EP3860769B1 - Method for treatment of galvanised or galvannealed steel - Google Patents
Method for treatment of galvanised or galvannealed steel Download PDFInfo
- Publication number
- EP3860769B1 EP3860769B1 EP18782419.8A EP18782419A EP3860769B1 EP 3860769 B1 EP3860769 B1 EP 3860769B1 EP 18782419 A EP18782419 A EP 18782419A EP 3860769 B1 EP3860769 B1 EP 3860769B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- applicator roll
- providing
- coating
- coating liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C1/00—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
- B05C1/04—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
- B05C1/08—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
- B05C1/0808—Details thereof, e.g. surface characteristics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C1/00—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
- B05C1/04—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length
- B05C1/08—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line
- B05C1/0826—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line the work being a web or sheets
- B05C1/0834—Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to work of indefinite length using a roller or other rotating member which contacts the work along a generating line the work being a web or sheets the coating roller co-operating with other rollers, e.g. dosing, transfer rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C9/00—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
- B05C9/04—Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material to opposite sides of the work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/28—Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D7/00—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
- B05D7/14—Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2202/00—Metallic substrate
- B05D2202/10—Metallic substrate based on Fe
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2252/00—Sheets
- B05D2252/10—Applying the material on both sides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2350/00—Pretreatment of the substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2350/00—Pretreatment of the substrate
- B05D2350/60—Adding a layer before coating
- B05D2350/65—Adding a layer before coating metal layer
Definitions
- the invention relates to a method of treating a substrate, comprising:
- ribbing defects are often observed in conventional roll coating processes for liquid coatings, for example, when the coating liquid has a viscosity of about 0.1 mPa.s or greater.
- the defects may occur as a coating liquid passes through a nip between rolls and the viscous stress at a film split overcomes surface tension forces attempting to maintain a uniform curvature of the interface at the film split.
- the ribbing defect may according to this document lead to a highly non-uniform coating as the liquid exits the nip. To address this problem it may be necessary to limit line speeds. Other problems are that it may reduce the coating efficiency, and increase the cost of production. Additionally according to this document, as line speeds are increased it can lead to misting, for example, ejection of small droplets in the form of a mist, which can be a concern for the health and safety of the factory environment.
- the ribbing defect is cured by arranging that the first roll comprises a thin metal shell and a resilient layer, the thin metal shell encases the resilient layer there beneath, and the thin metal shell is capable of deflecting in unison with the resilient layer such that the thin metal shell is elastically deformable at the nip when in contact with the second roll.
- a method to transfer a coating film onto a coating object is known from US10022743 B2 It is therefore an object of the invention to counter the ribbing defect when treating a strip of galvanised or galvannealed steel with a coating liquid.
- Forward coating mode means that the tangential speed of the surface area of the applicator roll and the line speed of the substrate are in the same direction.
- Reverse coating mode means that the tangential speed of the surface area of the applicator roll and the line speed are in opposite directions.
- the inventors have found that controlling the contact angle ⁇ to 97° or below plays a decisive role in the reduction and prevention of the ribbing defect when treating a metal strip.
- the method comprises:
- the mentioned 97° is an upper limit; more favourable results are achievable by providing that the contact angle ⁇ is smaller than 93°, more preferably even smaller than 80°. Where the ribbing result at contact angles ⁇ from 93° to 97° varies from good to excellent, it is very good to excellent at 80° or smaller.
- the treatment of the galvanised or galvannealed steel is carried out by arranging that at least one of the applicator rolls has a polymer cover and where the method is used in forward coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film having a thickness of 4 ⁇ m or less, preferably 3 ⁇ m or less, and where the method is used in reverse coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film of less than 8 ⁇ m, preferably less than 6 ⁇ m, more preferably less than 4 ⁇ m.
- the invention has been found to work well if the metal substrate is already coated, preferably zinc based coated, e.g. is a galvanised or galvannealed steel substrate or a substrate with a zinc coating alloyed with aluminium and magnesium such as Magizinc ® .
- the result of the method of the invention is e.g. a galvanised or galvannealed steel treated with the coating liquid, wherein ribbing defects are effectively avoided.
- Figure 1 shows an apparatus 1 comprising a first applicator roll 2, a second applicator roll 3, and a nip 4 between the first and second applicator rolls 2, 3.
- a substrate 5 in the form of a galvanised or galvannealed steel strip 5' moves with a predefined speed in the direction of arrow b.
- the steel strip 5' is coated on both sides with a coating liquid 10 (normally but not necessarily the same on each side) that is stored in and retrieved from tanks 6, 7.
- Supporting or pick-up rolls 8, 9 are rotating within the tanks 6, 7 to pick up the coating liquid 10 from these tanks 6, 7.
- Figure 1 shows that the applicator roll 2 is counter-rotating with a tangential speed as symbolized with arrow c, and which is opposite (reverse coating mode) to the movement direction of the metal strip 5' symbolized by the arrow b.
- reverse coating mode the strip will carry almost all (more than 95%) of the coating to the strip.
- the roll 2 has a tangential speed which is in the same direction as the movement direction b of the metal strip 5 (forward coating mode).
- Arrow c is then pointing in a direction opposite to the one shown in figure 1 .
- the strip will only carry about 50% of the coating to the strip, the remainder of the coating staying on the applicator roll 2, 3.
- the contact angle ⁇ is symbolized in figure 2 with the letter ' ⁇ '.
- the contact angle ⁇ is defined as the angle where -in equilibrium- the liquid-ambient-atmosphere-interface meets the solid surface of the applicator roll (2, 3), see figure 2 .
- the horizontal line represents the solid surface of the applicator roll (2,3) and the curved line represents the abovementioned interface.
- the contact angle ⁇ is 97° or smaller, and more preferably that the contact angle ⁇ is 93° and even more preferably that is is 80° or smaller.
- the invention is also embodied in a galvanised or galvannealed steel strip 5 treated with a coating liquid 10 as provided on the metal strip 5 in accordance with the method of the invention.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Description
- The invention relates to a method of treating a substrate, comprising:
- providing an applicator roll (2,3) contacting the substrate (5) which travels at a certain line speed;
- supplying a coating liquid (10) to the applicator roll (2,3) and thereby to the substrate (5),
- applying the coating liquid (10) as a substantially uniform layer of liquid coating (10) onto the substrate (5),
- Such a method is known from
WO 2016/200866 . - According to
WO2016/200866 so-called ribbing defects are often observed in conventional roll coating processes for liquid coatings, for example, when the coating liquid has a viscosity of about 0.1 mPa.s or greater. The defects may occur as a coating liquid passes through a nip between rolls and the viscous stress at a film split overcomes surface tension forces attempting to maintain a uniform curvature of the interface at the film split. -
WO2016/200866 teaches that the balance of viscous to surface tension forces can be described by a dimensionless capillary number defined by the equation Ca = µ U/ σ, wherein Ca is the capillary number, µ is a liquid viscosity, U is an average speed of first and second rolls, and σ is the liquid surface tension. The ribbing defect may according to this document lead to a highly non-uniform coating as the liquid exits the nip. To address this problem it may be necessary to limit line speeds. Other problems are that it may reduce the coating efficiency, and increase the cost of production. Additionally according to this document, as line speeds are increased it can lead to misting, for example, ejection of small droplets in the form of a mist, which can be a concern for the health and safety of the factory environment. - The problem of the ribbing defect is a long-lasting one; reference is made to the article " Ribbing Instability of a Two-roll Coater: Newtonian fluids" by J. Greener et al, published in Chem. Eng. Common, Vol. 5, pp. 73 - 83, published by Gordon and Breach, Science Publishers Inc. 1980, in which already an effort is made to understand the physical background of the ribbing defect. Its physical background is however unruly and hard to understand, which explains that the authors of said article exhale in discussing the theory known at the time: "Why does the theory of Savage fit the data so well in the case of the roll rotating near a fixed plate? We are unable to offer an explanation for this."
- There are indeed many factors that play a role in the emergence of the ribbing defect. Mention can be made of roll properties such as hardness, Young modulus, viscoelastic, roll layer thickness, compressibility, roll radius etc. Also properties of the applied coating liquid are of importance, such as density, surface tension, viscosity, viscoelasticity. And finally operating conditions such as roll speed, speed ratio, slip, the height of the nip between the rolls and the applied load, temperature and the like all seem to be factors that influence the occurrence of the ribbing defect.
- According to
WO2016/200866 the ribbing defect is cured by arranging that the first roll comprises a thin metal shell and a resilient layer, the thin metal shell encases the resilient layer there beneath, and the thin metal shell is capable of deflecting in unison with the resilient layer such that the thin metal shell is elastically deformable at the nip when in contact with the second roll. - In the particular field of treating strips of galvanised or galvannealed steel the problems that are observed in
WO2016/200866 equally apply, yet the solutions as taught byWO2016/200866 are unfit to be practised in this heavy industrial environment. - A method to transfer a coating film onto a coating object is known from
US10022743 B2
It is therefore an object of the invention to counter the ribbing defect when treating a strip of galvanised or galvannealed steel with a coating liquid. - It is another object of the invention to be able to provide a galvanised or galvannealed steel with a coating liquid without reducing the line speed.
- According to the invention a method and a galvanised or galvannealed steel substrate treated with a coating liquid is provided in accordance with one or more of the appended claims.
- In a first aspect of the invention a method is proposed comprising the steps of:
- providing that the substrate (5) is a metal strip (5');
- providing that -in forward coating mode or in reverse coating mode- the absolute value of the tangential speed of a surface area of the applicator roll (2, 3) contacting the substrate (5) substantially matches that of the line speed of the substrate (5);
- providing that the contact angle θ is 97° or smaller.
- Forward coating mode means that the tangential speed of the surface area of the applicator roll and the line speed of the substrate are in the same direction. Reverse coating mode means that the tangential speed of the surface area of the applicator roll and the line speed are in opposite directions. The words "substantially matches" as used in this claim mean that preventing the ribbing defect can be promoted by arranging that the absolute value of the said tangential speed of the surface area of the rolls contacting the substrate differs less than 50 % from the absolute value of the line speed.
- The inventors have found that controlling the contact angle θ to 97° or below plays a decisive role in the reduction and prevention of the ribbing defect when treating a metal strip.
- In a further aspect of the invention the method comprises:
- providing that the contact angle θ is 93° or smaller and more preferably:
- is 80° or smaller.
- The mentioned 97° is an upper limit; more favourable results are achievable by providing that the contact angle θ is smaller than 93°, more preferably even smaller than 80°. Where the ribbing result at contact angles θ from 93° to 97° varies from good to excellent, it is very good to excellent at 80° or smaller.
- In a further aspect of the invention a method is proposed comprising:
- providing that at least one applicator roll (2, 3) has a polymer cover, wherein the tangential speed of the surface area of the applicator roll (2, 3) differs 30 % or less, preferably 20 % or less, and most preferably 10 % or less up or down with respect to the line speed of the substrate (5).
- This leads to a better quality of the surface of the treated substrate and less applicator roll wear.
- The treatment of the galvanised or galvannealed steel is carried out by arranging that at least one of the applicator rolls has a polymer cover and where the method is used in forward coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film having a thickness of 4 µm or less, preferably 3 µm or less, and where the method is used in reverse coating mode, that the coating liquid (10) is applied to the substrate (5) as a thin wet film of less than 8 µm, preferably less than 6 µm, more preferably less than 4 µm. This results in a very efficient and effective application of coating liquid without occurrence of the ribbing defect.
- The invention has been found to work well if the metal substrate is already coated, preferably zinc based coated, e.g. is a galvanised or galvannealed steel substrate or a substrate with a zinc coating alloyed with aluminium and magnesium such as Magizinc®.
- The result of the method of the invention is e.g. a galvanised or galvannealed steel treated with the coating liquid, wherein ribbing defects are effectively avoided.
- The invention will hereinafter be further elucidated with reference to the drawing of an exemplary embodiment of an apparatus employing the method according to the invention that is not limiting as to the appended claims.
- In the drawing:
-
Figure 1 shows an apparatus employing the method according to the invention. -
Figure 2 shows a diagram explaining the principles determining the contact angle θ. -
Figure 3 shows contact angles measured using coating liquids designated as 10% and 20% in combination with materials of the surface of the applicator roll designated as rubbers A - N. -
Figure 1 shows anapparatus 1 comprising afirst applicator roll 2, asecond applicator roll 3, and anip 4 between the first and 2, 3. Through thesecond applicator rolls nip 4 between thefirst applicator roll 2 and the second applicator roll 3 asubstrate 5 in the form of a galvanised or galvannealed steel strip 5' moves with a predefined speed in the direction of arrow b. With thefirst applicator roll 2 and the second applicator roll 3 the steel strip 5' is coated on both sides with a coating liquid 10 (normally but not necessarily the same on each side) that is stored in and retrieved from 6, 7. Supporting or pick-uptanks 8, 9 are rotating within therolls 6, 7 to pick up thetanks coating liquid 10 from these 6, 7. As the supportingtanks 8, 9 are in contact with the earlier mentionedrolls first applicator roll 2 and second applicator roll 3 a transfer of thecoating liquid 10 from the pick- 8, 9 to these latter applicator rolls 2, 3 takes place. The applicator rolls 2, 3 can subsequently provide theup rolls coating liquid 10 to both sides of the metal strip 5'. It is of course also possible to arrange theapparatus 1 in a way that coatingliquid 10 will be provided on only one side of the metal strip 5'. The ways in which this may be implemented are known to a person skilled in the art, so it is not necessary to provide a more detailed description thereof. - With the action of the applicator rolls 2, 3 on the metal strip 5' a further smoothing of the
coating liquid 10 which is passed on to the metal strip 5' in thenip 4, is arranged which results into a substantially uniform layer ofliquid coating 10 on themetal strip 5. -
Figure 1 shows that theapplicator roll 2 is counter-rotating with a tangential speed as symbolized with arrow c, and which is opposite (reverse coating mode) to the movement direction of the metal strip 5' symbolized by the arrow b. In reverse coating mode, the strip will carry almost all (more than 95%) of the coating to the strip. Such a reverse operation is however only one possible option, another common option which is within the scope of the invention is that theroll 2 has a tangential speed which is in the same direction as the movement direction b of the metal strip 5 (forward coating mode). Arrow c is then pointing in a direction opposite to the one shown infigure 1 . In forward coating mode the strip will only carry about 50% of the coating to the strip, the remainder of the coating staying on the 2, 3.applicator roll - The contact angle θ is symbolized in
figure 2 with the letter 'θ'. The contact angle θ is defined as the angle where -in equilibrium- the liquid-ambient-atmosphere-interface meets the solid surface of the applicator roll (2, 3), seefigure 2 . Infigure 2 the horizontal line represents the solid surface of the applicator roll (2,3) and the curved line represents the abovementioned interface. - Practical values for the tangential speed of the surface area of the
2, 3 and the line speed of therolls substrate 5 are that each speed is set in the range of 50 to 140 m/min. The results of the invention are supported by the findings as shown infigure 3 and in the following tables. - A large amount of applicator rolls with surface layers of different rubbers was obtained from different suppliers as follows:
Table 1 Materials for surface of applicator roll Name Description Hardnes s (Shore) A Modified EPDM rubber 50 B Modified EPDM rubber 50 C PUR abrasion resistant 60 D PUR roller coating grade 55 E EDPM roller coating grade 50 F Modified PUR non roller coating 55 G Modified PUR roller coating 55 H Modified abrasion resistant PUR 70 I Modified EDPM for chemicals 60 J Modified EDPM 60 K Modified EDPM for Rolling coating 60 L Modified PUR acid resistant 70 M Special PUR coating 55 N Modified EDPM for chemicals 60 - As it was expected that the concentration could have an influence this was varied as well. Two concentrations normally used in manufacturing, a so called 10 % concentration and a 20 % concentration were used. The results of the contact angle measurements is shown in
figure 3 . - Then for applicator rolls with rubbers A, B, E, K and M the ribbing results were established in a commercial line, using the two concentrations mentioned above, with the results as shown in table 2:
Table 2 Ribbing result at 10% resp. 20% concentration Name Ribbing result 10 % Ribbing Result 20 % A Excellent Very Good B Excellent Good E Bad Bad K Average Average M Average Very Good - In accordance with these results and referring also to
figure 3 it is preferred that the contact angle θ is 97° or smaller, and more preferably that the contact angle θ is 93° and even more preferably that is is 80° or smaller. - Although the experiment shows the application of a
coating liquid 10 in a single step, it is preferred with a view to achieve best results that different coating liquids may be provided onto themetal strip 5 in subsequent steps, using customary post treatment liquids in customary concentrations of e.g. 10 - 30 %, the remainder being water. - Finally it is remarked that the invention is also embodied in a galvanised or
galvannealed steel strip 5 treated with acoating liquid 10 as provided on themetal strip 5 in accordance with the method of the invention. - Although the invention has been discussed in the foregoing with reference to an exemplary embodiment of the method of the invention, the invention is not restricted to this particular embodiment which can be varied in many ways without departing from the invention. The discussed exemplary embodiment shall therefore not be used to construe the appended claims strictly in accordance therewith. On the contrary the embodiment is merely intended to explain the wording of the appended claims without intent to limit the claims to this exemplary embodiment. The scope of protection of the invention shall therefore be construed in accordance with the appended claims only, wherein a possible ambiguity in the wording of the claims shall be resolved using this exemplary embodiment.
Claims (7)
- A method of treating a substrate, comprising:- providing an applicator roll (2,3) contacting the substrate (5) which travels at a certain line speed;- supplying a coating liquid (10) to the applicator roll (2,3) and thereby to the substrate (5),- applying the coating liquid (10) as a substantially uniform layer of liquid coating (10) onto the substrate (5),
wherein a contact angle θ is defined as the angle, measured -in equilibrium- through the coating liquid, where the liquid-vapour interface of the coating liquid meets the solid surface of the applicator roll;
characterized by- providing that the substrate (5) is a metal strip (5');- providing that -in forward coating mode or in reverse coating mode- the absolute value of the tangential speed of a surface area of the applicator roll (2, 3) contacting the substrate (5) substantially matches that of the line speed of the substrate (5);- providing that the contact angle θ is 97° or smaller,wherein the method is used in forward coating mode, providing that at least one applicator roll (2, 3) has a polymer cover and that the coating liquid (10) is applied to the substrate (5) as a thin wet film having a thickness of 4 µm or less; orwherein the method is used in reverse coating mode, providing that at least one applicator roll (2, 3) has a polymer cover and that the coating liquid (10) is applied to the substrate (5) as a thin wet film of less than 8 µm. - Method according to claim 1, characterized by providing that the contact angle θ is 93° or smaller.
- Method according to claim 1 or 2, characterized by providing that the contact angle θ is 80° or smaller.
- Method according to any one of the previous claims, characterized by providing that at least one applicator roll (2, 3) has a polymer cover, wherein the tangential speed of the surface area of the applicator roll (2, 3) differs 30 % or less, preferably 20 % or less, and most preferably 10 % or less up or down with respect to the line speed of the substrate (5).
- Method according to any one of the previous claims, wherein the method is used in forward coating mode, characterized by providing that at least one applicator roll (2, 3) has a polymer cover and that the coating liquid (10) is applied to the substrate (5) as a thin wet film having a thickness of 3 µm or less.
- Method according to any one of the claims 1 to 4, wherein the method is used in reverse coating mode, characterized by providing that at least one applicator roll (2, 3) has a polymer cover and that the coating liquid (10) is applied to the substrate (5) as a thin wet film of less than 6 µm, more preferably less than 4 µm.
- Method according to any one of the previous claims, wherein the metal substrate is coated, preferably zinc based coated, e.g. is a galvanised or galvannealed steel substrate.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/EP2018/076873 WO2020069733A1 (en) | 2018-10-02 | 2018-10-02 | Method for treatment of galvanised or galvannealed steel |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP3860769A1 EP3860769A1 (en) | 2021-08-11 |
| EP3860769B1 true EP3860769B1 (en) | 2024-09-11 |
Family
ID=63762531
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP18782419.8A Active EP3860769B1 (en) | 2018-10-02 | 2018-10-02 | Method for treatment of galvanised or galvannealed steel |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP3860769B1 (en) |
| ES (1) | ES2988475T3 (en) |
| PT (1) | PT3860769T (en) |
| WO (1) | WO2020069733A1 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5916981A (en) | 1982-07-16 | 1984-01-28 | Nisshin Steel Co Ltd | Painting pretreatment of cold rolled steel plate |
| CA2378935A1 (en) | 1999-07-15 | 2001-01-25 | Henkel Kommanditgesellschaft Auf Aktien | Method for applying products without rinsing on moving metal strips |
| JP2009240971A (en) | 2008-03-31 | 2009-10-22 | Jfe Steel Corp | Coating apparatus and coating method to metal band |
| JP2009268966A (en) | 2008-05-07 | 2009-11-19 | Jfe Steel Corp | Coating method using roll coater |
| KR20140103986A (en) | 2011-12-09 | 2014-08-27 | 제이에프이 스틸 가부시키가이샤 | Substrate coating method |
| WO2015173600A1 (en) | 2014-05-16 | 2015-11-19 | Arcelormittal Investigacion Y Desarrollo, S.L. | Process for manufacturing a steel strip for packaging and associated equipment |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS584589B2 (en) * | 1976-08-12 | 1983-01-27 | 富士写真フイルム株式会社 | Application method |
| EP1870169B1 (en) * | 2005-04-12 | 2013-01-16 | Toray Industries, Inc. | Coater of electric insulating sheet and method for producing electric insulating sheet with coated film |
| JP6283917B2 (en) * | 2014-09-18 | 2018-02-28 | パナソニックIpマネジメント株式会社 | Coating film manufacturing method and coating film manufacturing apparatus |
| US10758931B2 (en) | 2015-06-12 | 2020-09-01 | 3M Innovative Properties Company | Liquid coating method and apparatus with a deformable metal roll |
| US10144016B2 (en) * | 2015-10-30 | 2018-12-04 | The Procter & Gamble Company | Apparatus for non-contact printing of actives onto web materials and articles |
-
2018
- 2018-10-02 WO PCT/EP2018/076873 patent/WO2020069733A1/en not_active Ceased
- 2018-10-02 EP EP18782419.8A patent/EP3860769B1/en active Active
- 2018-10-02 ES ES18782419T patent/ES2988475T3/en active Active
- 2018-10-02 PT PT187824198T patent/PT3860769T/en unknown
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5916981A (en) | 1982-07-16 | 1984-01-28 | Nisshin Steel Co Ltd | Painting pretreatment of cold rolled steel plate |
| CA2378935A1 (en) | 1999-07-15 | 2001-01-25 | Henkel Kommanditgesellschaft Auf Aktien | Method for applying products without rinsing on moving metal strips |
| JP2009240971A (en) | 2008-03-31 | 2009-10-22 | Jfe Steel Corp | Coating apparatus and coating method to metal band |
| JP2009268966A (en) | 2008-05-07 | 2009-11-19 | Jfe Steel Corp | Coating method using roll coater |
| KR20140103986A (en) | 2011-12-09 | 2014-08-27 | 제이에프이 스틸 가부시키가이샤 | Substrate coating method |
| WO2015173600A1 (en) | 2014-05-16 | 2015-11-19 | Arcelormittal Investigacion Y Desarrollo, S.L. | Process for manufacturing a steel strip for packaging and associated equipment |
Non-Patent Citations (2)
| Title |
|---|
| DE GENNES P.G.: "Wetting : statics and dynamics", REVIEWS OF MODERN PHYSICS, vol. 57, no. 3, 1 July 1985 (1985-07-01), pages 827 - 863, XP093275078 |
| KOBAYASHI HIROKAZU; SASAKI MASATO: "Visualization study of liquid surface stability for full reverse 3-roll coater with rigid gravure roll", JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH, vol. 11, no. 1, 5 June 2013 (2013-06-05), US, pages 39 - 46, XP035364601, ISSN: 1547-0091, DOI: 10.1007/s11998-013-9500-8 |
Also Published As
| Publication number | Publication date |
|---|---|
| PT3860769T (en) | 2024-09-30 |
| EP3860769A1 (en) | 2021-08-11 |
| WO2020069733A1 (en) | 2020-04-09 |
| ES2988475T3 (en) | 2024-11-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3307443B1 (en) | Liquid coating method and apparatus with a deformable metal roll | |
| RU2011108551A (en) | METAL SHEETS AND PLATES WITH TEXTURED SURFACES REDUCING FRICTION AND METHODS OF THEIR MANUFACTURE | |
| EP3461924A1 (en) | Passivation system comprising an expelling device | |
| JP5239457B2 (en) | How to paint on metal strip | |
| EP3860769B1 (en) | Method for treatment of galvanised or galvannealed steel | |
| MA50349B1 (en) | METAL SHEET PROCESSING METHOD | |
| EP3381570A1 (en) | Method for treatment of galvanized or galvannealed steel | |
| KR100751970B1 (en) | Method and apparatus for painting mobile substrate surface | |
| JP4506450B2 (en) | Roll coating method and apparatus | |
| JP5122363B2 (en) | Roll for molten metal plating bath excellent in rotation and production method thereof | |
| JPS634869A (en) | Coating method for strip steel plate with good surface appearance | |
| JP2009233498A (en) | Roll coating method and roll coating apparatus | |
| JP5367322B2 (en) | Coating equipment | |
| JP6015375B2 (en) | Continuous coating apparatus and continuous coating method | |
| JP4759976B2 (en) | Molded product with anti-frosting coating and method for producing the same | |
| AU764135B2 (en) | Method and apparatus of coating a moving substrate surface | |
| KR101845351B1 (en) | Micro pattern applied paper coating system | |
| JPH1034067A (en) | Continuous coating method of strip by roll coater | |
| US20210346930A1 (en) | Method and apparatus for stretch-bend leveling metal strip | |
| JP2005016233A (en) | Painted siding board and manufacturing method thereof | |
| JP5754371B2 (en) | Roll coater | |
| JPS6171106A (en) | Cold rolling method of close-packed hexagonal system metallic sheet | |
| JP4724641B2 (en) | How to paint strip steel | |
| JP6003343B2 (en) | Continuous coating apparatus and continuous coating method | |
| JP2000024588A (en) | Galvanized steel sheet with excellent deep drawability |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20210503 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20231031 |
|
| GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTC | Intention to grant announced (deleted) | ||
| INTG | Intention to grant announced |
Effective date: 20240408 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018074282 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3860769 Country of ref document: PT Date of ref document: 20240930 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20240924 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2988475 Country of ref document: ES Kind code of ref document: T3 Effective date: 20241120 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Free format text: CASE NUMBER: APP_60660/2024 Effective date: 20241111 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241029 Year of fee payment: 7 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241211 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241212 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241028 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241028 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241025 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241211 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241021 Year of fee payment: 7 Ref country code: ES Payment date: 20241104 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241027 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241211 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241211 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241212 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1722231 Country of ref document: AT Kind code of ref document: T Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20250111 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 602018074282 Country of ref document: DE |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| 26 | Opposition filed |
Opponent name: ARCELORMITTAL Effective date: 20250429 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241002 |
|
| PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241031 |
|
| R26 | Opposition filed (corrected) |
Opponent name: ARCELORMITTAL Effective date: 20250429 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20250918 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20250924 Year of fee payment: 8 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241002 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20251026 Year of fee payment: 8 |