealing member 300, a flow guiding member 360, a base 400, an atomizing core 510, and a liquid absorbing member 520.
- components such as the flow guiding member 360 and the base 400 of the atomizer 10 can be omitted as needed, and which are not limited herein.
- the housing 100 includes a shell 110 and a central post 120.
- the central post 120 is connected to the housing 100 and is located in a cavity enclosed by the shell 110.
- the central post 120 is provided with an inhaling hole 121 therein.
- An upper end of the inhaling hole 121 forms a nozzle 121a.
- the nozzle 121a is in a direct fluid communication with an outside atmosphere, thus the user can inhale the aerosol at the nozzle 121a.
- the central post 120 includes a tip portion 123 provided away from the nozzle 121a.
- a cross-sectional size of the tip portion 123 gradually decreases in a direction from top to bottom, such that the tip portion 123 is substantially frustum-shaped.
- the central post 120 has a second inner surface 122 that defines a boundary of the inhaling hole 121.
- the second inner surface 122 is recessed to form a receiving groove 122a.
- the receiving groove 122a extends along a central axis of the inhaling hole 121.
- the top cover assembly 200 is provided in the cavity enclosed by the shell 110.
- the top cover assembly 200 includes a heating top cover 210 and a blocking portion 220.
- the blocking portion 220 is sleeved on the heating top cover 210.
- the blocking portion 220 and the housing 100 cooperatively enclose a liquid reservoir for storing the liquid.
- the heating top cover 210 is provided with an air guiding hole 211 and a guiding passage 212.
- the other portion of the central post 120 abuts against the first inner surface 211a, such that the central post 120 and the air guiding hole 211 are in an interference fit.
- the tip portion 123 of the center post 120 and the first inner surface 211a are spaced apart from each other along a direction perpendicular to a central axis of the air guiding hole 211, such that an annular gap 124 is formed between the tip portion 123 and the first inner surface 211a.
- Two inner sidewall surfaces 213a are provided, which are arranged opposite to each other.
- the inner top wall surface 213b is connected between the two inner sidewall surfaces 213a, such that the two inner sidewall surfaces 213a are both located on the same side (i.e., the lower side) of the inner top wall surface 213b.
- the inner sidewall surface 213a is parallel to the central axis of the inhaling passage 11, and the inner top wall surface 213b is perpendicular to the central axis of the inhaling passage 11. In other words, the inner sidewall surface 213a extends in a vertical direction, and the inner top wall surface 213b extends in a horizontal direction.
- a part of the inner sidewall surface 213a away from the air guiding hole 211 is recessed in a left-and-right direction to form a first groove 213c, which extends through the outer wall surface 214.
- the heating top cover 210 further has a first inner bottom wall surface 215, which can define a part of a boundary of the first groove 213c.
- the first inner bottom wall surface 215 is connected to a portion of the inner sidewall surface 213a that is not recessed and adjacent to the air guiding hole 211.
- the first inner bottom wall surface 215 is recessed in a front-and-rear direction to form a second groove 215a.
- the first groove 213c and the second groove 215a are in fluid communication with each other, and the extending directions of the two can form a certain angle, for example, 90°.
- the heating top cover 210 further has a second inner bottom wall surface 216.
- the second inner surface 122 defines a part of a boundary of the second groove 215a.
- the second inner bottom wall surface 216 is recessed in the front-and-rear direction to form a micro-groove 216a.
- a width of the micro-groove 216a is less than a width of the second groove 215a.
- An extending direction of the micro-groove 216a forms an angle with the central axis of the inhaling passage 11. For example, referring to FIG.
- the extending direction of the micro-groove 216a and the central axis of the inhaling passage 11 are perpendicular to each other.
- the extending direction of the micro-groove 216a is the horizontal direction.
- the extending direction of the micro-groove 216a can form an acute angle with the central axis of the inhaling passage 11.
- the extending direction of the micro-groove 216a forms a certain inclined angle with the horizontal direction.
- a plurality of micro-grooves 216a may be provided.
- the plurality of micro-grooves 216a are arranged on the second inner bottom wall surface 216 at intervals.
- a part of the inner top wall surface 213b away from the air guiding hole 211 is recessed upward to form a third groove 213d.
- the third groove 213d also extends through the outer wall surface 214.
- the sealing member 300 is connected to the heating top cover 210.
- the sealing member 300, the heating top cover 210, and the shell 110 cooperatively enclose a liquid directing passage 12.
- the liquid directing passage 12 is in fluid communication with the guiding passage 212, and the atomizing core 510 is at least partially located in the liquid directing passage 12.
- the atomizing core 510 is located outside the inhaling passage 11 and the guiding passage 212.
- the atomizing core 510 may include a liquid guiding element and a heating element.
- the liquid guiding element may be a columnar structure made of cotton material.
- the heating element may be made of metal material.
- the heating element is electrically connected to the power supply.
- the heating element can convert the electrical energy into the heat.
- the heating element can be in a spiral shape, and the heating element is spirally wound on the liquid guiding element.
- the liquid guiding element is used to absorb the liquid in the liquid reservoir.
- the heating element is energized, the generated heat can atomize the liquid on the liquid guiding element to form the aerosol.
- the aerosol can be discharged into the liquid directing passage 12.
- the liquid guiding element can be made of porous ceramic, and the heating element is attached to a surface of the porous ceramic.
- the porous ceramic can absorb the liquid in the liquid reservoir through the capillary action of the micropores.
- the heating element is energized, the liquid on the porous ceramic can be atomized to generate the aerosol.
- the base 400 has a fixing surface 420 facing the mounting surface 310.
- the fixing surface 420 defines a part of the boundary of the air guiding cavity 410.
- the base 400 further includes a protruding post 430 located in the air guiding cavity 410.
- a lower end of the protruding post 430 is a fixed end and is fixed to the fixing surface 420.
- An upper end of the protruding post 430 is a free end and protrudes from the fixing surface 420 by a certain height.
- the base 400 is provided with an air inlet channel 440. At least a part of the air inlet channel 440 is located in the boss 430.
- the mounting surface 310 of the sealing member 300 is attached to and abuts against the top surface 431 of the protruding post 430, such that the mounting surface 310 blocks an opening of the output groove 442 on the top surface 431.
- the opening of the output groove 442 on the side surface 432 can form the output port 442a.
- the output groove 442 may only extend through the side surface 432, and the opening of the output groove 442 on the side surface 432 forms the output port 442a. Since the side surface 432 is a vertical surface, the output port 442a is arranged vertically.
- the outside air flows through the air inlet channel 440, the air guiding cavity 410, and the directing hole 340 successively and enters the atomizing cavity 350 to carry the aerosol. Then, the air carrying the aerosol can flow through the guiding passage 212, the air guiding hole 211, and the inhaling hole 121 successively and reaches the nozzle 121a, such that the aerosol is inhaled by the user.
- the dashed arrows in FIG. 4 , FIG. 6 and FIG. 20 indicate the flow trajectory of the air.
- the aerosol remained in the atomizing cavity 350 can be liquefied to form a condensate.
- a seeping liquid can be formed on the atomizing core 510, and the seeping liquid can drop from the atomizing core 510.
- the seeping liquid and the condensate together form the leakage liquid.
- the sealing member 300 includes a boss 330 located in the atomizing cavity 350, and the boss 330 protrudes from the connecting surface 320.
- a part of the leakage liquid can be attached to the connecting surface 320. That is, the leakage liquid can be stored in a recessed space of the atomizing cavity 350 located on the edge of the boss 330.
- the directing hole 340 extends through the free end surface 331 of the boss 330 and is in fluid communication with the atomizing cavity 350, such that the leakage liquid stored in the recessed space is difficult to reach the free end surface 331, thus preventing the leakage liquid from entering the directing hole 340, and ensuring that the recessed space in the atomizing cavity 350 can effectively store the leakage liquid.
- a part of the seeping liquid will drop directly into the directing hole 340, and some aerosol can enter the directing hole 340 from the atomizing cavity 350. This part of the aerosol can also be liquefied in the directing hole 340 to form the condensate.
- a part of the leakage liquid cannot be stored in the recessed space, but can be transferred from the directing hole 340 to the flow guiding member 360 via the input port 341, such that the leakage liquid on the flow guiding member 360 can eventually drop onto the liquid absorbing member 520. Since the flow guiding member 360 is offset from the output port 442a in the horizontal direction, the leakage liquid dropped from the flow guiding member 360 cannot fall into the output port 442a.
- the leakage liquid is prevented from leaking out from the atomizer 10 via the air inlet channel 440 to enter the power supply, thus preventing the leakage liquid from corroding the power supply or even causing the power supply to explode, thereby improving the service life and safety of the power supply.
- the input port 341 is also offset from the output port 442a in the horizontal direction. Even if a part of the leakage liquid cannot enter the flow guiding member 360 and drops directly from the input port 341, it can effectively prevent the leakage liquid dropped from the input port 341 from directly entering the output port 442a, thereby effectively avoiding the leakage liquid from leaking out of the atomizer 10 via the air inlet channel 440.
- the output port 442a can be arranged vertically. Even if the output port 442a is not offset from the input port 341, when the leakage liquid drops from the input port 341, the dropped leakage liquid is difficult to enter the output port 442a.
- the liquid absorbing member 520 Due to the absorption and restraining effect of the liquid absorbing member 520, it can effectively prevent the liquid from flowing freely in the air guiding cavity 410, thereby preventing the liquid level in the recessed space in the air guiding cavity 410 from reaching the output port 442a.
- the condensate and non-liquefied suspended droplets in the atomizing cavity 350 can flow into the guiding passage 212.
- the recessed structures such as the first groove 213c, the second groove 215a, the third groove 213d and the micro-groove 216a
- the recessed structures can obstruct and adsorb the leakage liquid formed by the condensate and suspended droplets, such that the leakage liquid is received in the recessed structures and is difficult to enter the inhaling passage 11, thus preventing the user from inhaling the leakage liquid into the mouth.
- the annular gap 124 is formed between the tip portion 123 of the central post 120 and the first inner surface 211a, even if the leakage liquid enters the air guiding hole 211 from the guiding passage 212, the annular gap 124 can receive and obstruct the leakage liquid, thus preventing the leakage liquid from entering the nozzle 121a to be inhaled by the user. Furthermore, since the receiving groove 122a is formed on the second surface of the center post 120, even if the leakage liquid enters the air inlet 441 via the air guiding hole 211, the receiving groove 122a can receive and obstruct the leakage liquid to prevent the leakage liquid from entering the nozzle 121a to be inhaled by the user. Therefore, due to the triple obstruction of the recessed structures on the inner wall surface 213, the annular gap 124, and the receiving groove 122a, the leakage liquid can be effectively prevented from being inhaled by the user.
- the nozzle 121a faces downward, and the condensate in the atomizing cavity 350 and the seeping liquid dropping from the atomizing core 510 into the atomizing cavity 350 will form the leakage liquid. Under the action of gravity, the leakage liquid will flow from the atomizing cavity 350 into the guiding passage 212. Based on the similar principle, due to the triple obstruction of the recessed structures on the inner wall surface 213, the annular gap 124, and the receiving groove 122a, the leakage liquid can be effectively prevented from flowing out of the atomizer 10 via the nozzle 121a.
- the atomizer 10 can not only effectively prevent the leakage liquid from leaking out of the atomizer 10 via the air inlet channel 440, preventing the leakage liquid from corroding the power supply or causing the power supply to explode, but also can effectively prevent the leakage liquid from leaking out of the atomizer 10 via the nozzle 121a of the air inlet channel 11. If the air inlet channel 440, the air guiding cavity 410, the liquid directing passage 12, the guiding passage 212, and the inhaling passage 11 are regarded as an airflow passage through which the outside air flows, the atomizer 10 can prevent the leakage liquid from leaking out of the atomizer 10 via the upper and lower ends of the airflow passage. In addition, it can prevent the condensate and suspended droplets from being inhaled by the user during inhalation, which can improve the user's inhaling experience.
Landscapes
- Air Humidification (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Special Spraying Apparatus (AREA)
- Devices For Medical Bathing And Washing (AREA)
Description
- The present application relates to the field of atomizing technology, in particular to an atomizer and an electronic atomizing device having the same.
- Electronic atomizing device generally includes an atomizer and a power supply. The power supply supplies power to the atomizer. The atomizer converts electrical energy into heat to atomize the liquid to form an aerosol that can be inhaled by the user. When the aerosol is inhaled at a nozzle at an end of an inhaling passage of the atomizer, the user may sometimes inhale the liquid from the inhaling passage. In addition, during transportation or storage of the electronic atomizing device, the atomizer may be inverted or tilted, such that the nozzle faces downward, causing the liquid in the inhaling passage to leak out of the atomizer via the nozzle. Known devices are disclosed in, for example, documents
CN109393570A andWO2016/154994A1 . - According to various exemplary embodiments, the present application provides an atomizer and an electronic atomizing device including the same.
- The invention relates to an atomizer including a top cover assembly provided with a guiding passage as set out in claim 1.
- An electronic atomizing device includes a power supply and the atomizer electrically connected to the power supply.
- Details of one or more embodiments of the present application will be given in the following description and attached drawings. Other features, objects and advantages of the present application will become apparent from the description, drawings, and claims.
-
-
FIG. 1 is a perspective view of an atomizer according to an embodiment. -
FIG. 2 is an exploded view of the atomizer shown inFIG. 1 . -
FIG. 3 is a plan cross-sectional view of the atomizer shown inFIG. 1 in a first direction. -
FIG. 4 is a perspective cross-sectional view of the atomizer shown inFIG. 1 in a first direction. -
FIG. 5 is a perspective cross-sectional view of the atomizer shown inFIG. 1 in a second direction. -
FIG. 6 is a plan cross-sectional view of the atomizer shown inFIG. 1 in a second direction. -
FIG. 7 is a perspective partial exploded cross-sectional view of the atomizer shown inFIG. 1 . -
FIG. 8 is a perspective view of a heating top cover of the atomizer shown inFIG. 1 when being upright. -
FIG. 9 is a perspective view of a heating top cover of the atomizer shown inFIG. 1 when being inverted. -
FIG. 10 is a perspective transverse cross-sectional view of a heating top cover of the atomizer shown inFIG. 1 . -
FIG. 11 is a perspective longitudinal cross-sectional view of a heating top cover of the atomizer shown inFIG. 1 . -
FIG. 12 is a front view of a heating top cover of the atomizer shown inFIG. 1 . -
FIG. 13 is a partial plane view of a heating top cover of the atomizer shown inFIG. 1 . -
FIG. 14 is a perspective view of a sealing member of the atomizer shown inFIG. 1 when being upright. -
FIG. 15 is a perspective view of a sealing member of the atomizer shown inFIG. 1 when being inverted. -
FIG. 16 is a top view of a sealing member of the atomizer shown inFIG. 1 . -
FIG. 17 is a perspective cross-sectional view of a sealing member of the atomizer shown inFIG. 1 . -
FIG. 18 is a perspective view of a base of the atomizer shown inFIG. 1 . -
FIG. 19 is a top view of a base of the atomizer shown inFIG. 1 . -
FIG. 20 is a perspective cross-sectional view of a base of the atomizer shown inFIG. 1 . - In order to facilitate the understanding of the present application, the present application will be described in a more comprehensive manner with reference to the relevant drawings. Exemplary embodiments of the present application are shown in the drawings. However, the present application can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the application of the present application more thorough and comprehensive.
- It should be noted that when an element is referred to as being "fixed to" another element, it can be directly on another element or an intermediate element may also be present. When an element is considered to be "connected to" another element, it can be directly connected to another element or an intermediate element may be present at the same time. Terms "inner", "outer", "left", "right" and similar expressions used herein are for illustrative purposes only, and do not mean that they are the only embodiments.
- Referring to
FIGS. 1 ,2 and3 , an electronic atomizing device according to an embodiment of the present application includes anatomizer 10 and a power supply (not labeled). Theatomizer 10 is detachably and electrically connected to the power supply. In other embodiments, theatomizer 10 and the power supply can also be packaged in the same housing, and cannot be detached from each other. The power supply can supply power to theatomizer 10. Theatomizer 10 converts electrical power into heat, so as to atomize liquid in theatomizer 10 to form an aerosol that can be inhaled by the user. The liquids can be e-liquid and other aerosol generating substrates. - The
atomizer 10 includes ahousing 100, atop cover assembly 200, asealing member 300, aflow guiding member 360, abase 400, an atomizingcore 510, and a liquid absorbingmember 520. In other embodiments, components such as theflow guiding member 360 and thebase 400 of theatomizer 10 can be omitted as needed, and which are not limited herein. - Referring to
FIGS. 3 ,4 and5 , thehousing 100 includes ashell 110 and acentral post 120. Thecentral post 120 is connected to thehousing 100 and is located in a cavity enclosed by theshell 110. Thecentral post 120 is provided with aninhaling hole 121 therein. An upper end of theinhaling hole 121 forms anozzle 121a. Thenozzle 121a is in a direct fluid communication with an outside atmosphere, thus the user can inhale the aerosol at thenozzle 121a. Thecentral post 120 includes atip portion 123 provided away from thenozzle 121a. A cross-sectional size of thetip portion 123 gradually decreases in a direction from top to bottom, such that thetip portion 123 is substantially frustum-shaped. Thecentral post 120 has a secondinner surface 122 that defines a boundary of theinhaling hole 121. The secondinner surface 122 is recessed to form a receivinggroove 122a. Thereceiving groove 122a extends along a central axis of theinhaling hole 121. Referring toFIGS. 4 ,5 and6 , thetop cover assembly 200 is provided in the cavity enclosed by theshell 110. Thetop cover assembly 200 includes aheating top cover 210 and ablocking portion 220. The blockingportion 220 is sleeved on the heatingtop cover 210. The blockingportion 220 and thehousing 100 cooperatively enclose a liquid reservoir for storing the liquid. Theheating top cover 210 is provided with anair guiding hole 211 and aguiding passage 212. A lower end of thecentral post 120 is inserted into theair guiding hole 211, and thecentral post 120 and theair guiding hole 211 can be in an interference fit. Thetip portion 123 is located in theair guiding hole 211, such that the inhalinghole 121 and theair guiding hole 211 are coaxially arranged. In addition, the inhalinghole 121 and theair guiding hole 211 cooperatively form an inhalingpassage 11. A central axis of the inhalingpassage 11 extends in the vertical direction. Thetop cover assembly 200 has a firstinner surface 211a that defines a boundary of theair guiding hole 211. The other portion of thecentral post 120 abuts against the firstinner surface 211a, such that thecentral post 120 and theair guiding hole 211 are in an interference fit. Thetip portion 123 of thecenter post 120 and the firstinner surface 211a are spaced apart from each other along a direction perpendicular to a central axis of theair guiding hole 211, such that anannular gap 124 is formed between thetip portion 123 and the firstinner surface 211a. - Referring to
FIGS. 8, 9 , and10 , theheating top cover 210 has aninner wall surface 213 and anouter wall surface 214. The blockingportion 220 is sleeved on theouter wall surface 214. Theinner wall surface 213 defines the boundary of the guidingpassage 212. The guidingpassage 212 extends through theouter wall surface 214 and the firstinner surface 211a, such that the guidingpassage 212 is in a direct fluid communication with theair guiding hole 211. That is, theair guiding hole 211 is in fluid communication between the guidingpassage 212 and the inhalinghole 121. Theinner wall surface 213 includes aninner sidewall surface 213a and an innertop wall surface 213b. Twoinner sidewall surfaces 213a are provided, which are arranged opposite to each other. The innertop wall surface 213b is connected between the twoinner sidewall surfaces 213a, such that the twoinner sidewall surfaces 213a are both located on the same side (i.e., the lower side) of the innertop wall surface 213b. Theinner sidewall surface 213a is parallel to the central axis of the inhalingpassage 11, and the innertop wall surface 213b is perpendicular to the central axis of the inhalingpassage 11. In other words, theinner sidewall surface 213a extends in a vertical direction, and the innertop wall surface 213b extends in a horizontal direction. The central axis of the guidingpassage 212 and the central axis of the inhalingpassage 11 intersect to form a certain angle. For example, the angle may be 90°. In this case, the inhalingpassage 11 extends in the vertical direction, and the guidingpassage 212 extends in the horizontal direction. - Referring to
FIGS. 9 ,11 , and12 , a part of theinner sidewall surface 213a away from theair guiding hole 211 is recessed in a left-and-right direction to form afirst groove 213c, which extends through theouter wall surface 214. Theheating top cover 210 further has a first innerbottom wall surface 215, which can define a part of a boundary of thefirst groove 213c. The first innerbottom wall surface 215 is connected to a portion of theinner sidewall surface 213a that is not recessed and adjacent to theair guiding hole 211. The first innerbottom wall surface 215 is recessed in a front-and-rear direction to form asecond groove 215a. Thefirst groove 213c and thesecond groove 215a are in fluid communication with each other, and the extending directions of the two can form a certain angle, for example, 90°. Theheating top cover 210 further has a second innerbottom wall surface 216. The secondinner surface 122 defines a part of a boundary of thesecond groove 215a. The second innerbottom wall surface 216 is recessed in the front-and-rear direction to form a micro-groove 216a. A width of the micro-groove 216a is less than a width of thesecond groove 215a. An extending direction of the micro-groove 216a forms an angle with the central axis of the inhalingpassage 11. For example, referring toFIG. 13 , the extending direction of the micro-groove 216a and the central axis of the inhalingpassage 11 are perpendicular to each other. In this case, the extending direction of the micro-groove 216a is the horizontal direction. In other embodiments, the extending direction of the micro-groove 216a can form an acute angle with the central axis of the inhalingpassage 11. In this case, the extending direction of the micro-groove 216a forms a certain inclined angle with the horizontal direction. A plurality of micro-grooves 216a may be provided. The plurality of micro-grooves 216a are arranged on the second innerbottom wall surface 216 at intervals. A part of the innertop wall surface 213b away from theair guiding hole 211 is recessed upward to form athird groove 213d. Thethird groove 213d also extends through theouter wall surface 214. - The
first groove 213c, thesecond groove 215a, thethird groove 213d, and the micro-groove 216a are recessed structures formed on theinner wall surface 213. The abovementioned recessed structures are located between the guidingpassage 212 and theair guiding hole 211. In other embodiments, protrusions can also be provided on theinner wall surface 213 to form a protruding structure. - Referring to
FIGS. 4 ,6 , and7 , the sealingmember 300 is connected to theheating top cover 210. The sealingmember 300, theheating top cover 210, and theshell 110 cooperatively enclose aliquid directing passage 12. Theliquid directing passage 12 is in fluid communication with the guidingpassage 212, and theatomizing core 510 is at least partially located in theliquid directing passage 12. Theatomizing core 510 is located outside the inhalingpassage 11 and the guidingpassage 212. Theatomizing core 510 may include a liquid guiding element and a heating element. The liquid guiding element may be a columnar structure made of cotton material. The heating element may be made of metal material. The heating element is electrically connected to the power supply. When the power supply supplies power to the heating element, the heating element can convert the electrical energy into the heat. The heating element can be in a spiral shape, and the heating element is spirally wound on the liquid guiding element. The liquid guiding element is used to absorb the liquid in the liquid reservoir. When the heating element is energized, the generated heat can atomize the liquid on the liquid guiding element to form the aerosol. The aerosol can be discharged into theliquid directing passage 12. In other embodiments, the liquid guiding element can be made of porous ceramic, and the heating element is attached to a surface of the porous ceramic. The porous ceramic can absorb the liquid in the liquid reservoir through the capillary action of the micropores. When the heating element is energized, the liquid on the porous ceramic can be atomized to generate the aerosol. - The
liquid directing passage 12 includes anatomizing cavity 350 and a directinghole 340. Theatomizing cavity 350 is formed by the sealingmember 300, theheating top cover 210, and theshell 110. Theatomizing core 510 is at least partially located in theatomizing cavity 350. The aerosol generated by theatomizing core 510 is discharged into theatomizing cavity 350. Referring toFIGS. 16 and 17 , the directinghole 340 is provided on the sealingmember 300. The sealingmember 300 has a mountingsurface 310 and a connectingsurface 320. The mountingsurface 310 faces upward, and the mountingsurface 310 faces downward. That is, the connectingsurface 320 faces away from the mountingsurface 310. The connectingsurface 320 defines a part of the boundary of theatomizing cavity 350. The sealingmember 300 includes aboss 330 located in theatomizing cavity 350. A lower end of theboss 330 is fixed to the connectingsurface 320. An upper end of theboss 330 protrudes from the connectingsurface 320 by a certain height. Theboss 330 has afree end surface 331 at the upper end thereof. Thefree end surface 331 and the connectingsurface 320 are spaced apart in the vertical direction. In other words, thefree end surface 331 is higher than the connectingsurface 320 in the vertical direction. The upper end of the directinghole 340 extends upwardly through thefree end surface 331, such that the directinghole 340 is in fluid communication with theatomizing cavity 350. The lower end of the directinghole 340 extends laterally through the mountingsurface 310 to form aninput port 341. - Referring to
FIGS. 6 ,18 , and17 , at least a part of thebase 400 is received in the cavity enclosed by theshell 110. The sealingmember 300 is provided on thebase 400. The sealingmember 300 and the base 400 cooperatively enclose anair guiding cavity 410. The mountingsurface 310 define a part of the boundary of theair guiding cavity 410. Since theinput port 341 is located on the mountingsurface 310, the directinghole 340 is in a direct fluid communication with theair guiding cavity 410. - Referring to
FIGS. 14 and 15 , theflow guiding member 360 is substantially plate-shaped. Theflow guiding member 360 is connected to the mountingsurface 310 and is located on an edge of theinput port 341. Theflow guiding member 360 is used to transfer the liquid from theinput port 341, and transfer the liquid into theair guiding cavity 410. Theliquid absorbing member 520 is located in theair guiding cavity 410. The liquid output by theflow guiding member 360 can be absorbed by theliquid absorbing member 520, so as to prevent the liquid from flowing freely in theair guiding cavity 410. Thebase 400 is provided with anair inlet 441. Theair inlet 441 is in fluid communication with the outside atmosphere and theair guiding cavity 410. - Referring to
FIGS. 18, 19 , and20 , thebase 400 has a fixingsurface 420 facing the mountingsurface 310. The fixingsurface 420 defines a part of the boundary of theair guiding cavity 410. The base 400 further includes a protrudingpost 430 located in theair guiding cavity 410. A lower end of the protrudingpost 430 is a fixed end and is fixed to the fixingsurface 420. An upper end of the protrudingpost 430 is a free end and protrudes from the fixingsurface 420 by a certain height. Thebase 400 is provided with anair inlet channel 440. At least a part of theair inlet channel 440 is located in theboss 430. Theair inlet channel 440 has anoutput port 442a allowing the air to flow out. Theoutput port 442a is located on theboss 430. Theair inlet channel 440 is in a direct fluid communication with theair guiding cavity 410 via theoutput port 442a. A certain distance is kept between theoutput port 442a and the fixingsurface 420. In other words, theoutput port 442a is higher than the fixingsurface 420 in the vertical direction. - In the illustrated embodiment, the
boss 430 has atop surface 431 and aside surface 432. Theside surface 432 extends vertically and is connected to thetop surface 431. Thetop surface 431 and the fixingsurface 420 are spaced apart from each other in the vertical direction. Thetop surface 431 faces upward. Theside surface 432 is connected between thetop surface 431 and the fixingsurface 420. Theair inlet channel 440 includes theair inlet 441 and anoutput groove 442. Theair inlet 441 is in fluid communication with the outside atmosphere. Theoutput groove 442 is in fluid communication with theair guiding cavity 410 and theair inlet 441. Theoutput groove 442 extends through theside surface 432 and thetop surface 431. Theoutput port 442a is located on theoutput groove 442. Specifically, when the sealingmember 300 is provided on thebase 400, the mountingsurface 310 of the sealingmember 300 is attached to and abuts against thetop surface 431 of the protrudingpost 430, such that the mountingsurface 310 blocks an opening of theoutput groove 442 on thetop surface 431. In this case, the opening of theoutput groove 442 on theside surface 432 can form theoutput port 442a. - In other embodiments, for example, the mounting
surface 310 may be spaced apart from thetop surface 431. That is, the mountingsurface 310 does not cover the opening of theoutput groove 442 on thetop surface 431. In this case, the openings of theoutput groove 442 on thetop surface 431 and on theside surface 432 cooperatively form theoutput port 442a. For another example, theoutput groove 442 may only extend through thetop surface 431. The opening of theoutput groove 442 on thetop surface 431 forms theoutput port 442a. Since thetop surface 431 is a horizontal surface, theoutput port 442a is arranged horizontally. For another example, theoutput groove 442 may only extend through theside surface 432, and the opening of theoutput groove 442 on theside surface 432 forms theoutput port 442a. Since theside surface 432 is a vertical surface, theoutput port 442a is arranged vertically. - Referring to
FIGS. 3 and7 , in some embodiments, a plane perpendicular to the axial direction of theatomizer 10 is referred as a reference plane. The reference plane is perpendicular to the central axis of the inhalingpassage 11. That is, the reference plane is a horizontal plane. A distance between the orthographic projections of theinput port 341 and theoutput port 442a on the reference plane is greater than zero. In other words, theinput port 341 is offset from theoutput port 442a in the horizontal direction. Similarly, a distance between the orthographic projections of theflow guiding member 360 and theoutput port 442a on the reference plane is greater than zero. In other words, theflow guiding member 360 is offset from theoutput port 442a in the horizontal direction. Two dashed lines inFIG. 7 are the projections' trajectories of theinput port 341 and theflow guiding member 360 on the reference plane, respectively. A distance between the orthographic projections of theflow guiding member 360 and the directinghole 340 on the reference plane is greater than zero, such that theflow guiding member 360 is offset from the directinghole 340. - When the user inhales at the
nozzle 121a, the outside air flows through theair inlet channel 440, theair guiding cavity 410, and the directinghole 340 successively and enters theatomizing cavity 350 to carry the aerosol. Then, the air carrying the aerosol can flow through the guidingpassage 212, theair guiding hole 211, and the inhalinghole 121 successively and reaches thenozzle 121a, such that the aerosol is inhaled by the user. The dashed arrows inFIG. 4 ,FIG. 6 andFIG. 20 indicate the flow trajectory of the air. - Generally, when the
atomizer 10 is out of use, the aerosol remained in theatomizing cavity 350 can be liquefied to form a condensate. While a seeping liquid can be formed on theatomizing core 510, and the seeping liquid can drop from theatomizing core 510. The seeping liquid and the condensate together form the leakage liquid. Since the sealingmember 300 includes aboss 330 located in theatomizing cavity 350, and theboss 330 protrudes from the connectingsurface 320. A part of the leakage liquid can be attached to the connectingsurface 320. That is, the leakage liquid can be stored in a recessed space of theatomizing cavity 350 located on the edge of theboss 330. The directinghole 340 extends through thefree end surface 331 of theboss 330 and is in fluid communication with theatomizing cavity 350, such that the leakage liquid stored in the recessed space is difficult to reach thefree end surface 331, thus preventing the leakage liquid from entering the directinghole 340, and ensuring that the recessed space in theatomizing cavity 350 can effectively store the leakage liquid. - Sometimes a part of the seeping liquid will drop directly into the directing
hole 340, and some aerosol can enter the directinghole 340 from theatomizing cavity 350. This part of the aerosol can also be liquefied in the directinghole 340 to form the condensate. In short, a part of the leakage liquid cannot be stored in the recessed space, but can be transferred from the directinghole 340 to theflow guiding member 360 via theinput port 341, such that the leakage liquid on theflow guiding member 360 can eventually drop onto theliquid absorbing member 520. Since theflow guiding member 360 is offset from theoutput port 442a in the horizontal direction, the leakage liquid dropped from theflow guiding member 360 cannot fall into theoutput port 442a. As such, the leakage liquid is prevented from leaking out from theatomizer 10 via theair inlet channel 440 to enter the power supply, thus preventing the leakage liquid from corroding the power supply or even causing the power supply to explode, thereby improving the service life and safety of the power supply. In addition, theinput port 341 is also offset from theoutput port 442a in the horizontal direction. Even if a part of the leakage liquid cannot enter theflow guiding member 360 and drops directly from theinput port 341, it can effectively prevent the leakage liquid dropped from theinput port 341 from directly entering theoutput port 442a, thereby effectively avoiding the leakage liquid from leaking out of theatomizer 10 via theair inlet channel 440. Since theside surface 432 can be vertically connected to thetop surface 431, when theoutput port 442a is located above theside surface 432 that is vertically arranged, theoutput port 442a can be arranged vertically. Even if theoutput port 442a is not offset from theinput port 341, when the leakage liquid drops from theinput port 341, the dropped leakage liquid is difficult to enter theoutput port 442a. - After the
flow guiding member 360 guides the leakage liquid into theair guiding cavity 410, the leakage liquid can be stored in the recessed space at the edge of the protrudingpost 430. Since a certain distance is kept between theoutput port 442a and the fixingsurface 420, that is, the height of theoutput port 442a is higher than that of the fixingsurface 420, it can ensure that the leakage liquid in the recessed space cannot reach theoutput port 442a, thus avoiding the leakage liquid from leaking via theair inlet channel 440. Further, theliquid absorbing member 520 can be fixed on the fixingsurface 420 of thebase 400. The leakage liquid on theflow guiding member 360 can be directly input to theliquid absorbing member 520. Due to the absorption and restraining effect of theliquid absorbing member 520, it can effectively prevent the liquid from flowing freely in theair guiding cavity 410, thereby preventing the liquid level in the recessed space in theair guiding cavity 410 from reaching theoutput port 442a. - When the user inhales at the
nozzle 121a, subjected to the negative pressure, the condensate and non-liquefied suspended droplets in theatomizing cavity 350 can flow into the guidingpassage 212. In this case, due to the recessed structures such as thefirst groove 213c, thesecond groove 215a, thethird groove 213d and the micro-groove 216a, the recessed structures can obstruct and adsorb the leakage liquid formed by the condensate and suspended droplets, such that the leakage liquid is received in the recessed structures and is difficult to enter the inhalingpassage 11, thus preventing the user from inhaling the leakage liquid into the mouth. In addition, since theannular gap 124 is formed between thetip portion 123 of thecentral post 120 and the firstinner surface 211a, even if the leakage liquid enters theair guiding hole 211 from the guidingpassage 212, theannular gap 124 can receive and obstruct the leakage liquid, thus preventing the leakage liquid from entering thenozzle 121a to be inhaled by the user. Furthermore, since the receivinggroove 122a is formed on the second surface of thecenter post 120, even if the leakage liquid enters theair inlet 441 via theair guiding hole 211, the receivinggroove 122a can receive and obstruct the leakage liquid to prevent the leakage liquid from entering thenozzle 121a to be inhaled by the user. Therefore, due to the triple obstruction of the recessed structures on theinner wall surface 213, theannular gap 124, and the receivinggroove 122a, the leakage liquid can be effectively prevented from being inhaled by the user. - When the
atomizer 10 is tilted or inverted, thenozzle 121a faces downward, and the condensate in theatomizing cavity 350 and the seeping liquid dropping from theatomizing core 510 into theatomizing cavity 350 will form the leakage liquid. Under the action of gravity, the leakage liquid will flow from theatomizing cavity 350 into the guidingpassage 212. Based on the similar principle, due to the triple obstruction of the recessed structures on theinner wall surface 213, theannular gap 124, and the receivinggroove 122a, the leakage liquid can be effectively prevented from flowing out of theatomizer 10 via thenozzle 121a. - Accordingly, the
atomizer 10 can not only effectively prevent the leakage liquid from leaking out of theatomizer 10 via theair inlet channel 440, preventing the leakage liquid from corroding the power supply or causing the power supply to explode, but also can effectively prevent the leakage liquid from leaking out of theatomizer 10 via thenozzle 121a of theair inlet channel 11. If theair inlet channel 440, theair guiding cavity 410, theliquid directing passage 12, the guidingpassage 212, and the inhalingpassage 11 are regarded as an airflow passage through which the outside air flows, theatomizer 10 can prevent the leakage liquid from leaking out of theatomizer 10 via the upper and lower ends of the airflow passage. In addition, it can prevent the condensate and suspended droplets from being inhaled by the user during inhalation, which can improve the user's inhaling experience. - The technical features of the above described embodiments can be combined arbitrarily. To simplify the description, not all possible combinations of the technical features in the above embodiments are described. However, all of the combinations of these technical features should be considered as being fallen within the scope of the present application, as long as such combinations do not contradict with each other.
- The foregoing embodiments merely illustrate some embodiments of the present application, and descriptions thereof are relatively specific and detailed. However, it should not be understood as a limitation to the patent scope of the present application. The protection scope of the present application shall be subject to the appended claims.
Claims (9)
- An atomizer (10), comprising:a top cover assembly (200) provided with a guiding passage (212) and an air guiding hole (211) therein, the top cover assembly (200) comprising a protruding or recessed structure between the guiding passage (212) and the air guiding hole (211); andan atomizing core (510) at least partially received in the top cover assembly (200),wherein the atomizing core (510) is configured to discharge an aerosol formed by atomizing a liquid into the air guiding hole (211) via the guiding passage (212);wherein the top cover assembly (200) has an inner wall surface (213) defining a boundary of the guiding passage (212), the protruding or recessed structure is located on the inner wall surface (213).
- The atomizer (10) according to claim 1, wherein the top cover assembly (200) further has an outer wall surface (214) connected to the inner wall surface (213), the guiding passage (212) extends through the outer wall surface (214), the inner wall surface (213) comprises an inner sidewall surface (213a) parallel to a central axis of the atomizer (10), the recessed structure comprises a first groove (213c) formed on the inner sidewall surface (213a) extending through the outer wall surface (214).
- The atomizer (10) according to claim 2, wherein the recessed structure further comprises a second groove (215a) in fluid communication with the first groove (213c), an extending direction of the second groove (215a) forms an angle with an extending direction of the first groove (213c).
- The atomizer (10) according to claim 3, wherein the top cover assembly (200) further has a second inner bottom wall surface (216) defining a part of a boundary of the second groove (215a), the recessed structure further comprises a micro-groove (216a) formed on the second inner bottom wall surface (216), a width of the micro-groove (216a) is less than a width of the second groove (215a), an extending direction of the micro-groove (216a) forms an angle with the central axis of the atomizer (10).
- The atomizer (10) according to claim 2, wherein the inner wall surface (213) comprises an inner top wall surface (213b), the inner top wall surface (213b) forms an angle with the central axis of the atomizer (10) and is connected to the inner sidewall surface (213a), the recessed structure further comprises a third groove (213d) formed on the inner top wall surface (213b) extending through the outer wall surface (214).
- The atomizer (10) according to claim 1, further comprising a housing (100), wherien the top cover assembly (200) and the atomizing core (510) are at least partially received in the housing (100), the housing (100) is provided with an inhaling hole (121) coaxially with the air guiding hole (211), the air guiding hole (211) is in fluid communication between the inhaling hole (121) and the guiding passage (212), an end of the inhaling hole (121) away from the air guiding hole (211) forms a nozzle (121a) that is in fluid communication with an outside atmosphere.
- The atomizer (10) according to claim 6, wherein the housing (100) comprises a shell (110) and a central post (120), the central post (120) is located in the shell (110) and inserted into the air guiding hole (211), the central post (120) comprises a tip portion (123) located in the air guiding hole (211), the top cover assembly (200) further has a first inner surface (211a) defining a boundary of the air guiding hole (211), a gap (124) is formed between the tip portion (123) and the first inner surface (211a).
- The atomizer (10) according to claim 7, wherein the central post (120) has a second inner surface (122) defining a boundary of the inhaling hole (121), the second inner surface (122) is recessed to form an receiving groove (122a) extending along a central axis of the inhaling hole (121).
- An electronic atomizing device, comprising a power supply and the atomizer (10) according to any one of the preceding claims electrically connected to the power supply.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202023302851.1U CN214710376U (en) | 2020-12-30 | 2020-12-30 | Atomizer and electronic atomization device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP4029388A1 EP4029388A1 (en) | 2022-07-20 |
| EP4029388B1 true EP4029388B1 (en) | 2024-10-09 |
Family
ID=78636384
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP21217925.3A Active EP4029388B1 (en) | 2020-12-30 | 2021-12-28 | Atomizer and electronic atomizing device having the same |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20220202086A1 (en) |
| EP (1) | EP4029388B1 (en) |
| CN (1) | CN214710376U (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR102353864B1 (en) * | 2019-04-23 | 2022-01-20 | 주식회사 케이티앤지 | Cartridge and aerosol generating device comprising thereof |
| CN110447960A (en) * | 2019-05-24 | 2019-11-15 | 东莞市阿尔法电子科技有限公司 | Sealing piece and electronic atomizer |
| CA212411S (en) * | 2021-11-03 | 2024-03-04 | Shenzhen Relx Tech Co Ltd | Conductive Pin of a Pod for an Electronic Cigarette |
| WO2023123165A1 (en) * | 2021-12-30 | 2023-07-06 | 深圳麦克韦尔科技有限公司 | Electronic vaporization apparatus and vaporizer thereof |
| WO2023123244A1 (en) * | 2021-12-30 | 2023-07-06 | 深圳麦克韦尔科技有限公司 | Electronic atomization device and atomizer thereof |
| WO2024065747A1 (en) * | 2022-09-30 | 2024-04-04 | 深圳市卓力能技术有限公司 | Atomization core and atomizer |
| JPWO2024084568A1 (en) * | 2022-10-18 | 2024-04-25 | ||
| CN116965603A (en) * | 2023-09-13 | 2023-10-31 | 宁波恩瓦科技有限公司 | Atomization module, aerosol bomb and manufacturing method of atomization module |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016154994A1 (en) | 2015-04-02 | 2016-10-06 | 惠州市吉瑞科技有限公司 | Atomizing component and electronic cigarette |
| CN109393570A (en) | 2018-11-12 | 2019-03-01 | 安克创新科技股份有限公司 | Atomising device and electronic cigarette |
| WO2020048513A1 (en) | 2018-09-05 | 2020-03-12 | 深圳麦克韦尔科技有限公司 | Atomizing device and electronic atomizing equipment |
| CN111165879A (en) | 2019-11-19 | 2020-05-19 | 深圳雾芯科技有限公司 | Atomization device |
| CN211910515U (en) | 2019-12-17 | 2020-11-13 | 深圳市合元科技有限公司 | Atomizers and Electronic Cigarettes |
-
2020
- 2020-12-30 CN CN202023302851.1U patent/CN214710376U/en active Active
-
2021
- 2021-12-27 US US17/562,484 patent/US20220202086A1/en not_active Abandoned
- 2021-12-28 EP EP21217925.3A patent/EP4029388B1/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016154994A1 (en) | 2015-04-02 | 2016-10-06 | 惠州市吉瑞科技有限公司 | Atomizing component and electronic cigarette |
| WO2020048513A1 (en) | 2018-09-05 | 2020-03-12 | 深圳麦克韦尔科技有限公司 | Atomizing device and electronic atomizing equipment |
| CN109393570A (en) | 2018-11-12 | 2019-03-01 | 安克创新科技股份有限公司 | Atomising device and electronic cigarette |
| CN111165879A (en) | 2019-11-19 | 2020-05-19 | 深圳雾芯科技有限公司 | Atomization device |
| CN211910515U (en) | 2019-12-17 | 2020-11-13 | 深圳市合元科技有限公司 | Atomizers and Electronic Cigarettes |
Also Published As
| Publication number | Publication date |
|---|---|
| US20220202086A1 (en) | 2022-06-30 |
| EP4029388A1 (en) | 2022-07-20 |
| CN214710376U (en) | 2021-11-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP4029388B1 (en) | Atomizer and electronic atomizing device having the same | |
| US20250288012A1 (en) | Atomizer and electronic atomizing device having the same | |
| US12419355B2 (en) | Atomizer and electronic atomizing device | |
| CN113892696A (en) | Atomizer and electronic atomization device | |
| US11925206B2 (en) | Electronic cigarette having dual air passages | |
| ES2837011T3 (en) | Liquid storage tank for a steam supply system | |
| CN114158774B (en) | Electronic atomization device and atomizer | |
| EP3360430B1 (en) | Electronic cigarette and atomizer thereof | |
| CN112004603B (en) | Microfluidic cartridge and microfluidic delivery device comprising the microfluidic cartridge | |
| CN218650266U (en) | Atomizer and electronic atomization device | |
| EP4194037B1 (en) | Atomizer and electronic atomizing device | |
| CN114158773A (en) | Electronic atomization device and atomizer | |
| WO2023124213A1 (en) | Atomizer and electronic atomization device | |
| CN217407797U (en) | Atomizer and atomizing device | |
| CN215347036U (en) | Atomizer and aerosol generation device | |
| CN215013581U (en) | Atomizer and electronic atomization device | |
| CN218898354U (en) | Atomizing core and aerosol generating device | |
| CN218650319U (en) | Atomizing core and aerosol generating device | |
| JP7482973B2 (en) | Atomization parts and electronic atomization devices | |
| CN218185262U (en) | Atomization assembly and aerosol generating device | |
| CN222031473U (en) | Nozzle and atomizer | |
| CN223169163U (en) | Atomizer and aerosol generating device | |
| CN220343652U (en) | Atomizer and aerosol generating device | |
| CN220192189U (en) | Bracket assembly, atomization assembly and aerosol forming device | |
| CN221355762U (en) | Atomizer and electronic atomization device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20230117 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: A24F 40/40 20200101AFI20240422BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20240517 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_48977/2024 Effective date: 20240828 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602021019903 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241231 Year of fee payment: 4 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20241009 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1729551 Country of ref document: AT Kind code of ref document: T Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250210 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250116 Year of fee payment: 4 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250109 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250110 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250109 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602021019903 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| 26 | Opposition filed |
Opponent name: PHILIP MORRIS PRODUCTS S.A. Effective date: 20250702 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241228 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241009 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20241231 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241231 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241231 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241228 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |