EP3701182A1 - Optique sensible à la source avec réseau de diodes électroluminescentes à puce sur plaque reconfigurable - Google Patents
Optique sensible à la source avec réseau de diodes électroluminescentes à puce sur plaque reconfigurableInfo
- Publication number
- EP3701182A1 EP3701182A1 EP18799653.3A EP18799653A EP3701182A1 EP 3701182 A1 EP3701182 A1 EP 3701182A1 EP 18799653 A EP18799653 A EP 18799653A EP 3701182 A1 EP3701182 A1 EP 3701182A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cob
- optic
- led
- led array
- cob led
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003491 array Methods 0.000 claims abstract description 23
- 230000005855 radiation Effects 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 18
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 10
- 239000011521 glass Substances 0.000 claims description 5
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 230000004907 flux Effects 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 3
- 229920003023 plastic Polymers 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims description 2
- 238000005286 illumination Methods 0.000 abstract description 10
- 230000004069 differentiation Effects 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000002211 ultraviolet spectrum Methods 0.000 description 1
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21K—NON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
- F21K9/00—Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
- F21K9/60—Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21W—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
- F21W2131/00—Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
- F21W2131/10—Outdoor lighting
- F21W2131/103—Outdoor lighting of streets or roads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
Definitions
- This application is related to chip-on-board light emitting diode based lighting.
- LEDs light emitting diodes
- LED-based luminaires or light fixtures are used for interior and exterior applications such as, for example, street lighting.
- chip-on-board (CoB) LED arrays provide high luminance combined with narrow-beam light generation to provide tight focusing/low geometric spreading of illumination.
- CoB LED arrays generally refer to one or more semiconductor chips (or “dies") in which one or more LED junctions are fabricated and where the chip(s) is/are mounted (e.g., adhered) directly to a printed circuit board (PCB).
- PCB printed circuit board
- the chip(s) is/are then wire bonded to the PCB, after which a glob of epoxy or plastic may be used to cover the chip(s) and wire connections.
- a glob of epoxy or plastic may be used to cover the chip(s) and wire connections.
- One or more such LED assemblies or LED packages in turn may be mounted to a common mounting board or substrate of a lighting fixture.
- Optical elements or structures are used together with the CoB LED arrays to facilitate focusing of the generated light to create a narrow-beam of collimated or quasi-collimated light.
- These optical elements can include, for example, lenses or collimator lenses (collectively "lenses"). These structures capture and redirect light emitted by a light source, e.g. the CoB LED array, to improve its directionality.
- Figure 1 as the optical element or lens to disperse light onto the road in a specific pattern.
- the freeform optics depends on the street or road type (highway, urban, pedestrian, etc.) and the regional standard that is applicable.
- the CoB LED array has a fairly simple luminance distribution (either square, rectangular or circular), and the freeform optics is used to transform the CoB LED array luminance distribution into the specific distribution that is needed for the street.
- the size of the freeform optic is a function of the light source size. The larger the light source size, the larger the freeform optic size.
- For CoB LED array based street lighting such freeform optics become large and expensive. Given the large number of streetlight patterns, the number of freeform optics types for a luminaire supplier can become rather excessive.
- CoB LED array based street lighting which is supposed to provide a low cost solution in the market, maintaining inventory and tracking large complicated freeform optics are a market barrier.
- Described herein is a source sensitive optic that uses reconfigurable chip-on-board
- the reconfigurable CoB LED array includes a predetermined number of LEDs that are configurable for a variety of illumination scenarios.
- the reconfigurable CoB LED array is multiple CoB LED arrays that are configured for use with the source sensitive optic as described herein.
- the source sensitive optic includes surface shapes that are responsive to the reconfigurable CoB LED array.
- the source sensitive optic is configured to provide beam profile and radiation pattern differentiation based on a CoB LED array configuration configured from the reconfigurable CoB LED. Each configurable CoB LED array configuration radiates a different beam pattern via the surface shapes due to proximity and surface shape geometries.
- Figure 1 is an illustration of a freeform for conventional light emitting diode lighting
- Figure 2 is an illustrative lighting system in accordance with certain implementations
- Figure 3 is an illustrative CoB LED array with Type I, Type II and Type III light source configurations for use in a source sensitive optic as shown in Figure 7 in accordance with certain implementations;
- Figure 4 is an illustrative wireframe diagram of a Type I light source in a source sensitive optic accordance with certain implementations
- Figure 5 is an illustrative wireframe diagram of a Type II light source in a source sensitive optic in accordance with certain implementations
- Figure 6 is an illustrative wireframe diagram of a Type III light source in a source sensitive optic in accordance with certain implementations
- Figure 7 is an illustrative source sensitive optic in accordance with certain implementations.
- Figure 8 is an illustrative cross section of the source sensitive optic for light source of
- Figure 9 is another illustrative cross section of the source sensitive optic of Figure 4 in accordance with certain implementations.
- Figures 10A-10C are beam profiles for Type I, II and III lighting sources in accordance with certain implementations; [0017] Figures 11 A-11 C are luminance flux characteristics for Type I, II and III lighting sources in accordance with certain implementations;
- Figures 12A-12C are luminous intensity plots for Type I, II and III lighting sources in accordance with certain implementations.
- Figure 13 is a flowchart for making a lighting fixture in accordance with certain implementations.
- a source sensitive optic that uses reconfigurable CoB LED arrays as light sources.
- a reconfigurable CoB LED array is provided for a particular source sensitive optic for a given lighting environment.
- a given lighting environment is meant to include a set of illumination characteristics, features or parameters that can be met by the combination of the particular source sensitive optic and the reconfigurable CoB LED array.
- Figures 10A-10C, 11 A-11C and 12A-12C provide illustrative illumination characteristics, features or parameters.
- the source sensitive optic is designed to take advantage of the reconfigurable CoB LED array and the optic can be implemented using, but is not limited, freeform, refractive, Fresnel and/or reflective type optics or combinations thereof.
- the source sensitive optic includes surface shapes that are responsive to the reconfigurable CoB LED array.
- the reconfigurable CoB LED array includes a predetermined number of LEDs that are configurable for a variety of illumination scenarios.
- the source sensitive optic is configured to provide beam profile and radiation pattern differentiation based on a CoB LED array configuration configured from the reconfigurable CoB LED.
- Each configurable CoB LED array configuration radiates a different beam pattern via the surface shapes due to proximity and surface shape geometries.
- reconfigurable CoB LED array has individually addressable LEDs and/or semiconductor chips.
- the reconfigurable CoB LED array can include or refer to multiple, non-configurable CoB LED arrays that are configured for use with the source sensitive optic as described herein. That is, the reconfigurable CoB LED array can include multiple individual CoB products which have specific LED arrangements or configurations.
- the source sensitive optic is configured to provide beam profile and radiation pattern differentiation based on a set of non-configurable CoB LED arrays.
- the specific LED arrangements can include, but is not limited to, the Type I, II and II light sources described herein.
- the source sensitive optic is then configured to provide beam profile and radiation pattern differentiation as described herein.
- each specific LED configuration can be a different product.
- FIG. 2 is an illustrative lighting system 200 in accordance with certain implementations.
- Lighting system 200 includes a light fixture 205 that includes a reconfigurable CoB LED array 210 configured with a source sensitive optic 215.
- Reconfigurable CoB LED array 210 is in communication with or connected to (collectively "connected to") a controller 220 which in turn is connected to a user interface 225 or vendor interface 230 for configuring reconfigurable CoB LED array 210.
- the shape and configuration of reconfigurable CoB LED array 210 and source sensitive optic 215 are illustrative and are dependent on a given lighting environment as described herein below.
- a user or vendor selects source sensitive optic 215 and a reconfigurable
- CoB LED array 210 for the noted lighting environment.
- the user and vendor can then use user interface 225 or vendor interface 230, respectively, to select and provide configuration information to controller 220, which in turn configures reconfigurable CoB LED array 210 to provide the requested illumination for the noted lighting environment as described herein below.
- Reconfigurable CoB LED array 210 should be understood to include any electroluminescent diode or other type of carrier injection/junction-based system that is capable of generating radiation in response to an electric signal.
- Reconfigurable CoB LED array 210 includes, but is not limited to, semiconductor-based structures that emit light in response to current, light emitting polymers, organic light emitting diodes (OLEDs), electroluminescent strips, and the like.
- Reconfigurable CoB LED array 210 can include multiple dies or chips (collectively chips) that can be connected in parallel or series. The chips can be group or individually addressed or controlled. For example, the chips can be configured to respectively emit: different spectra of radiation; different color temperature; different color; or different intensity. In general, different chips can be configured for different illumination characteristics, features or parameters.
- Reconfigurable CoB LED array 210 can be configured in a variety of shapes that include, but is not limited to, rectangles, star shapes, and circular shapes. As described herein below with respect to Figure 3, a given shape of reconfigurable CoB LED array 210 can be controlled or configured with different sub-shapes to provide different illumination and/or radiation patterns. That is, different chips can be configured to be on or off. [0028] Reconfigurable CoB LED array 210 can be configured to generate radiation in a wide spectrum including the infrared spectrum, ultraviolet spectrum, visible spectrum and other areas of the overall electromagnetic spectrum. Reconfigurable CoB LED array 210 can be configured and/or controlled to generate radiation having various bandwidths for a given spectrum (e.g., narrow bandwidth, broad bandwidth).
- Reconfigurable CoB LED array 210 can be configured to generate radiation in a variety of colors with varying color temperatures. Although color is used interchangeably with spectrum, color generally refers to a property of radiation that is perceivable by an observer (although this usage is not intended to limit the scope of this term). Accordingly, the terms “different colors” implicitly refer to multiple spectra having different wavelength components and/or bandwidths. It also should be appreciated that the term “color” may be used in connection with both white and non- white light. Color temperature essentially refers to a particular color content or shade (e.g., reddish, bluish) of white light. However, color temperature can also be used with reference to non-white light.
- color temperature essentially refers to a particular color content or shade (e.g., reddish, bluish) of white light. However, color temperature can also be used with reference to non-white light.
- Source sensitive optic 215 is configured to provide beam profile and radiation pattern differentiation based on different surface shapes and each surface shape's interaction with a given configuration for reconfigurable CoB LED array 210.
- the surface shapes are optimized to meet different environmental and lighting scenarios using different LED configurations available from reconfigurable CoB LED array 210.
- source sensitive optic 215 is molded from polymethyl methacrylate (PMMA), polycarbonate, glass or any other like material.
- Controller 220 can be used to describe various apparatus relating to the operation of reconfigurable CoB LED array 210. Controller 220 can be implemented in numerous ways (e.g., such as with dedicated hardware) to perform various functions discussed herein.
- controller 220 can be a processor which employs one or more microprocessors that may be programmed using software (e.g., microcode) to perform various functions discussed herein.
- Controller 220 can be implemented with or without employing a processor, and also may be implemented as a combination of dedicated hardware to perform some functions and a processor (e.g., one or more programmed microprocessors and associated circuitry) to perform other functions. Examples of controller components that may be employed in various embodiments of the present disclosure include, but are not limited to, conventional microprocessors, application specific integrated circuits (ASICs), and field- programmable gate arrays (FPGAs).
- ASICs application specific integrated circuits
- FPGAs field- programmable gate arrays
- a processor or controller may be associated with one or more storage media (generically referred to herein as "memory,” e.g., volatile and non-volatile computer memory such as RAM, PROM, EPROM, and EEPROM, floppy disks, compact disks, optical disks, magnetic tape, etc.).
- the storage media may be encoded with one or more programs that, when executed on one or more processors and/or controllers, perform at least some of the functions discussed herein.
- Various storage media may be fixed within a processor or controller or may be transportable, such that the one or more programs stored thereon can be loaded into a processor or controller so as to implement various aspects of the present disclosure discussed herein.
- program or “computer program” are used herein in a generic sense to refer to any type of computer code (e.g., software or microcode) that can be employed to program one or more processors or controllers.
- User interface 225 and/or vendor interface 230 can refer to an interface between a human user or operator and controller 220 to configure reconfigurable CoB LED array 210.
- User interface 225 and/or vendor interface 230 can be, but is not limited to, switches, potentiometers, buttons, dials, sliders, a mouse, keyboard, keypad, various types of game controllers (e.g., joysticks), track balls, display screens, various types of graphical user interfaces (GUIs), touch screens, microphones and other types of sensors that may receive some form of human-generated stimulus and generate a signal in response thereto.
- game controllers e.g., joysticks
- GUIs graphical user interfaces
- Figure 3 is an illustrative reconfigurable CoB LED array 300 with Type I, Type II and
- Type III light source configurations for use with a source sensitive optic, such as for example, a source sensitive optic 705 of Figure 7.
- a Type I light source configuration can be a 3 x 5 mm array that emits emitting 2000 lumens (Im)
- a Type II light source configuration can be a 3 x 10 mm array that emits emitting 4000 Im
- a Type III light source configuration can be a 3 x 15.6 mm array that emits emitting 6000 Im.
- Type I light source configuration emits a narrow beam and each successively larger light source emits wider beams.
- reconfigurable CoB LED array 300 of Figure 3 can be three non-configurable CoB LEDs, one for each of the Type I, Type II and Type III light source configurations.
- Type III light source configuration can be used as a base configuration from which other configurations, such as the Type I and Type II configurations can be implemented from.
- the Type III configuration there is an example X, Y and Z indication on the Type III configuration.
- the Type I and Type II configurations are configured relative to the X, Y and Z axis indication.
- each configuration is centered on the X axis and different sets of chips in reconfigurable CoB LED array 300 are configured along the Y axis.
- each configuration is centered on the X axis and chips in reconfigurable CoB LED array 300 are configured along the Z axis.
- each configuration is centered on the X axis and chips in reconfigurable CoB LED array 300 are configured along the Y and Z axes.
- the shape of reconfigurable CoB LED array 300 is illustrative and other shapes can be used as described herein. Different configurations can provide different illumination characteristics, features or parameters as described herein.
- Figures 4-6 Figure 4 is an illustrative wireframe diagram of a Type I light source 400 in a source sensitive optic 405.
- Figure 5 is an illustrative wireframe diagram of a Type II light source 500 in source sensitive optic 405.
- Figure 6 is an illustrative wireframe diagram of a Type III light source 600 in source sensitive optic 405.
- Type I light source 400 and Type II light source 500 are subsets of Type III light source 600 along the Y axis.
- each of the Type I, Type II and Type III relative configurations can be used with source sensitive optic 405.
- Figure 7 is an illustrative lighting fixture 700 that includes a source sensitive optic 705 and a CoB LED array 710 that are mounted on a mounting board 715.
- source sensitive optic 705 is mounted after mounting of CoB LED array 710 on mounting board 715.
- Source sensitive optic 705 is configured to provide different beam profiles and radiation patterns based on the different shapes and configurations of CoB LED array 710.
- a controller such as for example, controller 220 can be used to configure CoB LED array 710 as appropriate. In an implementation, a controller is not needed if CoB LED array 710 includes multiple non-configurable CoB LED arrays as described herein.
- Figure 8 is an illustrative cross section of light fixture 700 taken along the X-Z axes.
- Figure 9 is an illustrative cross section of light fixture 700 taken along the Y-Z axes.
- Figures 10A-10C illustrate beam patterns with respect to Type I, Type II and Type III lighting source configurations in accordance with certain implementations.
- the Type I lighting source has a narrow beam profile centered at 20 degrees, (along 90° H, which means along the width of the road), and the Type II lighting source and the Type III lighting source have wider beam profiles.
- Figures 11A-11C illustrate Illuminance and Luminance profiles on an example road configuration with respect to Type I, Type II and Type III lighting source configurations in accordance with certain implementations.
- Figures 12A-12C illustrate luminous intensity plots with respect to Type I, Type II and Type III lighting source configurations in accordance with certain implementations.
- Figures 12A-12C demonstrate that maximum intensity (Max Cd point) of the three distributions is changing and that the 50% of Max Cd points (see isoplot curve) are getting wider, (notably along the street side as noted in the figures), when the shape of the CoB is changed.
- the beam profile is getting wider from Figure 12A to Figure 12C when using, for example, Type I to Type III lighting source configurations, respectively.
- FIG. 13 is a flowchart 1300 for making a lighting fixture in accordance with certain implementations.
- a reconfigurable CoB LED array is made from a plurality of LEDs in a predetermined shape and size (1305).
- a source sensitive optic is made by first varying a plurality of surface shapes responsive to different CoB LED array configurations of the reconfigurable CoB LED array (1310).
- the reconfigurable CoB LED array is a plurality of non-configurable CoB LED arrays and the source sensitive optic is made by varying the plurality of surface shapes responsive to each non-configurable CoB LED array configuration.
- the plurality of surface shapes is optimized with respect to a predetermined set of lighting thresholds (1315).
- the predetermined lighting thresholds can include, but is not limited to, beam profiles, radiation patterns, luminance flux, luminous intensity, color, and beam width.
- the source sensitive optic is formed from the optimized plurality of surface shapes (1320).
- the reconfigurable CoB LED array configuration is coupled to the source sensitive optic to form the lighting fixture (1325).
- Embodiments described herein may be incorporated into any suitable light emitting device. Embodiments of the invention are not limited to the particular structures illustrated, such as, for example, the system and devices of Figures 2-9.
- a lighting fixture includes a reconfigurable chip-on-board (CoB) light emitting diode (LED) array and a source sensitive optic including a plurality of surface shapes, the source sensitive optics providing different beam profiles and radiation patterns based on the plurality of surface shapes in combination with different CoB LED array configurations available from the reconfigurable CoB LED array.
- the reconfigurable CoB LED array includes a plurality of LEDs which are individually addressable and selectable via a controller.
- the reconfigurable CoB LED array includes a base CoB LED array configuration.
- the source sensitive optic is at least one of a freeform, refractive, Fresnel, and reflective type optic.
- the source sensitive optic is molded from at least one of polymethyl methacrylate (PMMA), polycarbonate, and glass.
- the at least one of the plurality of surface shapes has a different surface shape.
- the at least one of the plurality of surface shapes has a different geometrical relationship to at least one LED of the reconfigurable CoB LED array.
- the reconfigurable CoB LED array includes a plurality of non-configurable CoB LED arrays.
- each of the different CoB LED array configurations is a non- configurable CoB LED array.
- the different beam profiles and radiation patterns vary in terms of at least one of luminance flux, luminous intensity, color, and beam width.
- a method for making a lighting fixture includes providing a reconfigurable chip-on-board (CoB) light emitting diode (LED) array and providing a source sensitive optic which includes a plurality of surface shapes, the source sensitive optic providing different beam profiles and radiation patterns based on the plurality of surface shapes in combination with different CoB LED array configurations available from the reconfigurable CoB LED array.
- the method further includes coupling the reconfigurable CoB LED array with the source sensitive optic to form the lighting fixture.
- providing the source sensitive optic further includes varying the plurality of surface shapes responsive to the different CoB LED array configurations, optimizing the plurality of surface shapes with respect to a predetermined set of lighting thresholds, and forming the source sensitive optic from the plurality of surface shapes.
- providing the reconfigurable CoB LED array includes forming the reconfigurable CoB LED array from a plurality of LEDs which are individually addressable and selectable.
- the reconfigurable CoB LED array including a base CoB LED array configuration.
- the reconfigurable CoB LED array includes a plurality of non-configurable CoB LED arrays.
- each of the different CoB LED array configurations is a non-configurable CoB LED array.
- providing a source sensitive optics includes using at least one of a freeform, refractive, Fresnel, and reflective type optics to implement the source sensitive optics.
- providing a source sensitive optic includes molding the source sensitive optic from at least one of polymethyl methacrylate (PMMA), plastic, polycarbonate, and glass.
- PMMA polymethyl methacrylate
- at least one of the plurality of surface shapes has a different surface shape.
- at least one of the plurality of surface shapes has a different geometrical relationship to at least one LED of the reconfigurable CoB LED array.
- the methods described herein are not limited to any particular element(s) that perform(s) any particular function(s) and some steps of the methods presented need not necessarily occur in the order shown. For example, in some cases two or more method steps may occur in a different order or simultaneously. In addition, some steps of the described methods may be optional (even if not explicitly stated to be optional) and, therefore, may be omitted. These and other variations of the methods disclosed herein will be readily apparent, especially in view of the description of using a source sensitive optic with reconfigurable CoB LED arrays as light sources as described herein, and are considered to be within the full scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
- Led Device Packages (AREA)
- Lenses (AREA)
Abstract
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/793,655 US10340310B2 (en) | 2017-10-25 | 2017-10-25 | Source sensitive optic with reconfigurable chip-on-board light emitting diode array |
| EP18154179 | 2018-01-30 | ||
| PCT/US2018/057477 WO2019084247A1 (fr) | 2017-10-25 | 2018-10-25 | Optique sensible à la source avec réseau de diodes électroluminescentes à puce sur plaque reconfigurable |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3701182A1 true EP3701182A1 (fr) | 2020-09-02 |
Family
ID=64172606
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP18799653.3A Withdrawn EP3701182A1 (fr) | 2017-10-25 | 2018-10-25 | Optique sensible à la source avec réseau de diodes électroluminescentes à puce sur plaque reconfigurable |
Country Status (6)
| Country | Link |
|---|---|
| EP (1) | EP3701182A1 (fr) |
| JP (1) | JP2021501443A (fr) |
| KR (1) | KR102405185B1 (fr) |
| CN (1) | CN111512088A (fr) |
| TW (1) | TWI761618B (fr) |
| WO (1) | WO2019084247A1 (fr) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10340310B2 (en) | 2017-10-25 | 2019-07-02 | Lumileds Llc | Source sensitive optic with reconfigurable chip-on-board light emitting diode array |
| CN115758984B (zh) * | 2022-11-29 | 2025-12-02 | 利亚德电视技术有限公司 | Led阵列封装图的生成方法及装置、存储介质和处理器 |
| WO2025243261A1 (fr) * | 2024-05-24 | 2025-11-27 | Algorab S.R.L. | Dispositif d'éclairage à diode électroluminescente solide photométrique variable |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009144024A1 (fr) * | 2008-05-28 | 2009-12-03 | Osram Gesellschaft mit beschränkter Haftung | Dispositif d’éclairage de véhicule avec au moins deux éléments d’éclairage semi-conducteurs |
| US20120189291A1 (en) * | 2009-09-30 | 2012-07-26 | Osram Opto Semiconductors Gmbh | Illumination device for a camera, and method for operating the same |
| DE102011107893A1 (de) * | 2011-07-18 | 2013-01-24 | Heraeus Noblelight Gmbh | Optoelektronisches Modul mit verbesserter Optik |
| US20130214696A1 (en) * | 2012-02-16 | 2013-08-22 | Av Tech Corporation | Light-Emitting Diode with Adjustable Light Beams and Method for Controlling the Same |
| US20150097200A1 (en) * | 2013-10-03 | 2015-04-09 | Cree, Inc. | Solid state lighting apparatus with high scotopic / photopic (s/p) ratio |
| US20160201876A1 (en) * | 2014-01-22 | 2016-07-14 | Hongli Linghting Group Co., Ltd. | Light distribution method for cob module led street lamp lens capable of illuminating 3 - 5 lanes |
| DE202015106996U1 (de) * | 2015-12-22 | 2017-03-23 | Zweibrüder Optoelectronics Gmbh & Co. Kg | Kopf- oder Taschenlampe |
| WO2018118955A1 (fr) * | 2016-12-19 | 2018-06-28 | Whelen Engineering Company, Inc. | Module d'éclairage à led à optique fixe et motif d'émission variable |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6016038A (en) * | 1997-08-26 | 2000-01-18 | Color Kinetics, Inc. | Multicolored LED lighting method and apparatus |
| AU2003215117A1 (en) * | 2002-02-09 | 2003-09-04 | Display Science, Inc. | Flexible video displays and their manufacture |
| JP4405170B2 (ja) * | 2003-03-28 | 2010-01-27 | フジノン株式会社 | 光学素子成形型設計方法 |
| US7461948B2 (en) * | 2005-10-25 | 2008-12-09 | Philips Lumileds Lighting Company, Llc | Multiple light emitting diodes with different secondary optics |
| EP2942611B1 (fr) * | 2006-02-27 | 2022-04-06 | Signify Holding B.V. | Dispositif adapté à être utilisé dans une installation d'éclairage public |
| US8770787B2 (en) * | 2007-06-14 | 2014-07-08 | Koninklijke Philips N.V. | LED-based luminaire with adjustable beam shape |
| JP4768038B2 (ja) * | 2009-02-13 | 2011-09-07 | シャープ株式会社 | 照明デバイスおよび該照明デバイスを使用した照明装置 |
| JP5838084B2 (ja) * | 2011-12-16 | 2015-12-24 | 日立アプライアンス株式会社 | 照明装置 |
| JP6233735B2 (ja) * | 2012-06-29 | 2017-11-22 | パナソニックIpマネジメント株式会社 | 監視用撮像装置およびその制御方法 |
| US9033547B2 (en) * | 2012-08-20 | 2015-05-19 | Cooper Technologies Company | Lighting applications using organic light emitting diodes |
| US9696012B2 (en) * | 2012-10-04 | 2017-07-04 | Guardian Industries Corp. | Embedded LED assembly with optional beam steering optical element, and associated products, and/or methods |
| CN102927473B (zh) * | 2012-11-06 | 2016-03-02 | 东南大学 | 一种光束光斑可控的照明装置 |
| KR101419031B1 (ko) * | 2012-11-12 | 2014-07-11 | 방주광학 주식회사 | 발광장치 및 이를 구비하는 조명장치 |
| DE112013006324T5 (de) * | 2012-12-31 | 2015-10-15 | Iee International Electronics & Engineering S.A. | Optisches System zur Erzeugung eines strukturierten Lichtfelds von einer Reihe von Lichtquellen durch ein brechendes oder reflektierendes Lichtstrukturierungselement |
| US9039746B2 (en) * | 2013-02-08 | 2015-05-26 | Cree, Inc. | Solid state light emitting devices including adjustable melatonin suppression effects |
| US10873998B2 (en) * | 2013-11-20 | 2020-12-22 | Signify Holding B.V. | Methods and apparatus for controlling illumination of a multiple light source lighting unit |
| JP6099618B2 (ja) * | 2014-11-12 | 2017-03-22 | 浜井電球工業株式会社 | 光源モジュール、およびそれを利用したトンネル用照明灯具 |
| CN204806029U (zh) * | 2015-07-28 | 2015-11-25 | 台达电子工业股份有限公司 | 发光二极管灯具 |
| JP2017045951A (ja) * | 2015-08-28 | 2017-03-02 | パナソニックIpマネジメント株式会社 | Ledモジュール及びそれを備えた照明器具 |
-
2018
- 2018-10-25 WO PCT/US2018/057477 patent/WO2019084247A1/fr not_active Ceased
- 2018-10-25 JP JP2020523447A patent/JP2021501443A/ja active Pending
- 2018-10-25 CN CN201880083988.9A patent/CN111512088A/zh active Pending
- 2018-10-25 EP EP18799653.3A patent/EP3701182A1/fr not_active Withdrawn
- 2018-10-25 KR KR1020207014917A patent/KR102405185B1/ko active Active
- 2018-10-25 TW TW107137799A patent/TWI761618B/zh active
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009144024A1 (fr) * | 2008-05-28 | 2009-12-03 | Osram Gesellschaft mit beschränkter Haftung | Dispositif d’éclairage de véhicule avec au moins deux éléments d’éclairage semi-conducteurs |
| US20120189291A1 (en) * | 2009-09-30 | 2012-07-26 | Osram Opto Semiconductors Gmbh | Illumination device for a camera, and method for operating the same |
| DE102011107893A1 (de) * | 2011-07-18 | 2013-01-24 | Heraeus Noblelight Gmbh | Optoelektronisches Modul mit verbesserter Optik |
| US20130214696A1 (en) * | 2012-02-16 | 2013-08-22 | Av Tech Corporation | Light-Emitting Diode with Adjustable Light Beams and Method for Controlling the Same |
| US20150097200A1 (en) * | 2013-10-03 | 2015-04-09 | Cree, Inc. | Solid state lighting apparatus with high scotopic / photopic (s/p) ratio |
| US20160201876A1 (en) * | 2014-01-22 | 2016-07-14 | Hongli Linghting Group Co., Ltd. | Light distribution method for cob module led street lamp lens capable of illuminating 3 - 5 lanes |
| DE202015106996U1 (de) * | 2015-12-22 | 2017-03-23 | Zweibrüder Optoelectronics Gmbh & Co. Kg | Kopf- oder Taschenlampe |
| WO2018118955A1 (fr) * | 2016-12-19 | 2018-06-28 | Whelen Engineering Company, Inc. | Module d'éclairage à led à optique fixe et motif d'émission variable |
Non-Patent Citations (1)
| Title |
|---|
| See also references of WO2019084247A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| KR102405185B1 (ko) | 2022-06-07 |
| TW201930779A (zh) | 2019-08-01 |
| JP2021501443A (ja) | 2021-01-14 |
| KR20200087777A (ko) | 2020-07-21 |
| TWI761618B (zh) | 2022-04-21 |
| CN111512088A (zh) | 2020-08-07 |
| WO2019084247A1 (fr) | 2019-05-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11018183B2 (en) | Source sensitive optic with reconfigurable chip-on-board light emitting diode array | |
| EP3307028B1 (fr) | Procédés et appareils pour unité d'éclairage adaptable | |
| US9491827B2 (en) | Methods and apparatus for controlling lighting | |
| US20150334790A1 (en) | User input systems for an led-based light | |
| EP3056064B1 (fr) | Procédés et appareil de commande d'éclairage tactile | |
| RU2653689C2 (ru) | Способы и устройства для управления освещением | |
| US11913613B2 (en) | Lighting assembly with light source array and light-directing optical element | |
| CN104335681B (zh) | 具有触敏发光表面的照明灯具 | |
| TW202019235A (zh) | 具有動態可控制光分佈之燈具 | |
| KR102405185B1 (ko) | 재구성 가능한 칩-온-보드 발광 다이오드 어레이를 갖는 소스 감지 광학계 | |
| US20150216018A1 (en) | Methods and apparatus for lighting unit configure for presence detection | |
| US11830723B2 (en) | High luminance light emitting device and method for creating a high luminance light emitting device | |
| US20170268751A1 (en) | Methods and apparatus for optic holder design |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20200527 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20220406 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20240806 |