EP3899063C0 - SUPER AUSTENITIC MATERIAL - Google Patents
SUPER AUSTENITIC MATERIALInfo
- Publication number
- EP3899063C0 EP3899063C0 EP19829563.6A EP19829563A EP3899063C0 EP 3899063 C0 EP3899063 C0 EP 3899063C0 EP 19829563 A EP19829563 A EP 19829563A EP 3899063 C0 EP3899063 C0 EP 3899063C0
- Authority
- EP
- European Patent Office
- Prior art keywords
- super austenitic
- austenitic material
- super
- austenitic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/10—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/13—Modifying the physical properties of iron or steel by deformation by hot working
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0278—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
- C22C33/0285—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat Treatment Of Steel (AREA)
- Conductive Materials (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Soft Magnetic Materials (AREA)
- Heat Treatment Of Articles (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102018133255.6A DE102018133255A1 (en) | 2018-12-20 | 2018-12-20 | Super austenitic material |
| PCT/EP2019/086384 WO2020127788A1 (en) | 2018-12-20 | 2019-12-19 | Superaustenitic material |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP3899063A1 EP3899063A1 (en) | 2021-10-27 |
| EP3899063C0 true EP3899063C0 (en) | 2023-08-30 |
| EP3899063B1 EP3899063B1 (en) | 2023-08-30 |
Family
ID=69063782
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19829563.6A Active EP3899063B1 (en) | 2018-12-20 | 2019-12-19 | Super austenitic material |
| EP19829564.4A Active EP3899064B1 (en) | 2018-12-20 | 2019-12-19 | Super austenitic material |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP19829564.4A Active EP3899064B1 (en) | 2018-12-20 | 2019-12-19 | Super austenitic material |
Country Status (10)
| Country | Link |
|---|---|
| US (2) | US20220145436A1 (en) |
| EP (2) | EP3899063B1 (en) |
| JP (2) | JP2022514920A (en) |
| CN (2) | CN113544294A (en) |
| CA (2) | CA3124189C (en) |
| DE (1) | DE102018133255A1 (en) |
| EA (2) | EA202191413A1 (en) |
| ES (2) | ES2956332T3 (en) |
| PL (2) | PL3899064T3 (en) |
| WO (2) | WO2020127789A1 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102018133255A1 (en) | 2018-12-20 | 2020-06-25 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Super austenitic material |
| DE102018133251A1 (en) | 2018-12-20 | 2020-06-25 | Schoeller-Bleckmann Oilfield Technology Gmbh | Drill string component with high corrosion resistance and process for their manufacture |
| CN116121667A (en) * | 2021-11-14 | 2023-05-16 | 重庆三爱海陵实业有限责任公司 | Valve and high-temperature resistant alloy thereof |
| CN115261718B (en) * | 2022-03-28 | 2023-06-06 | 江西宝顺昌特种合金制造有限公司 | Super austenitic stainless steel S34565 plate and preparation method thereof |
| CN115992330B (en) * | 2023-02-17 | 2024-04-19 | 东北大学 | High-nitrogen low-molybdenum super austenitic stainless steel and alloy composition optimal design method thereof |
| DE102024111331A1 (en) * | 2024-04-23 | 2025-10-23 | Mahle International Gmbh | Method for producing a motor flange for an electric motor |
Family Cites Families (48)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB778597A (en) * | 1955-02-15 | 1957-07-10 | Ford Motor Co | Improvements in or relating to the manufacture of nitrogen-rich wrought austenitic alloys |
| AT277302B (en) * | 1963-05-24 | 1969-12-29 | Boehler & Co Ag Geb | Austenitic corrosion-resistant steel |
| JPS5521547A (en) * | 1978-08-01 | 1980-02-15 | Hitachi Metals Ltd | Austenite stainless steel having high strength and pitting corrosion resistance |
| US4554028A (en) | 1983-12-13 | 1985-11-19 | Carpenter Technology Corporation | Large warm worked, alloy article |
| DE3407307A1 (en) * | 1984-02-24 | 1985-08-29 | Mannesmann AG, 4000 Düsseldorf | USE OF A CORROSION-RESISTANT AUSTENITIC IRON-CHROME-NICKEL-NITROGEN ALLOY FOR MECHANICALLY HIGH-QUALITY COMPONENTS |
| DE3837456C1 (en) * | 1988-05-17 | 1990-03-29 | Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De | Use of a fully austenitic steel for components which are severely stressed corrosion-chemically and mechanically |
| DE3837457C1 (en) | 1988-05-17 | 1989-12-21 | Thyssen Edelstahlwerke Ag, 4000 Duesseldorf, De | Steel for components of plants or equipment for the conveying, storage and transport of oil or gas |
| NO891969L (en) * | 1988-05-17 | 1989-11-20 | Thyssen Edelstahlwerke Ag | Corrosion resistant AUSTENITIC STEEL. |
| JPH03285050A (en) * | 1990-03-30 | 1991-12-16 | Aichi Steel Works Ltd | Exhaust valve steel excellent in high temperature characteristic |
| JP2591256B2 (en) * | 1990-05-21 | 1997-03-19 | 住友金属工業株式会社 | High strength non-magnetic steel |
| DE4342188C2 (en) | 1993-12-10 | 1998-06-04 | Bayer Ag | Austenitic alloys and their uses |
| JPH08239735A (en) * | 1995-02-28 | 1996-09-17 | Sumitomo Metal Mining Co Ltd | Austenitic stainless cast steel |
| JP3546421B2 (en) * | 1995-03-31 | 2004-07-28 | 大同特殊鋼株式会社 | High-strength, high corrosion-resistant nitrogen-containing austenitic stainless steel |
| DK0864663T3 (en) | 1995-09-27 | 2003-09-15 | Sumitomo Metal Ind | High strength welded steel structures and excellent corrosion resistance |
| JP3347582B2 (en) * | 1996-04-12 | 2002-11-20 | 大同特殊鋼株式会社 | Austenitic stainless steel for metal gasket and method for producing the same |
| JP2001508589A (en) * | 1997-01-22 | 2001-06-26 | シーメンス アクチエンゲゼルシヤフト | Use of iron-based alloys for making fuel cells and fuel cells |
| AT407882B (en) | 1999-07-15 | 2001-07-25 | Schoeller Bleckmann Oilfield T | METHOD FOR PRODUCING A PARAMAGNETIC, CORROSION-RESISTANT MATERIAL AND THE LIKE MATERIALS WITH A HIGH STRETCH LIMIT, STRENGTH AND TENSITY |
| DE29921813U1 (en) * | 1999-12-12 | 2000-02-24 | Friederich, Heinrich, Dr.-Ing., 68649 Groß-Rohrheim | High-strength, corrosion-resistant stainless steel profile bar |
| SE514816C2 (en) | 2000-03-02 | 2001-04-30 | Sandvik Ab | Duplex stainless steel |
| AT408889B (en) | 2000-06-30 | 2002-03-25 | Schoeller Bleckmann Oilfield T | CORROSION-RESISTANT MATERIAL |
| KR100445246B1 (en) | 2001-12-28 | 2004-08-21 | 김영식 | High Pitting Resistant and High Ni bearing duplex stainless steel |
| US6761777B1 (en) * | 2002-01-09 | 2004-07-13 | Roman Radon | High chromium nitrogen bearing castable alloy |
| US20040258554A1 (en) * | 2002-01-09 | 2004-12-23 | Roman Radon | High-chromium nitrogen containing castable alloy |
| JP4210999B2 (en) * | 2003-12-19 | 2009-01-21 | 大同特殊鋼株式会社 | Ring material for continuously variable transmission, method for manufacturing the same, and ring for continuously variable transmission |
| JP2005281855A (en) * | 2004-03-04 | 2005-10-13 | Daido Steel Co Ltd | Heat resistant austenitic stainless steel and method for producing the same |
| SE528008C2 (en) * | 2004-12-28 | 2006-08-01 | Outokumpu Stainless Ab | Austenitic stainless steel and steel product |
| US20090129967A1 (en) * | 2007-11-09 | 2009-05-21 | General Electric Company | Forged austenitic stainless steel alloy components and method therefor |
| EP2485222A4 (en) | 2009-09-29 | 2013-07-24 | Furukawa Electric Co Ltd | SUPERCONDUCTING WIRING SUBSTRATE, SUPERCONDUCTING WIRING AND METHOD FOR PRODUCING THE SAME |
| CN102639742B (en) * | 2009-11-18 | 2016-03-30 | 新日铁住金株式会社 | Austenite stainless steel plate and manufacture method thereof |
| BR112013018100B1 (en) * | 2011-03-28 | 2022-04-05 | Nippon Steel Corporation | High strength austenitic stainless steel for high pressure hydrogen gas, container or tube for hydrogen gas and method for producing austenitic stainless steel for high pressure hydrogen gas |
| EP2714955B9 (en) * | 2011-05-26 | 2021-10-27 | N'Genius Technology Limited | Austenitic stainless steel |
| US9347121B2 (en) | 2011-12-20 | 2016-05-24 | Ati Properties, Inc. | High strength, corrosion resistant austenitic alloys |
| CN104379773B (en) * | 2012-01-20 | 2017-09-12 | 索罗不锈有限责任公司 | Austenite stainless product made from steel and its manufacture method |
| US9869003B2 (en) | 2013-02-26 | 2018-01-16 | Ati Properties Llc | Methods for processing alloys |
| US20140261918A1 (en) * | 2013-03-15 | 2014-09-18 | Exxonmobil Research And Engineering Company | Enhanced wear resistant steel and methods of making the same |
| US11111552B2 (en) * | 2013-11-12 | 2021-09-07 | Ati Properties Llc | Methods for processing metal alloys |
| US20150337419A1 (en) * | 2014-05-20 | 2015-11-26 | Crs Holdings Inc. | Austenitic Stainless Steel Alloy |
| CN104195446A (en) | 2014-08-06 | 2014-12-10 | 张家港市飞浪泵阀有限公司 | Superaustenitic stainless steel for pump valve products |
| WO2016068009A1 (en) * | 2014-10-29 | 2016-05-06 | 新日鐵住金株式会社 | Austenitic stainless steel and manufacturing method therefor |
| CN106555133B (en) | 2015-09-24 | 2018-12-07 | 宝山钢铁股份有限公司 | A kind of high-strength corrosion-resistant stainless steel, tubing and casing and its manufacturing method |
| KR102077414B1 (en) * | 2015-10-06 | 2020-02-13 | 닛테츠 스테인레스 가부시키가이샤 | Austenitic Stainless Steel Sheet |
| CN109072377B (en) * | 2016-04-07 | 2020-10-16 | 日本制铁株式会社 | Austenitic stainless steel |
| CN106244940A (en) * | 2016-08-26 | 2016-12-21 | 天津新伟祥工业有限公司 | A kind of Cr-Mn-N series austenitic heat-resistance steel and preparation method thereof |
| CN107876562A (en) | 2017-11-23 | 2018-04-06 | 海盐中达金属电子材料有限公司 | A kind of super austenitic stainless steel steel band and its processing hot-rolling mill |
| CN108396223B (en) * | 2018-03-29 | 2020-09-29 | 东北大学 | Super austenitic stainless steel and alloy composition optimization design method thereof |
| CN108642409A (en) * | 2018-05-08 | 2018-10-12 | 江苏理工学院 | A kind of corrosion-resistant super austenitic stainless steel and its manufacturing process |
| DE102018133251A1 (en) | 2018-12-20 | 2020-06-25 | Schoeller-Bleckmann Oilfield Technology Gmbh | Drill string component with high corrosion resistance and process for their manufacture |
| DE102018133255A1 (en) | 2018-12-20 | 2020-06-25 | Voestalpine Böhler Edelstahl Gmbh & Co Kg | Super austenitic material |
-
2018
- 2018-12-20 DE DE102018133255.6A patent/DE102018133255A1/en active Pending
-
2019
- 2019-12-19 EA EA202191413A patent/EA202191413A1/en unknown
- 2019-12-19 JP JP2021536112A patent/JP2022514920A/en active Pending
- 2019-12-19 CN CN201980092768.7A patent/CN113544294A/en active Pending
- 2019-12-19 CA CA3124189A patent/CA3124189C/en active Active
- 2019-12-19 US US17/413,986 patent/US20220145436A1/en active Pending
- 2019-12-19 PL PL19829564.4T patent/PL3899064T3/en unknown
- 2019-12-19 JP JP2021536111A patent/JP2022522092A/en active Pending
- 2019-12-19 EA EA202191412A patent/EA202191412A1/en unknown
- 2019-12-19 EP EP19829563.6A patent/EP3899063B1/en active Active
- 2019-12-19 CN CN201980092769.1A patent/CN113544295A/en active Pending
- 2019-12-19 WO PCT/EP2019/086385 patent/WO2020127789A1/en not_active Ceased
- 2019-12-19 ES ES19829564T patent/ES2956332T3/en active Active
- 2019-12-19 EP EP19829564.4A patent/EP3899064B1/en active Active
- 2019-12-19 US US17/414,008 patent/US12410496B2/en active Active
- 2019-12-19 ES ES19829563T patent/ES2957403T3/en active Active
- 2019-12-19 CA CA3122044A patent/CA3122044A1/en active Pending
- 2019-12-19 WO PCT/EP2019/086384 patent/WO2020127788A1/en not_active Ceased
- 2019-12-19 PL PL19829563.6T patent/PL3899063T3/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| EP3899064B1 (en) | 2023-08-30 |
| WO2020127788A1 (en) | 2020-06-25 |
| US20220145436A1 (en) | 2022-05-12 |
| BR112021011844A2 (en) | 2021-08-31 |
| CA3122044A1 (en) | 2020-06-25 |
| EA202191412A1 (en) | 2021-09-28 |
| EP3899063A1 (en) | 2021-10-27 |
| CN113544295A (en) | 2021-10-22 |
| BR112021011849A2 (en) | 2021-09-08 |
| CA3124189C (en) | 2023-10-31 |
| JP2022514920A (en) | 2022-02-16 |
| EA202191413A1 (en) | 2021-09-28 |
| US20230332282A1 (en) | 2023-10-19 |
| US20240052469A2 (en) | 2024-02-15 |
| EP3899064A1 (en) | 2021-10-27 |
| JP2022522092A (en) | 2022-04-14 |
| WO2020127789A1 (en) | 2020-06-25 |
| ES2956332T3 (en) | 2023-12-19 |
| BR112021011844A8 (en) | 2023-05-09 |
| EP3899063B1 (en) | 2023-08-30 |
| DE102018133255A1 (en) | 2020-06-25 |
| EP3899064C0 (en) | 2023-08-30 |
| ES2957403T3 (en) | 2024-01-19 |
| PL3899063T3 (en) | 2023-12-04 |
| CN113544294A (en) | 2021-10-22 |
| CA3124189A1 (en) | 2020-06-25 |
| US12410496B2 (en) | 2025-09-09 |
| PL3899064T3 (en) | 2023-11-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3604591A4 (en) | MARTENSITIC STAINLESS STEEL MATERIAL | |
| EP3899063C0 (en) | SUPER AUSTENITIC MATERIAL | |
| EP3793613C0 (en) | IMMUNOCONJUGATES | |
| EP3665140A4 (en) | AGRICULTURAL MIXTURES | |
| EP3613444A4 (en) | COMPOSITE MATERIAL | |
| EP3859031A4 (en) | MARTENSITIC STAINLESS STEEL MATERIAL | |
| EP3508602A4 (en) | AUSTENITIC STAINLESS STEEL | |
| DK3737403T3 (en) | MODIFIED ADENOVIRA | |
| EP3755486A4 (en) | MATERIAL SETS | |
| EP3683045A4 (en) | COMPOSITE MATERIAL | |
| PL3652405T3 (en) | MATERIAL | |
| EP3605523A4 (en) | SOUND ABSORBING MATERIAL | |
| EP3480330A4 (en) | AUSTENITIC STAINLESS STEEL | |
| EP3585834A4 (en) | COMPOSITE MATERIAL | |
| DK3583934T3 (en) | BIOCIDAL AGENT | |
| EP3686001A4 (en) | COMPOSITE MATERIAL | |
| EP4039737A4 (en) | COMPOSITE MATERIAL | |
| EP3978635A4 (en) | AUSTENITIC STAINLESS STEEL MATERIAL | |
| EP3860322A4 (en) | COMPOSITE MATERIAL | |
| EP3693487A4 (en) | AUSTENITIC STAINLESS STEEL | |
| EP3546672A4 (en) | CONSTRUCTION MATERIAL | |
| CL2017002523S1 (en) | Non-woven material | |
| EP3819047C0 (en) | OPTIMIZED STEEL MATERIAL | |
| EP3809833A4 (en) | GRAZING RESTRICTOR | |
| DK3556199T3 (en) | AGRICULTURAL MACHINE |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20210618 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C21D0006000000 Ipc: C22C0038460000 Ref country code: DE Ref legal event code: R079 Ref document number: 502019009199 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C21D0006000000 Ipc: C22C0038460000 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/00 20060101ALN20230317BHEP Ipc: C22C 38/58 20060101ALN20230317BHEP Ipc: C22C 38/48 20060101ALN20230317BHEP Ipc: C22C 33/02 20060101ALN20230317BHEP Ipc: C22C 38/50 20060101ALN20230317BHEP Ipc: C22C 38/52 20060101ALN20230317BHEP Ipc: C22C 38/54 20060101ALN20230317BHEP Ipc: C21D 6/00 20060101ALI20230317BHEP Ipc: C21D 7/02 20060101ALI20230317BHEP Ipc: C21D 7/10 20060101ALI20230317BHEP Ipc: C21D 8/02 20060101ALI20230317BHEP Ipc: C21D 9/46 20060101ALI20230317BHEP Ipc: C21D 9/08 20060101ALI20230317BHEP Ipc: C22C 38/22 20060101ALI20230317BHEP Ipc: C22C 38/38 20060101ALI20230317BHEP Ipc: C22C 38/40 20060101ALI20230317BHEP Ipc: C22C 38/42 20060101ALI20230317BHEP Ipc: C22C 38/44 20060101ALI20230317BHEP Ipc: C22C 38/46 20060101AFI20230317BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20230502 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230706 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019009199 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| U01 | Request for unitary effect filed |
Effective date: 20230927 |
|
| P04 | Withdrawal of opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230929 |
|
| U07 | Unitary effect registered |
Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI Effective date: 20231005 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231201 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2957403 Country of ref document: ES Kind code of ref document: T3 Effective date: 20240119 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231230 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231130 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231230 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231201 |
|
| U20 | Renewal fee for the european patent with unitary effect paid |
Year of fee payment: 5 Effective date: 20231227 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019009199 Country of ref document: DE |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20240603 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |
|
| U1N | Appointed representative for the unitary patent procedure changed after the registration of the unitary effect |
Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB; DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231219 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231219 |
|
| P05 | Withdrawal of opt-out of the competence of the unified patent court (upc) changed |
Free format text: CASE NUMBER: APP_577645/2023 Effective date: 20231005 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20241210 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241227 Year of fee payment: 6 |
|
| U20 | Renewal fee for the european patent with unitary effect paid |
Year of fee payment: 6 Effective date: 20241227 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20250102 Year of fee payment: 6 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20250108 Year of fee payment: 6 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20191219 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20191219 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230830 |