[go: up one dir, main page]

EP3916692B1 - Fire detector; fire detection method with fire detector, computer program and machine-readable storage medium - Google Patents

Fire detector; fire detection method with fire detector, computer program and machine-readable storage medium Download PDF

Info

Publication number
EP3916692B1
EP3916692B1 EP21167838.8A EP21167838A EP3916692B1 EP 3916692 B1 EP3916692 B1 EP 3916692B1 EP 21167838 A EP21167838 A EP 21167838A EP 3916692 B1 EP3916692 B1 EP 3916692B1
Authority
EP
European Patent Office
Prior art keywords
fire
analysis
measurement signal
time series
series analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21167838.8A
Other languages
German (de)
French (fr)
Other versions
EP3916692A1 (en
Inventor
Thomas Hanses
Christopher Haug
Markus Ulrich
Robert Hartl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3916692A1 publication Critical patent/EP3916692A1/en
Application granted granted Critical
Publication of EP3916692B1 publication Critical patent/EP3916692B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke

Definitions

  • the present invention relates to a method for fire detection with a fire detector, as well as a fire detector set up according to the invention, a computer program and a machine-readable storage medium.
  • Fire detectors are often designed as scattered light fire detectors, which have a scattered light path, a light source (e.g. LED) and a light sensor (e.g. photodiode).
  • the light source emits light in the IR or VIS range.
  • the light sensor is arranged at a defined angle to the radiation direction of the light source, so that light normally does not hit the light sensor or only to a very small extent.
  • Light is only detected by the light sensor when particles (e.g. smoke or dust) enter the optical path between the light source and the light sensor and scatter the light from the light source onto the light sensor.
  • particles e.g. smoke or dust
  • a fire for example, is detected and issued as an alarm.
  • other physical variables e.g. temperature and/or CO content, can be used as criteria for fire detection.
  • the publication DE 10 2010 041 693 A1 describes a method for testing the functionality of a photoelectric smoke detector with a transmitter element and a sensor element.
  • the transmitting element is activated to emit a test beam and detected by a sensor element as a measurement signal.
  • the recorded measurement signal is compared with a reference signal and, based on this, the functionality of the smoke detector, in particular of the transmitting element and sensor element, is determined.
  • the determination of fire using such fire detectors is based on the use of a relatively slow increase in the measured variable and the exceeding of a threshold value. As a result, fires are often only detected at a late stage.
  • the publication US 2018/350220 A1 relates to a method and a device for monitoring an area, wherein signals are received from a smoke detector and one or more minutiae are created based on the signals, one or more time windows are determined based on the minutiae and smoke is detected in the time windows based on the minutiae. or fire types can be determined.
  • a method for fire detection with a fire detector with the features of claim 1 is proposed.
  • a fire detector, a computer program and a machine-readable storage medium are also proposed. Preferred and/or advantageous embodiments emerge from the subclaims and the description.
  • the fire detector is designed to detect a fire, in particular smoke, flames, embers and/or a smoldering fire.
  • the fire detector is preferably designed as an optical fire detector, in particular as a smoke detector with a scattered light detector (scattered light smoke detector).
  • Scattered light smoke detectors use a light detector to measure the light scattered by smoke from a light source, the light detector being arranged in such a way that the light detector can only detect scattered light but not direct light from the light source.
  • the light detector and light source are arranged in a measuring chamber, with the smoke penetrating into the measuring chamber.
  • the fire detector is for detecting the fire based on a thermal quantity, for example the temperature, a weakening, for example of ionizing radiation, and/or a Conductivity developed.
  • the fire detector can include a camera for image-based fire detection.
  • the fire detector has at least one sensor device for detecting a measured variable.
  • the sensor device can comprise and/or form a light detection device, a scattered light detection device, a signal attenuation detection device, a temperature detection device, a carbon monoxide detection device and/or other sensor device for detecting a physical and/or chemical quantity.
  • the sensor device is designed to record a measured variable.
  • the measurement variable is, for example, an amount of light, a temperature or an attenuation.
  • the sensor device is designed to output the measured variable as a measurement signal, whereby the measurement signal can include the measured variable in a converted form, for example measuring a quantity of light as a measured variable and outputting it as a voltage and/or current signal.
  • the sensor devices preferably include a light source and a light sensor.
  • the light source and light sensor are arranged in such a way that the light from the light source is not detected by the light sensor without scattering from particles and/or smoke, and is only detected by the light sensor through scattering of the light emitted by the light source from particles, dirt, moisture and/or smoke becomes.
  • the light sensor is designed in particular to measure a quantity of light and record it as a measurement variable.
  • the recorded measurement variable is output, for example, as voltage and/or current.
  • the output measured variable forms, in particular, the measurement signal.
  • the light sensor is preferably designed as a photodiode.
  • the measurement signal preferably represents the amount of light detected in millivolts.
  • the measurement variable is recorded by the sensor devices in particular continuously and/or cyclically, for example every second or faster.
  • the measurement signal includes in particular the recorded measurement variable and forms, for example, a time course of the measurement variable.
  • the measurement signal includes in particular fluctuations, noise and/or scatter.
  • the measurement of the measurand is an error-prone measurement, so that, for example, the measurement of a constant quantity also leads to deviations in the recorded measurand, these deviations being, for example, a Have a spread, a standard deviation and/or a variance.
  • the deviations are understood in particular as noise and/or scatter, in particular around the real measured value and/or an average value.
  • the noise and/or scattering is based in particular on electronic noise, measurement accuracies and/or sensitivity of the sensor devices, fluctuations in environmental parameters and/or other sources of error.
  • the noise and/or scattering is in particular a deviation on small time scales, in particular less than 1 second.
  • the measurement variable is recorded with a sampling rate of less than 1 second, in particular less or in the range of statistical noise and/or scattering.
  • the measurement variable is detected in particular with a resolution of less than 1 V, in particular less than 1 mV, preferably with a resolution less than the statistical and/or electronic noise and/or scattering.
  • the measurement signal can be a plurality and/or a superposition of different noise and/or scattering, for example the measurement signal is a measured mean value and/or real value plus a first noise, for example electronic noise, plus a second noise, for example a change in the Environmental parameters.
  • the measurement signal is preferably designed as an analog signal, in particular a current or voltage signal. The fluctuations are preferably also based on changes in the measured variable, for example when a fire breaks out.
  • the method includes detecting the measurement signal from the sensor device and/or detecting multiple measurement signals from multiple sensor devices for and/or over at least one evaluation time interval.
  • the evaluation time interval is in particular designed to include at least 1000, preferably at least 10,000 and in particular at least 100,000 measuring points, with a measuring point describing a measured variable recorded at a time.
  • the measurement signal is recorded for at least 5 minutes, in particular at least 1 hour and in particular at least one day, with the temporal resolution of the measured variable acquisition being, for example, less than or equal to 1 second and in particular less than or equal to 500 milliseconds.
  • the light sensor's photodiode is designed to output a voltage signal, with the resolution and/or scale division of the measurement signal is less than or equal to 1 mV.
  • detecting the measurement signal includes storing the measurement signal, in particular as a measurement signal curve.
  • the method provides a time series analysis for the captured measurement signal and/or for the captured measurement signals.
  • the time series analysis is carried out for the evaluation time interval.
  • the evaluation time interval is divided into sub-intervals, with the sub-intervals in particular being of the same size.
  • the subintervals in particular have a subinterval length s.
  • the time interval is preferably subdivided in different ways, for example for different sub-interval lengths.
  • the time series analysis includes a number of sub-evaluations for different sub-intervals.
  • the time series analysis can in particular be based on known statistical, mathematical and/or stochastic methods and/or models.
  • the time series analysis is preferably carried out using a computer and/or implemented in software. In particular, analysis parameters are determined, calculated and/or estimated through time series analysis. The analysis parameters obtained are, for example, analysis results of time series analysis.
  • a fire event is detected and/or recognized.
  • the fire event is preferably detected based on the and/or the analysis parameters obtained. For example, a determination of a deviation of the analysis parameter(s) from a target value or target range is carried out, whereby, for example, if the upward and/or downward deviation is too large, contamination is considered to be detected and/or present.
  • the invention is based on the idea that by evaluating a measurement signal in an evaluation time interval, detection, in particular early detection, of a fire event, for example in the development phase, is possible. While a current or current assessment of the magnitude of the measured value was previously used to evaluate and/or determine a fire, time series analysis of a measurement signal in a longer time interval can enable more precise, better and more error-free detection of fires.
  • the time series analysis for the fluctuations is carried out.
  • the method provides for a time series analysis of the course and/or behavior of fluctuations over time. This is based on the idea that the average value or main portion of the measurement signal that was previously used to determine fire is already subject to characteristic fluctuations when a fire occurs. For example, the smoke concentration is not yet sufficient to overwrite a predetermined threshold value, but this small amount of smoke is sufficient for characteristic fluctuations in the measurement signal.
  • By evaluating and time series analysis of these small fluctuations in the form of fluctuations, noise and/or scatter even minor changes in the fire development process can be detected. For example, it is detected and/or analyzed how the fluctuations, the noise and/or the scatter change over time in the evaluation time interval. For example, a width of the fluctuations, a spread width and/or width of the noise can be determined, analyzed and/or used.
  • the measurement signal is composed in particular of a dominant mean component, a slowly changing trend component and/or a quasi-periodic trend component.
  • the average proportion corresponds, for example, to a certain particle concentration, which, for example, reacts with a sharp increase in the event of a fire.
  • the slow trend component is based, for example, on contamination, in particular in the form of dust deposits, moisture or aging of the light source and/or the light sensor.
  • a quasi-periodic trend component is understood to mean, for example, a swirling formation of dust, for example due to ventilation, blowing and/or thermals.
  • the mean share as a trend can have a characteristic functional behavior in the event of a fire, for example an exponential increase.
  • the method provides, for example, that the measurement signal is detrended before the time series analysis.
  • the detrending of the measurement signal for the acquired measurement signal can take place in the evaluation time interval after the acquisition of the measurement signal but before the time series analysis.
  • the trend can, for example, be linear, exponential, be a quadratic or any polynomial trend.
  • the time series analysis takes place for the trend-corrected measurement signal.
  • the trend adjustment can also take place during the actual time series analysis, for this purpose the measurement signal of the evaluation time interval is divided into the sub-intervals and the trend adjustment is carried out for the respective sub-intervals, with the further actual time series analysis, in particular of the fluctuations, the noise and / or the scatter, for and/or in the detrended subintervals.
  • This design is based on the idea that some time series analyses, in particular statistical, stochastic and/or mathematical methods, are not possible for trending variables, signals and/or courses.
  • the detrending is preferably based on a parameter-free method, for example an empirical mode decomposition (EMD), a Hilbert-Huang transformation and/or a spline approximation.
  • EMD empirical mode decomposition
  • the trend adjustment can be based on a numerical and/or analytical method and/or fit.
  • the analytical context of the trend e.g. based on a physical law, can be known and used to cleanse the measurement signal of the trend. In particular, this creates a detrended measurement signal that essentially fluctuates around a constant mean, e.g. zero, with the time series analysis evaluating these fluctuations.
  • the time series analysis is designed as a fluctuation analysis.
  • the fluctuation analysis is designed to mathematically analyze a time series and/or measurement series, here the measurement signal, and according to the invention to determine and/or quantify a long-term correlation.
  • the fluctuation analysis according to the invention can be implemented analytically and/or numerically. Fluctuation analysis can be designed for autocorrelations and/or cross-correlations. This configuration is based on the idea that changes in the measurement signal when a fire occurs do not necessarily have to be immediately accompanied by a change in the mean value, but can also cause a slow change that remains unnoticed for a long time.
  • a correlation of the measurement signal in particular the Fluctuations, noise and/or scatter are evaluated and used for early fire detection.
  • Smallest changes in Measurement signals that do not yet have an effect on the mean value can already manifest themselves in the fluctuations, in the scatter and/or in the noise.
  • the correlation in particular is a sensitive measure of the changes and can therefore detect changes on the smallest scale at an early stage can.
  • the time series analysis includes a correlation analysis and/or an autocorrelation analysis.
  • a correlation analysis By determining correlations in the measurement signal, physically relevant information about processes, fires, smoke, dust, physical and/or chemical processes in the area surrounding the fire detector can be detected at an early stage without waiting for the slow trend and/or a time-delayed reaction in the average value of the measurement signal must.
  • a method is thus provided that can detect and determine fire events at an early stage.
  • the time series analysis also excludes processes that have different correlation behavior than fire events as fire events.
  • a method for detecting a fire event that is resistant to false detections and/or false alarms is therefore also provided.
  • time series analysis includes Hurst analysis.
  • an exponent H the so-called Hurst exponent
  • a Hurst R/S analysis is carried out as a time series analysis.
  • the range (R) of the cumulative and, if necessary, mean-adjusted time series, here the measurement signal is determined and set in relation to the standard deviation (S) of the non-cumulative time series, so that R/S is determined.
  • a functional relationship of R/S can be determined depending on the observation length s.
  • the functional connection is evaluated in particular as a power law R/S - s H and H is determined as the Hurst exponent.
  • a deviation of the Hurst exponent from one or more reference values is preferably used to determine the fire event.
  • H> C 1 is smoldering fire
  • C 2 ⁇ H ⁇ C 1 is open fire
  • C 3 ⁇ H ⁇ C 2 is frying/deep-frying
  • H ⁇ C 3 water vapor.
  • the Hurst exponent is particularly limited to the range 0 ⁇ H ⁇ 1!
  • the Hurst R/S analysis can only be used for strictly stationary series.
  • the smallest instationarities/trends e.g. especially when the signal increases in the event of a fire
  • the DFA is also suitable for trendy and non-stationary series.
  • the correlation exponent ⁇ (which in the stationary case is equivalent to the Hurt exponent H) can also display values greater than 1, for example if instead of a trendy noise (e.g. a so-called fractional Gaussian noise) there is actually a movement (e.g.
  • a multifractality is examined via an MF-DFA rather than via a Hurst R/S analysis, even though ⁇ (q) is sometimes referred to in the literature as the "generalized" Hurst exponent H(q).
  • the multifractal correlation exponent ⁇ (q) can, but does not necessarily have to be between 0 ⁇ (q) ⁇ 1, but can also be above 1 compared to the exponent from the Hurst analysis.
  • a Hurst R/S analysis (after prior detrending if necessary) can be applied to the incremental series (the incremental series simply corresponds to the derivative of the original series, i.e.
  • the time series analysis includes a plurality of individual time series analyses.
  • the individual time series analyzes are in particular time series analyzes based on different statistical moments. For example, individual fluctuation, correlation, autocorrelation and/or Hurst analyzes are carried out for different statistical moments q.
  • the dependence of the correlation exponent on the statistical moment relates particularly to multifractal DFA.
  • Integer values between -10 and 10 are preferably used as statistical moments.
  • the Hurst exponents H are determined as H(q) for the different statistical moments.
  • Such an analysis is particularly referred to as a multifractal spectrum.
  • the contamination determination and/or operational readiness determination is based on an evaluation of the functional relationship of H(q).
  • the time series analysis comprises and/or forms a Hurst analysis and/or a detrended fluctuation analysis (DFA) or a multifractal DFA (MF-DFA) with a multifractal exponent.
  • DFA detrended fluctuation analysis
  • MF-DFA multifractal DFA
  • At least one analysis parameter is determined by means of the time series analysis, with in one embodiment at least one of the analysis parameters forming and/or describing a scale parameter.
  • the analysis parameter in particular the scale parameter, a distinction is made between types of fire, such as open fire and smoldering fire, and/or between disturbance variables, such as water vapor, fat, dust and/or cigarette smoke, and/or between types of fire and disturbance variables.
  • the measurement signal is recorded for a plurality of evaluation time intervals, for example at least twice, preferably at least ten times and in particular at least 100 times.
  • the evaluation time intervals are preferably connected flush with one another, for example, after the first evaluation time interval has ended, the next evaluation time interval follows directly; alternatively, the evaluation time intervals can have overlaps or can be designed without overlap, so that, for example, there is a pause in the detection between two evaluation time intervals.
  • the individual evaluation time intervals are evaluated using time series analysis.
  • the time series analysis in particular the determination of the Hurst exponent and/or the analysis parameters, is carried out for the recorded measurement signals of the plurality of evaluation time intervals. For example, the analysis parameters and/or Hurst parameters are compared. Alternatively and/or additionally, a time course, a change, a correlation or a functional connection is determined for the Hurst exponents and/or analysis parameters, the determination of the fire event preferably being based on the comparison, determination and/or evaluation.
  • the evaluation time intervals are preferably based on a rolling window.
  • Rolling windows are sometimes also referred to as sliding windows.
  • the rolling window has, for example, a fixed interval length, in particular the evaluation time interval length, with the rolling window being shifted to determine the plurality of evaluation time intervals, the shifting representing a temporal shift of the detection point.
  • the rolling window can be moved continuously or discretely, for example with a time offset equal to the evaluation time interval length.
  • an additional environmental variable is determined based on the time series analysis of the measurement signal.
  • the additional environmental variable is, for example, a size and/or evaluation of the environment of the fire detector, for example the air, the temperature and/or lighting conditions.
  • air quality and/or air flow is determined as an additional environmental variable.
  • the air quality can, for example, describe a carbon monoxide content, a carbon dioxide content and/or a dust pollution.
  • the air flow can, for example, describe a draft. This embodiment is based on the idea that, for example, dust particles in and/or around the fire detector lead to fluctuations in the measurement signal, whereby these fluctuations can be used as characteristics for evaluating the air quality using time series analysis.
  • a further object of the invention is a fire detector for detecting a fire event, in particular a fire and/or smoke.
  • the fire detector has a sensor device for detecting a measured variable and for outputting a measurement signal.
  • the fire detector has an evaluation unit, which can be designed with software or hardware technology. According to the invention, the evaluation unit is set up and/or designed to carry out and/or carry out the previously described method.
  • the evaluation unit is designed to detect the measurement signal for the evaluation time interval, in a special embodiment for a plurality of evaluation time intervals.
  • the evaluation unit is designed to carry out the time series analysis for this and/or for the evaluation time intervals. Based on the results, for example the analysis parameter and in particular the Hurst exponent, a fire event is determined by the evaluation unit.
  • a further subject of the invention is a computer program for execution on a computer and/or the fire detector as previously described.
  • the computer program includes and/or the computer program is based on a program code with program code means.
  • the computer program is designed to carry out the steps of the method as previously described when executed on the computer and/or the fire detector.
  • the computer program is implemented in the fire detector, in particular in the evaluation unit, so that the evaluation unit The fire event is detected by carrying out the computer program and thus the procedure.
  • a further subject of the invention is a machine-readable storage medium, for example a DVD, CD, diskette or other residual storage medium.
  • the computer program in particular the program code and/or the program code means, is stored on the storage medium.
  • the Figures 1a and b show an exemplary embodiment of a photoelectric fire detector 1.
  • the fire detector 1 is designed for mounting on a ceiling 2.
  • the fire detector 1 comprises a sensor device, the sensor device comprising a light source 3 and a light detector 4.
  • the fire detector 1 has a measuring channel 5, the measuring channel 5 also being referred to as a scattered light path and/or a smoke chamber.
  • the light detector 4 is designed to detect incident light as a measurement variable and to output a voltage signal as a measurement signal.
  • the fire alarm 1 in Figure 1a shows the fire detector 1 in a normal state, also called idle state.
  • the normal state is defined as the condition of the fire detector in a fully functional condition without smoke and/or fire, pollution, dust and/or moisture.
  • the light source 3 and light detector 4 are in a common plane, for example (note: the The plane can also run differently) arranged in the same direction as the ceiling 2.
  • the light emitted by the light source 3 can be described in the direction of the light detector 4 by a beam path 6.
  • the measurement signal here is a voltage around a mean zero value, for example 0 mV or 0 mV plus an offset, with the measurement signal having a scatter and/or noise around the mean zero value.
  • Figure 1b shows fire detector 1 off Figure 1a in the event of a fire.
  • Smoke 7 has now entered measuring channel 5.
  • the smoke 7 particularly includes particles and has reflective properties.
  • the light emitted by the light source 3 is scattered by the smoke 7 in the measuring channel 5, with part of the scattered light following an extended beam path 8 to the light detector 4.
  • the scattered light is detected by the light detector 4 and output as a measurement variable or measurement signal, the measurement signal deviating significantly from the mean zero value.
  • the fire is finally detected based on the measurement signal.
  • the Figures 2a - d show an example of the principle of a trend-corrected fluctuation analysis of a measurement signal S.
  • Early fire detection can be achieved through time series analysis of the signal, especially the fluctuations and noise. While a minimum amount of smoke is required to scatter the light for a sharp increase in the mean value of the measurement signal S, even the smallest amounts of smoke can lead to noticeable fluctuations in the measurement signal when a fire starts and/or a smoldering fire occurs. By evaluating the fluctuations using time series analysis, fires can be detected early.
  • a cumulative series 9 is also shown in FIG. 6a.
  • the cumulative series 9 is obtained, as in a classic Hurst analysis, by successively adding up the time series, with the time series forming the measurement signal S.
  • the Figures 2b and 2c They also show the measurement signal S and the cumulative series 9.
  • the analysis time interval is divided into equal segments (subintervals) of length s.
  • the analysis time interval is divided in different ways, with the types differing in the chosen length s.
  • Figure 2b shows a division into smaller subintervals, i.e. smaller length s, than that in Figure 2c subdivision shown.
  • a polynomial of the nth degree is adapted to the time series and subtracted from the cumulative series.
  • the variance in each segment is now determined from the residual obtained in this way and averaged over the number of segments.
  • the root is now taken from this averaged variance (forming the standard deviation).
  • the result is referred to, for example, as the fluctuation parameter F(s).
  • Figure 3a shows an exemplary time series analysis of a real measurement signal S issued by a fire detector 1.
  • the measurement signal shows an increase as a trend, which is caused, for example, by smoke from an emerging fire.
  • conventional fire detectors for example, wait until the measurement signal has exceeded a threshold value, a fire can be detected beforehand according to the method.
  • a time series analysis in particular a trend-adjusted fluctuation analysis, is carried out for the measurement signal.
  • the Fluctuation analyzes are based on trend adjustment with different polynomial degrees n of the fit polynomial. From this context, for example, the Hurst exponent H, understood here as the scale parameter ⁇ , will be determined as the analysis parameter. Based on the scale parameter ⁇ , a fire is concluded and/or discrimination is made between types of fire.
  • Figures 4a, b, c show schematically a time series analysis of the measurement signal S in a rolling window analysis.
  • Figure 6a shows the course of a fire event Z as a time course. The fire event starts suddenly at a time to.
  • Figure 4b shows the associated measurement signal S from fire detector 1 in the same period. Unlike the fire event Z, the measurement signal does not change suddenly at to, but responds with a time delay with ⁇ 1 . Only after t 0 + ⁇ 1 does the measurement signal S, or its mean value, exceed the threshold value X.
  • Figure 4c shows the analysis parameter ⁇ , for example the Hurst exponent. A change in the analysis parameter ⁇ can be noticed after a time delay ⁇ 2 , where ⁇ 2 « ⁇ 1 . Time series analysis enables earlier fire detection.
  • Figures 5a-d show an example of a time series analysis of the measurement signal S based on a rolling window.
  • the measurement signal S in 5a is based, for example, on the formation of a smoldering fire at time to.
  • the measurement signal S or its mean value only reacts with a time delay with an increase.
  • Figure 5b shows the detrended measurement signal S* for the measurement signal S Figure 5a .
  • the time series analysis is carried out for the detrended measurement signal S*.
  • the rolling window method is used, whereby an analysis time interval is shifted 11 in time as a “time window”.
  • a first analysis time interval A 1 and a second analysis time interval A 2 are shown.
  • the analysis time intervals A 1, A 2 are of the same length and only offset in time.
  • the analysis time interval A 2 is further shifted in time.
  • the Figures 5c and 5d show the analysis parameters for the time series analyses, where Figure 5c shows the analysis parameters ⁇ for the analysis time interval A 1 and Figure 5d shows the analysis parameters ⁇ for the analysis time interval A 2 .
  • fire determination is already possible before the mean value of the measurement signal as in Figure 5a exceeds a threshold value X.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire Alarms (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

Stand der TechnikState of the art

Die vorliegende Erfindung betrifft ein Verfahren zur Branderkennung mit einem Brandmelder, sowie einen erfindungsgemäß eingerichteten Brandmelder, ein Computerprogramm und ein maschinenlesbares Speichermedium.The present invention relates to a method for fire detection with a fire detector, as well as a fire detector set up according to the invention, a computer program and a machine-readable storage medium.

Brandmelder sind häufig als Streulichtbrandmelder ausgebildet, die eine Streulichtstrecke, eine Lichtquelle (z.B. LED) und einen Lichtsensor (z.B. Photodiode) aufweisen. Die Lichtquelle sendet dabei Licht im IR- oder VIS-Bereich aus. Der Lichtsensor ist in einem definierten Winkel zur Abstrahlrichtung der Lichtquelle angeordnet, sodass Licht im Normalfall nicht oder nur in sehr geringem Maße auf den Lichtsensor trifft. Licht wird erst dann von dem Lichtsensor detektiert, wenn Partikel (z.B. Rauch oder Staub) in den optischen Pfad zwischen Lichtquelle und Lichtsensor eintreten und das Licht der Lichtquelle auf den Lichtsensor streuen. Abhängig von dem Signalanstieg wird beispielsweise ein Brand detektiert und als Alarm ausgegeben. Zusätzlich oder alternativ können weitere physikalische Größen, z.B. Temperatur und/oder CO-Gehalt, als Kriterien der Branddetektion genutzt werden.Fire detectors are often designed as scattered light fire detectors, which have a scattered light path, a light source (e.g. LED) and a light sensor (e.g. photodiode). The light source emits light in the IR or VIS range. The light sensor is arranged at a defined angle to the radiation direction of the light source, so that light normally does not hit the light sensor or only to a very small extent. Light is only detected by the light sensor when particles (e.g. smoke or dust) enter the optical path between the light source and the light sensor and scatter the light from the light source onto the light sensor. Depending on the increase in signal, a fire, for example, is detected and issued as an alarm. Additionally or alternatively, other physical variables, e.g. temperature and/or CO content, can be used as criteria for fire detection.

Die Druckschrift DE 10 2010 041 693 A1 beschreibt ein Verfahren zum Prüfen der Funktionsfähigkeit eines photoelektrischen Rauchmelders mit einem Sendeelement und einem Sensorelement. Zur Prüfung der Funktionsfähigkeit wird das Sendelement zur Aussendung eines Prüfstrahls angesteuert und von einem Sensorelement als Messsignal erfasst. Das erfasste Messsignal wird mit einem Referenzsignal verglichen und darauf basierend die Funktionsfähigkeit des Rauchmelders, im Speziellen von Sendeelement und Sensorelement bestimmt.The publication DE 10 2010 041 693 A1 describes a method for testing the functionality of a photoelectric smoke detector with a transmitter element and a sensor element. To test functionality, the transmitting element is activated to emit a test beam and detected by a sensor element as a measurement signal. The recorded measurement signal is compared with a reference signal and, based on this, the functionality of the smoke detector, in particular of the transmitting element and sensor element, is determined.

Die Brandbestimmung mittels solcher Brandmelder basiert auf der Verwendung eines relativ trägen Anstiegs der Messgröße und Überschreiten eines Schwellwerts. Brände werden dadurch oft erst zu einem späten Zeitpunkt detektiert.The determination of fire using such fire detectors is based on the use of a relatively slow increase in the measured variable and the exceeding of a threshold value. As a result, fires are often only detected at a late stage.

Die Druckschrift US 2018/350220 A1 betrifft ein Verfahren und eine Vorrichtung zur Überwachung eines Bereichs, wobei Signale von einem Rauchmelder empfangen werden und auf Basis der Signale eine oder mehrere Minutien erstellt werden, ein oder mehrere Zeitfenster aus Basis der Minutien bestimmt werden und in den Zeitfenstern auf Basis der Minutien Rauch- oder Feuertypen bestimmt werden.The publication US 2018/350220 A1 relates to a method and a device for monitoring an area, wherein signals are received from a smoke detector and one or more minutiae are created based on the signals, one or more time windows are determined based on the minutiae and smoke is detected in the time windows based on the minutiae. or fire types can be determined.

Es ist daher ein Verfahren zur verbesserten Branddetektion mit einem Brandmelder wünschenswert, insbesondere um einen Brand frühzeitig, insbesondere im Entstehungsprozess, zu detektieren und/oder zwischen Brandarten und/oder Brandquellen unterscheiden zu können. Auch eine verbesserte Robustheit gegenüber Störquellen wäre wünschenswert.It is therefore desirable to have a method for improved fire detection with a fire detector, in particular in order to be able to detect a fire at an early stage, in particular in the development process, and/or to be able to distinguish between types of fire and/or fire sources. Improved robustness against sources of interference would also be desirable.

Offenbarung der ErfindungDisclosure of the invention

Erfindungsgemäß wird ein Verfahren zur Branderkennung mit einem Brandmelder mit den Merkmalen des Anspruchs 1 vorgeschlagen. Ferner werden ein Brandmelder, ein Computerprogramm und ein maschinenlesbares Speichermedium vorgeschlagen. Bevorzugte und/oder vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen und der Beschreibung.According to the invention, a method for fire detection with a fire detector with the features of claim 1 is proposed. A fire detector, a computer program and a machine-readable storage medium are also proposed. Preferred and/or advantageous embodiments emerge from the subclaims and the description.

Es wird ein Verfahren zur Branderkennung mit einem Brandmelder vorgeschlagen. Der Brandmelder ist zur Detektion eines Brandes, insbesondere von Rauch, Flammen, Glut und/oder eines Schwelbrands ausgebildet. Der Brandmelder ist vorzugsweise als ein optischer Brandmelder ausgebildet, insbesondere als Rauchmelder mit einem Streulichtdetektor (Streulichtrauchmelder). Streulichtrauchmelder messen mit einem Lichtdetektor das vom Rauch gestreute Licht einer Lichtquelle, wobei der Lichtdetektor so angeordnet ist, dass der Lichtdetektor nur gestreutes Licht aber kein direktes Licht von der Lichtquelle erfassen kann. Lichtdetektor und Lichtquelle sind in einer Messkammer angeordnet, wobei der Rauch in die Messkammer eindringt. Alternativ und/oder ergänzend ist der Brandmelder zur Detektion des Brandes basierend auf einer thermischen Größe, beispielsweise der Temperatur, einer Schwächung, beispielsweise von ionisierender Strahlung, und/oder einer Leitfähigkeit ausgebildet. Im Speziellen kann der Brandmelder eine Kamera zur bildbasierten Branderkennung umfassen.A method for detecting fire using a fire detector is proposed. The fire detector is designed to detect a fire, in particular smoke, flames, embers and/or a smoldering fire. The fire detector is preferably designed as an optical fire detector, in particular as a smoke detector with a scattered light detector (scattered light smoke detector). Scattered light smoke detectors use a light detector to measure the light scattered by smoke from a light source, the light detector being arranged in such a way that the light detector can only detect scattered light but not direct light from the light source. The light detector and light source are arranged in a measuring chamber, with the smoke penetrating into the measuring chamber. Alternatively and/or additionally, the fire detector is for detecting the fire based on a thermal quantity, for example the temperature, a weakening, for example of ionizing radiation, and/or a Conductivity developed. In particular, the fire detector can include a camera for image-based fire detection.

Der Brandmelder weist mindestens eine Sensoreinrichtung zur Erfassung einer Messgröße auf. Die Sensoreinrichtung kann eine Lichtdetektionseinrichtung, eine Streulichtdetektionseinrichtung, eine Signalschwächungsdetektionseinrichtung eine Temperaturdetektionseinrichtung, eine Kohlenmonoxiddetektionseinrichtung und/oder anderweitige Sensoreinrichtung zur Detektion einer physikalischen und/oder chemischen Größe umfassen und/oder bilden. Die Sensoreinrichtung ist ausgebildet eine Messgröße zu erfassen. Die Messgröße ist beispielsweise eine Lichtmenge, eine Temperatur oder eine Schwächung. Die Sensoreinrichtung ist ausgebildet, die Messgröße als Messsignal auszugeben, wobei das Messsignal die Messgröße in gewandelter Form umfassen kann, beispielsweise eine Lichtmenge als Messgröße misst und als Spannungs- und/oder Stromsignal ausgibt.The fire detector has at least one sensor device for detecting a measured variable. The sensor device can comprise and/or form a light detection device, a scattered light detection device, a signal attenuation detection device, a temperature detection device, a carbon monoxide detection device and/or other sensor device for detecting a physical and/or chemical quantity. The sensor device is designed to record a measured variable. The measurement variable is, for example, an amount of light, a temperature or an attenuation. The sensor device is designed to output the measured variable as a measurement signal, whereby the measurement signal can include the measured variable in a converted form, for example measuring a quantity of light as a measured variable and outputting it as a voltage and/or current signal.

Die Sensoreinrichtungen umfasst vorzugsweise eine Lichtquelle und einen Lichtsensor. Lichtquelle und Lichtsensor sind dabei so angeordnet, dass das Licht der Lichtquelle ohne Streuung an Partikeln und/oder Rauch nicht vom Lichtsensor detektiert wird, und erst durch Streuung des von der Lichtquelle emittierten Lichts an Partikeln, Schmutz, Feuchtigkeit und/oder Rauch vom Lichtsensor detektiert wird. Der Lichtsensor ist insbesondere ausgebildet, eine Lichtmenge zu messen und als Messgröße zu erfassen. Die Ausgabe der erfassten Messgröße erfolgt beispielsweise als Spannung und/oder Strom. Die ausgegebene Messgröße bildet insbesondere das Messsignal. Vorzugsweise ist der Lichtsensor als eine Fotodiode ausgebildet. Das Messsignal bildet dabei vorzugsweise die der detektierten Lichtmenge in Millivolt. Die Erfassung der Messgröße durch die Sensoreinrichtungen erfolgt insbesondere kontinuierlich und/oder zyklisch, beispielsweise im Sekundentakt oder schneller. Das Messsignal umfasst insbesondere die erfasste Messgröße und bildet beispielsweise einen zeitlichen Verlauf der Messgröße.The sensor devices preferably include a light source and a light sensor. The light source and light sensor are arranged in such a way that the light from the light source is not detected by the light sensor without scattering from particles and/or smoke, and is only detected by the light sensor through scattering of the light emitted by the light source from particles, dirt, moisture and/or smoke becomes. The light sensor is designed in particular to measure a quantity of light and record it as a measurement variable. The recorded measurement variable is output, for example, as voltage and/or current. The output measured variable forms, in particular, the measurement signal. The light sensor is preferably designed as a photodiode. The measurement signal preferably represents the amount of light detected in millivolts. The measurement variable is recorded by the sensor devices in particular continuously and/or cyclically, for example every second or faster. The measurement signal includes in particular the recorded measurement variable and forms, for example, a time course of the measurement variable.

Das Messsignal umfasst insbesondere Fluktuationen, Rauschen und/oder eine Streuung. Die Messung der Messgröße ist eine fehlerbehaftete Messung, sodass beispielsweise die Messung einer konstanten Größe auch zu Abweichungen in der erfassten Messgröße führt, wobei diese Abweichungen beispielsweise eine Streubreite, eine Standardabweichung und/oder eine Varianz aufweisen. Die Abweichungen werden insbesondere als Rauschen und/oder Streuung, insbesondere um den realen Messwert und/oder einen Mittelwert, verstanden. Das Rauschen und/oder Streuen ist insbesondere basierend auf elektronischem Rauschen, Messgenauigkeiten und/oder Sensitivität der Sensoreinrichtungen, Schwankungen in Umgebungsparametern und/oder sonstige Fehlerquellen. Das Rauschen und/oder Streuen ist insbesondere ein Abweichen auf kleinen Zeitskalen, insbesondere kleiner als 1 Sekunde. Insbesondere erfolgt das Erfassen der Messgröße mit einer Abtastrate kleiner 1 Sekunde, insbesondere kleiner oder im Bereich des statistischen Rauschens und/oder Streuens. Ferner erfolgt das Erfassen der Messgröße insbesondere in einer Auflösung kleiner 1 V, im speziellen kleiner 1 mV, vorzugsweise in einer Auflösung kleiner dem statistischen und/oder elektronischen Rauschen und/oder Streuens. Im Speziellen kann das Messsignal eine Mehrzahl und/oder eine Überlagerung von unterschiedlichen Rauschens und/oder Streuens sein, beispielsweise ist das Messsignal ein gemessener Mittelwert und/oder realer Wert plus ein erstes Rauschen, beispielsweise elektronisches Rauschen, plus ein zweites Rauschen, beispielsweise Änderung der Umgebungsparameter. Das Messsignal ist vorzugsweise als ein analoges Signal, insbesondere Strom oder Spannungssignal, ausgebildet. Die Fluktuationen basieren vorzugsweise auch auf Veränderungen der Messgröße, beispielsweise bei frischem Entstehen eines Brandes.The measurement signal includes in particular fluctuations, noise and/or scatter. The measurement of the measurand is an error-prone measurement, so that, for example, the measurement of a constant quantity also leads to deviations in the recorded measurand, these deviations being, for example, a Have a spread, a standard deviation and/or a variance. The deviations are understood in particular as noise and/or scatter, in particular around the real measured value and/or an average value. The noise and/or scattering is based in particular on electronic noise, measurement accuracies and/or sensitivity of the sensor devices, fluctuations in environmental parameters and/or other sources of error. The noise and/or scattering is in particular a deviation on small time scales, in particular less than 1 second. In particular, the measurement variable is recorded with a sampling rate of less than 1 second, in particular less or in the range of statistical noise and/or scattering. Furthermore, the measurement variable is detected in particular with a resolution of less than 1 V, in particular less than 1 mV, preferably with a resolution less than the statistical and/or electronic noise and/or scattering. In particular, the measurement signal can be a plurality and/or a superposition of different noise and/or scattering, for example the measurement signal is a measured mean value and/or real value plus a first noise, for example electronic noise, plus a second noise, for example a change in the Environmental parameters. The measurement signal is preferably designed as an analog signal, in particular a current or voltage signal. The fluctuations are preferably also based on changes in the measured variable, for example when a fire breaks out.

Das Verfahren umfasst das Erfassen des Messsignals der Sensoreinrichtung und/oder das Erfassen mehrerer Messsignale mehrerer Sensoreinrichtungen für und/oder über mindestens ein Auswertezeitintervall. Das Auswertezeitintervall ist insbesondere ausgebildet mindestens 1000, vorzugsweise mindestens 10000 und im Speziellen mindestens 100000 Messpunkte zu umfassen, wobei ein Messpunkt eine zu einem Zeitpunkt erfasste Messgröße beschreibt. Beispielsweise wird das Messsignal für mindestens 5 Minuten, insbesondere mindestens 1 Stunde und im Speziellen mindestens einen Tag erfasst, wobei die zeitliche Auflösung der Messgrößenerfassung beispielsweise kleiner gleich 1 Sekunde und im speziellen kleiner gleich 500 Millisekunden ist. Beispielsweise ist der Lichtsensor seine Fotodiode zur Ausgabe eines Spannungssignals ausgebildet, wobei die Auflösung und/oder Skalenunterteilung des Messsignals kleiner gleich 1 mV ist. Vorzugsweise umfasst das Erfassen des Messsignals eine Speicherung des Messsignals insbesondere als Messsignalverlauf.The method includes detecting the measurement signal from the sensor device and/or detecting multiple measurement signals from multiple sensor devices for and/or over at least one evaluation time interval. The evaluation time interval is in particular designed to include at least 1000, preferably at least 10,000 and in particular at least 100,000 measuring points, with a measuring point describing a measured variable recorded at a time. For example, the measurement signal is recorded for at least 5 minutes, in particular at least 1 hour and in particular at least one day, with the temporal resolution of the measured variable acquisition being, for example, less than or equal to 1 second and in particular less than or equal to 500 milliseconds. For example, the light sensor's photodiode is designed to output a voltage signal, with the resolution and/or scale division of the measurement signal is less than or equal to 1 mV. Preferably, detecting the measurement signal includes storing the measurement signal, in particular as a measurement signal curve.

Das Verfahren sieht eine Zeitreihenanalyse für das erfasste Messsignal und/oder für die erfassten Messsignale vor. Die Zeitreihenanalyse erfolgt für das Auswertezeitintervall. Zur Zeitreihenanalyse wird beispielsweise das Auswertezeitintervall in Teilintervalle unterteilt, wobei die Teilintervalle insbesondere gleich groß ausgebildet sind. Die Teilintervalle weisen insbesondere eine Teilintervalllänge s auf. Vorzugsweise erfolgt für die Zeitreihenanalyse eine Unterteilung des Zeitintervalls auf unterschiedliche Art, beispielsweise für unterschiedliche Teilintervalllängen. Beispielsweise umfasst die Zeitreihenanalyse hierzu eine Mehrzahl an Teilauswertungen für unterschiedliche Teilintervalle. Die Zeitreihenanalyse kann insbesondere auf bekannten statistischen, mathematischen und/oder stochastischen Methoden und/oder Modellen basieren. Vorzugsweise erfolgt die Zeitreihenanalyse mittels eines Computers und/oder softwareimplementiert. Insbesondere werden durch die Zeitreihenanalyse Analyseparameter bestimmt, berechnet und/oder geschätzt. Die erhaltenen Analyseparameter sind beispielsweise Analyseergebnisse der Zeitreihenanalyse.The method provides a time series analysis for the captured measurement signal and/or for the captured measurement signals. The time series analysis is carried out for the evaluation time interval. For time series analysis, for example, the evaluation time interval is divided into sub-intervals, with the sub-intervals in particular being of the same size. The subintervals in particular have a subinterval length s. For the time series analysis, the time interval is preferably subdivided in different ways, for example for different sub-interval lengths. For example, the time series analysis includes a number of sub-evaluations for different sub-intervals. The time series analysis can in particular be based on known statistical, mathematical and/or stochastic methods and/or models. The time series analysis is preferably carried out using a computer and/or implemented in software. In particular, analysis parameters are determined, calculated and/or estimated through time series analysis. The analysis parameters obtained are, for example, analysis results of time series analysis.

Basierend auf der Zeitreihenanalyse wird ein Brandereignis detektiert und/oder erkannt. Vorzugsweise erfolgt das Erkennen des Brandereignisses basierend auf dem und/oder den erhaltenen Analyseparametern. Zum Beispiel erfolgt eine Bestimmung einer Abweichung des oder der Analyseparameter von einem Sollwert oder Sollbereich, wobei beispielsweise bei einer zu großen Abweichung nach oben und/oder nach unten eine Verschmutzung als detektiert und/oder vorliegend gilt.Based on the time series analysis, a fire event is detected and/or recognized. The fire event is preferably detected based on the and/or the analysis parameters obtained. For example, a determination of a deviation of the analysis parameter(s) from a target value or target range is carried out, whereby, for example, if the upward and/or downward deviation is too large, contamination is considered to be detected and/or present.

Der Erfindung liegt die Überlegung zugrunde, dass durch Auswertung eines Messsignals in einem Auswertezeitintervall das Erkennen, insbesondere frühzeitige Erkennen eines Brandereignisses, beispielsweise in der Entstehungsphase, möglich ist. Während zur Auswertung und/oder Bestimmung eines Brandes bisher eine aktuelle bzw. zu einem Zeitpunkt vorliegende Bewertung des Betrags des Messwerts herangezogen wurde, kann durch Zeitreihenanalyse eines Messsignals in einem längeren Zeitintervall genauere, bessere und fehlerfreiere Detektion von Bränden ermöglichen.The invention is based on the idea that by evaluating a measurement signal in an evaluation time interval, detection, in particular early detection, of a fire event, for example in the development phase, is possible. While a current or current assessment of the magnitude of the measured value was previously used to evaluate and/or determine a fire, time series analysis of a measurement signal in a longer time interval can enable more precise, better and more error-free detection of fires.

Gemäß der Erfindung erfolgt die Zeitreihenanalyse für die Fluktuationen. Das Verfahren sieht eine Zeitreihenanalyse des Verlaufs und/oder Verhaltens der Fluktuationen mit der Zeit vor. Dies basiert auf der Überlegung, dass der Mittelwert bzw. Hauptanteil des Messsignals, der bisher zur Brandbestimmung benutzt wurde, schon bei Entstehen eines Brandes mit charakteristischen Fluktuationen behaftet ist. Beispielsweise reicht die Rauchkonzentration noch nicht aus, um einen vorgegebenen Schwellwert zu überschreiben, aber für charakteristische Fluktuationen im Messsignal reicht bereits diese geringe Rauchmenge aus. Durch eine Auswertung und Zeitreihenanalyse dieser kleinen Schwankungen in Form der Fluktuationen, des Rauschens und/oder der Streuung, können auch geringfügige Änderungen im Entstehungsprozess des Brandes detektiert werden. Beispielsweise wird hierbei detektiert und/oder analysiert, wie sich die Fluktuationen, das Rauschen und/oder die Streuung zeitlich im Auswertezeitintervall verändert. Beispielsweise kann hierzu eine Breite der Fluktuationen, eine Streubreite und/oder Breite des Rauschens bestimmt, analysiert und/oder genutzt werden.According to the invention, the time series analysis for the fluctuations is carried out. The method provides for a time series analysis of the course and/or behavior of fluctuations over time. This is based on the idea that the average value or main portion of the measurement signal that was previously used to determine fire is already subject to characteristic fluctuations when a fire occurs. For example, the smoke concentration is not yet sufficient to overwrite a predetermined threshold value, but this small amount of smoke is sufficient for characteristic fluctuations in the measurement signal. By evaluating and time series analysis of these small fluctuations in the form of fluctuations, noise and/or scatter, even minor changes in the fire development process can be detected. For example, it is detected and/or analyzed how the fluctuations, the noise and/or the scatter change over time in the evaluation time interval. For example, a width of the fluctuations, a spread width and/or width of the noise can be determined, analyzed and/or used.

Das Messsignal setzt sich insbesondere aus einem dominanten Mittelwertanteil, einem langsam veränderlichen Trendanteil und/oder einem quasiperiodischen Trendanteil zusammen. Der Mittelwertanteil entspricht zum Beispiel einer bestimmten Partikelkonzentration, der beispielsweise in einem Brandfall mit einem starken Anstieg reagiert. Der langsame Trendanteil basiert beispielsweise auf einer Verschmutzung, insbesondere in Form von Ablagerung von Staub, Feuchtigkeit oder einer Alterung der Lichtquelle und/oder des Lichtsensors. Als quasiperiodischer Trendanteil wird beispielsweise eine verwirbelte Bildung von Staub, beispielsweise durch Lüften, Anblasen und/oder Thermik verstanden. Insbesondere kann der Mittelwertanteil als Trend ein charakteristisches funktionelles Verhalten im Brandfall aufweisen, zum Beispiel ein exponentieller Anstieg. Das Verfahren sieht dabei beispielsweise vor, dass vor der Zeitreihenanalyse das Messsignal Trendbereinigt wird. Insbesondere kann das Trendbereinigen das Messsignals für das erfasste Messsignal im Auswertezeitintervall nach dem Erfassen des Messsignals erfolgen aber vor der Zeitreihenanalyse. Der Trend kann beispielsweise ein linearer, ein exponentieller, ein quadratischer oder beliebiger polynomialer Trend sein. Die Zeitreihenanalyse erfolgt dabei für das trendbereinigte Messsignal. Nicht erfindungsgemäß kann die Trendbereinigung auch während der eigentlichen Zeitreihenanalyse erfolgen, wobei hierzu das Messsignal des Auswertezeitintervalls in die Teilintervalle unterteilt wird und die Trendbereinigung für die jeweiligen Teilintervalle erfolgt, wobei die weitere eigentliche Zeitreihenanalyse, insbesondere der Fluktuationen, des Rauschens und/oder der Streuung, für und/oder in den trendbereinigten Teilintervallen erfolgt. Dieser Ausgestaltung liegt die Überlegung zugrunde, dass manche Zeitreihenanalysen, insbesondere statistische, stochastische und/oder mathematische Verfahren, nicht für trendbehaftete Größen, Signale und/oder Verläufe möglich sind.The measurement signal is composed in particular of a dominant mean component, a slowly changing trend component and/or a quasi-periodic trend component. The average proportion corresponds, for example, to a certain particle concentration, which, for example, reacts with a sharp increase in the event of a fire. The slow trend component is based, for example, on contamination, in particular in the form of dust deposits, moisture or aging of the light source and/or the light sensor. A quasi-periodic trend component is understood to mean, for example, a swirling formation of dust, for example due to ventilation, blowing and/or thermals. In particular, the mean share as a trend can have a characteristic functional behavior in the event of a fire, for example an exponential increase. The method provides, for example, that the measurement signal is detrended before the time series analysis. In particular, the detrending of the measurement signal for the acquired measurement signal can take place in the evaluation time interval after the acquisition of the measurement signal but before the time series analysis. The trend can, for example, be linear, exponential, be a quadratic or any polynomial trend. The time series analysis takes place for the trend-corrected measurement signal. Not according to the invention, the trend adjustment can also take place during the actual time series analysis, for this purpose the measurement signal of the evaluation time interval is divided into the sub-intervals and the trend adjustment is carried out for the respective sub-intervals, with the further actual time series analysis, in particular of the fluctuations, the noise and / or the scatter, for and/or in the detrended subintervals. This design is based on the idea that some time series analyses, in particular statistical, stochastic and/or mathematical methods, are not possible for trending variables, signals and/or courses.

Die Trendbereinigung basiert vorzugsweise auf einem parameterfreien Verfahren, beispielsweise einer Empirischen-Moden-Dekomposition (EMD), einer Hilbert-Huang-Transformation und/oder einer Spline-Aproximation. Alternativ und/oder ergänzend kann die Trendbereinigung auf einem numerischen und/oder analytischen Verfahren und/oder Fit basieren. Beispielsweise kann der analytische Zusammenhang des Trends, z.B. basierend auf einer physikalischen Gesetzmäßigkeit, bekannt sein und genutzt werden, das Messsignal vom Trend zu bereinigen. Insbesondere entsteht so ein trendbereinigtes Messsignal das im Wesentlichen um einen konstanten Mittelwert, z.B. Null, fluktuiert, wobei die Zeitreihenanalyse diese Fluktuationen auswertet.The detrending is preferably based on a parameter-free method, for example an empirical mode decomposition (EMD), a Hilbert-Huang transformation and/or a spline approximation. Alternatively and/or additionally, the trend adjustment can be based on a numerical and/or analytical method and/or fit. For example, the analytical context of the trend, e.g. based on a physical law, can be known and used to cleanse the measurement signal of the trend. In particular, this creates a detrended measurement signal that essentially fluctuates around a constant mean, e.g. zero, with the time series analysis evaluating these fluctuations.

Erfindungsgemäß ist die Zeitreihenanalyse als eine Fluktuationsanalyse ausgebildet. Im Speziellen ist die Fluktuationsanalyse ausgebildet, eine Zeitreihe und/oder Messreihe, hier das Messsignal, mathematisch zu analysieren und erfindungsgemäß eine Langzeitkorrelation, zu bestimmen und/oder zu quantifizieren. Die erfindungsgemäße Fluktuationsanalyse, kann analytisch und/oder numerisch umgesetzt werden. Die Fluktuationsanalyse kann für Autokorrelationen und/oder Kreuzkorrelationen bestimmt werden. Dieser Ausgestaltung liegt die Überlegung zugrunde, dass Änderungen des Messsignals im Entstehen des Brandes nicht notwendigerweise sofort mit einer Veränderung des Mittelwerts einhergehen müssen, sondern auch eine langsame Veränderung bewirken können, die lange Zeit unbemerkt bleiben. Aus diesem Grund kann beispielsweise eine Korrelation des Messsignals, insbesondere der Fluktuationen, des Rauschens und/oder der Streuung bewertet werden und zur frühzeitigen Branddetektion herangezogen werden. Kleinste Veränderungen im Messsignal, welche noch keine Auswirkung auf den Mittelwert haben, können sich schon in den Fluktuationen, in der Streuung und/oder im Rauschen manifestieren, wobei neben der Rauschbreite insbesondere die Korrelation ein empfindliches Maß für die Veränderungen ist und somit Veränderungen auf kleinster Skala frühzeitig feststellen kann.According to the invention, the time series analysis is designed as a fluctuation analysis. In particular, the fluctuation analysis is designed to mathematically analyze a time series and/or measurement series, here the measurement signal, and according to the invention to determine and/or quantify a long-term correlation. The fluctuation analysis according to the invention can be implemented analytically and/or numerically. Fluctuation analysis can be designed for autocorrelations and/or cross-correlations. This configuration is based on the idea that changes in the measurement signal when a fire occurs do not necessarily have to be immediately accompanied by a change in the mean value, but can also cause a slow change that remains unnoticed for a long time. For this reason, for example, a correlation of the measurement signal, in particular the Fluctuations, noise and/or scatter are evaluated and used for early fire detection. Smallest changes in Measurement signals that do not yet have an effect on the mean value can already manifest themselves in the fluctuations, in the scatter and/or in the noise. In addition to the noise width, the correlation in particular is a sensitive measure of the changes and can therefore detect changes on the smallest scale at an early stage can.

Besonders bevorzugt ist es daher, dass die Zeitreihenanalyse eine Korrelationsanalyse und/oder eine Autokorrelationsanalyse umfasst. Durch die Feststellung von Korrelationen im Messsignal können physikalisch relevante Informationen über Prozesse, Brände, Rauch, Staub, physikalische und/oder chemische Vorgänge in einer Umgebung des Brandmelders frühzeitig detektiert werden ohne den langsamen Trend und/oder eine zeitverzögerte Reaktion im Mittelwert des Messsignals abwarten zu müssen. Es wird somit ein Verfahren bereitgestellt, das frühzeitig Brandereignisse detektieren und feststellen kann. Insbesondere werden durch die Zeitreihenanalyse auch Prozesse als Brandereignisse ausgeschlossen, die ein anderes Korrelationsverhalten aufweisen als Brandereignisse. Es wird somit auch ein Verfahren für das Feststellen eines Brandereignisses bereitgestellt, das resistent gegen Fehldetektionen und/oder Fehlalarme ist.It is therefore particularly preferred that the time series analysis includes a correlation analysis and/or an autocorrelation analysis. By determining correlations in the measurement signal, physically relevant information about processes, fires, smoke, dust, physical and/or chemical processes in the area surrounding the fire detector can be detected at an early stage without waiting for the slow trend and/or a time-delayed reaction in the average value of the measurement signal must. A method is thus provided that can detect and determine fire events at an early stage. In particular, the time series analysis also excludes processes that have different correlation behavior than fire events as fire events. A method for detecting a fire event that is resistant to false detections and/or false alarms is therefore also provided.

Als eine der Alternativen umfasst die Zeitreihenanalyse eine Hurst-Analyse. Mittels der Hurst-Analyse wird als Analyseparameter, beispielsweise ein Exponent H, der sogenannte Hurst-Exponent, bestimmt. Beispielsweise wird hierzu als Zeitreihenanalyse eine Hurst-R/S-Analyse durchgeführt. Hierzu wird beispielsweise für das in Teilintervalle mit einer Teilintervalllänge (s) zerteilte Auswertezeitintervall der Range (R) der kumulierten und gegebenenfalls mittelwertbereinigten Zeitreihe, hier das Messsignal, ermittelt und ins Verhältnis zur Standardabweichung (S) der nicht kumulierten Zeitreihe gesetzt, sodass R/S ermittelt wird. Durch Wahl unterschiedlicher Beobachtungslängen (Teilintervalllänge s) für die Teilintervalle kann ein funktioneller Zusammenhang von R/S in Abhängigkeit der Beobachtungslänge s bestimmt werden. Der funktionelle Zusammenhang wird insbesondere als Potenzgesetzt R/S - sH ausgewertet und H als Hurst-Exponent bestimmt. Vorzugsweise wird zur Bestimmung des Brandereignisses eine Abweichung des Hurst-Exponenten von einem oder mehreren Referenzwerten herangezogen. Beispielsweise wird ein erster, ein zweiter und dritter Referenzwert festgelegt, wobei der erste Referenzwert zum Beispiel C1=1,5, der zweite Referenzwert C2=1,0 und der dritte Referenzwert C3=0,5 ist. Im Speziellen kann zur Detektion verwendet werden: H> C1 ist Schwelbrand, C2<H< C1 ist offenes Feuer, C3<H< C2 ist Braten/Frittieren und H<C3 ist Wasserdampf.As one of the alternatives, time series analysis includes Hurst analysis. Using the Hurst analysis, an exponent H, the so-called Hurst exponent, is determined as an analysis parameter, for example. For example, a Hurst R/S analysis is carried out as a time series analysis. For this purpose, for example, for the evaluation time interval divided into partial intervals with a partial interval length (s), the range (R) of the cumulative and, if necessary, mean-adjusted time series, here the measurement signal, is determined and set in relation to the standard deviation (S) of the non-cumulative time series, so that R/S is determined. By choosing different observation lengths (subinterval length s) for the subintervals, a functional relationship of R/S can be determined depending on the observation length s. The functional connection is evaluated in particular as a power law R/S - s H and H is determined as the Hurst exponent. A deviation of the Hurst exponent from one or more reference values is preferably used to determine the fire event. For example, a first, a second and third reference value is defined, with the first Reference value for example C 1 =1.5, the second reference value C 2 =1.0 and the third reference value C 3 =0.5. In particular, the following can be used for detection: H> C 1 is smoldering fire, C 2 <H< C 1 is open fire, C 3 <H< C 2 is frying/deep-frying and H<C 3 is water vapor.

Der Hurst-Exponent ist insbesondere auf den Bereich 0<H<1 beschränkt! Die Hurst R/S-Analyse kann im Speziellen nur bei streng stationären Reihen angewendet werden. Kleinste Instationaritäten / Trends (z.B. insbesondere bei einem Signalanstieg im Falle eines Brandes) verfälschen den Hurst Exponenten. Im Falle instationärer Reihen bleibt der Exponent quasi bei H=1 . Die DFA hingegen ist auch für trendbehaftete sowie instationäre Reihen geeignet. Hier kann der Korrelationsexponent α (der im stationären Fall äquivalent zum Hurt-Exponent H ist) auch Werte größer 1 anzeigen, z.B. wenn anstatt eines trendbehafteten Rauschens (z.B. eines sog. fraktionellen Gaussschen Rauschens) eigentlich eine Bewegung (z.B. eine sog. fraktionelle Brownsche Bewegung) stattfindet. In diesem Fall spricht man davon, dass die Reihe unbeschränkt ist. Je nach Art des Ereignisses (z.B. einem Brand) kann unter Umständen auch ein solcher Fall auftreten, so dass es hier beispielsweise zweckmäßig ist, eine DFA durchzuführen und den Korrelationsexponenten α heranzuziehen. Es kann zweckmäßig sein, auch eine multifraktale DFA (MF-DFA) mit einem variierbaren statistischen Moment q durchzuführen und eine ggf. vorliegende Multifraktalität als weiteres Merkmal mit zu berücksichtigen, was z.B. vorliegt, wenn α signifikant vom statistischen Moment q abhängt. Eine Multifraktalität wird insbesondere über eine MF-DFA und statt über eine Hurst R/S-Analyse untersucht, auch wenn α(q) in der Literatur bisweilen auch als "verallgemeinerter" Hurst-Exponent H(q) bezeichnet wird. Der multifraktale Korrelationsexponent α(q) kann, muss aber nicht zwingend zwischen 0<α(q)<1 liegen, sondern kann gegenüber dem Exponenten aus der Hurst-Analyse auch über 1 liegen. Im Falle einer instationären Reihe, wie z.B. einer fraktionellen Brownschen Bewegung (fBm) kann eine Hurst R/S-Analyse (nach ggf. vorheriger Trendbereinigung) auf der inkrementellen Reihe angewendet werden (die inkrementelle Reihe entspricht einfach der Ableitung der Originalreihe, also xi←xi-xi-1). Liegt z.B. der Fall α=1,7 vor, also eine positiv korrelierte fraktionelle Brownsche Bewegung, z.B. im Falle einer Superdiffusion, so ist der korrespondierende Korrelationsexponent der inkrementellen Reihe gerade α'=1-α=0,7. Dies kann z.B. genutzt werden um zu prüfen, ob wirklich eine fraktionelle Brownsche Bewegung vorliegt. Ist die Reihe vor der Inkrementierung vollständig von Trends bereinigt worden und führt man z.B. an dieser bereinigten inkrementellen Reihe eine Hurst R/S-Analyse durch, so gilt in diesem Falle für die inkrementelle Reihe auch α'=H. Dies kann als zweite Validierungsmöglichkeit herangezogen werden. Im zeitlichen Bereich der Branderkennung, d.h. wenn sich das Signal noch nicht signifikant über den Ruhemittelwert hinausbewegt hat, kann eine Hurst R/S-Analyse im Speziellen ausreichend sein, um ein Ereignis frühzeitig zu erkennen,sprich Veränderungen im Korrelationsverhalten des vermeintlichen Grundrauschens zu erkennen. Sobald das Signal hingegen stark ansteigt (in der Phase der Brandklassifikation), kann neben die dem Anstieg/Trend überlagerte Fluktuation entweder ein fraktionelles Gausssches Rauschen mit 0<α ≤1 oder eine fraktionelle Brownsche Bewegung α>1 sein. Eine Ausgestaltung der Erfindung sieht vor, dass die Zeitreihenanalyse eine Mehrzahl an Einzelzeitreihenanalysen umfasst. Die Einzelzeitreihenanalysen sind insbesondere Zeitreihenanalysen basierend auf unterschiedlichen statistischen Momenten. Beispielsweise werden einzelne Fluktuation-, Korrelations-, Autokorrelations- und/oder Hurst-Analysen für unterschiedliche statistische Momente q durchgeführt. Wie oben erläutert, bezieht sich die Anhängigkeit des Korrelationsexponenten vom statistischen Moment insbesondereauf die multifraktale DFA. Für die üblich verwendete Varianz und Standardabweichung beträgt das statistische Moment zum Beispiel q=2. Vorzugsweise werden als statistische Momente ganzzahlige Werte zwischen -10 und 10 verwendet. Zum Beispiel werden für die unterschiedlichen statistischen Momente die Hurst Exponenten H als H(q) bestimmt. Eine solche Analyse wird insbesondere als Multifraktale Spektrum bezeichnet. Insbesondere basiert die Verschmutzungsbestimmung und/oder Betriebsbereitschaftsbestimmung auf einer Auswertung des funktionalen Zusammenhangs von H(q).The Hurst exponent is particularly limited to the range 0<H<1! In particular, the Hurst R/S analysis can only be used for strictly stationary series. The smallest instationarities/trends (e.g. especially when the signal increases in the event of a fire) distort the Hurst exponent. In the case of non-stationary series, the exponent essentially remains at H=1. The DFA, on the other hand, is also suitable for trendy and non-stationary series. Here the correlation exponent α (which in the stationary case is equivalent to the Hurt exponent H) can also display values greater than 1, for example if instead of a trendy noise (e.g. a so-called fractional Gaussian noise) there is actually a movement (e.g. a so-called fractional Brownian motion). ) takes place. In this case the series is said to be unbounded. Depending on the type of event (e.g. a fire), such a case can also occur under certain circumstances, so that it is advisable here, for example, to carry out a DFA and use the correlation exponent α. It may be useful to also carry out a multifractal DFA (MF-DFA) with a variable statistical moment q and to take into account any multifractality that may be present as a further feature, which occurs, for example, if α depends significantly on the statistical moment q. In particular, a multifractality is examined via an MF-DFA rather than via a Hurst R/S analysis, even though α(q) is sometimes referred to in the literature as the "generalized" Hurst exponent H(q). The multifractal correlation exponent α(q) can, but does not necessarily have to be between 0<α(q)<1, but can also be above 1 compared to the exponent from the Hurst analysis. In the case of a non-stationary series, such as a fractional Brownian motion (fBm), a Hurst R/S analysis (after prior detrending if necessary) can be applied to the incremental series (the incremental series simply corresponds to the derivative of the original series, i.e. x i ←x i -x i-1 ). For example, if the case is α=1.7, i.e. a positively correlated fractional Brownian motion, for example in the case of superdiffusion, then the corresponding correlation exponent of the incremental series is just α'=1-α=0.7. This can be used, for example, to check whether there is really a factional Brownian motion is present. If the series has been completely cleaned of trends before the incrementation and if, for example, a Hurst R/S analysis is carried out on this cleaned incremental series, then in this case α'=H also applies to the incremental series. This can be used as a second validation option. In the time range of fire detection, i.e. when the signal has not yet moved significantly above the resting average, a Hurst R/S analysis can be sufficient to detect an event early, i.e. to detect changes in the correlation behavior of the supposed background noise. However, as soon as the signal increases sharply (in the fire classification phase), in addition to the fluctuation superimposed on the increase/trend, there can be either a fractional Gaussian noise with 0<α ≤1 or a fractional Brownian motion α>1. One embodiment of the invention provides that the time series analysis includes a plurality of individual time series analyses. The individual time series analyzes are in particular time series analyzes based on different statistical moments. For example, individual fluctuation, correlation, autocorrelation and/or Hurst analyzes are carried out for different statistical moments q. As explained above, the dependence of the correlation exponent on the statistical moment relates particularly to multifractal DFA. For example, for the commonly used variance and standard deviation, the statistical moment is q=2. Integer values between -10 and 10 are preferably used as statistical moments. For example, the Hurst exponents H are determined as H(q) for the different statistical moments. Such an analysis is particularly referred to as a multifractal spectrum. In particular, the contamination determination and/or operational readiness determination is based on an evaluation of the functional relationship of H(q).

Gemäss der Erfindung umfasst und/oder bildet die Zeitreihenanalyse eine Hurst-Analyse und/ oder eine trendbereinigte Fluktuationsanalyse (DFA) oder eine multifraktale DFA (MF-DFA) mit einem multifraktalen Exponenten.According to the invention, the time series analysis comprises and/or forms a Hurst analysis and/or a detrended fluctuation analysis (DFA) or a multifractal DFA (MF-DFA) with a multifractal exponent.

Insbesondere wird mittels der Zeitreihenanalyse mindestens ein Analyseparameter bestimmt, wobei in einer Ausgestaltung mindestens einer der Analyseparameter einen Skalenparameter bildet und/oder beschreibt. Beispielsweise wird basierend auf dem Analyseparameter insbesondere dem Skalenparameter zwischen Brandarten, wie offenes Feuer und Schwelbrand, und/oder zwischen Störgrößen, wie Wasserdampf, Fett, Staub und/oder Zigarettenrauch, und/oder zwischen Brandarten und Störgrößen unterschieden.In particular, at least one analysis parameter is determined by means of the time series analysis, with in one embodiment at least one of the analysis parameters forming and/or describing a scale parameter. For example, based on the analysis parameter, in particular the scale parameter, a distinction is made between types of fire, such as open fire and smoldering fire, and/or between disturbance variables, such as water vapor, fat, dust and/or cigarette smoke, and/or between types of fire and disturbance variables.

Eine Ausgestaltung des Verfahrens sieht vor, dass das Messsignal für eine Mehrzahl an Auswertezeitintervallen erfasst wird, beispielsweise mindestens zweimal, vorzugsweise mindestens zehnmal und im Speziellen mindestens 100-mal. Die Auswertezeitintervalle sind vorzugsweise bündig aneinander angeschlossen, beispielsweise das nach Beendigung des ersten Auswertezeitintervalls das nächste Auswertezeitintervall direkt anschließt, alternativ können die Auswertezeitintervalle Überlappungen aufweisen oder überlappungsfrei ausgebildet sein, sodass beispielsweise zwischen zwei Auswertezeitintervallen eine Pause der Erfassung vorliegt. Die einzelnen Auswertezeitintervalle werden mittels der Zeitreihenanalyse ausgewertet. Für die erfassten Messsignale der Mehrzahl an Auswertezeitintervallen wird jeweils die Zeitreihenanalyse, insbesondere die Bestimmung des Hurst-Exponenten und/oder der Analyseparameter, durchgeführt. Beispielsweise werden die Analyseparameter und/oder Hurst-Parameter verglichen. Alternativ und/oder ergänzend wird ein zeitlicher Verlauf, eine Veränderung, eine Korrelation oder ein funktioneller Zusammenhang für die Hurst-Exponenten und/oder Analyseparameter bestimmt, wobei die Bestimmung des Brandereignisses vorzugsweise auf dem Vergleich, der Bestimmung und/oder Auswertung basiert.One embodiment of the method provides that the measurement signal is recorded for a plurality of evaluation time intervals, for example at least twice, preferably at least ten times and in particular at least 100 times. The evaluation time intervals are preferably connected flush with one another, for example, after the first evaluation time interval has ended, the next evaluation time interval follows directly; alternatively, the evaluation time intervals can have overlaps or can be designed without overlap, so that, for example, there is a pause in the detection between two evaluation time intervals. The individual evaluation time intervals are evaluated using time series analysis. The time series analysis, in particular the determination of the Hurst exponent and/or the analysis parameters, is carried out for the recorded measurement signals of the plurality of evaluation time intervals. For example, the analysis parameters and/or Hurst parameters are compared. Alternatively and/or additionally, a time course, a change, a correlation or a functional connection is determined for the Hurst exponents and/or analysis parameters, the determination of the fire event preferably being based on the comparison, determination and/or evaluation.

Vorzugsweise basieren die Auswertezeitintervalle auf einem Rolling Window. Rolling Window wird teilweise auch als sliding window bezeichnet. Das Rolling Window weist dabei beispielsweise eine feste Intervalllänge, insbesondere die Auswertezeitintervalllänge, auf, wobei zur Bestimmung der Mehrzahl an Auswertezeitintervallen das Rolling Window verschoben wird, wobei das Verschieben ein zeitliches Verschieben des Erfassungsstandpunktes darstellt. Das Verschieben des Rolling Window kann kontinuierlich erfolgen oder diskret, beispielsweise mit einem Zeitversatz gleich der Auswertezeitintervalllänge.The evaluation time intervals are preferably based on a rolling window. Rolling windows are sometimes also referred to as sliding windows. The rolling window has, for example, a fixed interval length, in particular the evaluation time interval length, with the rolling window being shifted to determine the plurality of evaluation time intervals, the shifting representing a temporal shift of the detection point. The rolling window can be moved continuously or discretely, for example with a time offset equal to the evaluation time interval length.

Optional wird basierend auf der Zeitreihenanalyse des Messsignals eine Zusatzumgebungsgröße bestimmt. Die Zusatzumgebungsgröße ist beispielsweise eine Größe und/oder Bewertung der Umgebung des Brandmelders, beispielswese der Luft, der Temperatur und/oder Lichtverhältnisse. Beispielsweise wird als Zusatzumgebungsgröße eine Luftqualität und/oder Luftströmung bestimmt. Die Luftqualität kann beispielsweise einen Kohlenmonoxidgehalt, einen Kohlendioxidgehalt und/oder eine Stabubbelastung beschreiben. Die Luftströmung kann beispielsweise einen Luftzug beschreiben. Dieser Ausgestaltung liegt die Überlegung zu Grunde, dass zum Beispiel Staubpartikel im und/oder um den Brandmelder zu Fluktuationen im Messsignal führen, wobei mittels Zeitreihenanalyse diese Fluktuationen als Charakteristika zur Bewertung der Luftqualität herangezogen werden können. Einen weiteren Gegenstand der Erfindung bildet ein Brandmelder zur Detektion eines Brandereignisses, insbesondere eines Brandes und/oder von Rauch. Der Brandmelder weist eine Sensoreinrichtung zur Erfassung einer Messgröße und zur Ausgabe eines Messsignals auf. Der Brandmelder weist eine Auswerteeinheit auf, wobei diese softwaretechnisch oder hardwaretechnisch ausgebildet sein kann. Die Auswerteeinheit ist erfindungsgemäß eingerichtet und/oder ausgebildet, das vorher beschriebene Verfahren auszuführen und/oder durchzuführen. Die Auswerteeinheit ist ausgebildet, das Messsignal für das Auswertezeitintervall zu erfassen, in einer speziellen Ausgestaltung für eine Mehrzahl an Auswertezeitintervallen, zu erfassen. Für das und/oder für die Auswertezeitintervalle ist die Auswerteeinheit ausgebildet, die Zeitreihenanalyse durchzuführen. Basierend auf den Ergebnissen, beispielsweise dem Analyseparameter und im Speziellen dem Hurst-Exponenten, wird von der Auswerteeinheit ein Brandereignis bestimmt.Optionally, an additional environmental variable is determined based on the time series analysis of the measurement signal. The additional environmental variable is, for example, a size and/or evaluation of the environment of the fire detector, for example the air, the temperature and/or lighting conditions. For example, air quality and/or air flow is determined as an additional environmental variable. The air quality can, for example, describe a carbon monoxide content, a carbon dioxide content and/or a dust pollution. The air flow can, for example, describe a draft. This embodiment is based on the idea that, for example, dust particles in and/or around the fire detector lead to fluctuations in the measurement signal, whereby these fluctuations can be used as characteristics for evaluating the air quality using time series analysis. A further object of the invention is a fire detector for detecting a fire event, in particular a fire and/or smoke. The fire detector has a sensor device for detecting a measured variable and for outputting a measurement signal. The fire detector has an evaluation unit, which can be designed with software or hardware technology. According to the invention, the evaluation unit is set up and/or designed to carry out and/or carry out the previously described method. The evaluation unit is designed to detect the measurement signal for the evaluation time interval, in a special embodiment for a plurality of evaluation time intervals. The evaluation unit is designed to carry out the time series analysis for this and/or for the evaluation time intervals. Based on the results, for example the analysis parameter and in particular the Hurst exponent, a fire event is determined by the evaluation unit.

Einen weiteren Gegenstand der Erfindung bildet ein Computerprogramm zur Ausführung auf einem Computer und/oder dem Brandmelder wie vorher beschrieben. Insbesondere umfasst das Computerprogramm und/oder basiert das Computerprogramm auf einem Programmcode mit Programmcodemitteln. Das Computerprogramm ist ausgebildet, bei Ausführung auf dem Computer und/oder dem Brandmelder die Schritte des Verfahrens wie vorher beschrieben durchzuführen. Insbesondere ist das Computerprogramm im Brandmelder implementiert, im Speziellen in der Auswerteeinheit, sodass die Auswerteeinheit mittels Durchführung des Computerprogramms und damit des Verfahrens das Brandereignis detektiert.A further subject of the invention is a computer program for execution on a computer and/or the fire detector as previously described. In particular, the computer program includes and/or the computer program is based on a program code with program code means. The computer program is designed to carry out the steps of the method as previously described when executed on the computer and/or the fire detector. In particular, the computer program is implemented in the fire detector, in particular in the evaluation unit, so that the evaluation unit The fire event is detected by carrying out the computer program and thus the procedure.

Einen weiteren Gegenstand der Erfindung bildet ein maschinenlesbares Speichermedium, beispielsweise eine DVD, CD, Diskette oder anderweitig Restspeichermedium. Auf dem Speichermedium ist das Computerprogramm, insbesondere der Programmcode und/oder die Programmcodemittel, gespeichert.A further subject of the invention is a machine-readable storage medium, for example a DVD, CD, diskette or other residual storage medium. The computer program, in particular the program code and/or the program code means, is stored on the storage medium.

Weitere Vorteile, Ausgestaltungen und Wirkungen ergeben sich aus den beigefügten Figuren und deren Beschreibung. Dabei zeigen:

  • Figuren 1a, b einen Brandmelder in unterschiedlichen Zuständen;
  • Figur 2a, b, c, d Messsignal und Beispiel einer Zeitreihenanalyse;
  • Figuren 3a, b Beispiel eines realen Messsignals und Analyseparameter;
  • Figuren 4a, b, c beispielhafte Branderkennung mittels Zeitreihenanalyse;
  • Figuren 5a, b, c, d Beispiel einer Branderkennung mittels Rolling Window.
Further advantages, refinements and effects result from the attached figures and their description. Show:
  • Figures 1a, b a fire alarm in different states;
  • Figure 2a, b , c, d Measurement signal and example of a time series analysis;
  • Figures 3a, b Example of a real measurement signal and analysis parameters;
  • Figures 4a, b, c exemplary fire detection using time series analysis;
  • Figures 5a, b , c, d Example of fire detection using rolling windows.

Die Figuren 1a und b zeigen ein Ausführungsbeispiel eines als photoelektrischen Brandmelders 1. Der Brandmelder 1 ist zur Montage an einer Decke 2 ausgebildet. Der Brandmelder 1 umfasst eine Sensoreinrichtung, wobei die Sensoreinrichtung eine Lichtquelle 3 und einen Lichtdetektor 4 umfasst. Ferner weißt der Brandmelder 1 einen Messkanal 5 auf, wobei der Messkanal 5 auch als Streulichtstrecke und/oder Rauchkammer bezeichnet wird. Der Lichtdetektor 4 ist ausgebildet, einfallendes Licht als Messgröße zu detektieren und als Messsignal ein Spannungssignal auszugeben.The Figures 1a and b show an exemplary embodiment of a photoelectric fire detector 1. The fire detector 1 is designed for mounting on a ceiling 2. The fire detector 1 comprises a sensor device, the sensor device comprising a light source 3 and a light detector 4. Furthermore, the fire detector 1 has a measuring channel 5, the measuring channel 5 also being referred to as a scattered light path and/or a smoke chamber. The light detector 4 is designed to detect incident light as a measurement variable and to output a voltage signal as a measurement signal.

Der Brandmelder 1 in Figur 1a zeigt den Brandmelder 1 in einem Normalzustand, auch Ruhezustand genannt. Der Normalzustand wird als Zustand des Brandmelders in einem voll funktionsfähigen Zustand ohne Rauch und/oder Brand, Verschmutzung, Staub und/oder Feuchtigkeit. Die Lichtquelle 3 und Lichtdetektor 4 sind in einer gemeinsamen Ebene beispielsweise (Anm.: die Ebene kann auch anders verlaufen) gleichgerichtet zur Decke 2 angeordnet. Die Lichtquelle 3, beispielswese eine LED, strahlt Licht, insbesondere IR-Strahlung und/oder sichtbares Licht, ab. Die Abstrahlung kann insbesondere gerichtet oder sphärisch erfolgen. Das von der Lichtquelle 3 emittierte Licht kann in Richtung des Lichtdetektors 4 durch einen Strahlengang 6 beschrieben werden. Im vorliegenden Zustand wird vom Lichtdetektor 3 kein von der Lichtquelle 3 emittiertes Licht detektiert, da sich der normale Strahlengang 6 nicht zum Detektor erstreckt. Eine Detektion könnte nur erfolgen, wenn das emittierte Licht zum Lichtdetektor 4 gestreut wird. Da in diesem Zustand keine Partikel, z.B. Rauch oder Schmutz, vorliegen, die das Licht in den Lichtdetektor 4 streuen könnten, wird vom Lichtdetektor 4 kein Licht detektiert. Das Messsignal ist hierbei eine Spannung um einen Mittelnullwert, z.B. 0 mV oder 0 mV plus einem Offset, wobei das Messsignal eine Streuung und/oder Rauschen um den Mittelnullwert aufweist.The fire alarm 1 in Figure 1a shows the fire detector 1 in a normal state, also called idle state. The normal state is defined as the condition of the fire detector in a fully functional condition without smoke and/or fire, pollution, dust and/or moisture. The light source 3 and light detector 4 are in a common plane, for example (note: the The plane can also run differently) arranged in the same direction as the ceiling 2. The light source 3, for example an LED, emits light, in particular IR radiation and/or visible light. The radiation can in particular be directed or spherical. The light emitted by the light source 3 can be described in the direction of the light detector 4 by a beam path 6. In the present state, no light emitted by the light source 3 is detected by the light detector 3, since the normal beam path 6 does not extend to the detector. Detection could only take place if the emitted light is scattered to the light detector 4. Since in this state there are no particles, such as smoke or dirt, that could scatter the light into the light detector 4, no light is detected by the light detector 4. The measurement signal here is a voltage around a mean zero value, for example 0 mV or 0 mV plus an offset, with the measurement signal having a scatter and/or noise around the mean zero value.

Figur 1b zeigt den Brandmelder 1 aus Figur 1a bei Vorliegen eines Brandes. Im Messkanal 5 ist nun Rauch 7 eingedrungen. Der Rauch 7 umfasst insbesondere Partikel und weist reflektierende Eigenschaften auf. Das von der Lichtquelle 3 emittierte Licht wird im Messkanal 5 vom Rauch 7 gestreut, wobei ein Teil des gestreuten Lichts einem erweiterten Strahlengang 8 zum Lichtdetektor 4 folgt. Das gestreute Licht wird vom Lichtdetektor 4 detektiert und als Messgröße bzw. Messsignal ausgegeben, wobei das Messsignal vom Mittelnullwert deutlich abweicht. Basierend auf dem Messsignal wird schließlich der Brand detektiert. Figure 1b shows fire detector 1 off Figure 1a in the event of a fire. Smoke 7 has now entered measuring channel 5. The smoke 7 particularly includes particles and has reflective properties. The light emitted by the light source 3 is scattered by the smoke 7 in the measuring channel 5, with part of the scattered light following an extended beam path 8 to the light detector 4. The scattered light is detected by the light detector 4 and output as a measurement variable or measurement signal, the measurement signal deviating significantly from the mean zero value. The fire is finally detected based on the measurement signal.

Die Figuren 2a - d zeigen beispielhaft das Prinzip einer trendbereinigten Fluktuationsanalyse eines Messsignals S. Das Messsignal S weist Fluktuationen auf und schwankt bzw. rauscht damit um den Wert S=0, dem Mittelnullwert des vorliegenden Messsignals S. Obwohl dem Rauschen an sich kein eigentlicher Trend oder Verlauf anzusehen ist, kann durch Zeitreihenanalyse des Signals, insbesondere der Fluktuationen und des Rauschens, eine frühzeitige Branderkennung erfolgen. Während zum starken Anstieg des Mittelwerts des Messsignals S eine Mindestmenge an Rauch zur Streuung des Lichts benötigt wird, können bereits kleinste Rauchmengen bei der Entstehung des Brandes und/oder bei einem Schwelbrand zu merklichen Fluktuationen im Messsignal führen. Durch Auswertung der Fluktuationen mittels der Zeitreihenanalyse können so Brände frühzeitig erkannt werden.The Figures 2a - d show an example of the principle of a trend-corrected fluctuation analysis of a measurement signal S. The measurement signal S has fluctuations and therefore fluctuates or noises around the value S = 0, the mean zero value of the existing measurement signal S. Although there is no actual trend or course to be seen in the noise itself, Early fire detection can be achieved through time series analysis of the signal, especially the fluctuations and noise. While a minimum amount of smoke is required to scatter the light for a sharp increase in the mean value of the measurement signal S, even the smallest amounts of smoke can lead to noticeable fluctuations in the measurement signal when a fire starts and/or a smoldering fire occurs. By evaluating the fluctuations using time series analysis, fires can be detected early.

Neben dem eigentlichen Messsignal S ist in Figur 6a auch eine kumulierte Reihe 9 dargestellt. Die kumulierte Reihe 9 ergibt sich wie bei einer klassischen Hurst-Analyse durch sukzessives aufsummieren der Zeitreihe, wobei die Zeitreihe das Messsignal S bildet.In addition to the actual measurement signal S, a cumulative series 9 is also shown in FIG. 6a. The cumulative series 9 is obtained, as in a classic Hurst analysis, by successively adding up the time series, with the time series forming the measurement signal S.

Die Figuren 2b und 2c zeigen die ebenfalls das Messsignal S und die kumulierte Reihe 9. Nun wird das Analysezeitintervall in gleichgroße Segmente (Teilintervalle) der Länge s geteilt. Für die Zeitreihenanalyse wird das Analysezeitintervall jeweils auf unterschiedliche Art geteilt, wobei sich die Arten in der gewählten Länge s unterscheiden. Figur 2b zeigt eine Unterteilung in kleinere Teilintervalle, also kleinere Länge s, als die in Figur 2c gezeigte Unterteilung. In jedem Segment wird nun an die Zeitreihe ein Polynom n-ten Grades angepasst und von der kumulierten Reihe abgezogen. Von dem so erhaltenen Residuum wird nun die Varianz in jedem Segment ermittelt und über die Anzahl der Segmente gemittelt. Von dieser gemittelten Varianz wird nun die Wurzel gezogen (Standartabweichungsbildung). Das Ergebnis wird beispielsweise als Fluktuationsparameter F(s) bezeichnet.The Figures 2b and 2c They also show the measurement signal S and the cumulative series 9. Now the analysis time interval is divided into equal segments (subintervals) of length s. For the time series analysis, the analysis time interval is divided in different ways, with the types differing in the chosen length s. Figure 2b shows a division into smaller subintervals, i.e. smaller length s, than that in Figure 2c subdivision shown. In each segment, a polynomial of the nth degree is adapted to the time series and subtracted from the cumulative series. The variance in each segment is now determined from the residual obtained in this way and averaged over the number of segments. The root is now taken from this averaged variance (forming the standard deviation). The result is referred to, for example, as the fluctuation parameter F(s).

Dies wird für die unterschiedlichen Längen s durchgeführt und anschließend der funktionelle Zusammenhang der Form F(s)=Const.1*sα+const.2 bestimmt, wobei α im Wesentlichen dem Hurst-Exponenten entspricht. Eine logarithmische Auftragung ist in Figur 2d gezeigt, wobei α die Steigung der Geraden beschreibt. Die unterschiedlichen Geraden entsprechen unterschiedlichen Ordnungen n des Fit-Polynoms.This is done for the different lengths s and then the functional connection of the form F(s)=Const. 1 *s α +const. 2 determined, where α essentially corresponds to the Hurst exponent. A logarithmic plot is in Figure 2d shown, where α describes the slope of the straight line. The different lines correspond to different orders n of the fit polynomial.

Figur 3a zeigt eine beispielhafte Zeitreihenanalyse eines realen Messsignals S ausgegeben von einem Brandmelder 1. Das Messsignal weißt als Trend einen Anstieg auf, der Beispielsweise durch Rauch eines entstehenden Brandes hervorgerufen wird. Während übliche Brandmelder beispielsweise warten, bis das Messsignal einen Schwellwert überschritten hat, kann gemäß dem Verfahren bereits vorher ein Brand detektiert werden. Hierzu wird für das Messsignal eine Zeitreihenanalyse, insbesondere trendbereinigte Fluktuationsanalyse durchgeführt. Figure 3a shows an exemplary time series analysis of a real measurement signal S issued by a fire detector 1. The measurement signal shows an increase as a trend, which is caused, for example, by smoke from an emerging fire. While conventional fire detectors, for example, wait until the measurement signal has exceeded a threshold value, a fire can be detected beforehand according to the method. For this purpose, a time series analysis, in particular a trend-adjusted fluctuation analysis, is carried out for the measurement signal.

Das Ergebnis für einige Fluktuationsanalysen ist in Figur 3b gezeigt. Die Fluktuationsanalysen basieren auf Trendbereinigung mit unterschiedlichen Polynomgraden n des Fitpolynoms. Aus diesem Zusammenhang wird beispielsweise als Analyseparameter der Hurst-Exponent H, hier als Skalenparameter α aufgefasst, bestimmt werden. Basierend Skalenparameter α wird auf einen Brand geschlossen und/oder zwischen Brandarten diskriminiert.The result for some fluctuation analyzes is in Figure 3b shown. The Fluctuation analyzes are based on trend adjustment with different polynomial degrees n of the fit polynomial. From this context, for example, the Hurst exponent H, understood here as the scale parameter α , will be determined as the analysis parameter. Based on the scale parameter α, a fire is concluded and/or discrimination is made between types of fire.

Figuren 4a, b, c zeigen schematisch eine Zeitreihenanalyse des Messsignals S in einer Rolling Window Analyse. Figur 6a zeigt den Verlauf eines Brandereignisses Z als zeitlichen Verlauf. Das Brandereignis setzt schlagartig zu einem Zeitpunkt to ein. Figur 4b zeigt das zugehörige Messsignal S des Brandmelders 1 im gleichen Zeitraum. Das Messsignal ändert sich anders als das Brandereignis Z nicht schlagartig bei to, sondern antwortet Zeitverzögert mit τ 1. Erst nach t0 + τ 1 übersteigt das Messsignal S, bzw. dessen Mittelwert den Schwellwert X. Figur 4c zeigt den Analyseparameter α, beispielsweise den Hurst-Exponenten. Eine Veränderung des Analyseparameter α stellt man bereits nach einer Zeitverzögerung τ 2 fest, wobei τ 2 « τ 1. Durch Zeitreihenanalyse ist somit eine frühzeitigere Branderkennung möglich. Figures 4a, b, c show schematically a time series analysis of the measurement signal S in a rolling window analysis. Figure 6a shows the course of a fire event Z as a time course. The fire event starts suddenly at a time to. Figure 4b shows the associated measurement signal S from fire detector 1 in the same period. Unlike the fire event Z, the measurement signal does not change suddenly at to, but responds with a time delay with τ 1 . Only after t 0 + τ 1 does the measurement signal S, or its mean value, exceed the threshold value X. Figure 4c shows the analysis parameter α , for example the Hurst exponent. A change in the analysis parameter α can be noticed after a time delay τ 2 , where τ 2 « τ 1 . Time series analysis enables earlier fire detection.

Figuren 5a-d zeigen beispielhaft eine Zeitreihenanalyse des Messsignals S basierend auf einem Rolling Window. Das Messsignal S in 5a basiert z.B. auf der Entstehung eines Schwelbrandes zum Zeitpunkt to. Wie in zu Figuren 4 erläutert Reagiert das Messsignal S bzw. dessen Mittelwert erst zeitverzögert mit einem Anstieg. Figures 5a-d show an example of a time series analysis of the measurement signal S based on a rolling window. The measurement signal S in 5a is based, for example, on the formation of a smoldering fire at time to. As in to Figures 4 explains: The measurement signal S or its mean value only reacts with a time delay with an increase.

Figur 5b zeigt das trendbereinigte Messsignal S* für das Messsignal S aus Figur 5a. Dieses bildet nun im Wesentlichen eine Fluktuation um einen konstanten Wert, hier S=125. Die Zeitreihenanalyse wird für das trendbereinigte Messsignal S* durchgeführt. Hierzu wird das Verfahren des Rolling Window angewendet, wobei ein Analysezeitintervall als "Zeitfenster" zeitlich verschoben 11 wird. Ein erstes Analysezeitintervall A1 und ein zweites Analysezeitintervall A2 dargestellt sind. Die Analysezeitintervalle A1, A2 gleich lang ausgebildet und lediglich zeitlich versetzt. Zur weiteren Analyse wird das Analysezeitintervall A2 weiter zeitlich verschoben. Figure 5b shows the detrended measurement signal S* for the measurement signal S Figure 5a . This essentially forms a fluctuation around a constant value, here S=125. The time series analysis is carried out for the detrended measurement signal S*. For this purpose, the rolling window method is used, whereby an analysis time interval is shifted 11 in time as a “time window”. A first analysis time interval A 1 and a second analysis time interval A 2 are shown. The analysis time intervals A 1, A 2 are of the same length and only offset in time. For further analysis, the analysis time interval A 2 is further shifted in time.

Die Figuren 5c und 5d zeigen die Analyseparameter für die Zeitreihenanalyen, wobei Figur 5c die Analyseparameter α für das Analysezeitintervall A1 zeigt und Figur 5d die Analyseparameter αfür das Analysezeitintervall A2 zeigt. Der Analyseparameter a unterscheiden sich für die beiden Analysezeitintervalle A1, A2 signifikant, wobei z.B. wie in der schematischen Darstellung gezeigt, α = 0,56 für A1 und α = 0,68 für A2 ist. Basierend auf den Analyseparameter α bzw. der Zeitreihenanalyse ist eine Brandbestimmung bereits möglich, bevor der Mittelwert des Messsignals wie in Figur 5a einen Schwellwert X überschreitet.The Figures 5c and 5d show the analysis parameters for the time series analyses, where Figure 5c shows the analysis parameters α for the analysis time interval A 1 and Figure 5d shows the analysis parameters α for the analysis time interval A 2 . The analysis parameter a differs significantly for the two analysis time intervals A 1 , A 2 , where, for example, as shown in the schematic representation, α = 0.56 for A 1 and α = 0.68 for A 2 . Based on the analysis parameters α or the time series analysis, fire determination is already possible before the mean value of the measurement signal as in Figure 5a exceeds a threshold value X.

Claims (12)

  1. Method for fire detection using a fire detector (1),
    wherein the fire detector (1) comprises a sensor device for recording a measurement variable and for outputting a measurement signal (S), wherein the measurement signal (S) has fluctuations,
    wherein the method comprises the following steps:
    - recording the measurement signal (S) of the sensor device for an evaluation time interval,
    - carrying out a time series analysis for the measurement signal (S) in the evaluation time interval, wherein the measurement signal (S) is detrended before the time series analysis, wherein the time series analysis is carried out for the detrended measurement signal,
    - detecting a fire event on the basis of the time series analysis, wherein the time series analysis is designed as a fluctuation analysis, wherein the fluctuation analysis is designed to mathematically analyse the measurement signal and to determine and/or to quantify a long-term correlation,
    wherein the time series analysis comprises and/or forms a Hurst analysis and/or a detrended fluctuation analysis DFA or a multifractal detrended fluctuation analysis MF-DFA with a multifractal exponent α(q).
  2. Method according to Claim 1, characterized in that the measurement signal (S) has a dominant mean value component, a slow trend component and/or a quasi-periodic trend component.
  3. Method according to Claim 2, characterized in that the detrending is based on an empirical mode decomposition, a Hilbert-Huang transformation and/or a spline approximation.
  4. Method according to any of the preceding claims, characterized in that the time series analysis comprises a plurality of individual time series analyses, wherein the individual time series analyses are based on different statistical moments and/or are based on different degrees of a polynomial fit.
  5. Method according to any of the preceding claims, characterized in that at least one analysis parameter is determined by means of the time series analysis, wherein at least one of the analysis parameters describes a scale parameter •, wherein a distinction is drawn between fire and disturbance and/or between types of fire and/or types of disturbance on the basis of the scale parameter •.
  6. Method according to any of the preceding claims, characterized in that the measurement signal (S) of the sensor device is recorded for a plurality of evaluation time intervals (A1, A2), wherein the time series analysis is carried out for each of the measurement signals (S) of the evaluation time intervals (A1, A2), wherein the fire event is determined on the basis of a comparison of the plurality of time series analyses.
  7. Method according to Claim 6, characterized in that the plurality of evaluation time intervals (A1, A2) are based on a rolling window.
  8. Method according to any of the preceding claims, characterized in that a distinction between the types of fire: smouldering fire, open fire and/or deflagration is drawn on the basis of the time series analysis.
  9. Method according to any of the preceding claims, characterized in that an additional environment variable, in particular an air quality, is determined on the basis of the time series analysis.
  10. Fire detector (1) for detecting a fire event, a fire and/or smoke on the basis of a measurement variable and/or a measurement signal (S), wherein the fire detector (1) comprises a sensor device for recording the measurement variable and for outputting the measurement signal (S), wherein the measurement signal (S) has fluctuations, noise and/or dispersion, with an evaluation unit, wherein the evaluation unit is designed to carry out the method according to any of the preceding claims, wherein the evaluation unit is designed to record the measurement signal (S) for an evaluation time interval, to carry out a time series analysis of the measurement signal (S) in the evaluation time interval and to determine a fire event on the basis of the time series analysis.
  11. Computer program for execution on a computer and/or the fire detector (1) according to Claim 10, characterized in that the computer program is designed to carry out the steps of the method according to any of Claims 1 to 9 upon execution on the computer and/or the fire detector (1).
  12. Machine-readable storage medium, in particular nonvolatile machine-readable storage medium, on which the computer program according to Claim 11 is stored.
EP21167838.8A 2020-05-25 2021-04-12 Fire detector; fire detection method with fire detector, computer program and machine-readable storage medium Active EP3916692B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102020206454.7A DE102020206454A1 (en) 2020-05-25 2020-05-25 Method for fire detection with a fire alarm, fire alarm, computer program and machine-readable storage medium

Publications (2)

Publication Number Publication Date
EP3916692A1 EP3916692A1 (en) 2021-12-01
EP3916692B1 true EP3916692B1 (en) 2024-02-14

Family

ID=75477932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21167838.8A Active EP3916692B1 (en) 2020-05-25 2021-04-12 Fire detector; fire detection method with fire detector, computer program and machine-readable storage medium

Country Status (2)

Country Link
EP (1) EP3916692B1 (en)
DE (1) DE102020206454A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116092281B (en) * 2023-01-04 2024-09-03 秦皇岛泰和安科技有限公司 Calibration method, device, equipment and storage medium of bidirectional smoke detector
CN116778661B (en) * 2023-07-05 2024-06-07 深圳市华翌科技有限公司 Intelligent smoke sensing early warning method
CN119450260B (en) * 2025-01-11 2025-03-21 国网综合能源服务集团有限公司 High-rise building electrical fire hazard characteristic gas monitoring system, method and equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0777895B1 (en) * 1994-08-26 2003-10-08 Interlogix, Inc. Self-contained, self-adjusting smoke detector and method of operating it
US7142105B2 (en) * 2004-02-11 2006-11-28 Southwest Sciences Incorporated Fire alarm algorithm using smoke and gas sensors
DE102010041693B4 (en) 2010-09-30 2021-08-19 Robert Bosch Gmbh Method for checking the functionality of a photoelectric smoke alarm and smoke alarm for carrying out the method
CA3063741A1 (en) * 2017-05-31 2018-12-06 Eric V. Gonzales Smoke device and smoke detection circuit

Also Published As

Publication number Publication date
EP3916692A1 (en) 2021-12-01
DE102020206454A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
EP3916692B1 (en) Fire detector; fire detection method with fire detector, computer program and machine-readable storage medium
EP1022700B1 (en) Light scattering fire detector
EP3916691B1 (en) Method for detecting contamination of a fire detector, fire detector, computer program and machine readable storage medium
DE69821671T2 (en) Fire alarm systems
EP1389331B1 (en) Self-aspirating fire detection system
EP1630758A2 (en) Scattered light smoke detector
EP2305105B1 (en) Methods for the detection of a malfunction in a sensor for in-vivo analyte measurement
CZ20014105A3 (en) Method for the processing of the signal in a danger detector, and detector with means for the implementation of such method
WO2010003857A1 (en) Method for detection of gases by laser spectroscopy, and gas sensor
EP0878703A2 (en) Combined sensor for gas and particulate detection with operating method and applications
DE69006648T2 (en) Measuring device and method.
DE4301457A1 (en) Detector for flammable gases, especially methane
Huhtala et al. Chemometrics in Forensic Chemistry–Part III: Quality assessment and interpretation of chemometric output
DE4023649A1 (en) Procedure and equipment for detection of dangerous gases - uses radiation source and detectors to provide raw data which is compared with reference values
EP4339914A1 (en) Device and method for operating a smoke detector
DE102013208533A1 (en) fire alarm
DE102006058051B4 (en) Method for monitoring the concentration of a water constituent in an aqueous medium
EP0421100A1 (en) Procedure and equipment for recognizing dangerous conditions in a room
EP2048636B1 (en) Fire alarm
DE102009043080A1 (en) Method for detecting smoke and/or flame in aircraft, involves detecting real-time images of measuring chamber in operating mode of optical sensor, and optically presenting real-time images by display device
EP1985996A1 (en) Analytic system for photometric determination of an analyte in a body fluid using an analytic device and a test panel to be fitted to the analytic device
DE102011083117A1 (en) Fire detector with sensor field
EP2581890A1 (en) Method for decreasing the possibility of a fire alarm producing a false alarm
DE102023211640A1 (en) Method for verifying fire detection in a scene and evaluation device
WO2001035075A2 (en) Method for analyzing electromagnetic spectra by means of pattern recognition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

B565 Issuance of search results under rule 164(2) epc

Effective date: 20211006

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220601

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221017

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002657

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240514

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240614

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502021002657

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20240430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240412

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240414

26N No opposition filed

Effective date: 20241115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240414

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250624

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20250721

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20210412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20210412