EP3752453A1 - Procédé de production de gaz de synthèse issu d'un procédé de liquéfaction de gaz naturel - Google Patents
Procédé de production de gaz de synthèse issu d'un procédé de liquéfaction de gaz naturelInfo
- Publication number
- EP3752453A1 EP3752453A1 EP18709668.0A EP18709668A EP3752453A1 EP 3752453 A1 EP3752453 A1 EP 3752453A1 EP 18709668 A EP18709668 A EP 18709668A EP 3752453 A1 EP3752453 A1 EP 3752453A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stream
- natural gas
- gas
- carbon atoms
- liquefaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/382—Multi-step processes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
- F25J1/0238—Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0242—Waste heat recovery, e.g. from heat of compression
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0244—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0405—Purification by membrane separation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/042—Purification by adsorption on solids
- C01B2203/043—Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/046—Purification by cryogenic separation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/12—Feeding the process for making hydrogen or synthesis gas
- C01B2203/1258—Pre-treatment of the feed
- C01B2203/1264—Catalytic pre-treatment of the feed
- C01B2203/127—Catalytic desulfurisation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/142—At least two reforming, decomposition or partial oxidation steps in series
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L2290/00—Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
- C10L2290/54—Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
- C10L2290/542—Adsorption of impurities during preparation or upgrading of a fuel
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
- C10L3/102—Removal of contaminants of acid contaminants
- C10L3/103—Sulfur containing contaminants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/60—Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
- F25J2205/66—Regenerating the adsorption vessel, e.g. kind of reactivation gas
- F25J2205/70—Heating the adsorption vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
Definitions
- the present invention relates to a process for liquefying a hydrocarbon stream such as natural gas in combination with a synthesis gas production process.
- the invention relates to an integration of a process for liquefying natural gas in a synthesis gas production process by superheated steam reforming, partial oxidation or autothermal reforming.
- natural gas can be stored and transported over long distances more easily in liquid form than in gaseous form, because it occupies a smaller volume for a given mass and does not need to be stored at high pressure.
- the processes for generating synthesis gas generally have as finished products hydrogen, carbon monoxide or a mixture of the two (called “oxogas", or even an H2 / CO / CO2 mixture (methanol production) or an N2 mixture Each of these processes co-generates more or less superheated steam.
- the production of synthesis gas generally includes the following steps:
- a hot desulfurization step after preheating (350 ° C. to 400 ° C.), all the sulfur derivatives contained in the natural gas are converted into H2S by catalysis in a hydrogenation reactor (CoMox). Then the hhS is removed by catalysis (on a bed of ZnO for example).
- An optional pre-reforming step (a step mainly present in the steam reforming units): at high temperature (approximately 500 ° C. to 550 ° C.) with excess steam. Then in the presence of a catalyst: conversion of hydrocarbon chains containing at least two carbon atoms into methane with co-production of carbon monoxide, carbon dioxide (CO2) and hydrogen.
- Reforming step which consists of reacting hydrocarbons with water vapor at high temperature (850 ° C-950 ° C) to produce hydrogen, CO and CO2.
- the products generally recovered are carbon monoxide (CO), hydrogen (H2) or an H2 / CO mixture.
- the last step of the synthesis gas production process can also be:
- Catalytic bed partial oxidation step which consists of reacting oxygen with hydrocarbons at high temperature (800 ° C-1200 ° C) to produce more CO;
- the purification of the synthesis gas produced can then be made either by:
- the synthesis gas production units generally require a constant supply of heat provided by a fuel system.
- This fuel is constituted by all or part of natural gas, but also hydrocarbon-rich streams available such as, for example, those discharged by units placed downstream of the synthesis gas production unit (Off Gas PSA, stream rich in methane or rich in hydrogen out of cold box ...) or the industrial site.
- a "pretreatment” that eliminates natural gas to liquefy impurities that could freeze (H2O, CO2, sulfur derivatives, mercury, etc.);
- the inventors of the present invention have developed a solution allowing recovery of currents from the liquefaction unit of natural gas to the fuel system of the generation process. This integration between the two processes has many advantages of synergies.
- the present invention relates to a process for liquefying natural gas in combination with a process for producing synthesis gas, the liquefaction process comprising the following steps:
- This integration makes it possible, for example, to avoid an incinerator and / or a system for extracting or stabilizing heavy hydrocarbons that is particularly expensive for small units.
- the subject of the invention is also:
- pretreatment step a) is carried out by means of an adsorption separation system implementing a regeneration stream.
- step a) consists of an adsorption pretreatment by means of an adsorption system comprising between two and five containers of at least one adsorbent layer and at least one apparatus for heating and / or cooling an adsorption and / or regeneration stream circulating in said adsorption system.
- step a ' A process as defined above, characterized in that during step a '), all the sulfur derivatives contained in the feed gas are converted into H2S by catalysis in a reactor.
- the impurities liable to freeze during the liquefaction process removed during step a) include water, carbon dioxide and sulfur derivatives contained in the gas of food
- the hydrocarbon stream depleted in hydrocarbons having more than two carbon atoms from step b) is liquefied at a temperature below -140 ° C by means of natural gas liquefaction unit comprising at least one main heat exchanger and a system for producing frigories.
- a process as defined above characterized in that the natural gas supply stream implemented in step a) and the natural gas feed stream implemented in step a ') originate from the same natural gas supply stream.
- the pressure of the stream from the liquefaction unit of natural gas and enriched in hydrocarbons having more than two carbon atoms is greater than the pressure of the fuel network, it is possible to do without pumps or compressors. rotating machines, which represents a significant saving on the cost of the natural gas liquefaction unit.
- the hydrocarbon stream to be liquefied is usually a stream of natural gas obtained from a domestic gas network distributed via pipelines.
- natural gas refers to any composition containing hydrocarbons including at least methane. This includes a "raw” composition (prior to any treatment or wash), as well as any composition that has been partially, substantially, or wholly processed for the reduction and / or elimination of one or more compounds, including but not limited to limit, sulfur, carbon dioxide, water, mercury and some heavy and aromatic hydrocarbons.
- the heat exchanger can be any heat exchanger, unit or other arrangement adapted to allow the passage of a number of flows, and thus allow a direct or indirect heat exchange between one or more refrigerant lines, and one or more feed streams.
- the flow of natural gas is essentially composed of methane.
- the feed stream comprises at least 80 mol% of methane.
- natural gas contains quantities of hydrocarbons heavier than methane, such as, for example, ethane, propane, butane and pentane, as well as certain aromatic hydrocarbons.
- the stream of natural gas also contains non-hydrocarbon products such as nitrogen (variable content but of the order of 5 mol% for example) or other impurities H 2 O, CO 2 , H 2 S and other sulfur compounds, mercury and others (about 0.5% to 5% mol).
- the feed stream containing the natural gas is therefore pretreated before being introduced into the heat exchanger.
- This pretreatment includes the reduction and / or elimination of undesirable components such as generally CO 2 and H 2 O but also H 2 S and other sulfur compounds or mercury.
- a conventional means for removing CO 2 from the natural gas stream is, for example, an amine wash upstream of a liquefaction cycle.
- the amine wash separates the CO 2 from the feed gas by washing the stream of natural gas with a solution of amines in an absorption column.
- the amine solution enriched in CO 2 is recovered in the vat of this absorption column and is regenerated at low pressure in an amine regeneration column (or stripping in English).
- An alternative to amine wash treatment may be pressure and / or temperature inversion adsorption. The advantages of such a process are described below.
- This separation process makes use of the fact that under certain pressure and temperature conditions certain constituents of the gas (CO 2 , H 2 O in particular) have particular affinities with respect to a solid material, the adsorbent molecular sieves, for example).
- Adsorption is a reversible process and it is possible to regenerate the adsorbent by lowering the pressure and / or raising the temperature of the adsorbent to release the adsorbed gas components.
- an adsorption separation system consists of several (between two and five) "bottles" containing one or more layers of adsorbents as well as apparatus dedicated to the heating / cooling of the adsorption stream and / or regeneration.
- pre-treatment has a number of advantages:
- the production of hydrogen by catalytic reforming requires continuous supply of heat supplied by a network of fuel gas.
- a steam reforming unit with a nominal hydrogen production capacity of about 130,000 Nm 3 / h is used.
- the heat requirements for the hydrogen production unit are mainly supplied (about 75%) by the residual gas from the last stage of purification of hydrogen in the hydrogen production unit (purification via sieves molecular weight (Pressure Swing Adsorption / PSA).
- the makeup (about 25%) is provided by a source external to the hydrogen generating unit (eg from the unit supply stream or an external fuel system).
- Heavy hydrocarbons extracted from the natural gas liquefier and the natural gas vapors generated at the liquefied natural gas storage and / or the loading bay will be of less importance in the fuel balance (less than 1%).
- the extra heat source is thus reduced from about 25% to about 10%.
- ⁇ heavy hydrocarbons integration allows for example to avoid an incinerator and / or an expensive heavy oil extraction system for small units.
- the integration allows for example to avoid a compressor to recycle these vapors in the liquefaction of natural gas stream.
- This compressor can be expensive in small size liquefiers.
- the power network The power network.
- the synthesis gas production unit produces hydrogen
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
Description
Claims
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/FR2018/050378 WO2019158826A1 (fr) | 2018-02-16 | 2018-02-16 | Procédé de production de gaz de synthèse issu d'un procédé de liquéfaction de gaz naturel |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3752453A1 true EP3752453A1 (fr) | 2020-12-23 |
Family
ID=61599502
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP18709668.0A Withdrawn EP3752453A1 (fr) | 2018-02-16 | 2018-02-16 | Procédé de production de gaz de synthèse issu d'un procédé de liquéfaction de gaz naturel |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20210102753A1 (fr) |
| EP (1) | EP3752453A1 (fr) |
| WO (1) | WO2019158826A1 (fr) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR3058711B1 (fr) * | 2016-11-14 | 2021-04-30 | Air Liquide | Procede de production de gaz de synthese pour la mise en œuvre d'une liquefaction de gaz naturel |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2893627B1 (fr) * | 2005-11-18 | 2007-12-28 | Total Sa | Procede pour l'ajustement du pouvoir calorifique superieur du gaz dans la chaine du gnl. |
| GB0812699D0 (en) * | 2008-07-11 | 2008-08-20 | Johnson Matthey Plc | Apparatus and process for treating offshore natural gas |
| FR2996782B1 (fr) * | 2012-10-17 | 2015-10-16 | IFP Energies Nouvelles | Systeme de chargement dense du catalyseur dans des tubes a baionnette pour reacteur echangeur de vaporeformage faisant appel a des deflecteurs amovibles |
| CN105749699B (zh) * | 2016-03-31 | 2020-04-21 | 四川天采科技有限责任公司 | 一种全温程变压吸附气体分离提纯与净化的方法 |
| US20180038642A1 (en) * | 2016-08-05 | 2018-02-08 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process integration of a gas processing unit with liquefaction unit |
| US20180194626A1 (en) * | 2017-01-04 | 2018-07-12 | Pioneer Astronautics | Methods and Apparatus for Recovery of Volatile and Carbonaceous Components from Unconventional Feeds |
-
2018
- 2018-02-16 WO PCT/FR2018/050378 patent/WO2019158826A1/fr not_active Ceased
- 2018-02-16 EP EP18709668.0A patent/EP3752453A1/fr not_active Withdrawn
- 2018-02-16 US US16/970,171 patent/US20210102753A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| WO2019158826A1 (fr) | 2019-08-22 |
| US20210102753A1 (en) | 2021-04-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0032096B1 (fr) | Procédé de production d'ammoniac et du gaz de synthèse correspondant | |
| CA2567893C (fr) | Procede pour l'ajustement du pouvoir calorifique superieur du gaz dans la chaine du gnl | |
| FR2895747A1 (fr) | Procede pour produire des hydrocarbures a partir de gaz naturel. | |
| FR3075659B1 (fr) | Procede de production d'un courant de gaz naturel a partir d'un courant de biogaz. | |
| CA3024382C (fr) | Procede de separation cryogenique d'un debit d'alimentation contenant du methane et des gaz de l'air, installation pour la production de bio methane par epuration de biogaz issus d'installations de stockage de dechets non-dangereux (isdnd) mettant en oeuvre le procede | |
| EP2331898A2 (fr) | Procédé de génération et de séparation d'un mélange d'hydrogène et de monoxyde de carbone par distillation cryogénique | |
| FR2943683A1 (fr) | Procede de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traite et une coupe d'hydrocarbures en c5+, et installation associee | |
| EP3719426B1 (fr) | Purification et liquéfaction du biogaz par combinaison d'un système de cristallisation avec un échangeur de liquéfaction | |
| EP3538483B1 (fr) | Procédé de production de gaz de synthèse pour la mise en uvre d'une liquéfaction de gaz naturel | |
| EP3752453A1 (fr) | Procédé de production de gaz de synthèse issu d'un procédé de liquéfaction de gaz naturel | |
| FR3054216A1 (fr) | Procede de separation d’un gaz de synthese | |
| EP3752454B1 (fr) | Synergies d'un procédé de liquéfaction de gaz naturel dans un procédé de production de gaz de synthèse | |
| WO2018087499A1 (fr) | Mise en œuvre de la vapeur d'un procédé de production de gaz de synthèse pour réchauffer des vapeurs de gaz naturel | |
| WO2018087497A1 (fr) | Procédé de liquéfaction de gaz naturel combiné à une production de gaz de synthèse | |
| WO2018087500A1 (fr) | Intégration d'un procédé de liquéfaction de gaz naturel dans un procédé de production de gaz de synthèse | |
| WO2019158827A1 (fr) | Utilisation d'un courant gazeux issu d'un procédé de liquéfaction dans un procédé de production de gaz de synthèse | |
| EP4101917B1 (fr) | Méthode de séparation et de liquéfactions de méthane et de dioxyde de carbone avec élimination des impuretés de l'air présente dans le méthane | |
| FR3052239A1 (fr) | Procede de liquefaction de gaz naturel et de dioxyde de carbone | |
| FR3052240A1 (fr) | Procede de liquefaction de dioxyde de carbone issu d'un courant de gaz naturel | |
| FR3052241A1 (fr) | Procede de purification de gaz naturel et de liquefaction de dioxyde de carbone | |
| FR2874218A1 (fr) | Procede pour la recuperation d'un gaz riche en hydrogene et d'un liquide stabilise | |
| EP4101918B1 (fr) | Procédé de séparation et de liquéfaction du méthane et du dioxyde de carbone avec solidification du dioxyde de carbone à l'extérieur de la colonne de distillation | |
| EP4372300B1 (fr) | Procédé et appareil de distillation cryogénique pour production de co2 liquide | |
| EP4101912B1 (fr) | Procédé de séparation et de liquéfaction du méthane et du dioxyde de carbone avec pré-séparation en amont de la colonne de distillation | |
| FR3123973A1 (fr) | Purification cryogénique de biogaz avec pré-séparation et solidification externe de dioxyde de carbone |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20200916 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20221130 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20230601 |