EP3745508A1 - Positive electrode material and battery using same - Google Patents
Positive electrode material and battery using same Download PDFInfo
- Publication number
- EP3745508A1 EP3745508A1 EP18902871.5A EP18902871A EP3745508A1 EP 3745508 A1 EP3745508 A1 EP 3745508A1 EP 18902871 A EP18902871 A EP 18902871A EP 3745508 A1 EP3745508 A1 EP 3745508A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solid electrolyte
- cathode
- battery
- electrolyte material
- charge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000007774 positive electrode material Substances 0.000 title 1
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 171
- 239000000463 material Substances 0.000 claims abstract description 131
- 239000006182 cathode active material Substances 0.000 claims abstract description 40
- 239000010406 cathode material Substances 0.000 claims abstract description 40
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 229910052794 bromium Inorganic materials 0.000 claims abstract description 13
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 12
- 229910052752 metalloid Inorganic materials 0.000 claims abstract description 9
- 229910052740 iodine Inorganic materials 0.000 claims abstract description 8
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000011593 sulfur Substances 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 49
- 239000003792 electrolyte Substances 0.000 claims description 36
- 239000002203 sulfidic glass Substances 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 4
- 239000002245 particle Substances 0.000 description 45
- 150000004820 halides Chemical class 0.000 description 21
- 239000000843 powder Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- 239000006183 anode active material Substances 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 229910009297 Li2S-P2S5 Inorganic materials 0.000 description 7
- 229910009228 Li2S—P2S5 Inorganic materials 0.000 description 7
- 229910052493 LiFePO4 Inorganic materials 0.000 description 7
- 229910009523 YCl3 Inorganic materials 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 229910052733 gallium Inorganic materials 0.000 description 7
- 229910052738 indium Inorganic materials 0.000 description 7
- 229910003002 lithium salt Inorganic materials 0.000 description 7
- 159000000002 lithium salts Chemical class 0.000 description 7
- PCMOZDDGXKIOLL-UHFFFAOYSA-K yttrium chloride Chemical compound [Cl-].[Cl-].[Cl-].[Y+3] PCMOZDDGXKIOLL-UHFFFAOYSA-K 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- -1 polytetrafluoroethylene Polymers 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000006467 substitution reaction Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910021601 Yttrium(III) bromide Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 239000002241 glass-ceramic Substances 0.000 description 4
- 229910052735 hafnium Inorganic materials 0.000 description 4
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 238000006864 oxidative decomposition reaction Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229910052706 scandium Inorganic materials 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- 229910004235 Li(NiCoMn)O2 Inorganic materials 0.000 description 2
- 229910001216 Li2S Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000003411 electrode reaction Methods 0.000 description 2
- 239000002001 electrolyte material Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910003405 Li10GeP2S12 Inorganic materials 0.000 description 1
- 229910005313 Li14ZnGe4O16 Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910009294 Li2S-B2S3 Inorganic materials 0.000 description 1
- 229910009292 Li2S-GeS2 Inorganic materials 0.000 description 1
- 229910009311 Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910009346 Li2S—B2S3 Inorganic materials 0.000 description 1
- 229910009351 Li2S—GeS2 Inorganic materials 0.000 description 1
- 229910009433 Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910002984 Li7La3Zr2O12 Inorganic materials 0.000 description 1
- 229910013178 LiBO2 Inorganic materials 0.000 description 1
- 229910013375 LiC Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910000857 LiTi2(PO4)3 Inorganic materials 0.000 description 1
- 229910008291 Li—B—O Inorganic materials 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052909 inorganic silicate Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0094—Composites in the form of layered products, e.g. coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to a cathode material and a battery using the same.
- Patent Literature 1 discloses a battery using, as a solid electrolyte, a halide including indium.
- Patent Literature 1 Japanese Patent Application Publication No. 2006-244734
- the cathode material according to one aspect of the present disclosure comprises:
- the charge / discharge efficiency of the battery can be improved.
- the cathode material in the first embodiment includes a cathode active material and a first solid electrolyte material.
- the first solid electrolyte material is a material represented by the following composition formula (1).
- M includes at least one selected from the group consisting of metalloid elements and metal elements other than Li.
- X includes at least one of Cl and Br, and I.
- the cathode active material includes lithium iron phosphate.
- the cathode active material includes LiFePO 4 .
- the halide solid electrolyte material exhibits good ionic conductivity.
- the first solid electrolyte material which is a halide solid electrolyte material including I, exhibits higher ionic conductivity.
- the first solid electrolyte material would be a prospective material which allows an all-solid secondary battery to operate at high output.
- Patent Literature 1 in an all-solid secondary battery including a solid electrolyte including indium, it is preferable that an electric potential of the cathode active material with respect to Li is 3.9 V or less on average, thereby a film formed of a decomposition product due to oxidative decomposition is well formed and a good charge / discharge characteristic is provided.
- Patent Literature 1 discloses general layered transition metal oxide cathodes such as LiCoO 2 and LiNi 0.8 Co 0.15 Al 0.05 O 2 as cathode active materials having the electric potential thereof with respect to Li of 3.9 V or less on average.
- Patent Literature 1 fails to disclose detailed mechanism of the oxidative decomposition.
- the present inventors found following matters.
- a halide solid electrolyte namely, the first solid electrolyte material
- the cathode active materials having the electric potential thereof with respect to Li of 3.9 V or less on average
- the halide solid electrolyte undergoes oxidative decomposition during charging.
- the oxidative decomposition causes a problem of lowering the charge / discharge efficiency of the battery.
- the main reason therefor is an oxidation reaction of I included in the halide solid electrolyte.
- an oxide layer having poor lithium ion conductivity is formed between the cathode active material and the halide solid electrolyte due to the oxidation reaction of the halide solid electrolyte, and that the oxide layer functions as a large interface resistance in the electrode reaction of the cathode.
- a lithium iron phosphate of the cathode active material that provides a good charge / discharge characteristic in a low potential region is introduced into the cathode material, thereby suppressing the oxidation reaction of I included in the halide solid electrolyte.
- the side reaction of the halide solid electrolyte does not occur, and the charge / discharge efficiency can be improved.
- the formation of the oxide layer is suppressed, and the interfacial resistance of the electrode reaction can be reduced.
- metals used in the present specification are B, Si, Ge, As, Sb, and Te.
- metal elements used in the present specification includes
- each of the metal elements become a cation, if the metal elements form an inorganic compound with a halogen compound.
- M may include Y (namely, yttrium).
- the first solid electrolyte material may include Y as the metal element M.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- At least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the first solid electrolyte material may be Li 3 YBrCl 4 I or Li 3 YBr 2 Cl 2 I 2 .
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the first solid electrolyte material may include Li 3 YBr 2 Cl 2 I 2 .
- Li 3 YBr 2 Cl 2 I 2 has particularly high ionic conductivity among halide solid electrolytes including I, and can improve the output density of the battery.
- the first solid electrolyte material may be a material represented by the following composition formula (B1). Li 6-3d Y d X 6 Formula (B1) where, in the composition formula (B1), X includes at least one of Cl and Br, and I.
- composition formula (B1) 0 ⁇ d ⁇ 2 is satisfied.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the first solid electrolyte material may be a material represented by the following composition formula (B3). Li 3-3 ⁇ +a Y 1+ ⁇ -a Me a Cl 6-x-y Br x I y Formula (B3) where, in the composition formula (B3), Me is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
- composition formula (B3) -1 ⁇ ⁇ ⁇ 2; 0 ⁇ a ⁇ 3; 0 ⁇ (3-3 ⁇ +a); 0 ⁇ (1+ ⁇ -a); 0 ⁇ x ⁇ 6; 0 ⁇ y ⁇ 6; and (x + y) ⁇ 6 are satisfied.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the first solid electrolyte material may be a material represented by the following composition formula (B4). Li 3-3 ⁇ Y 1+ ⁇ -a Me a Cl 6-x-y Br x I y Formula (B4) where, in the composition formula (B4), Me is at least one selected from the group consisting of Al, Sc, Ga, and Bi.
- composition formula (B4) -1 ⁇ ⁇ ⁇ 1; 0 ⁇ a ⁇ 2; 0 ⁇ (1+ ⁇ -a); 0 ⁇ x ⁇ 6; 0 ⁇ y ⁇ 6; and (x + y) ⁇ 6 are satisfied.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the first solid electrolyte material may be a material represented by the following composition formula (B5). Li 3-3 ⁇ -a Y 1+ ⁇ -a Me a Cl 6-x-y Br x I y Formula (B5) where, in the composition formula (B5), Me is at least one selected from the group consisting of Zr, Hf, and Ti.
- composition formula (B5) -1 ⁇ ⁇ ⁇ 1; 0 ⁇ a ⁇ 1.5; 0 ⁇ (3-3 ⁇ -a); 0 ⁇ (1+ ⁇ -a); 0 ⁇ x ⁇ 6; 0 ⁇ y ⁇ 6; and (x + y) ⁇ 6 are satisfied.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the first solid electrolyte material may be a material represented by the following composition formula (B6). Li 3-3 ⁇ -2a Y 1+ ⁇ -a Me a Cl 6-x-y Br x I y Formula (B6) where, in the composition formula (B6), Me is at least one selected from the group consisting of Ta and Nb.
- composition formula (B6) -1 ⁇ ⁇ ⁇ 1; 0 ⁇ a ⁇ 1.2; 0 ⁇ (3-3 ⁇ -2a); 0 ⁇ (1+ ⁇ -a); 0 ⁇ x ⁇ 6; 0 ⁇ y ⁇ 6; and (x + y) ⁇ 6 are satisfied.
- the ionic conductivity of the first solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- Li 3 YX 6 Li 2 MgX 4 , Li 2 FeX 4 , Li (Al, Ga, In)X 4 , or Li 3 (Al, Ga, In)X 6 (X includes at least one of Cl and Br, and I) can be used.
- FIG. 1 shows a cross-sectional view of a cathode material 1000 in the first embodiment.
- the cathode material 1000 in the first embodiment includes first solid electrolyte particles 100 and cathode active material particles 110.
- each of the first solid electrolyte particles 100 in the first embodiment is not limited, and may be, for example, a needle shape, a spherical shape, or an elliptical spherical shape.
- the median diameter of the first solid electrolyte particles 100 may be not more than 100 ⁇ m.
- the median diameter is larger than 100 ⁇ m, there is a possibility that a good dispersion state of the cathode active material particles 110 and the first solid electrolyte particles 100 cannot be formed in the cathode material. As a result, the charge / discharge characteristic is lowered.
- the median diameter may be not more than 10 ⁇ m.
- the cathode active material particles 110 and the first solid electrolyte particles 100 can be well dispersed in the cathode material.
- the median diameter of the first solid electrolyte particles 100 may be smaller than the median diameter of the cathode active material particles 110.
- the first solid electrolyte particles 100 and the cathode active material particles 110 can be dispersed better in the electrode.
- the median diameter of the cathode active material particles 110 may be not less than 0.1 ⁇ m and not more than 100 ⁇ m.
- the median diameter of the cathode active material particles 110 is smaller than 0.1 ⁇ m, the cathode active material particles 110 and the first solid electrolyte particles 100 are not well dispersed in the cathode material. As a result, the charge / discharge characteristic of the battery can be lowered.
- the median diameter of the cathode active material particles 110 is larger than 100 ⁇ m, the diffusion of lithium in the cathode active material particles 110 is made slow. As a result, the battery may be difficult to operate at a high output.
- the median diameter of the cathode active material particles 110 may be larger than the median diameter of the first solid electrolyte particles 100. Thereby, the cathode active material particles 110 and the first solid electrolyte particles 100 can be well dispersed.
- the first solid electrolyte particles 100 and the cathode active material particles 110 may be in contact with each other, as shown in FIG 1 .
- the cathode material 1000 in the first embodiment may include a plurality of the first solid electrolyte particles 100 and a plurality of the cathode active material particles 110.
- the content of the first solid electrolyte particles 100 may be the same as or different from the content of the cathode active material particles 110.
- a surface of each of the cathode active material particles 110 may be coated with a carbon material.
- the cathode material can be provided with good electronic conductivity, and the battery can be operated at a higher output.
- the first solid electrolyte material in the first embodiment may be manufactured by the following method, for example.
- binary halide raw material powders are prepared. For example, if Li 3 YCl 6 is produced, LiCl and YCl 3 are prepared at a molar ratio of 3:1.
- Raw material powders are mixed well. Next, the raw material powders are ground using a mechanochemical milling method. In this way, the raw material powders react to provide the first solid electrolyte material. Alternatively, the raw material powders are mixed well, and then, sintered in vacuum to provide the first solid electrolyte material.
- the configuration of the crystal phase (namely, the crystal structure) in a solid electrolyte material can be determined by selecting the reaction method and reaction conditions of the raw material powders.
- FIG. 2 is a cross-sectional view showing a schematic configuration of a battery 2000 in the second embodiment.
- the battery 2000 in the second embodiment comprises a cathode 201, an electrolyte layer 202, and an anode 203.
- the cathode 201 includes the cathode material (for example, the cathode material 1000) in the first embodiment.
- the electrolyte layer 202 is disposed between the cathode 201 and the anode 203.
- the charge / discharge efficiency of a battery can be improved.
- a volume ratio Vp representing a volume of the cathode active material particles 110 to the total volume of the cathode active material particles 110 and the first solid electrolyte particles 110 may be not less than 0.3 and not more than 0.95. If the volume ratio Vp is less than 0.3, it may be difficult to ensure the energy density of the battery sufficiently. On the other hand, if the volume ratio Vp is more than 0.95, it may be difficult to operate the battery at a high output.
- the thickness of the cathode 201 may be not less than 10 ⁇ m and not more than 500 ⁇ m. If the thickness of the cathode 201 is less than 10 ⁇ m, it may be difficult to ensure the battery energy density sufficiently. If the thickness of the cathode 201 is more than 500 ⁇ m, it may be difficult to operate at a high output.
- the electrolyte layer 202 is a layer including an electrolyte material.
- the electrolyte material is, for example, a solid electrolyte material.
- the electrolyte layer 202 may be a solid electrolyte layer.
- the first solid electrolyte material described above may be used as the solid electrolyte material included in the electrolyte layer 202.
- a second solid electrolyte material may be used as the solid electrolyte material included in the electrolyte layer 202.
- the electrolyte layer 202 may include the second solid electrolyte material.
- the second solid electrolyte material is a material represented by the following composition formula (2).
- M' includes at least one selected from the group consisting of metalloid elements and metal elements other than Li.
- X' includes at least one of Cl and Br.
- the output density of the battery can be improved.
- thermal stability of the battery can be improved and generation of harmful gases such as hydrogen sulfide can be suppressed.
- M' may include Y (namely, yttrium).
- the second solid electrolyte material may include Y as the metal element M'.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- At least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the second solid electrolyte material may be Li 2.7 Y 1.1 Cl 6 .
- the output density of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A1). Li 6-3d Y d X 6 Formula (A1) where, in the composition formula (A1), X is at least one selected from the group consisting of Cl and Br. In addition, in the composition formula (A1), 0 ⁇ d ⁇ 2 is satisfied.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A2). Li 3 YX 6 Formula (A2) where, in the composition formula (A2), X is at least one selected from the group consisting of Cl and Br.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A3). Li 3-3 ⁇ Y 1+ ⁇ Cl 6 Formula (A3) where, in the composition formula (A3), 0 ⁇ ⁇ ⁇ 0.15 is satisfied.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A4). Li 3-3 ⁇ Y 1+ ⁇ Br 6 Formula (A4) where, in the composition formula (A4), 0 ⁇ ⁇ ⁇ 0.25 is satisfied.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A5). Li 3-3 ⁇ +a Y 1+ ⁇ -a Me a Cl 6-x Br x Formula (A5) where, in the composition formula (A5), Me is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
- composition formula (A5) -1 ⁇ ⁇ ⁇ 2; 0 ⁇ a ⁇ 3; 0 ⁇ (3-3 ⁇ +a); 0 ⁇ (1+ ⁇ -a); and 0 ⁇ x ⁇ 6 are satisfied.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A6). Li 3-3 ⁇ Y 1+ ⁇ -a Me a Cl 6-x Br x Formula (A6) where, in the composition formula (A6), Me is at least one selected from the group consisting of Al, Sc, Ga, and Bi.
- composition formula (A6) -1 ⁇ ⁇ ⁇ 1; 0 ⁇ a ⁇ 2; 0 ⁇ (1+ ⁇ -a); and 0 ⁇ x ⁇ 6 are satisfied.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A7). Li 3-3 ⁇ -a Y 1+ ⁇ -a Me a Cl 6-x Br x Formula (A7) where, in the composition formula (A7), Me is at least one selected from the group consisting of Zr, Hf, and Ti.
- composition formula (A7) -1 ⁇ ⁇ ⁇ 1; 0 ⁇ a ⁇ 1.5; 0 ⁇ (3-3 ⁇ -a); 0 ⁇ (1+ ⁇ -a); and 0 ⁇ x ⁇ 6 are satisfied.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- the second solid electrolyte material may be a material represented by the following composition formula (A8). Li 3-3 ⁇ -2a Y 1+ ⁇ -a Me a Cl 6-x Br x Formula (A8) where, in the composition formula (A8), Me is at least one selected from the group consisting of Ta and Nb.
- composition formula (A8) -1 ⁇ ⁇ ⁇ 1; 0 ⁇ a ⁇ 1.2; 0 ⁇ (3-3 ⁇ -2a); 0 ⁇ (1+ ⁇ -a); and 0 ⁇ x ⁇ 6 are satisfied.
- the ionic conductivity of the second solid electrolyte material can be further improved.
- the charge / discharge efficiency of the battery can be further improved.
- Li 3 YX 6 Li 2 MgX 4 , Li 2 FeX 4 , Li(AI, Ga, In)X 4 , or Li 3 (Al, Ga, In)X 6 (X is at least one selected from the group consisting of Cl and Br) can be used.
- a sulfide solid electrolyte may be used as the solid electrolyte material included in the electrolyte layer 202.
- the electrolyte layer 202 may include a sulfide solid electrolyte.
- a low-potential anode material such as graphite or metallic lithium can be used to improve the energy density of the battery.
- Li 2 S-P 2 S 5 Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or Li 10 GeP 2 S 12 can be used.
- LiX (X: F, CI, Br, I), Li 2 O, MO q , or Li p MO q (M: any of P, Si, Ge, B, Al, Ga, In, Fe, Zn) (p, q: natural number) may be added thereto.
- an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used.
- oxide solid electrolyte examples include:
- the polymer solid electrolyte for example, a compound of a polymer compound and a lithium salt can be used.
- the polymer compound may have an ethylene oxide structure. Since the solid polymer electrolyte having an ethylene oxide structure can include a large amount of lithium salt, the ionic conductivity can be further increased.
- the lithium salt LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiSO 3 CF 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 )(SO 2 C 4 F 9 ), or LiC(SO 2 CF 3 ) 3 can be used.
- the lithium salt one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
- LiBH 4 -LiI or LiBH 4 -P 2 S 5 can be used as the complex hydride solid electrolyte.
- the electrolyte layer 202 may include a solid electrolyte material as a main component.
- the electrolyte layer 202 may include a solid electrolyte material, for example, at a weight ratio of not less than 50% (not less than 50% by weight) with respect to the entire electrolyte layer 202.
- the charge / discharge characteristic of the battery can be further improved.
- the electrolyte layer 202 may include a solid electrolyte material, for example, at a weight ratio of not less than 70% (not less than 70% by weight) with respect to the entire electrolyte layer 202.
- the charge / discharge characteristic of the battery can be further improved.
- the electrolyte layer 202 may further include inevitable impurities.
- the electrolyte layer 202 may include the starting materials used for the synthesis of the solid electrolyte material.
- the electrolyte layer 202 may include by-products or decomposition products generated during the synthesis of the solid electrolyte material.
- the weight ratio of the solid electrolyte material included in the first electrolyte layer 101 to the first electrolyte layer 101 may be substantially 1.
- the weight ratio is substantially 1 means that the weight ratio calculated without considering inevitable impurities that may be included in the first electrolyte layer 101 is 1.
- the first electrolyte layer 101 may be composed only of the solid electrolyte material.
- the charge / discharge characteristic of the battery can be further improved.
- the electrolyte layer 202 may be composed only of the solid electrolyte material.
- the electrolyte layer 202 may include two or more kinds of the materials described as the solid electrolyte material.
- the electrolyte layer 202 may include the halide solid electrolyte material and the sulfide solid electrolyte material.
- the thickness of the electrolyte layer 202 may be not less than 1 ⁇ m and not more than 300 ⁇ m. If the thickness of the electrolyte layer 202 is less than 1 ⁇ m, a possibility that the cathode 201 and the anode 203 are short-circuited increases. In addition, if the thickness of the electrolyte layer 202 is more than 300 ⁇ m, it may be difficult to operate at a high output.
- the anode 203 includes a material having a property of occluding and releasing metal ions (for example, lithium ions).
- the anode 203 includes, for example, an anode active material.
- a metal material, a carbon material, an oxide, a nitride, a tin compound, or a silicon compound can be used as the anode active material.
- the metal material may be a single metal.
- the metal material may be an alloy.
- Examples of the metal material include lithium metal and lithium alloy.
- Examples of the carbon material include natural graphite, coke, graphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, or a tin compound can be preferably used.
- the anode 203 may include a solid electrolyte material. According to the above configuration, the lithium ion conductivity inside the anode 203 is increased to allow operation at a high output.
- the solid electrolyte material materials exemplified as the electrolyte layer 202 may be used.
- the median diameter of the anode active material particles may be not less than 0.1 ⁇ m and not more than 100 ⁇ m. If the median diameter of the anode active material particles is smaller than 0.1 ⁇ m, the anode active material particles and the solid electrolyte material are not well dispersed in the anode, so that the charge / discharge characteristic of the battery may be lowered. On the other hand, if the median diameter of the anode active material particles is larger than 100 ⁇ m, the diffusion of lithium in the anode active material particles is made slow. As a result, the battery may be difficult to operate at a high output.
- the median diameter of the anode active material particles may be larger than the median diameter of the solid electrolyte material. Thereby, the anode active material particles and the solid electrolyte material can be well dispersed.
- a volume ratio Vn representing a volume of the anode active material particles to the total volume of the anode active material particles and the solid electrolyte material may be not less than 0.3 and not more than 0.95. If the volume ratio Vn is less than 0.3, it may be difficult to ensure an energy density of the battery sufficiently. On the other hand, if the volume ratio Vn exceeds 0.95, the battery may be difficult to operate at a high output.
- the thickness of the anode 203 may be not less than 10 ⁇ m and not more than 500 ⁇ m. If the thickness of the anode is less than 10 ⁇ m, it may be difficult to ensure an energy density of the battery sufficiently. In addition, if the thickness of the anode is more than 500 ⁇ m, it may be difficult to operate at high output.
- the cathode 201 may include a solid electrolyte material for the purpose of improving the ionic conductivity.
- a solid electrolyte material materials exemplified as the electrolyte layer 202 may be used.
- At least one of the cathode 201, the electrolyte layer 202, and the anode 203 may include a binder for the purpose of improving adhesion between the particles.
- the binder is used in order to improve the binding property of the material which forms the electrode.
- binder is polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, methyl polyacrylate ester, ethyl polyacrylate ester, hexyl polyacrylate ester, polymethacrylic acid, methyl polymethacrylate ester, ethyl polymethacrylate ester, hexyl polymethacrylate ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene butadiene rubber, or carboxymethylcellulose.
- a copolymer of two or more kinds of materials selected from the group consisting of tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene can be used.
- Two or more kinds of the binders can be used.
- At least one of the cathode 201 and the anode 203 may include a conductive assistant for the purpose of increasing the electronic conductivity.
- a conductive assistant for the purpose of increasing the electronic conductivity. Examples of the conductive assistant include:
- Cost reduction can be achieved by using carbon conductive assistant.
- the battery in the second embodiment can be configured as a battery having various shapes such as a coin shape, a cylindrical shape, a prism shape, a sheet shape, a button shape, a flat shape, or a stacked shape.
- milling processing was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, type P-7) to provide a powder of the first solid electrolyte material Li 3 YBrCl 4 I.
- the first solid electrolyte material of the inventive example 1 and the cathode active material LiFePO 4 were prepared at a weight ratio of 80:20.
- the cathode material of the inventive example 1 was produced by mixing these in an agate mortar.
- milling processing was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, P-7 type) to provide a powder of the first solid electrolyte material Li 3 YBr 2 Cl 2 I 2 .
- a method similar to that of the inventive example 2 was performed to provide a cathode material of the inventive example 3.
- a method similar to that of the inventive example 2 was performed to provide a cathode material of the inventive example 4.
- Li(NiCoMn)O 2 was used as a cathode active material.
- the batteries of the inventive example 1, the inventive example 2, and the comparative example 1 were produced using the cathode materials of the inventive examples 1 and 2 and the comparative example 1, respectively, with the glass ceramic solid electrolyte Li 2 S-P 2 S 5 , by the following method.
- a glass ceramic solid electrolyte Li 2 S-P 2 S 5 (80 mg) and the cathode material (10 mg) were stacked in this order in an insulating outer cylinder. This was pressure-molded at a pressure of 360 MPa to provide a stacking structure having a solid electrolyte layer and a cathode. The cathode was located on a front surface of the solid electrolyte layer.
- a metal In (thickness: 200 ⁇ m) was stacked on a back surface of the solid electrolyte layer. This was pressure-molded at a pressure of 80 MPa to produce a stacking structure having the cathode, the solid electrolyte layer, and an anode.
- the batteries of the inventive example 1, the inventive example 2, and the comparative example 1 were produced.
- a battery of the inventive example 3 was produced by the following method.
- a halide solid electrolyte Li 3 YBr 2 Cl 2 I 2 80 mg
- the cathode material of the inventive example 3 10 mg
- the cathode was located on the front surface of the solid electrolyte layer.
- a metal In (thickness: 200 ⁇ m) was stacked on a back surface of the solid electrolyte layer. This was pressure-molded at a pressure of 80 MPa to produce a stacking structure composed of the cathode, the solid electrolyte layer, and an anode.
- a battery of the inventive example 4 was produced by the following method.
- a halide solid electrolyte Li 2.7 Y 1.1 Cl 6 (80 mg) and the cathode material (10 mg) of the inventive example 4 were stacked in this order in an insulating outer cylinder. This was pressure-molded at a pressure of 360 MPa to provide a stacking structure having a cathode and a solid electrolyte layer. The cathode was located on the front surface of the solid electrolyte layer.
- a metal In (thickness: 200 ⁇ m) was stacked on the back side of the solid electrolyte layer. This was pressure-molded at a pressure of 80 MPa to produce a stacking structure composed of the cathode, the solid electrolyte layer, and an anode.
- Each of the batteries were placed in a thermostatic chamber at 25 °C.
- Each of the batteries was charged with a constant current at a current value of 16 ⁇ A, which was 0.05 C rate (20 hour rate) with respect to the theoretical capacity of each of the batteries, and the charge was terminated at a voltage of 3.0 V.
- each of the batteries was discharged at a current value of 16 ⁇ A, which was 0.05 C rate, and the discharge was terminated at a voltage of 1.9 V.
- the results are shown in Table 1 below.
- the metal In which was used for the anodes of the batteries of the inventive examples 1 to 3, exhibits a potential of 0.6 volts with respect to lithium.
- the end-of-charge voltage of 3.0 V and the end-of-discharge voltage of 1.9 V in the batteries of the inventive examples 1 to 3 are converted into electric potentials based on Li of 3.6 V vs. Li and 2.5 V vs. Li, respectively.
- the battery was placed in a thermostatic chamber at 25 °C.
- the battery was charged with a constant current at a current value of 16 ⁇ A, which was 0.05 C rate (20 hour rate) with respect to the theoretical capacity of the battery, and the charge was terminated at a voltage of 3.4 V.
- the battery was discharged at a current value of 16 ⁇ A, which was 0.05 C rate, and the discharge was terminated at a voltage of 1.9 V.
- the result is shown in Table 1 below.
- the metal In which was used for the anode of the battery of the inventive example 4, exhibits a potential of 0.6 vs. Li.
- the end-of-charge voltage of 3.4 V and the end-of-discharge voltage of 1.9 V in the battery of the inventive example 4 are converted into electric potentials based on Li of 4.0 V vs. Li and 2.5 V vs. Li, respectively.
- the battery was placed in a thermostatic chamber at 25 °C.
- the battery was constant-current charged at a current value of 20 ⁇ A, which was 0.05 C rate (20 hour rate) with respect to the theoretical capacity of the battery, and the charge was terminated at a voltage of 3.6 V.
- the battery was discharged at a current value of 20 ⁇ A, which was 0.05 C rate, and the discharge was terminated at a voltage of 1.9 V.
- the result is shown in Table 1 below.
- the metal In which was used for the anode of the battery of the comparative example 1, exhibits a potential of 0.6 vs. Li.
- the battery of the present disclosure can be used as, for example, an all solid lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Composite Materials (AREA)
Abstract
Description
- The present disclosure relates to a cathode material and a battery using the same.
- Patent Literature 1 discloses a battery using, as a solid electrolyte, a halide including indium.
- Patent Literature 1: Japanese Patent Application Publication No.
2006-244734 - In the prior art, further improvement in a charge / discharge efficiency of a battery is desired.
- The cathode material according to one aspect of the present disclosure comprises:
- a cathode active material and a first solid electrolyte material,
- wherein
- the first solid electrolyte material includes Li, M, and X, and does not include sulfur;
- M represents at least one selected from the group consisting of metalloid elements and metal elements other than Li;
- X represents at least one selected from the group consisting of Cl and Br, and I; and
- the cathode active material includes lithium iron phosphate.
- According to the present disclosure, the charge / discharge efficiency of the battery can be improved.
-
-
FIG. 1 shows a cross-sectional view of acathode material 1000 in a first embodiment. -
FIG. 2 shows a cross-sectional view of abattery 2000 in a second embodiment. - Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.
- The cathode material in the first embodiment includes a cathode active material and a first solid electrolyte material.
- The first solid electrolyte material is a material represented by the following composition formula (1).
LiαMβXγ Formula (1)
where
α, β, and γ are each independently a value greater than zero. - M includes at least one selected from the group consisting of metalloid elements and metal elements other than Li.
- X includes at least one of Cl and Br, and I.
- The cathode active material includes lithium iron phosphate. For example, the cathode active material includes LiFePO4.
- According to the above configuration, a charge / discharge efficiency of a battery can be improved.
- The halide solid electrolyte material exhibits good ionic conductivity. In particular, the first solid electrolyte material, which is a halide solid electrolyte material including I, exhibits higher ionic conductivity. As a result, for example, the first solid electrolyte material would be a prospective material which allows an all-solid secondary battery to operate at high output.
- According to Patent Literature 1, in an all-solid secondary battery including a solid electrolyte including indium, it is preferable that an electric potential of the cathode active material with respect to Li is 3.9 V or less on average, thereby a film formed of a decomposition product due to oxidative decomposition is well formed and a good charge / discharge characteristic is provided. In addition, Patent Literature 1 discloses general layered transition metal oxide cathodes such as LiCoO2 and LiNi0.8Co0.15Al0.05O2 as cathode active materials having the electric potential thereof with respect to Li of 3.9 V or less on average. However, Patent Literature 1 fails to disclose detailed mechanism of the oxidative decomposition.
- On the other hand, the present inventors found following matters. In a battery using a halide solid electrolyte (namely, the first solid electrolyte material) including I in a cathode material, even if the cathode active materials having the electric potential thereof with respect to Li of 3.9 V or less on average is used, the halide solid electrolyte undergoes oxidative decomposition during charging. The oxidative decomposition causes a problem of lowering the charge / discharge efficiency of the battery. The main reason therefor is an oxidation reaction of I included in the halide solid electrolyte.
- Specifically, it is conceived that, in addition to a normal charging reaction in which lithium and electrons are extracted from the cathode active material in the cathode material, a side reaction in which electrons are extracted from the halide solid electrolyte in contact with the cathode active material occurs. It is conceived that, as a result, charges are consumed for the side reaction to lower the charge / discharge efficiency.
- In addition, it is conceived that an oxide layer having poor lithium ion conductivity is formed between the cathode active material and the halide solid electrolyte due to the oxidation reaction of the halide solid electrolyte, and that the oxide layer functions as a large interface resistance in the electrode reaction of the cathode.
- Therefore, in order to operate the all-solid secondary battery including the halide solid electrolyte at a high output, it is necessary that a halide solid electrolyte including I having high ionic conductivity is introduced into the cathode material, and that the oxidation reaction of I is suppressed. In order to solve this problem, it is necessary to use a cathode active material capable of providing a good charge / discharge characteristic in a low potential region where the oxidation reaction of the halide solid electrolyte does not occur.
- In the configuration of the present disclosure, a lithium iron phosphate of the cathode active material that provides a good charge / discharge characteristic in a low potential region is introduced into the cathode material, thereby suppressing the oxidation reaction of I included in the halide solid electrolyte. As a result, the side reaction of the halide solid electrolyte does not occur, and the charge / discharge efficiency can be improved. In addition, since no side reaction occurs, the formation of the oxide layer is suppressed, and the interfacial resistance of the electrode reaction can be reduced.
- The term "metalloid elements" used in the present specification are B, Si, Ge, As, Sb, and Te.
- The term "metal elements" used in the present specification includes
- (i) all elements included in Group 1 to Group 12 of the Periodic Table (except for hydrogen), and
- (ii) all elements included in Group 13 to Group 16 of the Periodic Table (except for B, Si, Ge, As, Sb, Te, C, N, P, O, S, and Se).
- In other words, each of the metal elements become a cation, if the metal elements form an inorganic compound with a halogen compound.
- In the composition formula (1), M may include Y (namely, yttrium).
- In other words, the first solid electrolyte material may include Y as the metal element M.
- According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The first solid electrolyte material including Y may be, for example, a compound represented by a composition formula LiaMebYcX6 (a + mb + 3c = 6 and c> 0 are satisfied) (Me: at least one of metalloid elements and metal elements other than Li and Y) (m: valence of Me).
- As Me, at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used.
- According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved.
- The first solid electrolyte material may be Li3YBrCl4I or Li3YBr2Cl2I2.
- According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved.
- The first solid electrolyte material may include Li3YBr2Cl2I2.
- Li3YBr2Cl2I2 has particularly high ionic conductivity among halide solid electrolytes including I, and can improve the output density of the battery.
- The first solid electrolyte material may be a material represented by the following composition formula (B1).
Li6-3dYdX6 Formula (B1)
where, in the composition formula (B1), X includes at least one of Cl and Br, and I. - In the composition formula (B1), 0 < d <2 is satisfied.
- According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The first solid electrolyte material may be a material represented by the following composition formula (B2).
Li3YX6 Formula (B2)
where, in the composition formula (B2), X includes at least one of Cl and Br, and I. In other words, in the formula (B1), d=1 may be satisfied. - According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The first solid electrolyte material may be a material represented by the following composition formula (B3).
Li3-3δ+aY1+δ-aMeaCl6-x-yBrxIy Formula (B3)
where, in the composition formula (B3), Me is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. - In addition, in the composition formula (B3),
-1 < δ < 2;
0 < a < 3;
0 < (3-3δ+a);
0 < (1+δ-a);
0 ≤ x < 6;
0 < y ≤ 6; and
(x + y) < 6 are satisfied. - According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The first solid electrolyte material may be a material represented by the following composition formula (B4).
Li3-3δY1+δ-aMeaCl6-x-yBrxIy Formula (B4)
where, in the composition formula (B4), Me is at least one selected from the group consisting of Al, Sc, Ga, and Bi. - In the composition formula (B4),
-1 < δ <1;
0 < a <2;
0 < (1+δ-a);
0 ≤ x < 6;
0 < y ≤ 6; and
(x + y) < 6 are satisfied. - According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The first solid electrolyte material may be a material represented by the following composition formula (B5).
Li3-3δ-aY1+δ-aMeaCl6-x-yBrxIy Formula (B5)
where, in the composition formula (B5), Me is at least one selected from the group consisting of Zr, Hf, and Ti. - In the composition formula (B5),
-1 < δ <1;
0 < a < 1.5;
0 < (3-3δ-a);
0 < (1+δ-a);
0 ≤ x <6;
0 < y ≤ 6; and
(x + y) < 6 are satisfied. - According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The first solid electrolyte material may be a material represented by the following composition formula (B6).
Li3-3δ-2aY1+δ-aMeaCl6-x-yBrxIy Formula (B6)
where, in the composition formula (B6), Me is at least one selected from the group consisting of Ta and Nb. - In the composition formula (B6), -1 < δ <1;
0 < a <1.2;
0 < (3-3δ-2a);
0 < (1+δ-a);
0 ≤ x <6;
0 < y ≤ 6; and
(x + y) <6 are satisfied. - According to the above configuration, the ionic conductivity of the first solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- As the first solid electrolyte material, for example, Li3YX6, Li2MgX4, Li2FeX4, Li (Al, Ga, In)X4, or Li3(Al, Ga, In)X6 (X includes at least one of Cl and Br, and I) can be used.
-
FIG. 1 shows a cross-sectional view of acathode material 1000 in the first embodiment. - The
cathode material 1000 in the first embodiment includes firstsolid electrolyte particles 100 and cathodeactive material particles 110. - The shape of each of the first
solid electrolyte particles 100 in the first embodiment is not limited, and may be, for example, a needle shape, a spherical shape, or an elliptical spherical shape. - For example, when the shape of the first
solid electrolyte particles 100 in the first embodiment is spherical, the median diameter of the firstsolid electrolyte particles 100 may be not more than 100 µm. - If the median diameter is larger than 100 µm, there is a possibility that a good dispersion state of the cathode
active material particles 110 and the firstsolid electrolyte particles 100 cannot be formed in the cathode material. As a result, the charge / discharge characteristic is lowered. - In addition, in the first embodiment, the median diameter may be not more than 10 µm.
- According to the above configuration, the cathode
active material particles 110 and the firstsolid electrolyte particles 100 can be well dispersed in the cathode material. - In addition, in the first embodiment, the median diameter of the first
solid electrolyte particles 100 may be smaller than the median diameter of the cathodeactive material particles 110. - According to the above configuration, the first
solid electrolyte particles 100 and the cathodeactive material particles 110 can be dispersed better in the electrode. - The median diameter of the cathode
active material particles 110 may be not less than 0.1 µm and not more than 100 µm. - If the median diameter of the cathode
active material particles 110 is smaller than 0.1 µm, the cathodeactive material particles 110 and the firstsolid electrolyte particles 100 are not well dispersed in the cathode material. As a result, the charge / discharge characteristic of the battery can be lowered. - In addition, if the median diameter of the cathode
active material particles 110 is larger than 100 µm, the diffusion of lithium in the cathodeactive material particles 110 is made slow. As a result, the battery may be difficult to operate at a high output. - The median diameter of the cathode
active material particles 110 may be larger than the median diameter of the firstsolid electrolyte particles 100. Thereby, the cathodeactive material particles 110 and the firstsolid electrolyte particles 100 can be well dispersed. - In the
cathode material 1000 according to the first embodiment, the firstsolid electrolyte particles 100 and the cathodeactive material particles 110 may be in contact with each other, as shown inFIG 1 . - In addition, the
cathode material 1000 in the first embodiment may include a plurality of the firstsolid electrolyte particles 100 and a plurality of the cathodeactive material particles 110. - Further, in the
cathode material 1000 in the first embodiment, the content of the firstsolid electrolyte particles 100 may be the same as or different from the content of the cathodeactive material particles 110. - In the first embodiment, a surface of each of the cathode
active material particles 110 may be coated with a carbon material. By coating the surface of the lithium iron phosphate with the carbon material, the cathode material can be provided with good electronic conductivity, and the battery can be operated at a higher output. - The first solid electrolyte material in the first embodiment may be manufactured by the following method, for example.
- In consideration of the composition ratio of the product, binary halide raw material powders are prepared. For example, if Li3YCl6 is produced, LiCl and YCl3 are prepared at a molar ratio of 3:1.
- At this time, by selecting the kinds of raw material powders, the elements "M", "Me", and "X" in the above-described composition formula can be determined. In addition, by adjusting the raw material powders, the blending ratio, and the synthesis process, the values of "α", "β", "γ", "d", "δ", "a", "x", and "y" are determined.
- Raw material powders are mixed well. Next, the raw material powders are ground using a mechanochemical milling method. In this way, the raw material powders react to provide the first solid electrolyte material. Alternatively, the raw material powders are mixed well, and then, sintered in vacuum to provide the first solid electrolyte material.
- Thereby, the above-mentioned solid electrolyte material including a crystal phase is provided.
- The configuration of the crystal phase (namely, the crystal structure) in a solid electrolyte material can be determined by selecting the reaction method and reaction conditions of the raw material powders.
- Hereinafter, the second embodiment will be described. The description which has been set forth in the above-described first embodiment is omitted as appropriate.
-
FIG. 2 is a cross-sectional view showing a schematic configuration of abattery 2000 in the second embodiment. - The
battery 2000 in the second embodiment comprises acathode 201, anelectrolyte layer 202, and ananode 203. - The
cathode 201 includes the cathode material (for example, the cathode material 1000) in the first embodiment. - The
electrolyte layer 202 is disposed between thecathode 201 and theanode 203. - According to the above configuration, the charge / discharge efficiency of a battery can be improved.
- In the
cathode 201, a volume ratio Vp representing a volume of the cathodeactive material particles 110 to the total volume of the cathodeactive material particles 110 and the firstsolid electrolyte particles 110 may be not less than 0.3 and not more than 0.95. If the volume ratio Vp is less than 0.3, it may be difficult to ensure the energy density of the battery sufficiently. On the other hand, if the volume ratio Vp is more than 0.95, it may be difficult to operate the battery at a high output. - The thickness of the
cathode 201 may be not less than 10 µm and not more than 500 µm. If the thickness of thecathode 201 is less than 10 µm, it may be difficult to ensure the battery energy density sufficiently. If the thickness of thecathode 201 is more than 500 µm, it may be difficult to operate at a high output. - The
electrolyte layer 202 is a layer including an electrolyte material. The electrolyte material is, for example, a solid electrolyte material. In other words, theelectrolyte layer 202 may be a solid electrolyte layer. - As the solid electrolyte material included in the
electrolyte layer 202, the first solid electrolyte material described above may be used. - Alternatively, a second solid electrolyte material may be used as the solid electrolyte material included in the
electrolyte layer 202. - In other words, the
electrolyte layer 202 may include the second solid electrolyte material. - The second solid electrolyte material is a material represented by the following composition formula (2).
Liα'M'β'X'γ' Formula (2)
where α', β', and γ' are each independently a value greater than 0. - M' includes at least one selected from the group consisting of metalloid elements and metal elements other than Li.
- X' includes at least one of Cl and Br.
- According to the above configuration, the output density of the battery can be improved. In addition, thermal stability of the battery can be improved and generation of harmful gases such as hydrogen sulfide can be suppressed.
- In the composition formula (2), M' may include Y (namely, yttrium).
- In other words, the second solid electrolyte material may include Y as the metal element M'.
- According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material including Y may be, for example, a compound represented by a composition formula LiaMe'bYcX'6 (a + mb + 3c = 6 and c> 0 are satisfied) (Me': at least one of metalloid elements and metal elements other than Li and Y) (m: valence of Me').
- As Me', at least one selected from the group consisting of Mg, Ca, Sr, Ba, Zn, Sc, Al, Ga, Bi, Zr, Hf, Ti, Sn, Ta, and Nb may be used.
- According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved.
- The second solid electrolyte material may be Li2.7Y1.1Cl6.
- According to the above configuration, the output density of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A1).
Li6-3dYdX6 Formula (A1)
where, in the composition formula (A1), X is at least one selected from the group consisting of Cl and Br. In addition, in the composition formula (A1), 0 < d < 2 is satisfied. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A2).
Li3YX6 Formula (A2)
where, in the composition formula (A2), X is at least one selected from the group consisting of Cl and Br. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A3).
Li3-3δY1+δCl6 Formula (A3)
where, in the composition formula (A3), 0 < δ ≤ 0.15 is satisfied. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A4).
Li3-3δY1+δBr6 Formula (A4)
where, in the composition formula (A4), 0 < δ ≤ 0.25 is satisfied. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A5).
Li3-3δ+aY1+δ-aMeaCl6-xBrx Formula (A5)
where, in the composition formula (A5), Me is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. - In the composition formula (A5),
-1 < δ <2;
0 < a < 3;
0 < (3-3δ+a);
0 < (1+δ-a); and
0 ≤ x ≤ 6 are satisfied. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A6).
Li3-3δY1+δ-aMeaCl6-xBrx Formula (A6)
where, in the composition formula (A6), Me is at least one selected from the group consisting of Al, Sc, Ga, and Bi. - In addition, in the composition formula (A6),
-1 < δ <1;
0 < a <2;
0 < (1+δ-a); and
0 ≤ x ≤ 6 are satisfied. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A7).
Li3-3δ-aY1+δ-aMeaCl6-xBrx Formula (A7)
where, in the composition formula (A7), Me is at least one selected from the group consisting of Zr, Hf, and Ti. - In the composition formula (A7),
-1 < δ < 1;
0 < a < 1.5;
0 < (3-3δ-a);
0 < (1+δ-a); and
0 ≤ x ≤ 6 are satisfied. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- The second solid electrolyte material may be a material represented by the following composition formula (A8).
Li3-3δ-2aY1+δ-aMeaCl6-xBrx Formula (A8)
where, in the composition formula (A8), Me is at least one selected from the group consisting of Ta and Nb. - In the composition formula (A8),
-1 < δ <1;
0 < a < 1.2;
0 < (3-3δ-2a);
0 < (1+δ-a); and
0 ≤ x ≤ 6 are satisfied. - According to the above configuration, the ionic conductivity of the second solid electrolyte material can be further improved. Thereby, the charge / discharge efficiency of the battery can be further improved.
- As the second solid electrolyte material, for example, Li3YX6, Li2MgX4, Li2FeX4, Li(AI, Ga, In)X4, or Li3(Al, Ga, In)X6 (X is at least one selected from the group consisting of Cl and Br) can be used.
- A sulfide solid electrolyte may be used as the solid electrolyte material included in the
electrolyte layer 202. - In other words, the
electrolyte layer 202 may include a sulfide solid electrolyte. - According to the above configuration, since the sulfide solid electrolyte excellent in reduction stability is included, a low-potential anode material such as graphite or metallic lithium can be used to improve the energy density of the battery.
- As the sulfide solid electrolyte, Li2S-P2S5, Li2S-SiS2, Li2S-B2S3, Li2S-GeS2, Li3.25Ge0.25P0.75S4, or Li10GeP2S12 can be used. In addition, LiX (X: F, CI, Br, I), Li2O, MOq, or LipMOq (M: any of P, Si, Ge, B, Al, Ga, In, Fe, Zn) (p, q: natural number) may be added thereto.
- As the solid electrolyte material included in the
electrolyte layer 202, an oxide solid electrolyte, a polymer solid electrolyte, or a complex hydride solid electrolyte may be used. - Examples of the oxide solid electrolyte include:
- a NASICON solid electrolyte such as LiTi2(PO4)3 and its element substitution products;
- a perovskite solid electrolyte such as (LaLi)TiO3;
- a LISICON solid electrolyte such as Li14ZnGe4O16, Li4SiO4, or LiGeO4 and its element substitution products;
- a garnet solid electrolyte such as Li7La3Zr2O12 and its element substitution products;
- Li3N and its H substitution products;
- Li3PO4 and its N substitution products;
- glass to which Li2SO4 or Li2CO3 has been added using a Li-B-O compound such as LiBO2 or Li3BO3 as the base thereof; and
- glass ceramics.
- As the polymer solid electrolyte, for example, a compound of a polymer compound and a lithium salt can be used. The polymer compound may have an ethylene oxide structure. Since the solid polymer electrolyte having an ethylene oxide structure can include a large amount of lithium salt, the ionic conductivity can be further increased. As the lithium salt, LiPF6, LiBF4, LiSbF6, LiAsF6, LiSO3CF3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiN(SO2CF3)(SO2C4F9), or LiC(SO2CF3)3 can be used. As the lithium salt, one lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used as the lithium salt.
- As the complex hydride solid electrolyte, for example, LiBH4-LiI or LiBH4-P2S5 can be used.
- The
electrolyte layer 202 may include a solid electrolyte material as a main component. In other words, theelectrolyte layer 202 may include a solid electrolyte material, for example, at a weight ratio of not less than 50% (not less than 50% by weight) with respect to theentire electrolyte layer 202. - According to the above configuration, the charge / discharge characteristic of the battery can be further improved.
- Further, the
electrolyte layer 202 may include a solid electrolyte material, for example, at a weight ratio of not less than 70% (not less than 70% by weight) with respect to theentire electrolyte layer 202. - According to the above configuration, the charge / discharge characteristic of the battery can be further improved.
- The
electrolyte layer 202 may further include inevitable impurities. Theelectrolyte layer 202 may include the starting materials used for the synthesis of the solid electrolyte material. Theelectrolyte layer 202 may include by-products or decomposition products generated during the synthesis of the solid electrolyte material. - The weight ratio of the solid electrolyte material included in the first electrolyte layer 101 to the first electrolyte layer 101 may be substantially 1. "The weight ratio is substantially 1" means that the weight ratio calculated without considering inevitable impurities that may be included in the first electrolyte layer 101 is 1. In other words, the first electrolyte layer 101 may be composed only of the solid electrolyte material.
- According to the above configuration, the charge / discharge characteristic of the battery can be further improved.
- As described above, the
electrolyte layer 202 may be composed only of the solid electrolyte material. - The
electrolyte layer 202 may include two or more kinds of the materials described as the solid electrolyte material. For example, theelectrolyte layer 202 may include the halide solid electrolyte material and the sulfide solid electrolyte material. - The thickness of the
electrolyte layer 202 may be not less than 1 µm and not more than 300 µm. If the thickness of theelectrolyte layer 202 is less than 1 µm, a possibility that thecathode 201 and theanode 203 are short-circuited increases. In addition, if the thickness of theelectrolyte layer 202 is more than 300 µm, it may be difficult to operate at a high output. - The
anode 203 includes a material having a property of occluding and releasing metal ions (for example, lithium ions). Theanode 203 includes, for example, an anode active material. - A metal material, a carbon material, an oxide, a nitride, a tin compound, or a silicon compound can be used as the anode active material. The metal material may be a single metal. Alternatively, the metal material may be an alloy. Examples of the metal material include lithium metal and lithium alloy. Examples of the carbon material include natural graphite, coke, graphitized carbon, carbon fiber, spherical carbon, artificial graphite, and amorphous carbon. From the viewpoint of capacity density, silicon (Si), tin (Sn), a silicon compound, or a tin compound can be preferably used.
- The
anode 203 may include a solid electrolyte material. According to the above configuration, the lithium ion conductivity inside theanode 203 is increased to allow operation at a high output. As the solid electrolyte material, materials exemplified as theelectrolyte layer 202 may be used. - The median diameter of the anode active material particles may be not less than 0.1 µm and not more than 100 µm. If the median diameter of the anode active material particles is smaller than 0.1 µm, the anode active material particles and the solid electrolyte material are not well dispersed in the anode, so that the charge / discharge characteristic of the battery may be lowered. On the other hand, if the median diameter of the anode active material particles is larger than 100 µm, the diffusion of lithium in the anode active material particles is made slow. As a result, the battery may be difficult to operate at a high output.
- The median diameter of the anode active material particles may be larger than the median diameter of the solid electrolyte material. Thereby, the anode active material particles and the solid electrolyte material can be well dispersed.
- In the
anode 203, a volume ratio Vn representing a volume of the anode active material particles to the total volume of the anode active material particles and the solid electrolyte material may be not less than 0.3 and not more than 0.95. If the volume ratio Vn is less than 0.3, it may be difficult to ensure an energy density of the battery sufficiently. On the other hand, if the volume ratio Vn exceeds 0.95, the battery may be difficult to operate at a high output. - The thickness of the
anode 203 may be not less than 10 µm and not more than 500 µm. If the thickness of the anode is less than 10 µm, it may be difficult to ensure an energy density of the battery sufficiently. In addition, if the thickness of the anode is more than 500 µm, it may be difficult to operate at high output. - The
cathode 201 may include a solid electrolyte material for the purpose of improving the ionic conductivity. As the solid electrolyte material, materials exemplified as theelectrolyte layer 202 may be used. - At least one of the
cathode 201, theelectrolyte layer 202, and theanode 203 may include a binder for the purpose of improving adhesion between the particles. The binder is used in order to improve the binding property of the material which forms the electrode. - An example of the binder is polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, methyl polyacrylate ester, ethyl polyacrylate ester, hexyl polyacrylate ester, polymethacrylic acid, methyl polymethacrylate ester, ethyl polymethacrylate ester, hexyl polymethacrylate ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene butadiene rubber, or carboxymethylcellulose.
- As the binder, a copolymer of two or more kinds of materials selected from the group consisting of tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, and hexadiene can be used.
- Two or more kinds of the binders can be used.
- At least one of the
cathode 201 and theanode 203 may include a conductive assistant for the purpose of increasing the electronic conductivity. Examples of the conductive assistant include: - graphite such as natural graphite or artificial graphite;
- carbon black such as acetylene black or ketjen black;
- a conductive fiber such as a carbon fiber or a metal fiber;
- carbon fluoride;
- metal powder such as aluminum;
- conductive whiskers such as zinc oxide or potassium titanate;
- a conductive metal oxide such as titanium oxide; and
- a conductive polymer compound such as polyaniline, polypyrrole, or polythiophene.
- Cost reduction can be achieved by using carbon conductive assistant.
- The battery in the second embodiment can be configured as a battery having various shapes such as a coin shape, a cylindrical shape, a prism shape, a sheet shape, a button shape, a flat shape, or a stacked shape.
- Hereinafter, details of the present disclosure will be described with reference to inventive examples and comparative example.
- In an argon glove box with a dew point of -60 °C or less, raw material powders LiCI, YCl3, YBr3, and LiI were prepared at a molar ratio of LiCI : YCl3 : YBr3 : LiI = 6:2:1:3. Subsequently, milling processing was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, type P-7) to provide a powder of the first solid electrolyte material Li3YBrCl4I.
- In the argon glove box, the first solid electrolyte material of the inventive example 1 and the cathode active material LiFePO4 were prepared at a weight ratio of 80:20. The cathode material of the inventive example 1 was produced by mixing these in an agate mortar.
- In an argon glove box with a dew point of -60 °C or less, raw material powders LiBr, LiCI, Lil, YCl3, and YBr3 were prepared at a molar ratio of LiBr : LiCI : Lil : YCl3 : YBr3 = 1:1:4:1:1. Subsequently, milling processing was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, P-7 type) to provide a powder of the first solid electrolyte material Li3YBr2Cl2I2.
- Except for the matters set forth in the section of the production of the first solid electrolyte material, a method similar to that of the inventive example 1 was performed to provide a cathode material of the inventive example 2.
- A method similar to that of the inventive example 2 was performed to provide a cathode material of the inventive example 3.
- A method similar to that of the inventive example 2 was performed to provide a cathode material of the inventive example 4.
- Li(NiCoMn)O2 was used as a cathode active material.
- Except for this matter, a method similar to that of the inventive example 2 was performed to provide a cathode material of the comparative example 1.
- In an argon glove box with a dew point of -60 °C or less, raw material powders LiCI and YCl3 were prepared at a molar ratio of LiCI : YCl3 = 2.7 : 1.1. Subsequently, milling processing was performed at 600 rpm for 25 hours using a planetary ball mill (manufactured by Fritsch, type P-5) to provide a powder of the second solid electrolyte material Li2.7Y1.1Cl6.
- In an argon glove box having an Ar atmosphere with a dew point of -60 °C or less, Li2S and P2S5 were prepared at a molar ratio of Li2S : P2S5 = 75 : 25. These were ground and mixed in a mortar. Subsequently, a glassy solid electrolyte was provided by milling processing at 510 rpm for 10 hours using the planetary ball mill (manufactured by Fritsch, P-7 type). The glassy solid electrolyte was heat-treated at 270°C for 2 hours in an inert atmosphere. Thus, a glass ceramic solid electrolyte Li2S-P2S5 was provided.
- The batteries of the inventive example 1, the inventive example 2, and the comparative example 1 were produced using the cathode materials of the inventive examples 1 and 2 and the comparative example 1, respectively, with the glass ceramic solid electrolyte Li2S-P2S5, by the following method.
- First, a glass ceramic solid electrolyte Li2S-P2S5 (80 mg) and the cathode material (10 mg) were stacked in this order in an insulating outer cylinder. This was pressure-molded at a pressure of 360 MPa to provide a stacking structure having a solid electrolyte layer and a cathode. The cathode was located on a front surface of the solid electrolyte layer.
- Next, aluminum powder (20 mg) was stacked on the front surface of the cathode. This was pressure-molded at a pressure of 360 MPa to provide the cathode with a current collector.
- Next, a metal In (thickness: 200 µm) was stacked on a back surface of the solid electrolyte layer. This was pressure-molded at a pressure of 80 MPa to produce a stacking structure having the cathode, the solid electrolyte layer, and an anode.
- Next, stainless steel current collectors were disposed on the upper and lower parts of the stacking structure, and current collector leads were attached to the current collectors.
- Finally, an insulating ferrule was used to block and seal the inside of the insulating outer cylinder from the outside atmosphere. In this way, a battery was produced.
- Thus, the batteries of the inventive example 1, the inventive example 2, and the comparative example 1 were produced.
- Using the cathode material of the inventive example 3 and the halide solid electrolyte Li3YBr2Cl2I2, a battery of the inventive example 3 was produced by the following method.
- First, a halide solid electrolyte Li3YBr2Cl2I2 (80 mg) and the cathode material of the inventive example 3 (10 mg) were stacked in this order in an insulating outer cylinder. This was pressure-molded at a pressure of 360 MPa to provide a stacking structure having a cathode and a solid electrolyte layer. The cathode was located on the front surface of the solid electrolyte layer.
- Next, aluminum powder (20 mg) was stacked on the front surface of the cathode. This was pressure-molded at a pressure of 360 MPa to provide the cathode with a current collector.
- Next, a metal In (thickness: 200 µm) was stacked on a back surface of the solid electrolyte layer. This was pressure-molded at a pressure of 80 MPa to produce a stacking structure composed of the cathode, the solid electrolyte layer, and an anode.
- Next, stainless steel current collectors were disposed on the upper and lower parts of the stacking structure, and current collector leads were attached to the current collectors.
- Finally, an insulating ferrule was used to block and seal the inside of the insulating outer cylinder from the outside atmosphere. In this way, a battery was produced.
- Thus, the battery of the inventive example 3 was produced.
- Using the cathode material of the inventive example 4 and the halide solid electrolyte Li2.7Y1.1Cl6, a battery of the inventive example 4 was produced by the following method.
- First, a halide solid electrolyte Li2.7Y1.1Cl6 (80 mg) and the cathode material (10 mg) of the inventive example 4 were stacked in this order in an insulating outer cylinder. This was pressure-molded at a pressure of 360 MPa to provide a stacking structure having a cathode and a solid electrolyte layer. The cathode was located on the front surface of the solid electrolyte layer.
- Next, aluminum powder (20 mg) was stacked on the front surface of the cathode. This was pressure-molded at a pressure of 360 MPa to provide the cathode with a current collector.
- Next, a metal In (thickness: 200 µm) was stacked on the back side of the solid electrolyte layer. This was pressure-molded at a pressure of 80 MPa to produce a stacking structure composed of the cathode, the solid electrolyte layer, and an anode.
- Next, stainless steel current collectors were disposed on the upper and lower parts of the stacking structure, and current collector leads were attached to the current collectors.
- Finally, an insulating ferrule was used to block and seal the inside of the insulating outer cylinder from the outside atmosphere. In this way, a battery was produced.
- Thus, the battery of the inventive example 4 was produced.
- The following charge / discharge tests were performed using the batteries of the inventive examples 1 to 3.
- Each of the batteries were placed in a thermostatic chamber at 25 °C.
- Each of the batteries was charged with a constant current at a current value of 16 µA, which was 0.05 C rate (20 hour rate) with respect to the theoretical capacity of each of the batteries, and the charge was terminated at a voltage of 3.0 V.
- Next, each of the batteries was discharged at a current value of 16 µA, which was 0.05 C rate, and the discharge was terminated at a voltage of 1.9 V.
- Thus, the initial charge / discharge efficiency (= initial discharge capacity / initial charge capacity) of each of the batteries of the inventive examples 1 to 3 was provided. The results are shown in Table 1 below. The metal In, which was used for the anodes of the batteries of the inventive examples 1 to 3, exhibits a potential of 0.6 volts with respect to lithium.
- In other words, the end-of-charge voltage of 3.0 V and the end-of-discharge voltage of 1.9 V in the batteries of the inventive examples 1 to 3 are converted into electric potentials based on Li of 3.6 V vs. Li and 2.5 V vs. Li, respectively.
- Using the battery of the inventive example 4, a charge / discharge test was performed under the following conditions.
- The battery was placed in a thermostatic chamber at 25 °C.
- The battery was charged with a constant current at a current value of 16 µA, which was 0.05 C rate (20 hour rate) with respect to the theoretical capacity of the battery, and the charge was terminated at a voltage of 3.4 V.
- Next, the battery was discharged at a current value of 16 µA, which was 0.05 C rate, and the discharge was terminated at a voltage of 1.9 V.
- Thus, the initial charge / discharge efficiency (= initial discharge capacity / initial charge capacity) of the battery of the inventive example 4 was provided. The result is shown in Table 1 below. The metal In, which was used for the anode of the battery of the inventive example 4, exhibits a potential of 0.6 vs. Li.
- In other words, the end-of-charge voltage of 3.4 V and the end-of-discharge voltage of 1.9 V in the battery of the inventive example 4 are converted into electric potentials based on Li of 4.0 V vs. Li and 2.5 V vs. Li, respectively.
- Using the battery of the comparative example 1, a charge / discharge test was performed under the following conditions.
- The battery was placed in a thermostatic chamber at 25 °C.
- The battery was constant-current charged at a current value of 20 µA, which was 0.05 C rate (20 hour rate) with respect to the theoretical capacity of the battery, and the charge was terminated at a voltage of 3.6 V.
- Next, the battery was discharged at a current value of 20 µA, which was 0.05 C rate, and the discharge was terminated at a voltage of 1.9 V.
- Thus, the initial charge / discharge efficiency (= initial discharge capacity / initial charge capacity) of the battery of the comparative example 1 was provided. The result is shown in Table 1 below. The metal In, which was used for the anode of the battery of the comparative example 1, exhibits a potential of 0.6 vs. Li.
- In other words, the end-of-charge voltage of 3.6 V and the end-of-discharge voltage of 1.9 V in the battery of the comparative example 1 are converted into electric potentials based on Li of 4.2 V vs. Li and 2.5 V vs. Li, respectively.
[Table 1] Maximum charge electric potential (V vs. Li/Li+) Cathode Active Material First Solid Electrolyte Material Electrolyte Layer Charge / Discharge Efficiency (%) Inventive Example 1 3.6 LiFePO4 Li3YBrCl4I Li2S-P2S5 75.0 Inventive Example 2 3.6 LiFePO4 Li3YBr2Cl2I2 Li2S-P2S5 61.5 Inventive Example 3 3.6 LiFePO4 Li3YBr2Cl2I2 Li3YBr2Cl2I2 51.5 Inventive Example 4 4 LiFePO4 Li3YBr2Cl2I2 Li2.7Y1.1Cl6 68.1 Comparative Example 1 4.2 Li(NiCoMn)O2 Li3YBr2Cl2I2 Li2S-P2S5 36.8 - From the results of the inventive example 2 and the comparative example 1, which are shown in Table 1, it was confirmed that the charge / discharge efficiency of the battery is improved by using the cathode material including the first solid electrolyte material and the cathode active material LiFePO4.
- From the results of the inventive examples 1 and 2, it was confirmed that the charge / discharge efficiency of the battery is improved, even if a different first solid electrolyte material is used as the cathode solid electrolyte.
- From the results of the inventive examples 2, 3, and 4, even if the first solid electrolyte material or the second solid electrolyte material is used for the solid electrolyte layer, it was confirmed that the charge / discharge efficiency of the battery is improved, similarly to the case where a sulfide solid electrolyte is used for the solid electrolyte layer.
- The battery of the present disclosure can be used as, for example, an all solid lithium secondary battery.
-
- 1000
- Cathode material
- 100
- First solid electrolyte particle
- 110
- Cathode active material particle
- 2000
- Battery
- 201
- Cathode
- 202
- Electrolyte layer
- 203
- Anode
Claims (9)
- A cathode material, comprising:a cathode active material and a first solid electrolyte material,whereinthe first solid electrolyte material includes Li, M, and X, and does not include sulfur;M represents at least one selected from the group consisting of metalloid elements and metal elements other than Li;X represents at least one selected from the group consisting of Cl and Br, and I; andthe cathode active material includes lithium iron phosphate.
- The cathode material according to claim 1, wherein
the first solid electrolyte material is represented by the following composition formula (1):
LiαMβXγ Formula (1)
where
α, β, and γ are each independently greater than 0. - The cathode material according to claim 1 or 2, wherein
M includes yttrium. - The cathode material according to claim 3, wherein
the first solid electrolyte material is Li3YBrCl4I or Li3YBr2Cl2I2. - A battery comprising:a cathode including the cathode material according to any one of claims 1 to 4; an anode; andan electrolyte layer provided between the cathode and the anode.
- The battery according to claim 5, wherein
the electrolyte layer includes a sulfide solid electrolyte. - The battery according to claim 5 or 6, whereinthe electrolyte layer includes a second solid electrolyte material; andthe second solid electrolyte material is represented by the following composition formula (2):
Liα'M'β'X'γ' Formula (2)
whereα', β', and γ' are each independently a value greater than 0;M' includes at least one selected from the group consisting of metalloid elements and metal elements other than Li; andX' includes at least one selected from the group consisting of Cl and Br. - The battery according to claim 7, wherein
M' includes yttrium. - The battery according to claim 8, wherein
the second solid electrolyte material is Li2.7Y1.1Cl6.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018011525 | 2018-01-26 | ||
| PCT/JP2018/045584 WO2019146292A1 (en) | 2018-01-26 | 2018-12-12 | Positive electrode material and battery using same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP3745508A1 true EP3745508A1 (en) | 2020-12-02 |
| EP3745508A4 EP3745508A4 (en) | 2021-03-17 |
Family
ID=67395599
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP18902871.5A Withdrawn EP3745508A4 (en) | 2018-01-26 | 2018-12-12 | Positive electrode material and battery using same |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US11682764B2 (en) |
| EP (1) | EP3745508A4 (en) |
| JP (1) | JP7217432B2 (en) |
| CN (1) | CN111557057B (en) |
| WO (1) | WO2019146292A1 (en) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111587508A (en) | 2018-01-26 | 2020-08-25 | 松下知识产权经营株式会社 | Battery with a battery cell |
| WO2019146296A1 (en) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | Positive electrode material and battery using same |
| CN112368863B (en) | 2018-11-29 | 2024-08-23 | 松下知识产权经营株式会社 | Negative electrode material, battery and method for manufacturing battery |
| JP7429869B2 (en) | 2018-11-29 | 2024-02-09 | パナソニックIpマネジメント株式会社 | Negative electrode materials and batteries |
| EP4117053A4 (en) * | 2020-03-06 | 2025-05-14 | Toyota Jidosha Kabushiki Kaisha | SOLID-STATE BATTERY |
| CN119786709A (en) | 2020-04-14 | 2025-04-08 | 圣戈本陶瓷及塑料股份有限公司 | Ion-conducting material, electrolyte including ion-conducting material, and forming method |
| WO2021211711A1 (en) | 2020-04-14 | 2021-10-21 | Saint-Gobain Ceramics & Plastics, Inc. | Electrolyte material and methods of forming |
| CN115443567A (en) | 2020-04-23 | 2022-12-06 | 圣戈本陶瓷及塑料股份有限公司 | Ionically conductive layer and method of forming the same |
| EP4104232B1 (en) | 2020-04-23 | 2025-11-05 | Saint-Gobain Ceramics & Plastics, Inc. | Ion conductive layer and methods of forming |
| EP4145558A4 (en) * | 2020-04-28 | 2023-10-25 | Panasonic Intellectual Property Management Co., Ltd. | POSITIVE ELECTRODE MATERIAL AND BATTERY |
| KR20230165869A (en) | 2020-08-07 | 2023-12-05 | 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. | Electrolyte material and methods of forming |
| IL304672B2 (en) | 2021-05-17 | 2025-02-01 | Saint Gobain Ceramics | Electrolyte material and methods of forming |
| WO2023106128A1 (en) * | 2021-12-07 | 2023-06-15 | パナソニックIpマネジメント株式会社 | Battery |
Family Cites Families (89)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4352869A (en) | 1980-12-24 | 1982-10-05 | Union Carbide Corporation | Solid state electrolytes |
| EP0055135B1 (en) | 1980-12-24 | 1985-06-19 | Union Carbide Corporation | Composition for use as solid state electrolyte and solid state cell employing same |
| US5714279A (en) | 1989-10-24 | 1998-02-03 | The United States Of America As Represented By The Secretary Of The Navy | Non-aqueous lithium cells |
| JP3151925B2 (en) | 1992-05-07 | 2001-04-03 | 松下電器産業株式会社 | Amorphous lithium ion conductive solid electrolyte and its synthesis method |
| US5506073A (en) | 1992-06-22 | 1996-04-09 | Arizona State University (Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University) | Lithium ion conducting electrolytes |
| JPH08171938A (en) | 1994-12-15 | 1996-07-02 | Mitsubishi Cable Ind Ltd | Li secondary battery and its positive electrode |
| JPH09293516A (en) | 1996-04-25 | 1997-11-11 | Matsushita Electric Ind Co Ltd | All-solid-state lithium battery |
| JPH11238528A (en) | 1998-02-20 | 1999-08-31 | Ngk Insulators Ltd | Lithium secondary battery |
| EP1049183B1 (en) | 1998-11-10 | 2011-08-03 | Panasonic Corporation | Lithium secondary cell |
| JP2001052733A (en) | 1999-08-05 | 2001-02-23 | Matsushita Electric Ind Co Ltd | All-solid lithium secondary battery |
| KR100513726B1 (en) | 2003-01-30 | 2005-09-08 | 삼성전자주식회사 | Solid electrolytes, batteries employing the same and method for preparing the same |
| JP5076134B2 (en) | 2004-06-08 | 2012-11-21 | 国立大学法人東京工業大学 | Lithium battery element |
| JP5108205B2 (en) | 2005-02-28 | 2012-12-26 | 国立大学法人静岡大学 | All solid-state lithium secondary battery |
| JP4945182B2 (en) | 2006-07-13 | 2012-06-06 | シャープ株式会社 | Lithium secondary battery and manufacturing method thereof |
| JP2008060033A (en) | 2006-09-04 | 2008-03-13 | Sony Corp | Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery using the same, and method for producing positive electrode active material |
| JP2008234988A (en) | 2007-03-20 | 2008-10-02 | Sony Corp | Negative electrode and method for producing the same, battery and method for producing the same |
| JP2009193940A (en) * | 2008-02-18 | 2009-08-27 | Toyota Motor Corp | ELECTRODE BODY, ITS MANUFACTURING METHOD, AND LITHIUM ION SECONDARY BATTERY |
| JP4948510B2 (en) * | 2008-12-02 | 2012-06-06 | トヨタ自動車株式会社 | All solid battery |
| JP5448038B2 (en) | 2009-02-27 | 2014-03-19 | 公立大学法人大阪府立大学 | Sulfide solid electrolyte material |
| JP5158008B2 (en) * | 2009-04-28 | 2013-03-06 | トヨタ自動車株式会社 | All solid battery |
| JP2011065982A (en) | 2009-08-18 | 2011-03-31 | Seiko Epson Corp | Lithium battery electrode body and lithium battery |
| JP5141675B2 (en) | 2009-12-16 | 2013-02-13 | トヨタ自動車株式会社 | Method for producing sulfide solid electrolyte material, sulfide solid electrolyte material, and lithium battery |
| JP5510084B2 (en) | 2010-06-03 | 2014-06-04 | ソニー株式会社 | Negative electrode for lithium ion secondary battery, lithium ion secondary battery, electric tool, electric vehicle and power storage system |
| US9160034B2 (en) | 2010-06-29 | 2015-10-13 | Toyota Jidosha Kabushiki Kaisha | Method for producing sulfide solid electrolyte material and method for producing lithium solid state battery |
| US20130260258A1 (en) * | 2010-12-10 | 2013-10-03 | Toyota Jidosha Kabushiki Kaisha | Electrode body and all solid state battery |
| KR20140003514A (en) | 2011-01-27 | 2014-01-09 | 이데미쓰 고산 가부시키가이샤 | Composite material of alkali metal sulfide and conducting agent |
| WO2012160698A1 (en) * | 2011-05-26 | 2012-11-29 | トヨタ自動車株式会社 | Coated active material, and lithium solid-state battery |
| JP5721540B2 (en) | 2011-05-30 | 2015-05-20 | 株式会社オハラ | Lithium ion conductive inorganic material |
| JP2013073791A (en) | 2011-09-28 | 2013-04-22 | Panasonic Corp | Nonaqueous electrolyte secondary battery |
| WO2014010043A1 (en) | 2012-07-11 | 2014-01-16 | トヨタ自動車株式会社 | All-solid-state battery, and production method therefor |
| JP5796687B2 (en) * | 2012-11-07 | 2015-10-21 | 株式会社村田製作所 | Positive electrode material, secondary battery and manufacturing method thereof |
| FR3004467B1 (en) | 2013-04-12 | 2016-05-27 | Saint-Gobain Cristaux Et Detecteurs | FABRICATION OF STOICHIOMETRIC ELPASOLITE |
| FR3005207B1 (en) | 2013-04-24 | 2016-06-24 | Batscap Sa | POSITIVE ELECTRODE FOR LITHIUM BATTERY |
| JP6003831B2 (en) | 2013-06-28 | 2016-10-05 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, sulfide glass, lithium solid battery, and method for producing sulfide solid electrolyte material |
| WO2015011937A1 (en) | 2013-07-25 | 2015-01-29 | 三井金属鉱業株式会社 | Sulfide-based solid electrolyte for lithium ion battery |
| JP2015032529A (en) | 2013-08-06 | 2015-02-16 | トヨタ自動車株式会社 | Sulfide-based solid electrolyte |
| RU2665046C2 (en) | 2013-09-02 | 2018-08-28 | Мицубиси Газ Кемикал Компани, Инк. | Solid-state battery |
| JP6187069B2 (en) | 2013-09-13 | 2017-08-30 | 富士通株式会社 | Lithium battery |
| EP3053883B1 (en) | 2013-10-04 | 2019-04-17 | National Institute Of Advanced Industrial Science And Technology | Amorphous (lithium) niobium sulfide or (lithium) titanium niobium sulfide |
| WO2015136623A1 (en) | 2014-03-11 | 2015-09-17 | 富士通株式会社 | Composite solid electrolyte and all-solid-state battery |
| CN104953175A (en) | 2014-03-28 | 2015-09-30 | 比亚迪股份有限公司 | Solid electrolyte for lithium ion battery, preparation method for solid electrolyte, and lithium ion battery |
| JP5873533B2 (en) | 2014-07-16 | 2016-03-01 | 三井金属鉱業株式会社 | Sulfide-based solid electrolyte for lithium-ion battery |
| US9608288B2 (en) | 2014-07-17 | 2017-03-28 | Samsung Electronics Co., Ltd. | Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same |
| CN106716549B (en) | 2014-11-10 | 2020-03-24 | 株式会社村田制作所 | Glass ceramics, lithium ion conductor, battery, electronic device, and manufacturing method of electrode |
| US10340506B2 (en) * | 2014-11-28 | 2019-07-02 | Samsung Electronics Co., Ltd. | Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same |
| JP6222134B2 (en) | 2015-02-25 | 2017-11-01 | トヨタ自動車株式会社 | Sulfide solid electrolyte material, battery, and method for producing sulfide solid electrolyte material |
| JP6672848B2 (en) | 2015-03-10 | 2020-03-25 | Tdk株式会社 | Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure |
| US10218032B2 (en) | 2015-03-10 | 2019-02-26 | Tdk Corporation | Li-ion conductive oxide ceramic material including garnet-type or similar crystal structure |
| US10446872B2 (en) | 2015-08-04 | 2019-10-15 | Samsung Electronics Co., Ltd. | Solid electrolyte and lithium battery including the same |
| JP2017059342A (en) | 2015-09-15 | 2017-03-23 | トヨタ自動車株式会社 | Manufacturing method of all solid state battery |
| CN107431242B (en) | 2015-09-16 | 2021-03-23 | 松下知识产权经营株式会社 | Battery |
| JP2017091953A (en) | 2015-11-16 | 2017-05-25 | 旭化成株式会社 | Lithium ion conductor and lithium ion battery using the same |
| JP2017091955A (en) | 2015-11-16 | 2017-05-25 | 旭化成株式会社 | Lithium ion conductor and lithium ion battery using the same |
| CN105254184A (en) | 2015-11-27 | 2016-01-20 | 宁波大学 | A kind of rare earth ion doped Li3YCl6 glass-ceramics and its preparation method |
| JP2017111954A (en) | 2015-12-16 | 2017-06-22 | セイコーエプソン株式会社 | Metal oxide film forming composition, positive electrode composite, positive electrode composite manufacturing method, battery, and battery manufacturing method |
| WO2017108105A1 (en) | 2015-12-22 | 2017-06-29 | Toyota Motor Europe | Materials for solid electrolyte |
| JP6881892B2 (en) | 2015-12-25 | 2021-06-02 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Manufacturing method of solid electrolyte, all-solid-state battery and solid electrolyte |
| US11245131B2 (en) | 2015-12-25 | 2022-02-08 | Samsung Electronics Co., Ltd. | Solid electrolyte and lithium battery including the same |
| JP6748344B2 (en) | 2016-02-26 | 2020-09-02 | 富士通株式会社 | All solid state battery |
| EP3428929A4 (en) | 2016-03-08 | 2019-10-30 | Murata Manufacturing Co., Ltd. | Solid electrolyte, all-solid battery, solid electrolyte manufacturing method and all-solid battery manufacturing method |
| JP6658127B2 (en) | 2016-03-10 | 2020-03-04 | セイコーエプソン株式会社 | Solid electrolyte, method for producing solid electrolyte, and lithium ion battery |
| CN109219900B (en) | 2016-04-05 | 2021-09-21 | 麻省理工学院 | Lithium metal electrode and battery thereof |
| CN105680048B (en) | 2016-04-05 | 2019-05-17 | 惠州亿纬锂能股份有限公司 | A kind of anode comprising nitrogen-doped graphene, preparation method and the lithium battery using the anode |
| CN107305965B (en) | 2016-04-25 | 2022-03-29 | 松下知识产权经营株式会社 | Battery and battery manufacturing method |
| JP2017224474A (en) | 2016-06-15 | 2017-12-21 | 出光興産株式会社 | Positive electrode composite |
| CN115020799B (en) | 2016-08-04 | 2025-02-28 | 松下知识产权经营株式会社 | Solid electrolyte materials and batteries |
| CN108258358B (en) | 2016-12-28 | 2022-11-11 | 松下知识产权经营株式会社 | Battery with a battery cell |
| CN107611340B (en) * | 2017-08-23 | 2020-06-12 | 柔电(武汉)科技有限公司 | Flexible all-solid-state battery and preparation method thereof |
| WO2019135321A1 (en) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| JPWO2019135318A1 (en) | 2018-01-05 | 2021-01-14 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| CN111492524B (en) | 2018-01-05 | 2024-07-12 | 松下知识产权经营株式会社 | Solid electrolyte materials and batteries |
| EP3736827A4 (en) | 2018-01-05 | 2021-03-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
| WO2019135328A1 (en) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| JP7253707B2 (en) | 2018-01-05 | 2023-04-07 | パナソニックIpマネジメント株式会社 | solid electrolyte material and battery |
| JP7228816B2 (en) | 2018-01-05 | 2023-02-27 | パナソニックIpマネジメント株式会社 | Cathode materials and batteries |
| JP7281672B2 (en) | 2018-01-05 | 2023-05-26 | パナソニックIpマネジメント株式会社 | battery |
| WO2019135320A1 (en) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| WO2019135317A1 (en) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| CN111344811B (en) | 2018-01-05 | 2022-05-10 | 松下知识产权经营株式会社 | Solid Electrolyte Materials and Batteries |
| WO2019135344A1 (en) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material, and battery |
| WO2019135348A1 (en) | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| WO2019146296A1 (en) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | Positive electrode material and battery using same |
| JP7511150B2 (en) | 2018-01-26 | 2024-07-05 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| WO2019146218A1 (en) | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
| CN111587508A (en) | 2018-01-26 | 2020-08-25 | 松下知识产权经营株式会社 | Battery with a battery cell |
| CN111566865B (en) | 2018-01-26 | 2024-03-22 | 松下知识产权经营株式会社 | Battery cell |
| WO2020070955A1 (en) | 2018-10-01 | 2020-04-09 | パナソニックIpマネジメント株式会社 | Halide solid electrolyte material and battery using same |
| JP7429869B2 (en) | 2018-11-29 | 2024-02-09 | パナソニックIpマネジメント株式会社 | Negative electrode materials and batteries |
| CN112368863B (en) | 2018-11-29 | 2024-08-23 | 松下知识产权经营株式会社 | Negative electrode material, battery and method for manufacturing battery |
-
2018
- 2018-12-12 JP JP2019567902A patent/JP7217432B2/en active Active
- 2018-12-12 CN CN201880085583.9A patent/CN111557057B/en active Active
- 2018-12-12 EP EP18902871.5A patent/EP3745508A4/en not_active Withdrawn
- 2018-12-12 WO PCT/JP2018/045584 patent/WO2019146292A1/en not_active Ceased
-
2020
- 2020-07-16 US US16/930,405 patent/US11682764B2/en active Active
-
2023
- 2023-05-02 US US18/142,506 patent/US12206111B2/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| CN111557057B (en) | 2024-04-19 |
| US11682764B2 (en) | 2023-06-20 |
| JPWO2019146292A1 (en) | 2021-01-14 |
| US20230268504A1 (en) | 2023-08-24 |
| US20200350561A1 (en) | 2020-11-05 |
| WO2019146292A1 (en) | 2019-08-01 |
| US12206111B2 (en) | 2025-01-21 |
| CN111557057A (en) | 2020-08-18 |
| EP3745508A4 (en) | 2021-03-17 |
| JP7217432B2 (en) | 2023-02-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12431500B2 (en) | Cathode material and battery | |
| US11631923B2 (en) | Battery | |
| US11777088B2 (en) | Anode material and battery using same | |
| US12206111B2 (en) | Cathode material and battery using same | |
| US11670775B2 (en) | Positive electrode material and battery | |
| US11539036B2 (en) | Battery | |
| US11652235B2 (en) | Battery | |
| US11631853B2 (en) | Battery | |
| EP3745504B1 (en) | Electrode material and battery | |
| US11637287B2 (en) | Positive electrode material and battery using same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20200710 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20210211 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01B 1/06 20060101ALI20210205BHEP Ipc: H01M 10/052 20100101ALI20210205BHEP Ipc: H01M 10/0525 20100101ALI20210205BHEP Ipc: H01M 10/0562 20100101ALI20210205BHEP Ipc: H01M 4/136 20100101AFI20210205BHEP Ipc: H01M 4/58 20100101ALI20210205BHEP Ipc: H01M 4/62 20060101ALI20210205BHEP |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20230503 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20230713 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20231124 |