[go: up one dir, main page]

EP3957397A1 - Dispositif microfabriqué, système et procédé comprenant un tel système - Google Patents

Dispositif microfabriqué, système et procédé comprenant un tel système Download PDF

Info

Publication number
EP3957397A1
EP3957397A1 EP20192017.0A EP20192017A EP3957397A1 EP 3957397 A1 EP3957397 A1 EP 3957397A1 EP 20192017 A EP20192017 A EP 20192017A EP 3957397 A1 EP3957397 A1 EP 3957397A1
Authority
EP
European Patent Office
Prior art keywords
channel
valve
feeding
node
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20192017.0A
Other languages
German (de)
English (en)
Inventor
Hans KLEINE-BRÜGGENEY
Robert Weingarten
Sebastian Bühren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evorion Biotechnologies GmbH
Original Assignee
Evorion Biotechnologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evorion Biotechnologies GmbH filed Critical Evorion Biotechnologies GmbH
Priority to EP20192017.0A priority Critical patent/EP3957397A1/fr
Priority to PCT/EP2021/073176 priority patent/WO2022038277A1/fr
Priority to EP21769358.9A priority patent/EP4200075A1/fr
Publication of EP3957397A1 publication Critical patent/EP3957397A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Definitions

  • the invention refers to a device comprising an inlet channel, outlet channel, first channel having a hydrodynamic resistance R1, second channel having a hydrodynamic resistance R2, third channel having a hydrodynamic resistance R3, fourth channel having a hydrodynamic resistance R4, intermediate channel having a hydrodynamic resistance R0 and a positioner for positioning an object within the intermediate channel, the positioner preferably comprising a narrowing of the cross section of the intermediate channel; the device further comprising an inlet node, outlet node, first intermediate node and second intermediate node; wherein the inlet channel, second channel and fourth channel are interconnected via the inlet node, the outlet channel, first channel and third channel are interconnected via the outlet node, the first channel, second channel and intermediate channel are interconnected via the first intermediate node and the third channel, fourth channel and intermediate channel are interconnected via the second intermediate node; the device further comprising a first valve arranged at the second channel and configured to be actuated in order to control the flow rate through the second channel. Furthermore, the invention refers to a system comprising at least two
  • Such a device is known from WO 2019 048 713 A1 .
  • it has the purpose to treat and transport an object like a cell or particle through the device by means of a fluid.
  • the device according to WO 2019 048 713 A1 uses a second valve arranged at the third channel to control the flow rate through the third channel and furthermore the channels have different resistances.
  • the first channel has a higher resistance than the third channel and the fourth channel has a higher resistance than the second channel.
  • different resistances i.e. value of resistance
  • usually the size of cross-section is limited by the size of objects intended for transport through the channels.
  • the technical problem is to provide a device which allows controlling the fluid flow and fluid direction through the intermediate channel and additionally requires less space.
  • the basic idea of the invention is to provide a second valve which is arranged at the fourth channel and configured to be actuated in order to control the flow rate through the fourth channel.
  • the channels might have the same (small) size or at least the difference between the sizes is smaller than that of the prior art.
  • this advantage has an effect on the system according to the invention since it comprises at least two and preferably several such devices. This leads to a system which can comprise more devices on the same footprint compared to the known system. This means that the device density is higher. Furthermore, the higher the number of devices is, the higher the space-saving is. This significantly increases the number of objects that can be analyzed with such a system.
  • the device is configured in such a way that by actuating the first and/or second valve, the flow rate and flow direction of a fluid flowing through the intermediate channel can be controlled.
  • the term "to actuate a valve” means that the valve is operated.
  • the actuation of the valve includes the opening and closing of the valve.
  • actuation means closing the valve.
  • the device is microfabricated.
  • the dimensions of the device and its components like the channels and valves have a size of up to 5000, 1000, 500, 100, 80, 50, 10, 1, 0,01 ⁇ m.
  • the first (second) valve is arranged at the second (fourth) channel and configured to be actuated in order to control the flow rate through the second (fourth) channel.
  • the flow rate is controlled by adjusting the cross-section of the channel, preferably the cross-section at the location of the valve.
  • the term "flow rate" also comprises the case in which there is no flow through the channel. In this case the valve is completely closed and the flow rate is zero.
  • the device is configured in such a way that by providing a pressure difference between inlet channel and outlet channel, a fluid being within the device can flow.
  • a pressure at the inlet channel is higher than the pressure at the outlet channel.
  • a fluid might be a gas or a liquid.
  • the term “closed” means that the valve is at least partially closed, in particular completely closed.
  • the term “opened” means that the valve is at least partially opened, in particular completely opened.
  • the term “partially opened” means that the valve is more opened than closed.
  • the cross-section size of the channel is closer to the cross-section size of the channel when the valve is completely opened than when the valve is completely closed.
  • the term “partially closed” means that the valve is more closed than opened.
  • the cross-section size of the channel is closer to the cross-section size of the channel when the valve is completely closed than when the valve is completely opened.
  • a valve is arranged at an appropriate channel could for example mean that the valve is arranged outside the channel.
  • the valve could generate a pressure on the channel wall thereby decreasing its cross-section.
  • Such valve and its functioning is described in WO 2019 048 713 A1 , in particular in claims 1 to 37. Such valve is herewith incorporated into the present application.
  • the circumstance that channels are interconnected via a node means that the channels are in fluid communication with each other.
  • the node is a branch node and in a certain way similar to a node in an electrical circuit.
  • the sum of the fluids flowing into the node is equal to the sum of the fluids flowing out of the node.
  • the positioner is for positioning an object within the intermediate channel.
  • the positioner comprises a narrowing of the cross-section of the intermediate channel wherein the narrowing is preferably arranged between two sections of the intermediate channel comprising a wider cross-section. This enables an object which flows with the fluid into the intermediate channel to be positioned (i.e. trapped) by the narrowing.
  • the positioner comprises a widening of the cross-section of the intermediate channel wherein the widening is preferably arranged between two sections of the intermediate channel comprising a narrower cross-section. This enables an elastic object with a larger cross-section as the wider cross-sections to be squeezed through the wider cross-sections by means of the fluid.
  • the elastic object can be positioned within the widening when it reaches the widening comprising a larger cross-section than the object. For example, this can be realized by providing a stop within the widening or by decreasing the fluid pressure when the object reaches the widening.
  • the positioning function is fulfilled by the intermediate channel itself without an additional structure.
  • the intermediate channel might be of constant cross-section and the positioning of an elastic object with a wider cross-section that the one of the intermediate channel can be realized by squeezing the object into the channel and controlling the fluid pressure in order to move or stop the squeezed object.
  • the object which can be positioned by a positioner is a matrix, preferably a hydrogel matrix.
  • the matrices disclosed herein are preferably spherical, e.g. spherical hydrogel matrices but other forms may also be applied.
  • the object comprises a matrix formed using droplet microfluidics.
  • a flow focusing geometry can be used for the generation of highly monodisperse droplets having a spherical shape. If the droplet diameter is larger than the width/height of the microfluidic channel in which the hydrogel formation may occur, formed matrices have a plug-like shape.
  • matrices may be formed by conventional pipetting.
  • matrix solutions comprising monomers, pre-polymers, precursors, polymer and/or building blocks for gelation/polymerization/curing reactions may be pipetted on a 2D surface resulting in the formation of a droplet having the shape of a spherical segment and/or a hemispherical shape. The shape depends on the surface tension between the droplet and the surrounding surfaces and may be adjusted by changing the surface characteristics.
  • matrix solutions comprising monomers, pre-polymers, precursors, polymer and/or building blocks for gelation/polymerization/curing reactions may be pipetted into a geometry having a pre-defined shape (e.g. a cylindrical geometry).
  • matrices may assume the shape of the container containing the matrix solution during matrix formation.
  • the object has a diameter of ⁇ 1000 ⁇ m, such as ⁇ 800 ⁇ m, ⁇ 600 ⁇ m or ⁇ 400 ⁇ m, preferably ⁇ 200 ⁇ m, such as 5 ⁇ m to 150 ⁇ m.
  • the object comprises a hydrogel matrix, which may be formed upon the gelation/polymerization/curing of a monomer, pre-polymer, precursor, polymer and/or building block.
  • the object preferably having a spherical shape, comprises a hydrogel, a polymer or pre-polymer which is selected from the group comprising polyacrylamide, poly(lactic acid) (PLA), polyglycolide (PGA), copolymers of PLA and PGA (PLGA), poly(vinyl alcohol) (PVA), polyethylene glycol) (PEG), poly(ethylene oxide), poly(ethylene oxide)-co-poly(propylene oxide) block copolymers (poloxamers, meroxapols), poloxamines, polyanhydrides, polyorthoesters, poly(hydroxyl acids), polydioxanones, polycarbonates, polyaminocarbonates, poly(vinyl pyrrolidone), poly(ethyl oxazoline),
  • the monomers can be selected from polyactic acid) (PLA), poly(vinyl alcohol) (PVA), polyethylene glycol (PEG) and polyoxazoline (POx).
  • PVA polyactic acid
  • PVA poly(vinyl alcohol)
  • PEG polyethylene glycol
  • POx polyoxazoline
  • the object preferably comprises matrix which may comprise polymers and/or precursor molecule, preferably in a predominantly crosslinked form, which have been disclosed in PCT/EP2018/074527 , in particular, polymers and/or precursor molecules disclosed in claims 101 to 155, which are herein incorporated by reference.
  • the object comprises a hydrogel.
  • the hydrogel may be a hydrogel as disclosed in PCT/EP2018/074527 , in particular, hydrogels as disclosed in claims 1 to 51 and 72, which are herein incorporated by reference.
  • PCT/EP2018/074527 further discloses methods for producing a hydrogel in claims 52 to 71, which are herein incorporated by reference.
  • a kit for producing a hydrogel is disclosed in PCT/EP2018/074527 in claims 99 and 100, which are also herein incorporated by reference.
  • the object comprises a hydrogel matrix comprising one or more selected from the group consisting of a virus particle, a vesicle, such as an exosome or an apoptotic vesicle, a cell, such as prokaryotic cell, e.g. bacteria, or a eukaryotic cell and/or a combination thereof.
  • the hydrogel matrix may contain one or more types and/or sizes of compounds of said group.
  • the hydrogel matrix may comprise a cell, such as a eukaryotic cell and a virus.
  • the hydrogel matrix may comprise a vesicle and a cell.
  • the object comprises at least one cell.
  • the object is a cell.
  • the object comprises a hydrogel matrix comprising at least one cell, also referred to as cell-laden hydrogel matrix.
  • the object comprises a hydrogel matrix that provides a three-dimensional environment to the at least one cell, wherein preferably the matrix is at least 5 ⁇ m and ⁇ 200 ⁇ m in diameter.
  • the object comprises a hydrogel matrix, preferably having a spherical shape, comprising more than one cell.
  • the hydrogel matrix comprises a colony of cells.
  • a colony of cells can be located inside the three-dimensional matrix.
  • the cell number changes throughout performing the method. For instance, the cell number increases over the course of cultivation, decreases over the course of cultivation or remains constant over the course of cultivation.
  • a colony of cells may be formed by proliferation of one or more cells, wherein preferably cells proliferate inside the three-dimensional matrix.
  • the hydrogel matrix comprises at least two different types of cells that interact.
  • the hydrogel matrix may comprise two different types of cells that interact.
  • the at least one cell may be selected from a prokaryotic and/or an eukaryotic cell.
  • the at least one cell may be selected from the groups consisting of bacteria, archaea, plants, animals, fungi, slime moulds, protozoa, and algae.
  • the at least one cell may be selected from animal cells, preferably human cells.
  • the at least one cell may be selected from cell culture cell lines.
  • the at least one cells may be selected from the group consisting of stem cells, bone cells, blood cells, muscle cells, fat cells, skin cells, nerve cells, endothelial cells, sex cells, pancreatic cells, and cancer cells.
  • the at least one cell may be derived from cells of the nervous system, the immune system, the urinary system, the respiratory system, the hepatopancreatic-biliary system, the gastrointestinal system, the skin system, the cardiovascular system, developmental biology (including stem cells), pediatrics, organoids, and model organisms.
  • the at least one cell may be derived from one or more of blood and immune system cells, including erythrocytes, megakaryocytes, platelets, monocytes, connective tissue macrophages, epidermal Langerhans cells, osteoclast (in bone), dendritic cells, microglial cells, neutrophil granulocytes, eosinophil granulocytes, basophil granulocytes, hybridoma cells, mast cells, helper T cells, suppressor T cells, cytotoxic T cells, natural killer T cells, B cells, natural killer cells, reticulocytes, hematopoietic stem cells, and committed progenitors for the blood and immune system.
  • blood and immune system cells including erythrocytes, megakaryocytes, platelets, monocytes, connective tissue macrophages, epidermal Langerhans cells, osteoclast (in bone), dendritic cells, microglial cells, neutrophil granulocytes, eosinophil granulocytes, bas
  • the second (forth) channel is connected to the inlet node with his first end and connected to the first (second) intermediate node with his second end.
  • the first (third) channel is connected to the first (second) intermediate node with his first end and connected to the outlet node with his second end.
  • the intermediate channel is connected to the first intermediate node with his first end and connected to the second intermediate node with his second end.
  • the resistances, channels and valves are configured in such a way that no fluid can flow through the intermediate channel if the valves are opened.
  • the resistances, channels and valves are configured in such a way that a fluid can flow through the intermediate channel from the first intermediate node to the second intermediate node if the valves are opened. Thereby, the fluid flows mainly from the second channel to the third channel via the intermediate channel.
  • the resistances, channels and valves are configured in such a way that a fluid can flow through the intermediate channel from the first intermediate node to the second intermediate node if the first valve is opened and the second valve is closed. Thereby, the fluid flows mainly from the second channel to the third channel via the intermediate channel.
  • the resistances, channels and valves are configured in such a way that a fluid can flow through the intermediate channel from the second intermediate node to the first intermediate node if the second valve is opened and the first valve is closed. Thereby, the fluid flows mainly from the fourth channel to the first channel via the intermediate channel. This fluid flow allows releasing an object, which entered the intermediate channel form the first intermediate node and is trapped within the positioner, from the positioner and transport it by the fluid flow to the outlet channel via the first channel.
  • the resistances, channels and valves are configured in such a way that no fluid can flow through the intermediate channel if the valves are completely closed.
  • R1 and R3 are equal or deviate from each other by at most 5%. Additionally, or alternatively, R2 and R4 are equal or deviate from each other by at most 5%. In a preferred embodiment R1, R2, R3 and R4 are equal or at least deviate from each other by at most 5%.
  • first channel and the third channel have the equal geometry. Additionally or alternatively the second channel and the fourth channel have the equal geometry. In a preferred embodiment the first to fourth channel have the same geometry.
  • first geometry means the same size of cross-section, the same shape of cross-section and the same length of channel.
  • shape of cross-section is preferably rectangular. Alternative shapes are conceivable like circular for example.
  • the invention also refers to a system comprising a first device according to the invention and at least a second device according to the invention, wherein the devices are interconnected.
  • the system comprises several devices according to the invention.
  • the devices are interconnected in such a way that they form an array.
  • the system further comprising a feeding line which is formed by a feeding inlet channel, the intermediate channel of the first device, at least one connection channel, the intermediate channel of the at least second device and a feeding outlet channel; wherein the feeding inlet channel, the first channel, the second channel and the intermediate channel are interconnected via the first intermediate node; wherein the connection channel, the third channel, the fourth channel and the intermediate channel are interconnected via the second intermediate node and the connection channel, the first channel of the second device, the second channel of the second device and the intermediate channel of the second device are interconnected via the first intermediate node of the second device; wherein the feeding outlet channel, the third channel of the second device, the fourth channel of the second device and the intermediate channel of the second device are interconnected via the second intermediate node of the second device; wherein the system further comprising a feeding inlet valve arranged at the feeding inlet channel and configured to be actuated in order to control the flow rate through the feeding inlet channel; wherein the system further comprising a feeding outlet valve arranged at the
  • This embodiment comprises the preferred case in which more than two devices are interconnected.
  • the system comprises "at least" a second device.
  • the interconnected devices form an array. For example, if the system comprises three devices, the second device and the third device are interconnected according to interconnection of the first and the second device.
  • the feeding line is additionally formed by a second connection channel wherein the second connection channel, the third channel of the second device, the fourth channel of the second device and the intermediate channel of the second device are interconnected via the second intermediate node of the second device and the second connection channel, the first channel of the third device, the second channel of the third device and the intermediate channel of the third device are interconnected via the first intermediate node of the third device.
  • the feeding outlet channel, the third channel of the third device, the fourth channel of the third device and the intermediate channel of the third device are interconnected via the second intermediate node of the third device.
  • the system further comprises a second connection valve arranged at the second connection channel and configured to be actuated in order to control the flow rate through the second connection channel.
  • connection valve By completely closing a connection valve it is possible to disconnect one device from the other as is described in more detail below. This enables to control the fluid flow within the individual devices independently from each other.
  • connection channel is connected to the second intermediate node (of the first device) with his first end and connected to the first intermediate node of the second device with his second end.
  • connection channel is connected to the second intermediate node (of the first device) with his first end and connected to the first intermediate node of the second device with his second end.
  • the system preferably comprises a first outer valve configured to be actuated in order to control the flow rate through the inlet channel of the first device and the inlet channel of the second device, thereby preferably applying the same pressure to each inlet channel; further comprising a second outer valve configured to be actuated in order to control the flow rate through the outlet channel of the first device and the outlet channel of the second device, thereby preferably applying the same pressure to each outlet channel.
  • the first outer valve is not provided and/or all first and second valves are actuated in order to control or block the flow control through the appropriate inlet channels.
  • the array formed by the interconnected devices comprises n times m devices, wherein the devices are arranged in such a way that they from a matrix of m columns and n rows, wherein m is a number, preferably 16, and n is a number, preferably 24, wherein the system is preferably configured in such a way that all first valves of the devices arranged in the same column can be actuated simultaneously and all first valves arranged in the same row can be actuated simultaneously and/or all second valves of the devices arranged in the same column can be actuated simultaneously and all second valves arranged in the same row can be actuated simultaneously.
  • the last device of a column and the first device of the next column are interconnected like the first device and the second device of the same column for example. However, if necessary, a longer connection channel might be used. This preferred embodiment allows choosing easily the valves of the device intended to be operated.
  • a 16x24-matrix is suitable to be integrated into the footprint of a conventional glass slide (26 x 76 mm) for example.
  • n is 32 and m is also 32 so that in total there are 1024 devices.
  • m is 16 and n is 8.
  • the invention also refers to a method comprising the steps: providing a system according to the invention with the first valve and the second valve of the first device are closed, the first valve and the second valve of the second device are closed, the second outer valve is closed, whereas the feeding inlet valve, the connection valve and the feeding outlet valve are opened; causing a fluid flow within the feeding line from the feeding inlet channel to the feeding outlet channel; providing an object within the feeding inlet channel; transporting the object from the feeding inlet channel within the feeding line by the flow of the fluid.
  • a fluid flow within the feeding line from the feeding inlet channel to the feeding outlet channel is caused by a pressure difference between the feeding inlet channel and the feeding outlet channel.
  • the object is for example a cell or particle or a cell-laden spherical hydrogel matrix.
  • the object flows into the intermediate channel and is stopped in the positioner and preferably trapped by its narrowing or widening of the cross-section.
  • the object is trapped by the positioner and the method comprises the further steps: providing a second object within the feeding inlet channel; transporting the object from the feeding inlet channel to the positioner of the second device, wherein the positioner of the first device comprises a structure allowing the second object passing it while the first object is trapped, the structure being preferably a bypass.
  • the positioner of the first device comprises a structure allowing the second object passing it while the first object is trapped, the structure being preferably a bypass.
  • the first channel and the third channel can be used as bypass. If the positioner is occupied by a first particle, the flow resistance in the intermediate channel rises and a second particle entering the device through the feeding inlet node can flow through the first channel and third channel due to a less resistance value of this path. In particular, this can be achieved by closing the first valve and the second valve as well as closing the outlet valve.
  • the invention also refers to a method comprising the steps: providing a system according to the invention with the feeding inlet valve, the (or each) connection valve and the feeding outlet valve are closed, the second outer valve is opened, comprising the following steps: actuating the first valve of all devices of column x simultaneously, wherein x is a (natural) number of a range from 1 to m, and/or actuating the second valve of all devices of row y simultaneously, wherein y is a (natural) number of a range from 1 to n in order to control the flow rate and flow direction of a fluid within the intermediate channel of the device which is located in column x and row y.
  • a more flexible operation of the system is possible: In particular, the flow rate and flow direction within the intermediate channel of one device can be controlled independently of other devices.
  • the method comprising the steps: providing a system according to the invention with the feeding inlet valve, the (or each) connection valve and the feeding outlet valve are closed, the first valve of all devices is opened, the second valve of all devices is opened, comprising the following steps: Closing the second valve of all devices, except of the devices in column x, and closing the first valve of all devices in row y, thereby causing a flow from the second intermediate node to the first intermediate node within the intermediate channel of the device which is located in column x and row y.
  • this device is the only device with such flow direction within the intermediate channel.
  • this flow direction is used to transfer an object which is located within the positioner of the intermediate channel in a common outer channel or to another position of the system.
  • the method additionally comprises the step of closing the first valve of all devices in row y2, thereby causing a flow from the second intermediate node to the first intermediate node within the intermediate channel of the device which is located in column x and row y2, wherein row y2 is a different row than row y.
  • This embodiment enables to transfer an object which is located within the positioner of the intermediate channel of the device which is located in column x and row y2 in a common outer channel or to another position of the system. It is preferred to close the first valve of all devices in row y and the first valve of all devices in row y2 simultaneously. Thereby, it is possible to transfer several objects simultaneously.
  • the method comprising the steps: providing a system according to the invention with the feeding inlet valve, the (or each) connection valve and the feeding outlet valve are closed, the first valve of all devices is opened, the second valve of all devices is closed, comprising the following steps: Opening the second valve of all devices in column x and closing the first valve of all devices in row y, thereby causing a flow from the second intermediate node to the first intermediate node within the intermediate channel of the device which is located in column x and row y.
  • this device is the only device with such flow direction within the intermediate channel.
  • this flow direction is used to transfer an object which is located within the positioner of the intermediate channel in a common outer channel or to another position of the system.
  • the device and system according to the invention can be preferably used for carrying out biotechnological processes.
  • One example is an incubation process.
  • the device and system can be used for treatment and forming of objects like cells (e.g. human or plant cells) and particles.
  • the system can be used for the cultivation of single or multiple cells of the same or of different type located within spherical hydrogel matrices.
  • FIG. 1 shows an embodiment of the device 10 according to the invention.
  • the device 10 is a microfabricated device. It comprises an inlet channel IC, outlet channel OC, first channel C1 having a hydrodynamic resistance R1, second channel C2 having a hydrodynamic resistance R2, third channel C3 having a hydrodynamic resistance R3, fourth channel C4 having a hydrodynamic resistance R4 and a intermediate channel 0 having a hydrodynamic resistance R0.
  • the intermediate channel comprises a positioner.
  • the positioner is preferably a widening but could also be a narrowing of the cross section of the intermediate channel 0.
  • the device 10 further comprises an inlet node IN, outlet node ON, first intermediate node IN1 and second intermediate node IN2.
  • the inlet channel IC, second channel C2 and fourth channel C4 are interconnected via the inlet node IN.
  • the outlet channel OC, first channel C1 and third channel C3 are interconnected via the outlet node ON.
  • the first channel C1, second channel C2 and intermediate channel 0 are interconnected via the first intermediate node IN1.
  • the third channel C3, fourth channel C4 and intermediate channel 0 are interconnected via the second intermediate node IN2.
  • the device 10 comprises a first valve V1 arranged at the second channel C2 and configured to be actuated in order to control the flow rate through the second channel C2.
  • the device according to figure 1 comprises a second valve V2 arranged at the fourth channel C4 and configured to be actuated in order to control the flow rate through the fourth channel C4.
  • first channel C1 and the third channel C3 are in particular not necessary to define the first channel C1 and the third channel C3 with a different geometry, in particular with a different length.
  • Figure 1B shows the embodiment of figure 1 comprising additionally a feeding inlet channel FIC having a feeding inlet valve which is described in detail below.
  • Figure 2 shows an embodiment of the system according to the invention. It comprises a first device 10, second device 20, third device 30 and fourth device 40 according to the invention, wherein the devices are interconnected.
  • the system further comprises a feeding line FL formed by a feeding inlet channel FIC, the intermediate channel of all devices and a first connection channel CC1, a second connection channel CC2 and a third connection channel CC3 as well as a feeding outlet channel FOC.
  • This exemplary embodiment is an array of four devices which are interconnected by the interconnection channels as described above.
  • the system comprises a feeding inlet valve FIV arranged at the feeding inlet channel FIC and configured to be actuated in order to control the flow rate through the feeding inlet channel FIC.
  • the system further comprises a feeding outlet valve FOV arranged at the feeding outlet channel FOC and configured to be actuated in order to control the flow rate through the feeding outlet channel FOC.
  • the system further comprises a connection valve CC1-V arranged at the first connection channel, a second connection valve CC2-V arranged at the second connection channel and a third connection valve CC3-V arranged at the third connection channel.
  • the embodiment of figure 2 illustrates a 2x2-matrix, where the first and second device are arranged in the first column and the third and fourth device are arranged in the second column. The first line is formed by the first and third device, whereas the second line is formed by the second and fourth device.
  • Figure 2 shows also a first outer valve OV1 configured to be actuated in order to control the flow rate through the inlet channels of the first to fourth device 10 to 40.
  • a second outer valve OV2 is also provide and configured to be actuated in order to control the flow rate through the outlet channels of the first to fourth device 10 to 40.
  • the valves in the embodiment according to figure 2 are all opened.
  • FIG 2A the system according to figure 2 is shown in such a state that all first and second valves of the devices and the second outer valve OV2 are completely closed. Closed valves are marked by dotted rectangles.
  • a fluid flow from the inlet channels to the outlet channels is not possible.
  • the valves of the fluid line are opened, i.e. the valves FIV, CC1-V to CC3-V and FOV.
  • This configuration has the advantage that a fluid can flow through the feeding line from the feeding inlet channel FIC to the feeding outlet channel FOC. Thereby, it is possible to provide objects within the feeding inlet channel FIC and provide them to the individual positioners sequentially.
  • Figure 2B shows the system according to figure 2 with a different valve-actuation configuration. All valves of the feeding line are completely closed. Thereby, the different devices are disconnected from each other. This has the advantage that the fluid flow of each device can be generated individually.
  • a fluid flow is established from the fourth channel 4 to the first channel 1 via the intermediate channel.
  • the fluid flows through the intermediate channel from the second intermediate node to the first intermediate node. This is possible since the second valve V2 is opened and the first valve V1 is closed. Therefore, it is possible to release an object which is trapped in the positioner of the intermediate channel.
  • the second device 20 shows a different actuation of valve V1 and valve V2. Here, both valves are closed whereby no fluid flows through the intermediate channel.
  • the third device 30 comprises two opened valves V1 and V2.
  • the fluid flows mainly form the second channel to the third channel via the intermediate channel.
  • the fluid flows through the intermediate channel from the first intermediate node to the second intermediate node.
  • the first valve V1 of the fourth device 40 is opened, whereas the second valve V2 is closed.
  • the fluid flows mainly form the second channel to the third channel via the intermediate channel.
  • the fluid flows through the intermediate channel from the first intermediate node to the second intermediate node.
  • Figures 3A , 3B and 3C show an exemplary embodiment of the device according to the invention.
  • the reference signs in this figures which are the same as the reference signs in figures 1A , 1B and 2 refer to the same features as in this figures.
  • the inlet channel IC is a vertical channel and the arrow indicates the direction of a fluid flowing into the inlet channel.
  • the outlet channel OC has a vertical section at his firs end and the arrow indicates the direction of a fluid flowing out of the outlet channel.
  • the second end of the outlet channel OC is connected to the outlet node ON.
  • an exemplary embodiment of the positioner P is shown.
  • the positioner P is arranged within the intermediate channel and forms a widening of this channel.
  • Within the positioner P there is a trapping structure configured to trap a particle which flows into the intermediate channel through the first intermediate node FIN.
  • a bypass channel BC is arranged to enable a second particle to pass the positioner P and flow to the second intermediate node IN2 if a first particle is already positioned within the trapping structure of the positioner P.
  • the feeding inlet channel FIC has a feeding inlet valve FIV which is a membrane and can be deformed in order to control the flow rate through the feeding inlet channel FIC.
  • the first valve V1 and the second valve V2 are elastic elements which can be deformed to control the flow rate through the second channel C2 and the fourth channel C4.
  • the valves V1 and V2 are equal in shape and size.
  • the fourth channel comprises two sections. The first section is the valve V2 and the second section is the part between the inlet node IN and the valve V2.
  • the first channel C1 is formed by the first valve V2.
  • the height and width of the intermediate channel, the first channel C1 and the outlet channel OC is almost the same.
  • These channels are provided to transport a particle of e.g. 80 ⁇ m.
  • these channels have a larger cross-section.
  • the first channel C1 and the third channel C3 have the same resistance. Due to the fact that the first channel has a larger cross-section, it must be longer to cause the same pressure loss.
  • Figure 3B shows the device of figure 3A in the top view.
  • Figure 3C depicts the device of figures 3B with a schematically indication of the resistances of the channels C1 to C4.
  • the first channel C1 has the resistance R1 and the third channel C3 has the resistance R3.
  • the second channel C2 has the total resistance R2* which is the sum of the resistance R2 of channel C2 and the resistance RiV1 of the first valve V1 in the opened stated.
  • the resistance of the first valve RiV1 can be changed by closing the valve. Therefore, RiV1 is a flexible resistance.
  • total resistance R4* which is the sum of the resistance R4 of the fourth channel C4 and the resistance of the second valve RiV2.
  • RiV3 is illustrated which is the flexible resistance of the feeding inlet valve FIV.
  • Figure 4 is an exemplary system according to the invention. In principle it is an array as depicted in schematically diagram of figure 2 . However, the connection channels connecting the devices 10 to 40 are not illustrated for a better overview. Further, a common channel COC connecting the outlet channels of the individual devices is shown.
  • Figures 5A to 5C show an exemplary embodiment as 4x4-matrix with different valve configurations. The same pressure must be applied at each inlet. This is guaranteed by the tree structure of the supply channel.
  • Figure 6 shows a system consisting of three 8x16-matrixes.
  • valves V1 of one column may be operated simultaneously using one external (solenoid) valve. Additionally or alternatively, (all) valves V2 of one row may be operated simultaneously using on (external) solenoid valve.
  • solenoid solenoid
  • valves V2 of one row may be operated simultaneously using on (external) solenoid valve.
  • Figure 6 shows an illustration of an exemplary system having 16 x 24 devices.
  • the length in X direction (FPX) is 50 mm and the length in Y direction (FPY) is 16 mm resulting in a footprint of 800 mm 2 in total.
  • the mean footprint of one device is 2.08 mm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
EP20192017.0A 2020-08-20 2020-08-20 Dispositif microfabriqué, système et procédé comprenant un tel système Withdrawn EP3957397A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20192017.0A EP3957397A1 (fr) 2020-08-20 2020-08-20 Dispositif microfabriqué, système et procédé comprenant un tel système
PCT/EP2021/073176 WO2022038277A1 (fr) 2020-08-20 2021-08-20 Dispositif microfabriqué, système et procédé comprenant un tel dispositif
EP21769358.9A EP4200075A1 (fr) 2020-08-20 2021-08-20 Dispositif microfabriqué, système et procédé comprenant un tel dispositif

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20192017.0A EP3957397A1 (fr) 2020-08-20 2020-08-20 Dispositif microfabriqué, système et procédé comprenant un tel système

Publications (1)

Publication Number Publication Date
EP3957397A1 true EP3957397A1 (fr) 2022-02-23

Family

ID=72178475

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20192017.0A Withdrawn EP3957397A1 (fr) 2020-08-20 2020-08-20 Dispositif microfabriqué, système et procédé comprenant un tel système
EP21769358.9A Withdrawn EP4200075A1 (fr) 2020-08-20 2021-08-20 Dispositif microfabriqué, système et procédé comprenant un tel dispositif

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21769358.9A Withdrawn EP4200075A1 (fr) 2020-08-20 2021-08-20 Dispositif microfabriqué, système et procédé comprenant un tel dispositif

Country Status (2)

Country Link
EP (2) EP3957397A1 (fr)
WO (1) WO2022038277A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037499A1 (en) * 2000-06-05 2002-03-28 California Institute Of Technology Integrated active flux microfluidic devices and methods
US20140079571A1 (en) * 2012-09-18 2014-03-20 The Regents Of The University Of California Microfluidic oscillator pump
WO2019048713A1 (fr) 2017-09-11 2019-03-14 Evorion Biotechnologies Gmbh Systèmes, procédés et hydrogels pour culture et analyse de cellule
US20190240664A1 (en) * 2016-09-14 2019-08-08 Ecole Polytechnique Federale De Lausanne (Epfl) Device for high throughput single-cell studies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037499A1 (en) * 2000-06-05 2002-03-28 California Institute Of Technology Integrated active flux microfluidic devices and methods
US20140079571A1 (en) * 2012-09-18 2014-03-20 The Regents Of The University Of California Microfluidic oscillator pump
US20190240664A1 (en) * 2016-09-14 2019-08-08 Ecole Polytechnique Federale De Lausanne (Epfl) Device for high throughput single-cell studies
WO2019048713A1 (fr) 2017-09-11 2019-03-14 Evorion Biotechnologies Gmbh Systèmes, procédés et hydrogels pour culture et analyse de cellule

Also Published As

Publication number Publication date
EP4200075A1 (fr) 2023-06-28
WO2022038277A1 (fr) 2022-02-24

Similar Documents

Publication Publication Date Title
Yue et al. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes
AU2006304634B2 (en) Microfluidic cell culture device and method for using same
CA2378190C (fr) Obturateur elastomere micro-usine et systemes de pompe
JP2009524407A (ja) マイクロ流体細胞培養デバイス
US20100323447A1 (en) Microfluidic cell culture device and method for using same
EP1992410A1 (fr) Système micro-fluidique basé sur des éléments actionneurs
US11352597B2 (en) Medical device for the selective separation of a biological sample
EP2181188A2 (fr) Microbioréacteur et plaque de microtitration comprenant une pluralité de microbioréacteurs
DE102011005811A1 (de) Mikrofluidisches Ventil und mikrofluidische Plattform
EP3957397A1 (fr) Dispositif microfabriqué, système et procédé comprenant un tel système
Fallahi et al. On-demand deterministic release of particles and cells using stretchable microfluidics
CN108602064B (zh) 用于控制活体几何形状的微米流体装置
US20120329141A1 (en) Selective particle capture and collection device
EP2811013A1 (fr) Plaque de réseau en suspension
WO2017142950A1 (fr) Dispositif microfluidique destiné au test de cisaillement d'un écoulement et procédés pour l'utiliser
US20100059120A1 (en) Microfluidic device and methods for droplet generation and manipulation
Yang et al. A microfluidic diode for sorting and immobilization of Caenorhabditis elegans
WO2006066541A1 (fr) Micropompe pouvant etre electroniquement commandee, a base d'hydrogel
KR102513386B1 (ko) 메시 구조를 갖는 미세 유체 소자
KR100984069B1 (ko) 수동형 미소 유량 제어기
CN211875267U (zh) 一种低阈值恒流量微阀
KR102798720B1 (ko) 메시 구조를 갖는 미세 유체 소자
US20250354099A1 (en) Cell culture apparatus and method
Young et al. Smart Materials-Originated Microfluidic Systems for Tissue Engineering
Takayama et al. Microfluidic cell culture device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20221226