EP3966162A1 - A process for recovering elemental phosphorus - Google Patents
A process for recovering elemental phosphorusInfo
- Publication number
- EP3966162A1 EP3966162A1 EP20724224.9A EP20724224A EP3966162A1 EP 3966162 A1 EP3966162 A1 EP 3966162A1 EP 20724224 A EP20724224 A EP 20724224A EP 3966162 A1 EP3966162 A1 EP 3966162A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosphorus
- reaction mixture
- process according
- reaction
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 239000011574 phosphorus Substances 0.000 title claims abstract description 78
- 229910052698 phosphorus Inorganic materials 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 49
- 230000008569 process Effects 0.000 title claims abstract description 47
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000002956 ash Substances 0.000 claims abstract description 44
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 38
- 239000011541 reaction mixture Substances 0.000 claims abstract description 38
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 27
- 235000021317 phosphate Nutrition 0.000 claims abstract description 26
- 239000010452 phosphate Substances 0.000 claims abstract description 19
- 235000002918 Fraxinus excelsior Nutrition 0.000 claims abstract description 18
- 239000010801 sewage sludge Substances 0.000 claims abstract description 14
- 238000011084 recovery Methods 0.000 claims abstract description 11
- 239000004411 aluminium Substances 0.000 claims abstract description 8
- 238000007133 aluminothermic reaction Methods 0.000 claims abstract description 6
- 238000001556 precipitation Methods 0.000 claims abstract description 3
- 238000006243 chemical reaction Methods 0.000 claims description 53
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 38
- 239000003638 chemical reducing agent Substances 0.000 claims description 24
- 239000002699 waste material Substances 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 19
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 16
- 239000002893 slag Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 7
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 7
- 229910001385 heavy metal Inorganic materials 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 239000000654 additive Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 239000010440 gypsum Substances 0.000 claims description 4
- 229910052602 gypsum Inorganic materials 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 210000003608 fece Anatomy 0.000 claims description 3
- 239000010881 fly ash Substances 0.000 claims description 3
- 239000010871 livestock manure Substances 0.000 claims description 3
- 238000002203 pretreatment Methods 0.000 claims description 3
- 210000002700 urine Anatomy 0.000 claims description 3
- 239000010425 asbestos Substances 0.000 claims description 2
- 210000000988 bone and bone Anatomy 0.000 claims description 2
- 229910052895 riebeckite Inorganic materials 0.000 claims description 2
- -1 rust Chemical compound 0.000 claims description 2
- 239000010802 sludge Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 claims 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 230000009467 reduction Effects 0.000 abstract description 5
- 239000002374 bone meal Substances 0.000 abstract description 4
- 229940036811 bone meal Drugs 0.000 abstract description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 abstract 2
- 239000000203 mixture Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 241000894007 species Species 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- 230000002459 sustained effect Effects 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- CKMXBZGNNVIXHC-UHFFFAOYSA-L ammonium magnesium phosphate hexahydrate Chemical compound [NH4+].O.O.O.O.O.O.[Mg+2].[O-]P([O-])([O-])=O CKMXBZGNNVIXHC-UHFFFAOYSA-L 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052567 struvite Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 235000019735 Meat-and-bone meal Nutrition 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- RIRXDDRGHVUXNJ-UHFFFAOYSA-N [Cu].[P] Chemical compound [Cu].[P] RIRXDDRGHVUXNJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 235000013980 iron oxide Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- JRBRVDCKNXZZGH-UHFFFAOYSA-N alumane;copper Chemical compound [AlH3].[Cu] JRBRVDCKNXZZGH-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910000413 arsenic oxide Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006052 feed supplement Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010814 metallic waste Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 239000002367 phosphate rock Substances 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/02—Preparation of phosphorus
Definitions
- the present invention relates to a process for recovery of elemental phosphorus from a phosphate-containing compound.
- Phosphorus is an exhaustible resource that is irreplaceable as a nutrient in agriculture. Many fertilizers contain phosphorus compounds to provide auxiliary nutrition for crop that is being cultivated. Many other applications require phosphorus in its elemental form. Elemental phosphorus has several allotropes that exhibit strikingly diverse properties. The two most common allotropes are white phosphorus and red phosphorus. Due to their reactivity with air (oxygen) these allotropes do not occur in nature in an unbound state. The most common prevalence of phosphorus is in the form of phosphorus minerals. These minerals are extracted in large quantities in countries such as Russia, Morocco and the United States. Pure phosphorus is recovered from phosphorus containing minerals by heating in the presence of carbon and silica.
- Russian patent application RU 2.329.316 describes a process for the recovery of phosphorus.
- apatite or phosphorite is taken as source of phosphorus.
- These minerals are milled to a fine powder of 315 micron particle size and mixed with copper-aluminum alloy powder of similar particle size. This mixture is then heated to between 1580 and 1620 °C to obtain phosphorus-copper alloy with of the order of 14 wt.% phosphorus content.
- Phosphorus is listed as a critical material by the European Union.
- the copper-phosphorus alloy that is obtained with this Russian process requires further processing to extract pure phosphorus.
- An ideal recovery process for obtaining phosphorus should meet the following requirements:
- a process of the type as described in the opening paragraph, according to the invention is characterized in that a reaction mixture is formed from a
- phosphate-containing waste or residual material particularly incineration ash
- a reducing agent that is capable and adapted to reduce phosphate to elemental phosphorus
- said reducing agent comprises metallic aluminum
- said reaction mixture is subjected to an alumino-thermic reaction at elevated temperature, wherein said aluminium is in an at least substantially molten state to reduce phosphates in said reaction mixture to elemental phosphorus , wherein phosphorus escapes from said reaction mixture in vapour form, and wherein elemental phosphorus is recovered by precipitation.
- phosphorus is accumulated as phosphates for instance in sewage sludge (containing in order of the up to 30% P205) and bone meal (containing in the order of about 40% P205).
- These waste streams contain the most of phosphorus of all European consumption.
- the direct application of these waste streams as a fertilizer or animal feed supplements is controversial, because of a risk of disease or the spreading of contaminants, such as heavy metals, in the soil and water systems.
- the phosphate in sewage sludge or in a incineration residue thereof is partly present as iron or aluminum phosphate. This has an extremely low plant availability.
- Recycled (recovered) phosphorus fits very well in a sustainable profile of manufactures in the phosphorus industry.
- the present invention makes it possible to recover such phosphorus from waste material on an economic viable scale.
- a preferred embodiment of the process according to the invention is characterized in that said incineration ash was obtained by burning a residual material from a waste stream, said waste stream comprising bones, sludge, in particular sewage sludge, urine and manure. If elemental phosphorus is recovered from such a secondary source, it can be purified of contaminants and will become indistinguishable from phosphorus from primary sources. Therefore, it is expected to be marketable with less effort, as it is a valuable and flexible chemical.
- Such waste streams may contain a significant amount of iron compounds (mainly oxides and phosphates).
- iron compounds mainly oxides and phosphates.
- the present invention makes use of this iron content in sewage sludge.
- the main constituents in sewage sludge, the oxidised iron and all phosphates are reduced by aluminum.
- the exothermic alumino-thermic reaction provides for the energy needed to obtain and maintain sufficiently high temperatures to sustain the reaction.
- the non-phosphorus reaction products are in the liquid state and the formation of iron phosphides is unfavourable at the temperature reached.
- the reduction of phosphate to elemental phosphorus involves a vast quantity of energy.
- the aluminum used in the process according to the invention is being used both as an energy carrier and as a reduction medium. After ignition, the aluminum reduces the oxides of phosphorus and any iron or sulfur, if present.
- an aluminum content of at least 90% is being used for the reducing agent.
- Preheating in addition to the heat of reaction provides for a sustained and controllable alumino-thermic reaction in which elemental phosphorus is released, vented from the reaction vessel and collected, particularly in a wet condenser.
- the condensed product is white phosphorus.
- the other reaction products from the process are elemental iron and slag, which finds its way as a constructing material. This is another major advantage of the process.
- a further preferred embodiment of the process according to the invention is characterized in that aluminum waste scrap is used for said reducing agent.
- the main components of the reaction mixture i.e. both the phosphate compound and the reducing agent, may be retrieved from residual, waste streams which increases the profitability of the process considerably.
- FIG. 1 shows a basic flowchart of an explanatory example of the process according to the invention.
- Figure 2 shows a schematic setup of a device for carrying out the process according to the invention.
- FIG 1 gives a schematic overview of a specific example of carrying out the process according to the invention.
- the process may for instance be carried out using the equipment that is depicted in figure 2.
- the installation comprises a reaction vessel comprising a graphite crucible 1 that is lined at the outside with an alumina liner 15.
- the crucible 1 is covered with a gas sealed stainless steel lid 2 having cooling fins (not shown).
- the lid 2 has a number of connections: an argon gas purge 3 of sufficient capacity to flush the inner system; a phosphorus gas vent 4 leading to a direct contact phosphorus condenser operating at for instance the order of 50°C; a central ceramic dosing pipe 5 which extends to the top of the crucible 1; and a full bore ball valve 6.
- the valve 6 is used to add a grain of an easily ignitable mixture, for instance potassium nitrate/aluminium in a binder, in case the reaction mixture does not ignite spontaneously in the crucible 1.
- a stainless steel dosing vessel 7 is fitted on the dosing pipe 5 with a rotating sluice valve 8 in between.
- the vessel is equipped with a rotating spiral wall scraper 10 to keep the content free-flowing and is situated in a tube furnace 9 which has a regulated temperature.
- the dosing vessel 7 may be purged with argon via an inlet 11 that is provided at the top of the vessel 7.
- the lower third of the crucible 1 is thermally shielded 12 and provided with an induction heater 13.
- the lid 2 is kept at max 650°C by regulated air draught.
- Metallic aluminum is used as a reducing agent for the recovery of phosphorus from a residual (waste) material.
- sewage sludge is taken as a source of phosphorus.
- the reaction is an exothermic alumino-thermic process: the reducing agent (mainly aluminum metal) is mixed with a phosphate containing compound. After ignition, the aluminum reduces the oxides of phosphorus , iron and sulfur.
- Preheating in addition to the heat of reaction provides for a sustained and controllable reaction in which elemental phosphorus is released, vented from the reaction vessel and collected in a wet condenser.
- the condensed product is white phosphorus , which still has to be purified.
- Other products are slag and iron. These can be separated by their differences in density as they are in their liquid state.
- Fe203 any oxidised form of iron, including lower oxidised iron such as Fe 3 0 4 and FeO;
- any sulfate containing species e.g. calcium sulfate (gypsum)
- CaS0 4 CaO.S03
- the primary phosphorus source for the process is a phosphate containing residual material, i.e. a waste stream, like meat and bone meal, sewage sludge, thermally dried urine and/or human or animal manure.
- This primary source material is subjected to a combustion treatment to obtain an incineration ash as that is still high in phosphate.
- Other or further similar secondary sources of phosphorus may be:
- calcinated salts from sewage de-phosphorisation such as struvite (magnesium and potassium types), iron and aluminum phosphates and calcium phosphate;
- calcinated phosphates containing waste such as precipitated contaminated phosphoric acid and organic or mineral phosphate wastes from industry .
- the reaction mixture may contain further additives, to render the process economically more beneficial or to obtain a physically and a chemically optimal mixture and a controlled reaction.
- Such further additives may comprise booster ashes that are high in Fe203 or high in S03 (e.g., iron oxide, heavy metal waste ash and/or calcinated gypsum) and/or fluxing agents (e.g. asbestos and fly-ashes). It is favourable to use waste streams as additives. In the process, these will be up- cycled as well.
- the main reducing agent for the process is aluminum metal, pure or alloyed. This aluminum is used as a chemical, rather than as a metal. Other reducing agents might be magnesium, silicium, titanium, and calcium. These are restricted to small amounts compared to aluminum, since aluminum has the most convenient fusion and boiling temperatures and is widely and sufficiently available. In practice the reducing agent will consist of at least 90% of aluminum.
- the aluminum metal and its alloys are preferably scrap or aluminum waste.
- the aluminum scrap is either withdrawn from the recycling route or, preferably, withdrawn from incineration of municipal waste.
- the quality of the aluminum is not as important as recycling to aluminum metal requires. Thus, some purification steps can be omitted and even contaminated scrap can be used.
- Waste magnesium, silicium, calcium and titanium can partly substitute the amount of aluminum required for reduction. Silicium and titanium are applied in fine dust form. Newly produced aluminum could be a possible replacement for scrap, but this would be more expensive while scrap is readily available.
- the reducing agent should be free of foreign objects that may be separated by magnetism and/or gravity after shredding and melting respectively. Also fouling, such as sand or organics, is preferably removed, for instance by washing with water and drying. Surface related substances such as paint, glue, plastic layers, oil may be removed by pyrolysis or heating.
- Carbon from pyrolyzed substances and dross may be retained within the liquified metal.
- a mixture of different reducing agents can be composed and melted into a liquid alloy, but the aluminum content is preferably more than 90%.
- the ashes may undergo a treatment to increase phosphate content, making it possible to mix ashes with low phosphorus content, to decreases volatile matter (halogenides, zinc, alkali metal), to minimize fouling of the reactor equipment; and/or to decrease the sulfate content to make the ash less reactive.
- This pre-treatment will decrease the thermal burden of the reaction mixture by eliminating some soluble non-reactive compounds. Through this effect, the specific enthalpy of the mixture is increased. After this pre-treatment, the ash is dried and calcinated prior to further processing.
- Any struvite is calcinated to pyrophosphate.
- Other ashes containing water, ammonia, or organics, are calcinated as well.
- Calcination temperature for all ashes averages 700°C.
- Char containing ashes can provide calcination energy by feeding a limited quantity of air into the hot biochar. This achieves temperatures considerably higher than 700°C.
- all ashes are milled to the a proper particle size and sieved.
- the required enthalpy of the mixture depends on the heat loss during reaction.
- the enthalpy stated above applies to an adiabatic reaction.
- aluminum is likely to be the most expensive agent in the reaction mixture, it should not reduce silicium oxide and oxides of metals less noble than iron, since the heat of reaction is inferior and the use of aluminum is less efficient.
- Different ashes can be mixed to obtain a suitable slag composition. This composition determines the fusion (liquidus) temperature of the slag, which is preferably a couple hundred degrees centigrade below the adiabatic reaction temperature.
- An optimal mixture contains a minimum amount of aluminum per unit of phosphorus .
- the phosphorus yield should justify the aluminum input. Therefore, ashes with low phosphorus content will not be suitable for recovery unless compensated by mixing these with ashes with a high phosphorus content.
- a reaction mixture is prepared from sewage sludge incineration fly ash and aluminium powder.
- An XRF analysis of the ash is given in table 1.
- the stoichiometric aluminium demand to reduce P205, Fe203 and S03 is 240 grams/kg ash.
- the enthalpy of reaction is calculated at 1860 kJ/kg mixture. This relatively high value allows a moderate preheating temperature.
- the ash is preheated in a furnace at 450°C. From the stoichiometric reaction mixture and the ash preheating temperature, the adiabatic reaction temperature is calculated at 1950°C and the calculated slag fusion temperature, based on CaO, Si0 2 , Al 2 0 3 and MgO, is calculated at 1660°C.
- the ash is milled until all ash, aside from some little stones, can be screened at 0.5 mm.
- the ashes and reducing agent are then mixed, e.g. by a ball mill, in a low oxygen atmosphere or vacuum, at a temperature where the reducing agent is softened or just melted.
- the mixing of aluminum with the other reaction components can be done without risk because the temperature margin to auto-ignition is minimally 400°C, which can be tested before each batch is made, and the balls in the mill act as a thermal inertia. This prevents an unintentionally initiated reaction because the specific enthalpy of the total mass is lowered due to the presence of the balls.
- separately produced aluminum powder can be mixed with the ashes. In both cases the reducing agent is then dispersed into the ash as fine particles.
- the alumino-thermic mixture is ready for reaction when it is homogeneous.
- the bottom of the crucible Prior to the preparation of the reaction mixture, the bottom of the crucible is heated to 1700°C and the tube furnace is at set temperature of 600°C.
- Approximately 240 grams of aluminium powder is added per 1000 grams of preheated ash and is mixed by stirring and by rotating the ash container.
- the obtained reaction mixture is stored into the dosing vessel 7.
- the rotating dosing sluice 8 is switched on to introduce the mixture in the thermally insulated reaction vessel 1.
- the induction heating 13 is switched off.
- the reaction mixture charge is dosed steadily while the reaction is maintained and the slag and iron levels in the crucible rise.
- the phosphorus gas stream entraining some dust, is liquified in a condenser (not shown) connected to the outlet 4.
- the process terminates when the dosing vessel 7 is empty and the reaction has ended.
- the crucible is allowed to cool down naturally and the solidified slag is analysed.
- the iron phase (ferrophosphorus) appears to contain 16% phosphorus and the calculated phosphorus recovery efficiency is 74%.
- the total enthalpy prior to the reaction consisting of the heat of reaction and the preheating energy should be within a range of roughly 2000-2200 kJ/kg.
- the reaction mixture has an enthalpy of approximately 2100 kJ/kg.
- the heat of reaction is determined by the amount of P205, Fe203 and S03. This is adjusted to approximately 1500 kJ/kg by composing a proper reaction mixture. The remainder of the heat required, is supplied as sensible heat. This enthalpy is already present during the dispersion of the reducing agent. Thus, preheating lowers the consumption of aluminum, which is a prerequisite for a profitable process.
- the heat of reaction is exothermic and is calculated from the standard heat of formation of the appropriate species.
- reaction can be assisted by a heat supply in the reaction zone through electric arc or by induction. Both the reactants and the products contain elemental metals, so induction is possible without adaptations.
- a third heat assistance is the minimizing of heat loss in the reaction zone by a heated jacket. The latter two thermodynamic measures shift the reaction to a higher phosphorus yield and lower viscosity of the slag.
- reaction vessel 1 crucible
- inert argon atmosphere The reaction is carried out in the reaction vessel 1 (crucible) at an inert argon atmosphere and comprises the following three stages:
- the reaction mixture is ignited by an electric arc or by addition of a small quantity of ignition mixture to the preheated reaction mixture, such as potassium nitrate/aluminum;
- the process according to the invention may also be in the form of a continuous process. In that event the reaction mixture is fed to the reaction zone in accordance with the reaction rate. Any liquid reaction products are withdrawn from the reactor periodically or continuously. The propagation phase is then extended to the desired time.
- the process provides for a sustained and controllable alumino-thermic reaction in which elemental phosphorus is released.
- the form of phosphorus in the reaction zone can be mono phosphorus (P) and di-phosphorus (P 2 ). These recombine at lower temperatures to normal phosphorus gas (P 4 ). This is vented from the reaction vessel to a condenser where it is condensed and extracted for further processing.
- the condensed product is white phosphorus .
- the other reaction products from the process are ferro-phosphorus and slag.
- a significant efficiency of phosphorus recovery is reached by the above process without real difficulty and without special provisions for ashes that are detailed in table 1.
- the phosphorus yield can be optimised by increasing the reaction temperature.
- Iron and most heavy metals present in the ashes are reduced to their elemental state and are separated from the remaining slag.
- Heavy metals and arsenic oxides may be reduced to their elemental state or remain present as oxides. Then the species may be evaporated, dissolved in the liquid iron, or remain in the slag. Evaporated metals (zinc, cadmium etc.) can subsequently be separated as dust from the phosphorus gas by fractionated cooling.
- the present invention provides a solution for phosphorus recovery from contaminated (e.g. heavy metals) and problematic (low plant availability of phosphate) waste streams.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Treatment Of Sludge (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NL2023083A NL2023083B1 (en) | 2019-05-07 | 2019-05-07 | A process for recovering elemental phosphorus |
| PCT/IB2020/054314 WO2020225760A1 (en) | 2019-05-07 | 2020-05-07 | A process for recovering elemental phosphorus |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3966162A1 true EP3966162A1 (en) | 2022-03-16 |
Family
ID=66476796
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20724224.9A Pending EP3966162A1 (en) | 2019-05-07 | 2020-05-07 | A process for recovering elemental phosphorus |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP3966162A1 (en) |
| NL (1) | NL2023083B1 (en) |
| WO (1) | WO2020225760A1 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT524546B1 (en) * | 2021-04-01 | 2022-07-15 | Radmat Ag | Process for the reductive production of elemental phosphorus from phosphoric acid |
| EP4323309B1 (en) * | 2021-04-14 | 2025-03-19 | Radmat AG | Method for separating elemental phosphorus from iron oxide-containing and phosphate-containing substances |
| CN117305854B (en) * | 2023-11-30 | 2024-02-23 | 常熟理工学院 | A method for recovering elemental phosphorus from soil containing organophosphorus pesticides using waste incineration fly ash |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6207024B1 (en) * | 1999-10-04 | 2001-03-27 | Astaris Llc | Method of preparing phosphorus |
| JP2006001819A (en) * | 2004-06-21 | 2006-01-05 | Tokyo Metropolis | Phosphate fertilizer manufacturing method and incinerator using incinerated ash |
| RU2329316C2 (en) * | 2006-07-24 | 2008-07-20 | Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук | Method of production of alloy of copper with phosphorus |
| AT509593B1 (en) * | 2010-11-15 | 2011-10-15 | Sgl Carbon Se | METHOD FOR REPROCESSING ORGANIC WASTE MATERIALS |
-
2019
- 2019-05-07 NL NL2023083A patent/NL2023083B1/en active
-
2020
- 2020-05-07 EP EP20724224.9A patent/EP3966162A1/en active Pending
- 2020-05-07 WO PCT/IB2020/054314 patent/WO2020225760A1/en not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| WO2020225760A1 (en) | 2020-11-12 |
| NL2023083B1 (en) | 2020-11-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3966162A1 (en) | A process for recovering elemental phosphorus | |
| KR20210108966A (en) | Lithium Chemicals and Manufacturing of Metallic Lithium | |
| JP7644883B2 (en) | Method for producing phosphorus compounds | |
| US20230174379A1 (en) | Process and device for recovering phosphorus from sewage sludge | |
| CN105217589B (en) | The power-economizing method of yellow phosphorus coproduction sylvite, sodium carbonate and aluminum oxide | |
| US4756748A (en) | Processes for the smelting reduction of smeltable materials | |
| JP2000169269A (en) | Production of molten and solidified material of sludge | |
| US20040067187A1 (en) | Process for upgrading raw phosphate ore | |
| GB2048310A (en) | Carbothermic production of aluminium | |
| JP6099737B2 (en) | Process and plant for separating heavy metals from phosphorus-containing starting materials | |
| US3340044A (en) | Furnace reduction of pelletized ferriferous materials | |
| CN105217588B (en) | Yellow phosphorus coproduction sylvite, aluminum oxide, molecular sieve, the circulation clean production method of slag cements and architectural shape | |
| JPH03191031A (en) | Manufacture of zinc by reduction with iron compound | |
| US2860037A (en) | Process for production of calcium carbide and phosphorus | |
| US6051201A (en) | Preparation of phosphatic feedstock from phosphorus-containing waste | |
| US9199878B2 (en) | Process for manufacturing phosphorous trichloride, phosphorous pentachloride and cement | |
| AU632650B2 (en) | Conversion of zinc sulphide to zinc | |
| RU2477820C1 (en) | Treatment method of waste lining from electrolytic molten aluminium | |
| US1377554A (en) | Jacob e | |
| JPS61194125A (en) | Simultaneous treatment of sludge and steel making slag | |
| US20200048092A1 (en) | Process for recovering phosphorous from phosphoritic materials | |
| CN120903456A (en) | Method for producing calcium/magnesium metaphosphate and pig iron by utilizing ferrophosphorus | |
| US3383167A (en) | Manufacture of magnesium phosphate by reaction of rock phosphate with magnesium sulfate | |
| Waggaman et al. | Investigations of the Manufacture of Phosphoric Acid by the Volatilization Process | |
| RU2532713C1 (en) | Metallic iron obtaining method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20211207 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20221019 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230605 |