[go: up one dir, main page]

EP3775122A1 - Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants - Google Patents

Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants

Info

Publication number
EP3775122A1
EP3775122A1 EP19715528.6A EP19715528A EP3775122A1 EP 3775122 A1 EP3775122 A1 EP 3775122A1 EP 19715528 A EP19715528 A EP 19715528A EP 3775122 A1 EP3775122 A1 EP 3775122A1
Authority
EP
European Patent Office
Prior art keywords
rhamnolipid
composition
rha
composition according
alkyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19715528.6A
Other languages
German (de)
French (fr)
Inventor
Stephen Norman Batchelor
Paul Simon Stevenson
Jayne Michelle Bird
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unilever Global IP Ltd
Unilever IP Holdings BV
Original Assignee
Unilever NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unilever NV filed Critical Unilever NV
Publication of EP3775122A1 publication Critical patent/EP3775122A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • C11D1/06Ether- or thioether carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions

Definitions

  • the invention concerns a cleaning composition
  • a cleaning composition comprising a rhamnolipid surfactant and an alkyl ether carboxylic acid surfactant.
  • Rhamnolipids are carboxylic acid containing anionic surfactants that consists of one or more alkyl chains connected via a beta hydroxy group to a rhamnose sugar. They may be produced by various bacterial species. When used as detergent actives in cleaning compositions, in particular laundry cleaning compositions, large quantities of foam is created which is difficult to remove.
  • the invention relates in a first aspect to a cleaning composition
  • a cleaning composition comprising:
  • R 2 is selected from saturated and mono-unsaturated C10 to C 2o linear or branched alkyl chains, preferably selected from: Ci 2 ; Ci 4 ; Ci 6 ; and, Cie linear alkyl chains, wherein n is selected from 5 to 30, preferably from 10 to 20, and wherein the weight fraction of alkyl ether carboxylic acid to rhamnolipid surfactant is from 0.05 to 10, preferably from 0.1 to 3.
  • the cleaning composition is a fluid cleaning composition, more preferably an aqueous cleaning composition.
  • the cleaning composition comprises from 0 to 20 wt.%, more preferably from 0 to 10 wt.% of additional surfactants, wherein if present, the weight fraction of additional surfactant to the sum of (rhamnolipid plus alkyl ether carboxylate/carboxylic acid surfactant) is from 0 to 1 .
  • the composition comprises at most of 1 wt.% of phosphorous containing chemicals, more preferably the composition comprises from 0 to 1 wt.% of phosphorous containing chemicals.
  • the composition comprises from 0.5 to 6 wt.%, more preferably from 1 to 6 wt.%, most preferably from 2 to 6 wt.% of the alkyl ether carboxylic acid anionic surfactant.
  • the alkyl chain, the R 2 group, of the alkyl ether carboxylic acid anionic surfactant is selected from saturated and mono-unsaturated Ci 6 to Cie linear alkyl chains.
  • the rhamnolipid is present in the composition at a level of from 1 .5 to 15 wt.%, more preferably from 2 to 8 wt.%.
  • the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, more preferably at least 60 wt.% di-rhamnolipid, even more preferably 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di-rhamnolipid.
  • the rhamnolipid is a di-rhamnolipid of formula: Rha2Cs-i 2 C 8 -i 2 .
  • the preferred alkyl chain length is from C8 to C12, the alkyl chain may be saturated or unsaturated.
  • composition is a home care cleaning composition and further comprises one or more enzymes selected from lipases, proteases, amylases, cellulases, and mixtures thereof.
  • the cleaning composition is a laundry detergent composition, more preferably a liquid laundry detergent or a powder detergent.
  • the laundry detergent composition when dissolved in demineralised water at 4g/L, 293K, has a pH of from 6 to 1 1 , more preferably from 7 to 9.
  • the invention further relates in a second aspect to a domestic method of treating a textile, the method comprising the steps of:
  • composition as defined in the first aspect;
  • the cleaning composition comprises from 0.1 to 20 wt.%, preferably from 0.5 to 6 wt.%, more preferably from 1 to 6 wt.%, most preferably from 2 to 6 wt.% of the alkyl ether carboxylic acid anionic surfactant.
  • alkyl ether carboxylic acid Weights of alkyl ether carboxylic acid are calculated as the protonated form, R 2 -(OCH 2 CH 2 ) n - OCH 2 COOH.
  • the alkyl ether anionic surfactant may be in carboxylic acid form, or it may be in alkyl ether carboxylate surfactant form.
  • the alkyl ether carboxylate/carboxylic acid anionic surfactant may be used as salt version, for example with a counterion such as a sodium salt, or an amine salt.
  • the alkyl chain may be linear or branched, preferably it is linear.
  • the alkyl chain may be aliphatic or contain one cis or trans double bond.
  • the alkyl chain (F3 ⁇ 4) is selected from saturated and mono-unsaturated C 10 to C 20 linear or branched alkyl chains preferably selected from: C 12 ; Ci 4 ; C 16 ; and, Cis linear alkyl chain.
  • the alkyl ether carboxylic acid has n selected from 5 to 30, preferably from 10 to 20.
  • the weight fraction of alkyl ether carboxylic acid to rhamnolipid surfactant is from 0.05 to 10, preferably from 0.1 to 3.
  • Alkyl ether carboxylic acid are available from Kao (Akypo ®), Huntsman (Empicol®) and Clariant (Emulsogen ®).
  • Alkyl ether carboxylic acids synthesis is discussed in Anionic Surfactants Organic Chemistry edited by H.W. Stache (Marcel Dekker, New York 1996).
  • R 2 -(OCH 2 CH 2 ) n -OH may be present, preferably levels of R 2 - (OCH 2 CH 2 ) n -OH are from 0 to 10 wt.% in the alkyl ether carboxylic acid. Low levels of diglycolic acid and glycolic acid may be present as bi products.
  • NaCI from the synthesis may be present in the aqueous liquid laundry detergent
  • composition Additional NaCI may be added to the composition.
  • alkyl ether carboxylic acid may also be synthesised via an oxidation reaction:-
  • the oxidation is typically conducted using oxygen as the oxidant under basic conditions in the presence of metal catalyst such as Pd/Pt, as described in DE3135946; DE2816127 and EP0304763.
  • metal catalyst such as Pd/Pt, as described in DE3135946; DE2816127 and EP0304763.
  • Rhamnolipids are a class of glycolipid. They are constructed of rhamnose combined with beta-hydroxy fatty acids. Rhamnose is a sugar. Fatty acids are ubiquitous in animals and plants. Rhamnolipids are discussed in Applied Microbiology and Biotechnology (2010) 86:1323- 1336 by E. Deziel et al. Rhamnolipids are produced by Glycosurf, AGAE Technologies and Urumqi Unite Bio-Technology Co., Ltd. Rhamnolipids may be produced by strains of the bacteria Pseudomonas Aeruginosa.
  • Rhamnolipids may also be produced by a recombinant cell of Pseudomonas Putida where the recombinant cell comprises increased activity of at least one of the enzymes a/P hydrolase, rhamnosyltransferase I or rhamnosyl-transferase II compared to the wild-type of the cell.
  • rhamnolipids There are two major groups of rhamnolipids; mono-rhamnolipids and di-rhamnolipids.
  • Mono-rhamnolipids have a single rhamnose sugar ring.
  • a typical mono-rhamnolipid produced by P. aeruginosa is L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate (RhaCioCio). It may be referred to as Rha-Cio-Cio, with a formula of C26H48O9.
  • Mono- rhamnolipids have a single rhamnose sugar ring.
  • the IUPAC Name is 3-[3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2- yljoxydecanoyloxyjdecanoic acid.
  • Di-rhamnolipids have two rhamnose sugar rings.
  • a typical di-rhamnolipid is L-rhamnosyl-L- rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate (Rha2CioCio). It may be referred to as Rha-Rha-C-io-C-10, with a formula of C32H58O13.
  • the IUPAC name is 3-[3-[4,5-dihydroxy-6-methyl-3-(3,4, 5-tri hyd roxy-6-m ethyloxan-2- yl)oxyoxan-2-yl]oxyd ecanoyloxy]decanoic acid.
  • Rha- mono-rhamnolipids
  • RL1 mono-rhamnolipid
  • RL2 di-rhamnolipids
  • Rha-Rha Rh or Rh-Rh- or RL1.
  • rhamnolipid 2 is a mono-rhamnolipid
  • rhamnolipid 1 is a di-rhamnolipid. This leads to some ambiguity in the usage or "RL1 " and "RL2" in the literature.
  • Rhamnolipids produced by P. aeruginosa (unidentified as either mono- or di-rhamnolipids): C8-C8, C8-C10, C10-C8, C8"C12: 1 , C12: 1-C8, C10-C10, C12-C10, C12: 1-C10 C12-C12, C12: 1-C12, C14-C10, C14: 1-C10, C14-C14.
  • Rha-C10-C 8 Rha-C10 -C10, Rha-C12-C10, Rha-C12: 1-C10, Rha-C12-C12, Rha-C12: 1- C12, Rha-C14-C10. Rha-C-14; 1- C-10.
  • Rhamnolipids produced by Burkholdera (Pseudomonas) plantarii (di-rhamnolipids only): Rha-Rha-C14-C14.
  • ATC American Type Culture Collection
  • strains of P. aeruginosa There are also a number of strains that are only available to manufacturers of commercial Rhamnolipids. Additionally there are probably thousands of strains isolated by various research institutions around the world. Some work has gone into typing them into groups. Each strain has different characteristics including how much rhamnolipid is produced, which types of rhamnolipids are produced, what it metabolizes, and conditions in which it grows. Only a small percentage of the strains have been extensively studied.
  • strains of P. aeruginosa can be isolated to produce rhamnolipids at higher concentrations and more efficiently. Strains can also be selected to produce less byproduct and to metabolize different feedstock or pollutants. This production is greatly affected by the environment in which the bacterium is grown.
  • a typical di-rhamnolipid is L-rhamnosyl-L-rhamnosyl-3-hydroxydecanoyl-3- hydroxydecanoate (Rha2CioCio with a formula of C32H58O13).
  • the rhamnolipid is present in the formulation from 1.5 to 15 wt.%, more preferably from 2 to 8 wt.%.
  • the rhamnolipid is selected from:
  • Rha-C10-C8 Rha-C10-C10, Rha-C12:1-C10, Rha-C12-C12, Rha-C12:1- C12, Rha-C14-C10, Rha-C14:1-C10.
  • Mono-rhamnolipids may also be produced from P.putida by introduction of genes rhIA and rhIB from Psuedomonas aeruginosa [Cha et al. in Bioresour Technol. 2008.
  • the Rhamnolipid is L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate
  • the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, more preferably at least 60 wt.% di-rhamnolipid, even more preferably 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di-rhamnolipid.
  • the rhamnolipid is a di-rhamnolipid of formula: Rha2Cs-i 2 C 8 -i 2 .
  • the preferred alkyl chain length is from Cs to C12.
  • the alkyl chain may be saturated or unsaturated.
  • the composition is a cleaning composition, useful for cleaning a substrate, for example a surface, including for home and personal care purposes.
  • the composition is preferably a fluid cleaning composition, more preferably an aqueous cleaning composition.
  • the cleaning composition is a home care composition.
  • the cleaning composition is a laundry detergent composition, more preferably a liquid laundry detergent or a powder detergent.
  • the laundry detergent composition when dissolved in demineralised water at 4g/L, 293K, has a pH of from 6 to 11 , more preferably from 7 to 9.
  • Additional surfactants may be present in the composition.
  • the cleaning composition comprises from 0 to 20 wt.%, more preferably from 0 to 10 wt.% of additional surfactants, wherein if present, the weight fraction of additional surfactant to the sum of (rhamnolipid plus alkyl ether carboxylate/carboxylic acid surfactant) is from 0 to 1.
  • These are preferably selected from anionic and nonionic surfactants.
  • nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents” Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents” published by Manufacturing
  • nonionic detergent compounds which may be used include the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
  • Specific nonionic detergent compounds are the condensation products of aliphatic primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO, preferably 7EO to 9EO.
  • Preferred anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
  • suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C10 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
  • the preferred anionic detergent compounds are sodium Cn to C15 alkyl benzene sulphonates and sodium C12 to C14 alkyl sulphates.
  • surfactants such as those described in EP-A- 328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides.
  • Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular, the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever).
  • surfactant system that is a mixture of an alkali metal salt of a C12 to C14 primary alcohol sulphate together with a C12 to C16 primary alcohol 3 to 7 EO ethoxylate.
  • the additional surfactant is predominately anionic surfactant by weight.
  • composition may comprise any of these further preferred ingredients.
  • Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
  • calcium sequestrant builder materials examples include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
  • precipitating builder materials examples include sodium orthophosphate and sodium carbonate.
  • Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.
  • the composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or
  • alkenylsuccinic acid nitrilotriacetic acid or the other builders mentioned below.
  • Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
  • Zeolite and carbonate are preferred builders.
  • the composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%.
  • Aluminosilicates are materials having the general formula:
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • M is a monovalent cation, preferably sodium.
  • These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g.
  • the preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature.
  • the ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
  • phosphate builders may be used.
  • 'phosphate' embraces diphosphate, triphosphate, and phosphonate species.
  • Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
  • the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate.
  • the laundry detergent formulation is carbonate built if a builder is included.
  • the composition preferably comprises a fluorescent agent (optical brightener).
  • Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
  • the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%.
  • Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
  • Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1 ,3,5-triazin-2- yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
  • the aqueous solution used in the method has a fluorescer present.
  • a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/l to 0.1 g/l, preferably 0.001 to 0.02 g/l.
  • the composition preferably comprises a dye. Dyes are discussed in K. Hunger (ed).
  • Preferred dye chromophores are azo, azine, anthraquinone, phthalocyanine and
  • Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged.
  • Azine dyes preferably carry a net anionic or cationic charge.
  • Preferred non-shading dyes are selected are selected from blue dyes, most preferably anthraquinone dyes bearing sulphonate groups and triphenylmethane dye bearing sulphonate groups.
  • Preferred compounds are acid blue 80, acid blue 1 , acid blue 3; acid blue 5, acid blue 7, acid blue 9, acid blue 1 1 , acid blue 13, acid blue 15, acid blue 17, acid blue 24, acid blue 34, acid blue 38, acid blue 75, acid blue 83, acid blue 91 , acid blue 97, acid blue 93, acid blue 93:1 , acid blue 97, acid blue 100, acid blue 103, acid blue 104, acid blue 108, acid blue 109, acid blue 1 10, and acid blue 213.
  • On dissolution granules with non-shading dyes provide an attractive colour to the wash liquor.
  • Blue or violet Shading dyes are most preferred. Shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 260 to 320, most preferably 270 to 300.
  • the white cloth used in this test is bleached non-mercerised woven cotton sheeting.
  • a mixture of shading dyes may be used.
  • the shading dye chromophore is most preferably selected from mono-azo, bis-azo, anthraquinone, and azine.
  • Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes.
  • shading dyes are selected from Direct Violet 9, Direct Violet 99, Direct Violet 35, Solvent Violet 13, Disperse Violet 28, dyes of the structure
  • the composition comprises a perfume.
  • the perfume is preferably in the range from 0.001 to 3 wt.%, most preferably 0.1 to 1 wt.%.
  • CTFA Cosmetic, Toiletry and Fragrance Association
  • OPD Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
  • compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
  • top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]).
  • Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
  • the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
  • a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
  • composition may comprise one or more further polymers. Examples are:
  • carboxymethylcellulose polyethylene glycol
  • polyvinyl alcohol polyvinyl alcohol
  • polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid
  • Polymers present to prevent dye deposition for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole), may be present in the formulation.
  • One or more enzymes are preferred to be present in a cleaning composition of the invention and when practicing a method of the invention.
  • the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.% protein.
  • enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
  • Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P.
  • lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202, WO 00/60063.
  • Preferred commercially available lipase enzymes include LipolaseTM and Lipolase UltraTM, LipexTM and lipocleanTM (Novozymes A/S).
  • the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1 .32.
  • phospholipase is an enzyme which has activity towards phospholipids.
  • Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
  • Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
  • phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
  • lysophospholipase or phospholipase B which can hydrolyze the remaining fatty acyl group in lysophospholipid.
  • Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
  • the enzyme and the photobleach may show some interaction and should be chosen such that this interaction is not negative. Some negative interactions may be avoided by encapsulation of one or other of enzyme or photobleach and/or other segregation within the product.
  • proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
  • the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
  • Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
  • the method of the invention may be carried out in the presence of cutinase classified in EC 3.1.1 .74.
  • the cutinase used according to the invention may be of any origin.
  • cutinases are of microbial origin, in particular, of bacterial, of fungal or of yeast origin.
  • Suitable amylases include those of bacterial or fungal origin.
  • Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. lichen iformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060.
  • Commercially available amylases are DuramylTM,
  • TermamylTM Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM
  • Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora
  • thermophila and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
  • cellulases include CelluzymeTM, CarezymeTM, CellucleanTM,
  • RenozymeTM Novozymes A/S
  • ClazinaseTM and Puradax HATM (Genencor International Inc.)
  • KAC-500(B)TM Kao Corporation
  • Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin.
  • peroxidases Chemically modified or protein engineered mutants are included.
  • useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
  • peroxidases include GuardzymeTM and NovozymTM 51004
  • Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
  • a polyol such as propylene glycol or glycerol
  • a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
  • alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
  • the alkyl groups are preferably linear or branched, most preferably linear.
  • indefinite article “a” or “an” and its corresponding definite article “the” as used herein means at least one, or one or more, unless specified otherwise.
  • Rhamnolipid (RL-A) from Pseudomonas aeruginosa (CAS-No 869062-42-0) was purchased from Aldrich and used as supplied. Aldrich obtained the rhamnolipid from AGAE technology. The rhamnolipid product is a mixture of monorhamnolipids and dirhamnolipids with (Rha- Rha-Cio-Cio and Rha-C «rCio) as predominant.
  • the alkyl ether carboxylate was Emulsogen COL100 supplied by Clariant, it is oleyl based with 10 moles of ethoxylation.
  • An aqueous liquid laundry detergent formulation was created containing 6 wt.% of
  • Rhamnolipid (RL-A). This was added to 26 French hard water to give an aqueous solution containing 4g/L of Rhamnolipid (RL1 ). 25g of the solution was decanted in to a 125ml glass bottle without the creation of any foam. A lid was placed on the bottle and it was carefully placed on its axis on an orbital shaker and rotated at 200 rpm for 30 seconds. The bottle was removed and stood on a flat surface and the foam height measured, as the distance from the top of the liquid to the top of the foam. The experiment was repeated but using 6 wt.% Alkyl Ether Carboxylate (AEC). All experiments were repeated eight times and these reference results shown in the table below.
  • AEC Alkyl Ether Carboxylate
  • %AEC is the percent of AEC in the mixture.
  • Rhamnolipid obtained from Evonik. (Lx P001 ).
  • the rhamnolipid is predominately a di-rhamnolipid of formula: Rha2C 8 -i 2 Cs-i 2.
  • the neat rhamnolipid gave the following foam (5 repeats):
  • Foam height 43.6-0.2635 * (%AEC) When in a 50:50 mixture with Emulsogen COL100, much lower levels of foam than expected from the individual components was obtained (5 repeats):

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Abstract

The invention relates to a cleaning composition comprising: a) from 1 to 20 wt.% of a rhamnolipid anionic surfactant; and b) from 0.1 to 20 wt.% of an alkyl ether carboxylic acid surfactant of the following structure: R2-(OCH2CH2)n-OCH2-COOH, wherein: R2 is selected from saturated and mono-unsaturated C10 to C20 linear or branched alkyl chains, preferably selected from: C12; C14; C16; and, C18 linear alkyl chains, wherein n is selected from 5 to 30, preferably from 10 to 20, and wherein the weight fraction of alkyl ether carboxylic acid to rhamnolipid surfactant is from 0.05 to 10, preferably from 0.1 to 3; and to a domestic method of treating a textile with an aqueous solution of said cleaning composition.

Description

CLEANING COMPOSITION COMPRISING RHAMNOLIPID AND ALKYL ETHER CARBOXYLATE SURFACTANTS
Field of Invention
The invention concerns a cleaning composition comprising a rhamnolipid surfactant and an alkyl ether carboxylic acid surfactant.
Background of the Invention
Rhamnolipids are carboxylic acid containing anionic surfactants that consists of one or more alkyl chains connected via a beta hydroxy group to a rhamnose sugar. They may be produced by various bacterial species. When used as detergent actives in cleaning compositions, in particular laundry cleaning compositions, large quantities of foam is created which is difficult to remove.
These is a need for effective cleaning compositions containing rhamnolipids with reduced foaming.
Summary of the Invention
We have found that cleaning compositions containing a rhamnolipid surfactant and a specific alkyl ether carboxylic acid surfactant give reduced levels of foaming.
The invention relates in a first aspect to a cleaning composition comprising:
a) from 1 to 20 wt.% of a rhamnolipid anionic surfactant; and
b) from 0.1 to 20 wt.% of an alkyl ether carboxylic acid surfactant of the following
structure:
R2-(OCH2CH2)n-OCH2-COOH ,
wherein:
R2 is selected from saturated and mono-unsaturated C10 to C2o linear or branched alkyl chains, preferably selected from: Ci2; Ci4; Ci6; and, Cie linear alkyl chains, wherein n is selected from 5 to 30, preferably from 10 to 20, and wherein the weight fraction of alkyl ether carboxylic acid to rhamnolipid surfactant is from 0.05 to 10, preferably from 0.1 to 3. Preferably the cleaning composition is a fluid cleaning composition, more preferably an aqueous cleaning composition.
Preferably the cleaning composition comprises from 0 to 20 wt.%, more preferably from 0 to 10 wt.% of additional surfactants, wherein if present, the weight fraction of additional surfactant to the sum of (rhamnolipid plus alkyl ether carboxylate/carboxylic acid surfactant) is from 0 to 1 .
Preferably the composition comprises at most of 1 wt.% of phosphorous containing chemicals, more preferably the composition comprises from 0 to 1 wt.% of phosphorous containing chemicals.
Preferably the composition comprises from 0.5 to 6 wt.%, more preferably from 1 to 6 wt.%, most preferably from 2 to 6 wt.% of the alkyl ether carboxylic acid anionic surfactant.
Preferably the alkyl chain, the R2 group, of the alkyl ether carboxylic acid anionic surfactant is selected from saturated and mono-unsaturated Ci6 to Cie linear alkyl chains.
Preferably the rhamnolipid is present in the composition at a level of from 1 .5 to 15 wt.%, more preferably from 2 to 8 wt.%.
Preferably, the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, more preferably at least 60 wt.% di-rhamnolipid, even more preferably 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di-rhamnolipid.
Preferably the rhamnolipid is a di-rhamnolipid of formula: Rha2Cs-i2C8-i2. The preferred alkyl chain length is from C8 to C12, the alkyl chain may be saturated or unsaturated.
Preferably the composition is a home care cleaning composition and further comprises one or more enzymes selected from lipases, proteases, amylases, cellulases, and mixtures thereof.
Preferably the cleaning composition is a laundry detergent composition, more preferably a liquid laundry detergent or a powder detergent. Preferably when a liquid detergent, the laundry detergent composition when dissolved in demineralised water at 4g/L, 293K, has a pH of from 6 to 1 1 , more preferably from 7 to 9.
The invention further relates in a second aspect to a domestic method of treating a textile, the method comprising the steps of:
a) treating a textile with from 1 g/L of an aqueous solution of the cleaning
composition as defined in the first aspect; and,
b) allowing said aqueous solution to remain in contact with the textile for a time period of from 10 minutes to 2 days, then rinsing and drying the textile.
It is intended that any preferable subject matter described herein can be combined with any other subject matter, particularly combining 2 or more preferable subject matters.
Detailed Description of the Invention
Alkyl Ether Carboxylic Acid
The cleaning composition comprises from 0.1 to 20 wt.%, preferably from 0.5 to 6 wt.%, more preferably from 1 to 6 wt.%, most preferably from 2 to 6 wt.% of the alkyl ether carboxylic acid anionic surfactant.
Weights of alkyl ether carboxylic acid are calculated as the protonated form, R2-(OCH2CH2)n- OCH2COOH. The alkyl ether anionic surfactant may be in carboxylic acid form, or it may be in alkyl ether carboxylate surfactant form. The alkyl ether carboxylate/carboxylic acid anionic surfactant may be used as salt version, for example with a counterion such as a sodium salt, or an amine salt.
The alkyl chain may be linear or branched, preferably it is linear.
The alkyl chain may be aliphatic or contain one cis or trans double bond.
The alkyl chain (F¾) is selected from saturated and mono-unsaturated C10 to C20 linear or branched alkyl chains preferably selected from: C12; Ci4; C16; and, Cis linear alkyl chain. The alkyl chain is preferably selected from CH3(CH2)n, CH3(CH2)i3, CH3(CH2)IS, CH3(CH2)i7, CH3(CH2)7CH=CH(CH2)8-. It is preferred that the R2 is selected from C16 to C18 linear alkyl chains. Most preferably the alkyl chain is CH3(CH2)7CH=CH(CH2)8-. The alkyl ether carboxylic acid has n selected from 5 to 30, preferably from 10 to 20.
The weight fraction of alkyl ether carboxylic acid to rhamnolipid surfactant is from 0.05 to 10, preferably from 0.1 to 3.
Alkyl ether carboxylic acid are available from Kao (Akypo ®), Huntsman (Empicol®) and Clariant (Emulsogen ®).
Alkyl ether carboxylic acids synthesis is discussed in Anionic Surfactants Organic Chemistry edited by H.W. Stache (Marcel Dekker, New York 1996).
They may be synthesised via the reaction of the corresponding alcohol ethoxylate with chloroacetic acid or monochloro sodium acetate in the presence of NaOH:-
R2-(OCH2CH2)n-OH +NaOH + CICH2COONa R2-(OCH2CH2)n-OCH2COOH + NaCI + H20
In this synthesis residual R2-(OCH2CH2)n-OH may be present, preferably levels of R2- (OCH2CH2)n-OH are from 0 to 10 wt.% in the alkyl ether carboxylic acid. Low levels of diglycolic acid and glycolic acid may be present as bi products.
NaCI from the synthesis may be present in the aqueous liquid laundry detergent
composition. Additional NaCI may be added to the composition.
They alkyl ether carboxylic acid may also be synthesised via an oxidation reaction:-
R2-(0CH2CH2)n-0 CH2CH2OH R2-(OCH2CH2)n-OCH2COOH
The oxidation is typically conducted using oxygen as the oxidant under basic conditions in the presence of metal catalyst such as Pd/Pt, as described in DE3135946; DE2816127 and EP0304763.
Rhamnolipids
Rhamnolipids are a class of glycolipid. They are constructed of rhamnose combined with beta-hydroxy fatty acids. Rhamnose is a sugar. Fatty acids are ubiquitous in animals and plants. Rhamnolipids are discussed in Applied Microbiology and Biotechnology (2010) 86:1323- 1336 by E. Deziel et al. Rhamnolipids are produced by Glycosurf, AGAE Technologies and Urumqi Unite Bio-Technology Co., Ltd. Rhamnolipids may be produced by strains of the bacteria Pseudomonas Aeruginosa. Rhamnolipids may also be produced by a recombinant cell of Pseudomonas Putida where the recombinant cell comprises increased activity of at least one of the enzymes a/P hydrolase, rhamnosyltransferase I or rhamnosyl-transferase II compared to the wild-type of the cell.
There are two major groups of rhamnolipids; mono-rhamnolipids and di-rhamnolipids.
Mono-rhamnolipids have a single rhamnose sugar ring. A typical mono-rhamnolipid produced by P. aeruginosa is L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate (RhaCioCio). It may be referred to as Rha-Cio-Cio, with a formula of C26H48O9. Mono- rhamnolipids have a single rhamnose sugar ring.
The IUPAC Name is 3-[3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2- yljoxydecanoyloxyjdecanoic acid.
Di-rhamnolipids have two rhamnose sugar rings. A typical di-rhamnolipid is L-rhamnosyl-L- rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate (Rha2CioCio). It may be referred to as Rha-Rha-C-io-C-10, with a formula of C32H58O13.
The IUPAC name is 3-[3-[4,5-dihydroxy-6-methyl-3-(3,4, 5-tri hyd roxy-6-m ethyloxan-2- yl)oxyoxan-2-yl]oxyd ecanoyloxy]decanoic acid.
In practice a variety of other minor components with different alkyl chain length
combinations, depending upon carbon source and bacterial strain, exist in combination with the above more common rhamnolipids. The ratio of mono-rhamnolipid and di-rhamnolipid may be controlled by the production method. Some bacteria only produce mono- rhamnolipid, see US5767090: Example 1 , some enzymes can convert mono-rhamnolipid to di-rhamnolipid.
In various publications mono-rhamnolipids have the notation Rha-, which may be abbreviated as Rh or RL2. Similarly, di-rhamnolipids have the notation Rha-Rha or Rh-Rh- or RL1. For historical reasons "rhamnolipid 2" is a mono-rhamnolipid and "rhamnolipid 1 " is a di-rhamnolipid. This leads to some ambiguity in the usage or "RL1 " and "RL2" in the literature.
Throughout this patent specification, we use the terms mono- and di-rhamnolipid in order to avoid this possible confusion. However, if abbreviations are used R1 is mono-rhamnolipid and R2 is di-rhamnolipid. For more information on the confusion of terminology in the prior art see the introduction to US 4814272.
The following rhamnolipids have been detected as produced by the following bacteria:
(C12:1 , C14:1 indicates fatty acyl chains with double bonds).
Rhamnolipids produced by P. aeruginosa (mono-rhamnolipids):
Rha-C8"C10, Rha-C10-C 8, Rha-C-10-C10, Rha-C10-C12, Rha-C10-C12: 1 , Rha-C12-C10, Rha-C12: 1-C10
Rhamnolipids produced by P. aeruginosa (di-rhamnolipids):
Rha-Rha-C8-C10, Rha-Rha-C8-C12: 1 , Rha-Rha-C10-C8, Rha-Rha-C10-C10, Rha-Rha- C10-C12: 1 , Rha- Rha-C-10-C-12, Rha-Rha-C-12-C-10, Rha-Rha-C-12: 1-C-12, Rha-Rha- C-10- C14: 1
Rhamnolipids produced by P. aeruginosa (unidentified as either mono- or di-rhamnolipids): C8-C8, C8-C10, C10-C8, C8"C12: 1 , C12: 1-C8, C10-C10, C12-C10, C12: 1-C10 C12-C12, C12: 1-C12, C14-C10, C14: 1-C10, C14-C14.
Rhamnolipids produced by P. chlororaphis (mono-rhamnolipids only):
Rha-C10-C 8, Rha-C10 -C10, Rha-C12-C10, Rha-C12: 1-C10, Rha-C12-C12, Rha-C12: 1- C12, Rha-C14-C10. Rha-C-14; 1- C-10.
Rhamnolipids produced by Burkholdera pseudomallei (di-rhamnolipids only):
Rha-Rha-C14-C14.
Rhamnolipids produced by Burkholdera (Pseudomonas) plantarii (di-rhamnolipids only): Rha-Rha-C14-C14. There are over 100 strains of P. aeruginosa on file at the American Type Culture Collection (ATCC). There are also a number of strains that are only available to manufacturers of commercial Rhamnolipids. Additionally there are probably thousands of strains isolated by various research institutions around the world. Some work has gone into typing them into groups. Each strain has different characteristics including how much rhamnolipid is produced, which types of rhamnolipids are produced, what it metabolizes, and conditions in which it grows. Only a small percentage of the strains have been extensively studied.
Through evaluation and selection, strains of P. aeruginosa can be isolated to produce rhamnolipids at higher concentrations and more efficiently. Strains can also be selected to produce less byproduct and to metabolize different feedstock or pollutants. This production is greatly affected by the environment in which the bacterium is grown.
A typical di-rhamnolipid is L-rhamnosyl-L-rhamnosyl-3-hydroxydecanoyl-3- hydroxydecanoate (Rha2CioCio with a formula of C32H58O13).
In practice a variety of other minor components with different alkyl chain length
combinations, depending upon carbon source and bacterial strain, exist in combination with the above more common rhamnolipids. The ratio of mono-rhamnolipid and di-rhamnolipid may be controlled by the production method. Some bacteria only produce mono- rhamnolipid, see US5767090: Example 1 , some enzymes can convert mono-rhamnolipid to di-rhamnolipid.
Preferably the rhamnolipid is present in the formulation from 1.5 to 15 wt.%, more preferably from 2 to 8 wt.%.
Preferably the rhamnolipid is selected from:
Rhamnolipids produced by P. aeruginosa (mono-rhamnolipids):
Rha-C8-C10, Rha-C10-C8, Rha-C10-C10, Rha-C10-C12, Rha-C10-C12:1 , Rha-C12-C10, Rha-C12:1-C10
Rhamnolipids produced by P. chlororaphis (mono-rhamnolipids only):
Rha-C10-C8, Rha-C10-C10, Rha-C12-C10, Rha-C12:1-C10, Rha-C12-C12, Rha-C12:1- C12, Rha-C14-C10, Rha-C14:1-C10. Mono-rhamnolipids may also be produced from P.putida by introduction of genes rhIA and rhIB from Psuedomonas aeruginosa [Cha et al. in Bioresour Technol. 2008.
99(7):2192-9]
Rhamnolipids produced by P. aeruginosa (di-rhamnolipids):
Rha-Rha-C8-C10, Rha-Rha-C8-C12:1 , Rha-Rha-C10-C8, Rha-Rha-C10-C10, Rha-Rha- C10-C12:1 , Rha-Rha-C10-C12, Rha-Rha-C12-C10, Rha-Rha-C12:1 -C12, Rha-Rha-C10- C14:1
Rhamnolipids produced by Burkholdera pseudomallei (di-rhamnolipids only):
Rha-Rha-C14-C14.
Rhamnolipids produced by Burkholdera (Pseudomonas) plantarii (di-rhamnolipids only):
Rha-Rha-C14-C14.
Rhamnolipids produced by P. aeruginosa which are initially unidentified as either mono- or di-rhamnolipids:
C8-C8, C8-C10, C10-C8, C8-C12:1 , C12:1 -C8, C10-C10, C12-C10, C12:1 -C10, C12-C12, C12:1 -C12, C14-C10, C14:1 -C10, C14-C14.
Preferably the Rhamnolipid is L-rhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate
(RhaCioCio with a formula of C26H48O9).
Preferably, the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, more preferably at least 60 wt.% di-rhamnolipid, even more preferably 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di-rhamnolipid.
Preferably the rhamnolipid is a di-rhamnolipid of formula: Rha2Cs-i2C8-i2. The preferred alkyl chain length is from Cs to C12. The alkyl chain may be saturated or unsaturated.
Cleaning Composition
The composition is a cleaning composition, useful for cleaning a substrate, for example a surface, including for home and personal care purposes. The composition is preferably a fluid cleaning composition, more preferably an aqueous cleaning composition.
Preferably the cleaning composition is a home care composition. Preferably the cleaning composition is a laundry detergent composition, more preferably a liquid laundry detergent or a powder detergent. Preferably when a liquid detergent, the laundry detergent composition when dissolved in demineralised water at 4g/L, 293K, has a pH of from 6 to 11 , more preferably from 7 to 9.
Additional Surfactants
Additional surfactants may be present in the composition.
Preferably the cleaning composition comprises from 0 to 20 wt.%, more preferably from 0 to 10 wt.% of additional surfactants, wherein if present, the weight fraction of additional surfactant to the sum of (rhamnolipid plus alkyl ether carboxylate/carboxylic acid surfactant) is from 0 to 1.
These are preferably selected from anionic and nonionic surfactants.
In general, the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described "Surface Active Agents" Vol. 1 , by Schwartz & Perry, Interscience 1949, Vol. 2 by Schwartz, Perry & Berch, Interscience 1958, in the current edition of "McCutcheon's Emulsifiers and Detergents" published by Manufacturing
Confectioners Company or in "Tenside-Taschenbuch", H. Stache, 2nd Edn, Carl Hauser Verlag, 1981. Preferably the surfactants used are saturated.
Preferred nonionic detergent compounds which may be used include the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides with alkylene oxides, especially ethylene oxide either alone or with propylene oxide. Specific nonionic detergent compounds are the condensation products of aliphatic primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 40 EO, preferably 7EO to 9EO.
Preferred anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals. Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C10 to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum. The preferred anionic detergent compounds are sodium Cn to C15 alkyl benzene sulphonates and sodium C12 to C14 alkyl sulphates. Also applicable are surfactants such as those described in EP-A- 328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074, and alkyl monoglycosides.
Preferred surfactant systems are mixtures of anionic with nonionic detergent active materials, in particular, the groups and examples of anionic and nonionic surfactants pointed out in EP-A-346 995 (Unilever). Especially preferred is surfactant system that is a mixture of an alkali metal salt of a C12 to C14 primary alcohol sulphate together with a C12 to C16 primary alcohol 3 to 7 EO ethoxylate.
Preferably the additional surfactant is predominately anionic surfactant by weight.
Further Ingredients
The composition may comprise any of these further preferred ingredients.
Builders or Complexinq Agents
Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.
Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.
Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.
Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are the best known representatives, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070. The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or
alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.
Zeolite and carbonate (including bicarbonate and sesquicarbonate) are preferred builders.
The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt.%. Aluminosilicates are materials having the general formula:
0.8-1 .5 M20· AI2O3· 0.8-6 S1O2 where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1.
Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).
Preferably the laundry detergent formulation is a non-phosphate built laundry detergent formulation, i.e., contains less than 1 wt.% of phosphate. Preferably the laundry detergent formulation is carbonate built if a builder is included.
Fluorescent Agent
The composition preferably comprises a fluorescent agent (optical brightener).
Fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts. The total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt.%, more preferably 0.01 to 0.1 wt.%. Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino}stilbene-2-2' disulfonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5-triazin-2- yl)]amino} stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
It is preferred that the aqueous solution used in the method has a fluorescer present. When a fluorescer is present in the aqueous solution used in the method it is preferably in the range from 0.0001 g/l to 0.1 g/l, preferably 0.001 to 0.02 g/l.
Dye
The composition preferably comprises a dye. Dyes are discussed in K. Hunger (ed).
Industrial Dyes: Chemistry, Properties, Applications (Weinheim: Wiley-VCH 2003). Organic dyes are listed in the colour index (Society of Dyers and Colourists and the American Association of Textile Chemists and Colorists)
Preferred dye chromophores are azo, azine, anthraquinone, phthalocyanine and
triphenylmethane.
Azo, anthraquinone, phthalocyanine and triphenylmethane dyes preferably carry a net anionic charged or are uncharged. Azine dyes preferably carry a net anionic or cationic charge.
Preferred non-shading dyes are selected are selected from blue dyes, most preferably anthraquinone dyes bearing sulphonate groups and triphenylmethane dye bearing sulphonate groups. Preferred compounds are acid blue 80, acid blue 1 , acid blue 3; acid blue 5, acid blue 7, acid blue 9, acid blue 1 1 , acid blue 13, acid blue 15, acid blue 17, acid blue 24, acid blue 34, acid blue 38, acid blue 75, acid blue 83, acid blue 91 , acid blue 97, acid blue 93, acid blue 93:1 , acid blue 97, acid blue 100, acid blue 103, acid blue 104, acid blue 108, acid blue 109, acid blue 1 10, and acid blue 213. On dissolution granules with non-shading dyes provide an attractive colour to the wash liquor. Blue or violet Shading dyes are most preferred. Shading dyes deposit to fabric during the wash or rinse step of the washing process providing a visible hue to the fabric. In this regard the dye gives a blue or violet colour to a white cloth with a hue angle of 240 to 345, more preferably 260 to 320, most preferably 270 to 300. The white cloth used in this test is bleached non-mercerised woven cotton sheeting.
Shading dyes are discussed in WO 2005/003274, WO 2006/032327(Unilever), WO
2006/032397(Unilever), WO 2006/045275(Unilever), WO 2006/027086(Unilever), WO 2008/017570(Unilever), WO 2008/141880(Unilever), WO 2009/132870(Unilever), WO 2009/141 173 (Unilever), WO 2010/099997(Unilever), WO 2010/102861 (Unilever), WO
2010/148624(Unilever), WO 2008/087497 (P&G), WO 201 1/01 1799 (P&G), WO
2012/054820 (P&G), WO 2013/142495 (P&G) and WO 2013/151970 (P&G).
A mixture of shading dyes may be used.
The shading dye chromophore is most preferably selected from mono-azo, bis-azo, anthraquinone, and azine.
Mono-azo dyes preferably contain a heterocyclic ring and are most preferably thiophene dyes. The mono-azo dyes are preferably alkoxylated and are preferably uncharged or anionically charged at pH=7. Alkoxylated thiophene dyes are discussed in WO 2013/142495 and WO 2008/087497.
Most preferred shading dyes are selected from Direct Violet 9, Direct Violet 99, Direct Violet 35, Solvent Violet 13, Disperse Violet 28, dyes of the structure
Perfume
Preferably the composition comprises a perfume. The perfume is preferably in the range from 0.001 to 3 wt.%, most preferably 0.1 to 1 wt.%. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications, and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co.
It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
In perfume mixtures preferably 15 to 25 wt.% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid. Polymers
The composition may comprise one or more further polymers. Examples are
carboxymethylcellulose, polyethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid
copolymers. Polymers present to prevent dye deposition, for example poly(vinylpyrrolidone), poly(vinylpyridine-N-oxide), and poly(vinylimidazole), may be present in the formulation.
Enzymes
One or more enzymes are preferred to be present in a cleaning composition of the invention and when practicing a method of the invention.
Preferably the level of each enzyme in the laundry composition of the invention is from 0.0001 wt.% to 0.1 wt.% protein.
Especially contemplated enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces), e.g. from H. lanuginosa (T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580, a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens, Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), a Bacillus lipase, e.g. from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B.
stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422).
Other examples are lipase variants such as those described in WO 92/05249, WO 94/01541 , EP 407 225, EP 260 105, WO 95/35381 , WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079 and WO 97/07202, WO 00/60063.
Preferred commercially available lipase enzymes include Lipolase™ and Lipolase Ultra™, Lipex™ and lipoclean™ (Novozymes A/S). The method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1 .4 and/or EC 3.1.1 .32. As used herein, the term phospholipase is an enzyme which has activity towards phospholipids.
Phospholipids, such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1 ) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol. Phospholipases are enzymes which participate in the hydrolysis of phospholipids. Several types of phospholipase activity can be distinguished, including phospholipases Ai and A2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid; and lysophospholipase (or phospholipase B) which can hydrolyze the remaining fatty acyl group in lysophospholipid.
Phospholipase C and phospholipase D (phosphodiesterases) release diacyl glycerol or phosphatidic acid respectively.
The enzyme and the photobleach may show some interaction and should be chosen such that this interaction is not negative. Some negative interactions may be avoided by encapsulation of one or other of enzyme or photobleach and/or other segregation within the product.
Suitable proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. The protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease. Preferred commercially available protease enzymes include Alcalase™, Savinase™, Primase™, Duralase™, Dyrazym™, Esperase™, Everlase™, Polarzyme™, and Kannase™, (Novozymes A/S), Maxatase™, Maxacal™, Maxapem™, Properase™, Purafect™, Purafect OxP™, FN2™, and FN3™ (Genencor International Inc.).
The method of the invention may be carried out in the presence of cutinase classified in EC 3.1.1 .74. The cutinase used according to the invention may be of any origin.
Preferably cutinases are of microbial origin, in particular, of bacterial, of fungal or of yeast origin. Suitable amylases (alpha and/or beta) include those of bacterial or fungal origin.
Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. lichen iformis, described in more detail in GB 1 ,296,839, or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060. Commercially available amylases are Duramyl™,
Termamyl™, Termamyl Ultra™, Natalase™, Stainzyme™, Fungamyl™ and BAN™
(Novozymes A/S), Rapidase™ and Purastar™ (from Genencor International Inc.).
Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora
thermophila, and Fusarium oxysporum disclosed in US 4,435,307, US 5,648,263, US 5,691 ,178, US 5,776,757, WO 89/09259, WO 96/029397, and WO 98/012307.
Commercially available cellulases include Celluzyme™, Carezyme™, Celluclean™,
Endolase™, Renozyme™ (Novozymes A/S), Clazinase™ and Puradax HA™ (Genencor International Inc.), and KAC-500(B)™ (Kao Corporation).
Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin.
Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257.
Commercially available peroxidases include Guardzyme™ and Novozym™ 51004
(Novozymes A/S).
Further enzymes suitable for use are discussed in WO 2009/087524, WO 2009/090576, WO 2009/107091 , WO 2009/11 1258 and WO 2009/148983. Enzyme Stabilizers
Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708.
Where alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains. The alkyl groups are preferably linear or branched, most preferably linear.
The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.
The invention will be further described with the following non-limiting examples.
Examples
Example 1
Rhamnolipid (RL-A) from Pseudomonas aeruginosa (CAS-No 869062-42-0) was purchased from Aldrich and used as supplied. Aldrich obtained the rhamnolipid from AGAE technology. The rhamnolipid product is a mixture of monorhamnolipids and dirhamnolipids with (Rha- Rha-Cio-Cio and Rha-C«rCio) as predominant. The alkyl ether carboxylate was Emulsogen COL100 supplied by Clariant, it is oleyl based with 10 moles of ethoxylation.
An aqueous liquid laundry detergent formulation was created containing 6 wt.% of
Rhamnolipid (RL-A). This was added to 26 French hard water to give an aqueous solution containing 4g/L of Rhamnolipid (RL1 ). 25g of the solution was decanted in to a 125ml glass bottle without the creation of any foam. A lid was placed on the bottle and it was carefully placed on its axis on an orbital shaker and rotated at 200 rpm for 30 seconds. The bottle was removed and stood on a flat surface and the foam height measured, as the distance from the top of the liquid to the top of the foam. The experiment was repeated but using 6 wt.% Alkyl Ether Carboxylate (AEC). All experiments were repeated eight times and these reference results shown in the table below.
From these results a mixture of AEC and RL-A would be expected to have a foam height of:
Foam height = 36.125-0.1888*(%AEC)
Where %AEC is the percent of AEC in the mixture.
The experiment was repeated with mixtures of AEC and RL-A and the experimental and expected foam heights given in the table below. These experiments were performed in quadruplet.
The mixture of AEC and RL-A produces much lower levels of foam than expected from the individual components.
Example 2
The experiments were repeated with a different Rhamnolipid (RL-B) obtained from Evonik. (Lx P001 ). The rhamnolipid is predominately a di-rhamnolipid of formula: Rha2C8-i2Cs-i2. The neat rhamnolipid gave the following foam (5 repeats):
From this result and the AEC result of example 1 , a mixture of AEC and RL would be expected to have a foam height of:
Foam height = 43.6-0.2635*(%AEC) When in a 50:50 mixture with Emulsogen COL100, much lower levels of foam than expected from the individual components was obtained (5 repeats):

Claims

1. A cleaning composition comprising:
a) from 1 to 20 wt.% of a rhamnolipid anionic surfactant; and
b) from 0.1 to 20 wt.% of an alkyl ether carboxylic acid surfactant of the following structure:
R2-(OCH2CH2)n-OCH2-COOH,
wherein:
R2 is selected from saturated and mono-unsaturated C10 to C20 linear or branched alkyl chains, preferably selected from: C12; Ci4; C16; and, C18 linear alkyl chains, wherein n is selected from 5 to 30, preferably from 10 to 20, and wherein the weight fraction of alkyl ether carboxylic acid to rhamnolipid surfactant is from 0.05 to 10, preferably from 0.1 to 3.
2. A composition according to claim 1 , wherein the cleaning composition is a laundry detergent composition, preferably a liquid laundry detergent or a powder detergent.
3. A composition according to claim 1 or claim 2, wherein the cleaning composition is a fluid cleaning composition, more preferably an aqueous cleaning composition.
4. A composition according to any preceding claim, wherein the cleaning composition comprises from 0 to 20 wt.%, more preferably from 0 to 10 wt.% of additional surfactants, wherein if present, the weight fraction of additional surfactant to the sum of (rhamnolipid plus alkyl ether carboxylate/carboxylic acid surfactant) is from 0 to 1.
5. A composition according to any preceding claim, wherein the composition comprises at most of 1 wt.% of phosphorous containing chemicals, for example the composition comprises from 0 to 1 wt.% of phosphorous containing chemicals.
6. A composition according to any preceding claim, wherein the composition comprises from 0.5 to 6 wt.%, more preferably from 1 to 6 wt.%, most preferably from 2 to 6 wt.% of the alkyl ether carboxylic acid anionic surfactant.
7. A composition according to any preceding claim, wherein the alkyl chain, the R2 group, of the alkyl ether carboxylic acid anionic surfactant is selected from saturated and mono-unsaturated Ci6 to Cie linear alkyl chains.
8. A composition according to any preceding claim, wherein the rhamnolipid is present in the composition at a level of from 1.5 to 15 wt.%, more preferably from 2 to 8 wt.%.
9. A composition according to any preceding claim, wherein the rhamnolipid comprises at least 50 wt.% di-rhamnolipid, more preferably at least 60 wt.% di-rhamnolipid, even more preferably 70 wt.% di-rhamnolipid, most preferably at least 80 wt.% di- rhamnolipid.
10. A composition according to any preceding claim, wherein the rhamnolipid is a di- rhamnolipid of formula: Rha2Cs-i2C8-i2.
1 1. A composition according to any preceding claim, wherein the composition is a home care cleaning composition and further comprises one or more enzymes selected from lipases, proteases, amylases, cellulases, and mixtures thereof.
12. A composition according to any preceding claim, wherein when a liquid laundry
detergent, the laundry detergent composition when dissolved in demineralised water at 4g/L, 293K has a pH of from 6 to 11 , more preferably from 7 to 9.
13. A domestic method of treating a textile, the method comprising the steps of:
a) treating a textile with from 1 g/L of an aqueous solution of the cleaning
composition as defined in any one of claims 1 to 12; and,
b) allowing said aqueous solution to remain in contact with the textile for a time period of from 10 minutes to 2 days, then rinsing and drying the textile.
EP19715528.6A 2018-05-17 2019-04-10 Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants Withdrawn EP3775122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18172957 2018-05-17
PCT/EP2019/059128 WO2019219302A1 (en) 2018-05-17 2019-04-10 Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants

Publications (1)

Publication Number Publication Date
EP3775122A1 true EP3775122A1 (en) 2021-02-17

Family

ID=62200293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19715528.6A Withdrawn EP3775122A1 (en) 2018-05-17 2019-04-10 Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants

Country Status (5)

Country Link
EP (1) EP3775122A1 (en)
CN (1) CN112119144A (en)
AR (1) AR117428A1 (en)
BR (1) BR112020023123A2 (en)
WO (1) WO2019219302A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708406B (en) * 2019-10-24 2023-01-24 中国石油化工股份有限公司 Biochemical composite plugging agent and its preparation method and application
WO2021185956A1 (en) * 2020-03-19 2021-09-23 Unilever Ip Holdings B.V. Detergent composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410039A1 (en) * 2010-07-22 2012-01-25 Unilever PLC Rhamnolipids with improved cleaning
EP2786742A1 (en) * 2013-04-02 2014-10-08 Evonik Industries AG Cosmetics containing rhamnolipids
EP3290500A1 (en) * 2016-08-29 2018-03-07 Richli, Remo Detergent composition and care composition containing polyoxyalkylene carboxylate

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1296839A (en) 1969-05-29 1972-11-22
GB1372034A (en) 1970-12-31 1974-10-30 Unilever Ltd Detergent compositions
JPS53141218A (en) 1977-05-16 1978-12-08 Kao Corp Oxidation of non-ionic surfactants
DK187280A (en) 1980-04-30 1981-10-31 Novo Industri As RUIT REDUCING AGENT FOR A COMPLETE LAUNDRY
DE3278670D1 (en) 1981-07-13 1988-07-21 Procter & Gamble Foaming surfactant compositions
DE3135946A1 (en) 1981-09-10 1983-03-24 Bayer Ag, 5090 Leverkusen Process for preparing alkoxyacetic acids
DE3405664A1 (en) 1984-02-17 1985-09-05 Wintershall Ag, 3100 Celle METHOD FOR THE BIOTECHNICAL PRODUCTION OF RHAMNOLIPIDES AND RHAMNOLIPIDES WITH ONLY ONE SS HYDROXIDECANCARBONIC ACID RESIDUE IN THE MOLECUEL
JPH0697997B2 (en) 1985-08-09 1994-12-07 ギスト ブロカデス ナ−ムロ−ゼ フエンノ−トチヤツプ New enzymatic detergent additive
EP0258068B1 (en) 1986-08-29 1994-08-31 Novo Nordisk A/S Enzymatic detergent additive
NZ221627A (en) 1986-09-09 1993-04-28 Genencor Inc Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios
DE3728222A1 (en) 1987-08-24 1989-03-09 Henkel Kgaa METHOD FOR THE PRODUCTION OF ETHERCARBONIC ACIDS
ES2076939T3 (en) 1987-08-28 1995-11-16 Novo Nordisk As RECOMBINANT LUMPY OF HUMICOLA AND PROCEDURE FOR THE PRODUCTION OF RECOMBINANT LIPAS OF HUMICOLA.
JPS6474992A (en) 1987-09-16 1989-03-20 Fuji Oil Co Ltd Dna sequence, plasmid and production of lipase
GB8803036D0 (en) 1988-02-10 1988-03-09 Unilever Plc Liquid detergents
JP3079276B2 (en) 1988-02-28 2000-08-21 天野製薬株式会社 Recombinant DNA, Pseudomonas sp. Containing the same, and method for producing lipase using the same
WO1989009259A1 (en) 1988-03-24 1989-10-05 Novo-Nordisk A/S A cellulase preparation
US5648263A (en) 1988-03-24 1997-07-15 Novo Nordisk A/S Methods for reducing the harshness of a cotton-containing fabric
GB8813978D0 (en) 1988-06-13 1988-07-20 Unilever Plc Liquid detergents
CA2001927C (en) 1988-11-03 1999-12-21 Graham Thomas Brown Aluminosilicates and detergent compositions
GB8915658D0 (en) 1989-07-07 1989-08-23 Unilever Plc Enzymes,their production and use
DE4111321A1 (en) 1990-04-14 1991-10-17 Kali Chemie Ag New alkaline lipase from Bacillus species - used in low temp., washing, cleaning etc. compsns., also encoding deoxyribonucleic acid, vectors and transformed microorganisms
EP0548228B1 (en) 1990-09-13 1998-08-12 Novo Nordisk A/S Lipase variants
EP0511456A1 (en) 1991-04-30 1992-11-04 The Procter & Gamble Company Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme
WO1992019709A1 (en) 1991-04-30 1992-11-12 The Procter & Gamble Company Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme
DK72992D0 (en) 1992-06-01 1992-06-01 Novo Nordisk As ENZYME
DK88892D0 (en) 1992-07-06 1992-07-06 Novo Nordisk As CONNECTION
AU673078B2 (en) 1993-04-27 1996-10-24 Genencor International, Inc. New lipase variants for use in detergent applications
JP2859520B2 (en) 1993-08-30 1999-02-17 ノボ ノルディスク アクティーゼルスカブ Lipase, microorganism producing the same, method for producing lipase, and detergent composition containing lipase
WO1995010602A1 (en) 1993-10-13 1995-04-20 Novo Nordisk A/S H2o2-stable peroxidase variants
JPH07143883A (en) 1993-11-24 1995-06-06 Showa Denko Kk Lipase gene and mutant lipase
JP3553958B2 (en) 1994-02-22 2004-08-11 ノボザイムス アクティーゼルスカブ Method for producing variant of lipolytic enzyme
CA2186592C (en) 1994-03-29 2008-02-19 Helle Outtrup Alkaline bacillus amylase
WO1995030744A2 (en) 1994-05-04 1995-11-16 Genencor International Inc. Lipases with improved surfactant resistance
AU2884595A (en) 1994-06-20 1996-01-15 Unilever Plc Modified pseudomonas lipases and their use
WO1996000292A1 (en) 1994-06-23 1996-01-04 Unilever N.V. Modified pseudomonas lipases and their use
BE1008998A3 (en) 1994-10-14 1996-10-01 Solvay Lipase, microorganism producing the preparation process for the lipase and uses thereof.
EP0785994A1 (en) 1994-10-26 1997-07-30 Novo Nordisk A/S An enzyme with lipolytic activity
JPH08228778A (en) 1995-02-27 1996-09-10 Showa Denko Kk Novel lipase gene and method for producing lipase using the same
CN102080070B (en) 1995-03-17 2016-01-20 诺沃奇梅兹有限公司 new endoglucanase
WO1997004079A1 (en) 1995-07-14 1997-02-06 Novo Nordisk A/S A modified enzyme with lipolytic activity
WO1997007202A1 (en) 1995-08-11 1997-02-27 Novo Nordisk A/S Novel lipolytic enzymes
US5767090A (en) 1996-01-17 1998-06-16 Arizona Board Of Regents, On Behalf Of The University Of Arizona Microbially produced rhamnolipids (biosurfactants) for the control of plant pathogenic zoosporic fungi
DE69735767T2 (en) 1996-09-17 2007-04-05 Novozymes A/S cellulase
DE69718351T2 (en) 1996-10-08 2003-11-20 Novozymes A/S, Bagsvaerd DIAMINOBIC ACID DERIVATIVES AS DYE PRECURSORS
DE19648439A1 (en) * 1996-11-22 1998-05-28 Henkel Kgaa Skin-friendly washing=up liquid with good cleaning performance
EP2889375B1 (en) 1999-03-31 2019-03-20 Novozymes A/S Polypeptides having alkaline alpha-amylase activity and nucleic acids encoding same
US6939702B1 (en) 1999-03-31 2005-09-06 Novozymes A/S Lipase variant
GB0314210D0 (en) 2003-06-18 2003-07-23 Unilever Plc Laundry treatment compositions
GB0420203D0 (en) 2004-09-11 2004-10-13 Unilever Plc Laundry treatment compositions
GB0421145D0 (en) 2004-09-23 2004-10-27 Unilever Plc Laundry treatment compositions
US20080034511A1 (en) 2004-09-23 2008-02-14 Batchelor Stephen N Laundry Treatment Compositions
DE102004052007B4 (en) 2004-10-25 2007-12-06 Müller Weingarten AG Drive system of a forming press
JP2009527618A (en) 2006-08-10 2009-07-30 ユニリーバー・ナームローゼ・ベンノートシヤープ Shading composition
CA2673239C (en) 2007-01-19 2012-07-24 The Procter & Gamble Company Laundry care composition comprising a whitening agent having an azo-thiophene or triphenylmethane colorant moiety and a polyoxyalkylene moiety
CN101679919B (en) 2007-05-18 2011-11-23 荷兰联合利华有限公司 tribenzodiazine dye
WO2009087524A1 (en) 2008-01-04 2009-07-16 The Procter & Gamble Company Enzyme and fabric hueing agent containing compositions
EP2085070A1 (en) 2008-01-11 2009-08-05 Procter & Gamble International Operations SA. Cleaning and/or treatment compositions
MX2010009456A (en) 2008-02-29 2010-09-24 Procter & Gamble Detergent composition comprising lipase.
MX2010009457A (en) 2008-02-29 2010-09-24 Procter & Gamble Detergent composition comprising lipase.
WO2009132870A1 (en) 2008-05-02 2009-11-05 Unilever Plc Reduced spotting granules
WO2009141172A1 (en) 2008-05-20 2009-11-26 Unilever Plc Shading composition
BRPI0913570A2 (en) 2008-06-06 2015-12-15 Procter & Gamble detergent composition comprising a variant of a family xyloglucanase
EP2403931B1 (en) 2009-03-05 2014-03-19 Unilever PLC Dye radical initiators
WO2010102861A1 (en) 2009-03-12 2010-09-16 Unilever Plc Dye-polymers formulations
WO2010148624A1 (en) 2009-06-26 2010-12-29 Unilever Plc Dye polymers
US20120101018A1 (en) 2010-10-22 2012-04-26 Gregory Scot Miracle Bis-azo colorants for use as bluing agents
CN103210073B (en) 2010-11-12 2016-06-08 宝洁公司 Thiophene azo dyes and laundry care compositions containing them
WO2013142486A1 (en) 2012-03-19 2013-09-26 The Procter & Gamble Company Laundry care compositions containing dyes
CN104204178A (en) 2012-04-03 2014-12-10 宝洁公司 Laundry detergent composition comprising water-soluble phthalocyanine compound
DE102013205755A1 (en) * 2013-04-02 2014-10-02 Evonik Industries Ag Detergent formulation for textiles containing rhamnolipids with a predominant content of di-rhamnolipids
WO2016180552A1 (en) * 2015-05-08 2016-11-17 Unilever Plc Laundry detergent composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410039A1 (en) * 2010-07-22 2012-01-25 Unilever PLC Rhamnolipids with improved cleaning
EP2786742A1 (en) * 2013-04-02 2014-10-08 Evonik Industries AG Cosmetics containing rhamnolipids
EP3290500A1 (en) * 2016-08-29 2018-03-07 Richli, Remo Detergent composition and care composition containing polyoxyalkylene carboxylate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2019219302A1 *

Also Published As

Publication number Publication date
BR112020023123A2 (en) 2021-02-02
AR117428A1 (en) 2021-08-04
WO2019219302A1 (en) 2019-11-21
CN112119144A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
EP4263773B1 (en) Cleaning composition
EP3824057B1 (en) Use of a rhamnolipid in a surfactant system
EP2534237B1 (en) Laundry treatment composition comprising bis-azo shading dyes
EP4263771B1 (en) Use of a cleaning composition to improve cold cleaning performance
EP3119865B1 (en) Domestic method of treating a textile with an azo-dye
WO2012163871A1 (en) Liquid detergent composition containing dye polymer
WO2019219302A1 (en) Cleaning composition comprising rhamnolipid and alkyl ether carboxylate surfactants
WO2012098046A1 (en) Dye polymer for laundry treatment
EP2427540B1 (en) Shading composition
EP2519624B1 (en) Shading composition
EP3402868B1 (en) Laundry treatment composition
CN102753672B (en) natural toner
EP3775137A1 (en) Laundry detergent

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

INTG Intention to grant announced

Effective date: 20210910

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211103

INTC Intention to grant announced (deleted)
RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNILEVER GLOBAL IP LIMITED

Owner name: UNILEVER IP HOLDINGS B.V.

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20241120

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20250321