EP3664745A1 - Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles - Google Patents
Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cyclesInfo
- Publication number
- EP3664745A1 EP3664745A1 EP18843639.8A EP18843639A EP3664745A1 EP 3664745 A1 EP3664745 A1 EP 3664745A1 EP 18843639 A EP18843639 A EP 18843639A EP 3664745 A1 EP3664745 A1 EP 3664745A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- optical filter
- filter
- merit
- wavelengths
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0618—Psychological treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M21/00—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0622—Optical stimulation for exciting neural tissue
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
- G02C7/104—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
-
- G—PHYSICS
- G02—OPTICS
- G02C—SPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
- G02C7/00—Optical parts
- G02C7/10—Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
- G02C7/107—Interference colour filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M21/00—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
- A61M2021/0005—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
- A61M2021/0044—Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the sight sense
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/05—General characteristics of the apparatus combined with other kinds of therapy
- A61M2205/051—General characteristics of the apparatus combined with other kinds of therapy with radiation therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0645—Applicators worn by the patient
- A61N2005/0647—Applicators worn by the patient the applicator adapted to be worn on the head
- A61N2005/0648—Applicators worn by the patient the applicator adapted to be worn on the head the light being directed to the eyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0664—Details
- A61N2005/0667—Filters
Definitions
- Photophobia or light sensitivity, describes an adverse response to light that characterizes several neurologic conditions.
- the present invention relates to managing the effects of light on a subject. More particularly, the present invention relates to methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles.
- the retina of the eye contains various photoreceptor cells. These photoreceptor cells include rods (which are involved in black-and-white and low light vision), cones (which are involved in daytime vision and color perception), and melanopsin ganglion cells.
- Rhodopsin is the photosensitive molecule in the rods and cones of the eye. Rhodopsin has two metastable isomers including an active and an inactive state. When exposed to light, the rhodopsin isomerizes to an inactive isoform. The inactive isoform of rhodopsin can be recycled in the retinoid cycle. During the retinoid cycle, the rhodopsin leaves the photoreceptor and enters the retinal pigment epithelium. After being recycled to an active isoform, the rhodopsin returns to the photoreceptor.
- the melanopsin of the melanopsin ganglion cells is believed to undergo a similar process as described in Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM. Melanopsin bistability: a fly's eye technology in the human retina. PLoS One. 2009 Jun 24;4(6):e5991. PubMed PMID: 19551136, which is incorporated hereby by reference in its entirety.
- melanopsin ganglion cells are sensitive to light wavelengths near 480nm and are associated with pain pathways in humans, managing the painful effects caused by certain types of light would be desirable.
- stimulation of the melanopsin ganglion cells may affect the frequency and/or severity of photophobic responses, so it may be beneficial in some circumstances to reduce the direct light stimulation of these cells, or in other circumstances to reduce the amount of exposure to light not directly associated with the stimulation of these cells.
- These photophobic responses include migraine headache, light sensitivity associated with a concussion or traumatic brain injury, light sensitive epilepsy, and light sensitivity associated with benign essential blepharospasm.
- the melanopsin ganglion cells are also associated with circadian cycles.
- methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses and/or for modulating circadian cycles by controlling light exposure to melanopsin ganglion cells or other portions of the eye are provided.
- the apparatus includes an optical filter configured to transmit less than a first amount of light weighted across the absorption spectrum of the bistable isoforms of melanopsin, and to transmit more than a second amount of light weighted across the visual spectral response.
- the light spectrum associated with the absorption spectrum of the active isoform of melanopsin is near 480nm wavelength
- a light spectrum associated with the absorption spectrum of the inactive isoform of melanopsin is near 590nm wavelength.
- the first amount of light is about 50% of the light weighted across the absorption spectrum of one or both of the bistable isoforms of melanopsin and the second amount of light is about 75% or greater of the light weighted across the visual spectral response.
- the first amount of light in other embodiments, is about 25% of the light weighted across the absorption spectrum of one or both of the bistable isoforms of melanopsin and the second amount of light is about 60% or greater of the light weighted across the visual spectral response.
- the first amount of light is approximately all of the light weighted across the absorption spectrum of one or both of the bistable isoforms of melanopsin.
- the first amount of light in some embodiments, is substantially all light below a long pass filter wavelength within the action potential spectrum of the melanopsin ganglion cells and the second amount of light is all light across the visual spectral response with a wavelength above the long pass filter wavelength.
- the first amount of light is substantially all light above a short pass filter wavelength near 590nm and the second amount of light may be substantially all light across the visual spectral response with a wavelength below the short pass filter wavelength.
- the second amount of light includes a third amount of light having a wavelength that is less than a maximum relative response of the action potential spectrum of the melanopsin ganglion cells and/or greater than about 590nm.
- the second amount of light in other embodiments, includes a third amount of light having a wavelength that is greater than a maximum relative response of the absorption spectrum of one or both of the bistable isoforms of melanopsin.
- the first amount of light is a dose of light (i.e. across the absorption spectrum of one or both of the bistable isoforms of melanopsin) experienced by a cell in the eye - retinal ganglion cells or other cells of a subject (D re c) - and the second amount of light is a dose of light experienced over the visual response spectrum (D v i S ), and wherein a ratio including the first amount of light and the second amount of light is defined as a figure of merit (FOM), the figure of merit being determined by:
- the first amount of light defines a spectral width that has a median at a median of the absorption spectrum of one or both of the bistable isoforms of melanopsin.
- the first amount of light and the second amount of light are determined based on the characteristics of ambient light.
- the first amount of light and the second amount of light are selectively adjustable by way of a transition, -photochromic, or electrochromic type dye, pigment or coating.
- the optical filter in some embodiments, includes at least one layer configured to minimize or reduce the effect of an angle of incidence of the received light.
- the optical filter further comprises a substrate that includes a tint by impregnation or by coating.
- the system includes a substrate, a first layer disposed on the substrate, and a second layer disposed adjacent the first layer.
- the first layer includes a high index material.
- the second layer includes a low index material.
- the system may include additional layers and/or types of material, wherein the materials cooperate to transmit less than a first amount of light weighted across the action potential spectrum of the melanopsin ganglion cells and to transmit more than a second amount of light weighted across the visual spectral response.
- increasing the number of layers in the optical filter increases transmission of light outside the action potential spectrum.
- an action potential spectrum of an individual's melanopsin ganglion cells is determined.
- the optical filter in further embodiments, is configured to attenuate the first amount of light based on the individual's melanopsin ganglion cells.
- the optical filter is manufactured based on visual response spectrum characteristics.
- the optical filter in some embodiments, is a notch filter.
- the notch filter is configured to block light that strikes at a non-normal incidence angle.
- the notch filter in still further embodiments, includes a filter optimized for a plurality of tilted incidence angles.
- the notch filter is designed with a slight red shift.
- the notch filter in even further embodiments, includes a filter notch that attenuates light across a spectral width.
- the at least metallic nanoparticles include at least one of Al, Ag, Au, Cu, Ni, Pt, or other metallic nanoparticles, wherein the dielectric nanoparticles include at least one of T1O2, Ta20s, or other dielectric nanoparticles.
- the semiconductor nanoparticles or quantum dots include at least one of Si, GaAs, GaN, CdSe, CdS, or other semiconductor nanoparticles.
- a shape of the embedded nanoparticles in the embedded nanoparticle coatings is spherical, elliptical, or otherwise shaped.
- an extinction spectrum of the embedded nanoparticles is determined using Mie scattering theory.
- FIG. 1 illustrates an exemplary measured action potential spectrum for melanopsin cells, which is normalized to unity magnitude, with a Gaussian fit to the measured data points.
- FIG. 2 illustrates the measured transmission spectrum of an exemplary "FL- 41 35" filter across the "effective action potential spectrum” of melanopsin.
- FIG. 3 illustrates the measured transmission spectrum of an exemplary "FL- 41 35" filter across the visible light spectrum.
- FIG. 4 illustrates the measured transmission spectrum of an exemplary "FL- 41 55" filter across the "effective action potential spectrum” of melanopsin.
- FIG. 5 illustrates the measured transmission spectrum of an exemplary "FL- 41 55" filter across the visible light spectrum.
- FIG. 6 is an example of a filter using multi-layer dielectric thin films of distinct refractive indices.
- FIG. 8 illustrates an exemplary method for designing an optical filter to block light absorption by melanopsin cells
- FIG. 9 illustrates the measured transmission spectrum of one embodiment of a filter across the "effective action potential spectrum" of melanopsin.
- FIG. 10 illustrates the measured transmission spectrum of the embodiment of a filter in FIG. 9 across the visible light spectrum.
- FIG. 11 illustrates the measured transmission spectrum of another embodiment of a filter across the "effective action potential spectrum" of melanopsin.
- FIG. 12 illustrates the measured transmission spectrum of a further embodiment of a filter across the "effective action potential spectrum” of melanopsin.
- FIG. 13 illustrates the measured transmission spectrum of a still further embodiment of a filter across the "effective action potential spectrum" of melanopsin.
- FIG. 14 illustrates the measured transmission spectrum of the embodiment of a filter in FIG. 13 across the visible light spectrum.
- FIG. 15 illustrates the measured transmission spectrum of an even further embodiment of a filter with the center of the filter positioned at 485nm for normal light incidence across the "effective action potential spectrum" of melanopsin.
- FIG. 16 illustrates the measured transmission spectrum of the embodiment in FIG. 15 with an incidence angle of 15 degrees across the "effective action potential spectrum" of melanopsin.
- FIG. 19 illustrates the measured transmission spectrum of multiple embodiments of filters centered at about 480nm with varying degrees of tint.
- FIG. 20 illustrates the backside reflection spectra of the embodiments of filters in FIG. 19.
- FIG. 21 illustrates an exemplary embodiment of a method of manufacturing an optical filter.
- FIG. 22 illustrates an exemplary embodiment of a method for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles.
- FIG. 23 illustrates an embodiment of a composite filter configured to preferentially attenuate two ranges of wavelengths.
- FIG. 24 illustrates an embodiment of a method of manufacturing a composite optical filter.
- FIG. 25 illustrates an embodiment of a method using a composite filter for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles.
- FIG. 26A and B illustrate the transmission spectra of gray tinted lenses coatings centered at 480nm and 620nm, respectively.
- FIG. 27 schematically illustrates the cyclic isomerization of a bistable pigment.
- FIG. 28 illustrates the reactive spectra of active and inactive melanopsin in the eye.
- FIG. 29 illustrates an embodiment of a method of disrupting the isomerization of one or both of the bistable isoforms of melanopsin.
- FIG. 30 illustrates the relative response versus the wavelength of light according to sample color-matching functions.
- FIG. 31 illustrates the relative response versus the wavelength of light according to sample color-matching functions when a 480 nm filter is used.
- FIG. 32 illustrates the relative response versus the wavelength of light according to sample color-matching functions when both a 480 nm filter and a 590 nm filter are used.
- the present invention relates to managing the effects of light on a subject. Some applications of the present invention relate to methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles.
- the wavelengths and, therefore, pathways that trigger adverse reactions to light can vary depending on the patient.
- the melanopsin ganglion cells in the eye are sensitive to light at a wavelength of about 480nm. In some individuals, this may be linked to those individual's light-sensitive neurological conditions. Controlling exposure to light near the 480nm wavelength may yield benefits to those individuals and reduce or prevent their light-sensitive neurological conditions. Alternatively or in addition, regulating exposure to that same light may also assist in controlling an individual's circadian rhythms.
- regulating the exposure of the eye to light near a 620nm wavelength or other wavelengths may also yield benefits in reducing or preventing light-sensitive neurological conditions or managing an individual's circadian rhythms. While the following example refers to the attenuation of light having wavelengths near 480nm and the exposure of melanopsin ganglion cells to the same light near 480nm, it may be understood that a similar filter and methods may be used to attenuate light at other wavelengths and received by other cells in the eye. For example, a similar filter and method may be used to attenuate light at or about 620nm. In another example, a similar filter and method may be used to attenuate light at or about 590nm.
- FIG. 1 illustrates an example of the measured action potential spectrum for melanopsin cells, which is normalized to unity magnitude, and a Gaussian fit to the measured data points. This Gaussian fit may be used in at least one embodiment of a filter design, but this should not be interpreted as the spectral basis for optimal filters, as more refined measurements of the action potential spectrum may become available. These refined measurements may motivate additional filter designs or methods following the process described here, or via similar processes. Optimizations of the methods, systems, and apparatus described herein based on more refined measurements of the action potential spectrum are contemplated.
- Embodiments of optical filters are described that block a certain part of the optical spectrum that is suspected to trigger and/or exacerbate these photophobic responses.
- These filters can be applied to eyewear (such as spectacles, goggles, clip- ons, or other eyewear), lenses (including contact lenses), computer screens, windows, car windshields, lighting substrates, light bulbs (incandescent, fluorescent, CFL, LED, gas vapor, etc.), or any other optical element.
- These optical filters may be applied to crown glasses (including BK7), flint glasses (including BaFs), SiC , plastics (such as polycarbonate, CR-39, and trivex), other substrates, and combinations thereof.
- the systems, methods, and apparatus described herein are also applicable to modulating circadian rhythm.
- these filters could be used for manipulation of the body's circadian system by business people, athletes, others who travel between different time zones, or those who desire to manipulate the body's circadian system.
- a subject would wear at least one of the filters described herein to help them adapt to the light/dark cycle of the locale to which they are traveling.
- at least one of the filters described herein could also be used to limit excitation of the melanopsin ganglion cells in patients with sleep disorders.
- subj ects may increase exposure to light before sunrise to adjust their light/dark cycle.
- wavelengths near 620nm also contribute to photophobic effects in certain individuals. While the precise pathways for the neurological effects are not currently fully understood, benefits may be achieved by preferentially attenuating light with wavelengths near 620nm, as well.
- Melanopsin has bistable isoforms that each exhibit unique absorption spectra.
- the isoforms may be an active isoform and an inactive isoform.
- the active isoform may be physiologically active.
- the inactive isoform may be physiologically inactive. Absorption of light in accordance with each isoform's absorption spectrum may lead to the isomerization of the melanopsin. Benefits may be achieved by disrupting, limiting, or preventing the isomerization of melanopsin by attenuating light at or about 590nm.
- the FL-41 lens tint is sometimes prescribed for migraine patients.
- the FL- 41 tint blocks (via absorption) a broad range of wavelengths. These wavelengths include wavelengths associated with melanopsin absorption.
- the FL-41 dye can be infiltrated into certain types of plastic spectacle lenses. The amount of dye infiltrated generally determines the amount of light intensity blocked.
- the "FL-41 35" tinting is effective for a number of patients in indoor environments. However, if the light source increases in intensity, by for example moving to an outdoor environment, the "FL-41 35" may not be as effective.
- FIG. 2 shows the measured transmission spectrum of "FL-41 35".
- FIG. 2 also illustrates the effect of the "FL-41 35" filter on the action potential spectrum of melanopsin, a so-called “effective action potential spectrum.”
- the "FL-41 35" tinting blocks, or attenuates, about 55% of the light that would otherwise be absorbed by the melanopsin ganglion cells.
- the FL-41 tinting further blocks a significant portion of the visible spectrum that is not associated with melanopsin, as shown in FIG. 3, with about a 47% attenuation across the visual response spectrum.
- the additional blocking the visible response spectrum may be disadvantageous. For example, blocking the visible response spectrum may adversely affect normal vision. In another example, blocking the visible response spectrum may produce a false coloration that may be distractive or otherwise less desirable for the wearer.
- a tinting with greater level of spectral attenuation may be used, such as "FL-41 55.”
- the transmission spectrum of this filter, along with its effect on the action potential spectrum, is shown in FIGS. 4 (across the "effective action potential spectrum” of melanopsin) and 5 (across the visible light spectrum).
- This filter attenuates about 89% of the light that would otherwise be absorbed by melanopsin cells, but also attenuates about 81 % of the visual response spectrum. This additional spectral attenuation can also impair vision in low light levels or other situations.
- FL-41 the general drawbacks to FL-41 include: a rose colored appearance, distorted color perception; limited applicability (i.e. it may only be applied to certain plastics and may not be applied to glass lenses, computer screens, windows, car windshields, lighting substrates, light bulbs, or other optical elements); and poor quality control over the tinting process (due in part to variations in the tintable hard coating layers).
- FL-41 may be effective in certain applications, it is not designed to down-regulate the stimulation of the melanopsin ganglion cells and their connections to pain centers in the brain. For these reasons, it may be desirable to develop other embodiments of filters.
- One example of a more desirable optical filter for the treatment of light sensitive conditions may include a long-pass filter.
- a long pass filter may highly transmit wavelengths longer than about 500nm or 520nm, while attenuating light at wavelengths shorter than about 500nm or 520nm.
- a short pass filter may highly transmit wavelengths shorter than 600nm or about 580nm, while attenuating light at wavelengths longer than about 600nm or about 580nm.
- optical filters may include filters that only block the spectrum of light absorbed by melanopsin or other specific wavelengths, while generally transmitting the rest of the light spectrum, with the spectral transmission response of the filter taking the form of a notch, sometimes called a band stop or minus filter.
- a notch sometimes called a band stop or minus filter.
- the center position of the notch may be near the absorption maximum of the melanopsin pathway (about 480nm), but other positions may be effective.
- the spectral width of the notch may approximately match the width of the action potential spectrum, which is about 50 to 60 nm, although other widths are contemplated.
- Nanoparticle coatings that may be used for optical filters according to the present disclosure may include metallic nanoparticles (e.g. Al, Ag, Au, Cu, Ni, Pt), dielectric nanoparticles (e.g. T1O2, Ta20s, etc.), semiconductor nanoparticles or quantum dots (e.g.
- An embodiment of a multi-layer filter 600 shown in FIG. 6, includes a substrate 602, a first layer 604, and a second layer 606.
- the first layer 604 may include a high index material and the second layer 606 may include a low index material.
- the first layer 604 may include a low index material and the second layer may include a high index material.
- the first layer 604 is shown adjacent the substrate 602.
- the first layer 604 may have another layer (for example, second layer 606 and/or another layer) between the substrate 602 and the first layer 604. Additional layers are also shown (though not numbered).
- the substrate 602 may utilize any substrate described herein.
- the substrate 602 may include a tinted layer (not shown) on the same and/or opposite side of the first layer 604 and second layer 606 (i.e. the front and/or back side of the substrate).
- the substrate 602 itself may be impregnated with tint. Examples of tinting techniques and amounts are described below. Other embodiments of multi-layer filters are further described herein.
- the normalized dose by back reflected light experienced by melanopsin cells may be calculated by
- Table 1 provides examples that maintain a fixed 10% backside reflection at a specific wavelength (around 480nm, for example) or range of wavelengths, with different transmissions through the frontside.
- This value of backside reflection might be desirable for therapeutic lenses that may be used in "open" style spectacle frames, for example, where light is allowed to strike the lenses from the top, bottom, and/or sides, thereby entering the backside of the lens and reflecting into the eyes of the user from the front-side thin-film coating.
- Other amounts of backside reflection may be desirable for other style spectacle frames (such as sport glasses, wraparound sunglasses, or other styles of frames).
- a filter may include fixing the notch transmission and adjusting the tint transmission to provide a given backside reflection value. Examples of these embodiments are shown in Table 3 below.
- Manufacturing considerations may also be taken into account when performing filter design.
- material deposition is typically accomplished using sputtering, evaporation, or chemical vapor deposition techniques.
- Deposition conditions may be optimized to minimize stress of the thin film materials.
- high temperature thermal annealing may be performed post-deposition to relax stress in the deposited materials, but annealing often cannot be applied to plastic lenses.
- Spectacle lenses represent curved substrates, so that achieving constant film thickness during deposition may be a challenge.
- modification of the target-source geometry in the deposition system may be used.
- low temperature deposition may be used, but may be optimized to produce low stress films.
- FIG. 18A The transmission spectrum through an example coated lens is shown in FIG. 18A.
- the center of the notch is at about 482.9nm with width of about 55.5nm, with minimum transmittance of about 24.5%.
- This embodiment of a filter blocks about 58% of the melanopsin action potential spectrum and blocks about 23% across the visible spectrum, with an FOM value of about 2.6.
- FIG. 18B depicts a transmission spectrum of a coated lens with a 620nm notch filter.
- the coatings described here can also be integrated with other technologies.
- filter coatings can be applied to tinted lenses, photochromic materials may be incorporated, techniques for polarization can be included, other technologies may be integrated, or combinations thereof.
- combinations of filter technologies may be used, such as applying a nanoparticle filter coating on top of a multi-layer thin- film coating.
- Active materials such as electro-optic materials, including electro-optic polymers, liquid crystals, or other electro-optic materials, piezoelectric materials, including piezoceramics such as PZT, or other piezoelectric materials may be used.
- FIG. 21 illustrates an exemplary embodiment of a method 2100 of manufacturing an optical filter for reducing the frequency and/or severity of photophobic responses.
- the method 2100 may be used to design at least one embodiment of a filter described herein.
- the method 2100 may include determining the appropriate light spectrum, as illustrated by act 2102. Determining the appropriate light spectrum may include consideration of specific lighting conditions, such as taking spectrophotometric measurements, in conditions such as indoor fluorescent lighting and/or computer screens in an office, shopping, or home environment, or outdoor lighting such as sunlight experienced due to normal outdoor activities or sporting activities.
- the light dose to be experienced by melanopsin cells may be determined (using, for example, Equation 1), as illustrated by act 2104.
- the light dose to be experienced across the visual response spectrum may be determined (using, for example, Equation 2), as illustrated by act 2106.
- An optical filter may be designed and manufactured using the first light dose and the second light dose, as illustrated by act 2108.
- the first light dose and the second light dose may be used to determine a figure of merit (FOM) as described herein.
- the dose across the visual response spectrum may be considered for a portion or portions of the visible spectrum. For example, more or less than the entire visual response spectrum may be used.
- FIG. 22 illustrates an exemplary embodiment of a method 2200 for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles.
- the method 2200 may be used in conjunction with at least one embodiment of a filter described herein.
- the method 2200 may include receiving an amount of light, as illustrated by act 2202.
- the light received may include direct or indirect light from one or more light sources. Less than a first amount of light weighted across the action potential spectrum of the melanopsin cells may be transmitted, as illustrated by act 2204.
- a second amount of light weighted across the visual light spectrum may be transmitted, as illustrated by act 2206.
- An optical filter may be manufactured using the first light dose and the second light dose, as illustrated by act 2208.
- the first light dose and the second light dose may be used to determine a figure of merit (FOM) as described herein.
- the dose across the visual response spectrum may be reduced or separated. For example, more or less than the entire visual response spectrum may be used.
- Attenuation of light at a wavelength of about 620nm may also yield improvements in alleviating symptoms associated with light sensitivity.
- light wavelengths at about 620nm are not believed to act on the melanopsin ganglion cells
- attenuation of light at about 620nm has been demonstrated to reduce symptoms of light sensitivity in some people, such as pain or discomfort in response to light, and the frequency and/or severity of migraine and other headaches, and may also prove effective for some in the treatment of blepharospasm, post-concussion/TBI syndrome, sleep disorders, epilepsy.
- improvements may be realized by attenuating light between about 580nm and about 650nm. In another embodiment, improvements may be realized by attenuating light between about 600nm and about 640nm. In yet another embodiment, improvements may be realized by attenuating light using a filter substantially centered at a wavelength of 620nm with a full-width at half-maximum of about 55nm.
- a filter may attenuate light wavelengths in multiple ranges. For example, an embodiment of a filter may attenuate light at about 620nm in addition to attenuating light at about 480nm. In another embodiment, a filter may preferentially attenuate light wavelengths from about 450nm to about 510nm and from about 580nm to about 640nm. In yet another embodiment, a filter may attenuate light between about 470 and about 490 and between about 610nm and about 630nm.
- An optical filter may be made in accordance with the previously described processes and using the previously described materials.
- a 620nm optical filter may comprise a high pass filter, a low pass filter, or an optical notch filter.
- the optical notch filter may comprise a plurality of layers of dielectric materials, nanoparticles distributed on or embedded in a host medium, or a combination thereof.
- any of the aforementioned combinations may be used in conjunction with a dye incorporated in a substrate.
- producing short pass or notch filters may include using alternating layers of high and low refractive index materials.
- Example low index dielectric materials include MgF2 and SiC .
- Example high index materials include metal oxides such as TiC , T13O5, ZrC , and Ta20s, and S13N4. Numerous other suitable materials can be used, including polymer layers.
- an optical filter designed to attenuate wavelengths at about 620nm may be manufactured according to a similar FOM.
- the light dose D received at about 620nm can be written
- L is the light spectrum (in terms of intensity, power, photons/sec, etc.)
- T is the spectral transmission of a filter lying between the light source and the eye
- R.620 is the idealized response spectrum at about 620nm, which may be estimated as a Gaussian function centered at 620nm with a full-width at half-maximum of 50, 55 or 60 nm, although other values are anticipated and may prove therapeutic.
- L L
- An FOM can also be defined which compares the blocking of the light at about 620nm to the blockin f the visual response spectrum
- (14) which represents the ratio of the attenuation of light at about 620nm to the attenuation of light across the visible spectrum, where a value of FOM>l may be desirable.
- the comparison becomes more stringent as a smaller full width half maximum value is used. For example, when RQ ), the Gaussian distribution used in the estimate, has a full width half maximum of 50nm describes a more specific optical filter than that when the estimate includes an RQ ) having a 60nm full width half maximum.
- the optical filter may comprise a multilayer dielectric film similar to that described for the attenuation of light to which melanopsin cells are sensitive, or the optical filter may comprise a nanoparticle-based optical filter, a color filter, a tint, a resonant guided-mode filter, a rugate filter, or any combination thereof.
- a nanoparticle- based optical notch filter may comprise nanoparticles distributed on the surface of or embedded in a host medium. Such a filter may therefore be used in a substantially transparent host medium, such as the lens material of eyeglasses or simply applied to a surface thereof.
- the filter may be disposed on the surface of eyeglass lenses to attenuate light approaching a user's eyes.
- the filter may be disposed on the source of light directly, for example, over an electronic display such as computer screen or on a lighting source such as a light bulb or anuation of light by nanoparticle-based notch filter may be adjusted via the shape of the nanoparticles, the amount or density of nanoparticles on or embedded in the host medium, the composition of the nanoparticles, the size of the nanoparticles, and the index of refraction of the host medium.
- the attenuation spectrum of a nanoparticle-based optical notch filter may therefore be tuned to a particular curve by selecting materials and distributions that center the curve at a desired wavelength and a produce an attenuation curve with a maximum attenuation at a desired wavelength value and an appropriate shape and full width half maximum.
- increasing the index of refraction of the host medium of the nanoparticles may shift the attenuation spectrum toward longer wavelengths, as may utilizing larger particle sizes, including solid and core-shell particles, and/or utilizing other metals.
- the attenuation spectrum changes because the attenuation is due, at least in part, to localized surface plasmonic resonance (LSPR).
- the scattering due to the LSPR is proportional to the relative index of the refraction of the host medium. Therefore, when the index of refraction of the host medium increase, not only does the attenuation spectrum redshift, but the amount of scattering, and hence the amount of attenuation of light, increases as well.
- the position and amount of scattering due to the LSPR is at least partially dependent on the relative index of refraction between the particles and the host medium.
- the relative index of refraction can also, therefore, be altered by changing the nanoparticle composition.
- the nanoparticles may be solid, consisting of a single material, or a core-shell composition having a core of a first material and a shell of a second material. In either case, the materials may be a single element, a compound, or an alloy.
- the nanoparticles may include metallic nanoparticles (e.g. Al, Ag, Au, Cu, Ni, Pt), dielectric nanoparticles (e.g.
- T1O2, Ta20s, etc. semiconductor nanoparticles or quantum dots (e.g. Si, GaAs, GaN, CdSe, CdS, etc.), magnetic nanoparticles, core-shell particles consisting of one material in the core and another serving as a shell, other nanoparticles, or combinations thereof.
- semiconductor nanoparticles or quantum dots e.g. Si, GaAs, GaN, CdSe, CdS, etc.
- magnetic nanoparticles e.g. Si, GaAs, GaN, CdSe, CdS, etc.
- core-shell particles consisting of one material in the core and another serving as a shell, other nanoparticles, or combinations thereof.
- increasing the proportion of Ag in an Ag/Al alloy solid nanoparticle may redshift and increase the amplitude of the attenuation curve for that nanoparticle.
- the nanoparticles used may have cross-sections including a circle, an ellipse, a rectangle, a hexagon, an octagon, or other polygon.
- Spherical particles have the most focused spectrum because they have a single, narrow primary peak that allows for optimization using size and composition changes.
- the attenuation curve of a core-shell nanoparticle may be tuned by altering the relative thicknesses of the core and shell.
- decreasing the thickness of an Ag shell relative to the size of a SiC core may reduce the full width half maximum of the attenuation spectrum.
- Shapes of these particles may be spherical, ellipsoidal, otherwise shaped, or combinations thereof. The shape of the particles may also affect the shape and amplitude of the attenuation curve.
- the optical filter comprises spherical core-shell nanoparticles.
- the spherical core-shell nanoparticles have an Ag shell and a Si core.
- the spherical Ag/Si core-shell nanoparticles have an Ag shell with a radial thickness of 45nm and a Si core with a radius of 15nm.
- nanoparticles may be embedded within a thin film filter, and one or more layers of the thin film may be the host medium for the nanoparticle-based filter.
- the ambient light 2302 that enters host medium 2306 with nanoparticles 2304 embedded therein may be sunlight.
- the attenuated light 2310 that enters the thin film filter 2308 may have a reduced amount of light in the range attenuated by the nanoparticles 2304.
- the filtered light 2312 that exits the composite filter 2300 may be attenuated in two ranges of wavelengths.
- a "double notch" filter may be implemented entirely through the use of multi-layer thin film coatings.
- FIG. 24 illustrates an embodiment of a method 2400 of manufacturing a composite optical filter for reducing the frequency and/or severity of photophobic responses.
- the method 2400 may be used to design at least one embodiment of a composite filter described herein.
- the method 2400 may include determining the appropriate light spectrum, as illustrated by act 2402. Determining the appropriate light spectrum may include consideration of specific lighting conditions, such as taking spectrophotometric measurements, in conditions such as indoor fluorescent lighting and/or computer screens in an office, shopping, or home environment, or outdoor lighting such as sunlight experienced due to normal outdoor activities or sporting activities.
- a first light dose to be experienced by the subj ect may be determined (using, for example, Equation 1), as illustrated by act 2404.
- a second light dose to be experienced by a human eye at a wavelength at about 620nm may be estimated (using, for example, Equation 12), as illustrated by act 2406.
- a third light dose to be experienced across the visual response spectrum may be determined (using, for example, Equation 13), as illustrated by act 2408.
- An optical filter may be designed and manufactured using the first light dose, the second light dose, and the third light dose, as illustrated by act 2410.
- the first light dose and the second light dose may each be used with the third light dose to determine a figure of merit (FOM) for each as described herein.
- the dose across the visual response spectrum may be considered for a portion or portions of the visible spectrum. For example, more or less than the entire visual response spectrum may be used.
- FIG. 25 illustrates an embodiment of a method 2500 using a composite filter for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles.
- the method 2500 may be used in conjunction with at least one embodiment of a composite filter described herein.
- the method 2500 may include receiving an amount of light, as illustrated by act 2502.
- the light received may include direct or indirect light from one or more light sources.
- a first amount of light that is attenuated preferentially across the action potential spectrum of the melanopsin cells may be transmitted, as illustrated by act 2504.
- a second amount of light that is attenuated preferentially in a wavelength range at about 620nm may be transmitted, as illustrated by act 2506.
- a third amount of light may then be transmitted to a human eye, as illustrated by act 2508.
- the dose across the visual response spectrum may be reduced or separated. For example, more or less than the entire visual response spectrum may be used.
- Efficacy testing has been conducted verifying the benefits of attenuating light near about 480nm and 620nm.
- Preliminary testing included a prospective, double- masked, crossover clinical study to determine the efficacy of customized, thin film spectacle coatings in the treatment of chronic migraine.
- Subj ects wore two different spectacles during the trial: one coating was a notch filter at 480nm.
- the other coating was a notch filter at 620nm.
- Typical transmission spectra of gray tinted lenses with the different coatings used in this study are shown in Figs. 23A and 23B.
- the 480nm notch filter shown blocks about 68% of light absorption by melanopsin, and blocks 42% of visible light.
- the 620nm notch filter shown blocks about 66% of light absorption centered at 620nm with a ⁇ 55nm width and blocks about 42% of visible light.
- the 480nm filters used in the study had average blocking around 480nm of 68 ⁇ 6% and average visible blocking of 44 ⁇ 4%.
- the 620nm filters used in the study had average blocking around 620nm of 67 ⁇ 2% and average visible blocking of 43 ⁇ 4%.
- Subjects in the study had to carry a diagnosis of chronic migraine, meaning that they have at least 15 headache-days per month. Individuals with at least 15 headache-days per month are considered the most severely affected migraine patients.
- HIT-6 Headache Impact Test
- Subj ects first completed a four-week "pre-wash” during which no study lenses were worn. This period helped establish base-line characteristics of their headaches. Subjects were randomized to wear either one or the other lens first, utilizing block randomization. They were instructed to wear the spectacles full-time for two weeks. They then had a two-week "washout” period during which no study lenses were worn. The subjects then wore the other lens for another two-week period. Finally, subj ects underwent a final "post-wash” period during which no study lenses were worn to establish an exit "finish line” for headache characteristics.
- the HIT-6 questionnaire was administered before the study and after each of the period of the study, resulting in six completed questionnaires for each subj ect.
- the study included forty-eight participants initially, and thirty-seven of the participants completed the course of the study. Of the thirty-seven subj ects who completed the study, the baseline HIT-6 score was 64.5. Thirty-three of the thirty-seven subjects (89%) had baseline HIT-6 scores greater than or equal to 60. According to the HIT-6 interpretation, these thirt -three subjects have headaches that are having a "very severe impact" on their lives. Both the 480 nm and 620 nm filter lenses displayed a statistically significant reduction in HIT-6 values.
- the melanopsin of the melanopsin ganglion cells is a bistable pigment. Melanopsin may undergo an isomerization during exposure to light at certain wavelengths.
- FIG. 27 is a graph 2700 schematically depicting the cyclic isomerization of a bistable pigment as the pigment is exposed to different wavelengths of light.
- the bistable pigment may have first isoform that exhibits a first absorption spectrum 2702. The first absorption spectrum absorbs a first wavelength 2704. The first isoform of the bistable pigment may react with the first wavelength 2704. The first wavelength 2704 may isomerize the bistable pigment and may trigger a phototransduction cascade in an associated cell or membrane.
- the bistable pigment may be melanopsin and exposure to a first wavelength 2704 may trigger a phototransduction cascade in the melanopsin ganglion cell. Exposure to the first wavelength may cause the bistable pigment to isomerize from the first isoform to a second isoform.
- the first isoform may be an active 1 1-cis isoform of melanopsin.
- the second isoform may be an inactive metamelanopsin isoform. The isomerization of the active 11 -cis isoform may lead to the phototransduction cascade.
- FIG. 28 depicts a graph 2800 of an active absorption spectrum 2802 and an inactive absorption spectrum 2804 for melanopsin.
- the active absorption spectrum 2802 and inactive absorption spectrum 2804 each correspond to an active isoform of melanopsin and an inactive isoform of melanopsin, respectively.
- Active and inactive should be understood as referring to the physiological activity of the pigment and the pigment's ability to contribute to photophobic responses in an individual rather than the pigment's ability to absorb light.
- the active absorption spectrum 2802 may have a maximum at approximately 484 nm.
- the inactive absorption spectrum 2804 may have a maximum at approximately 587 nm.
- improvements may be realized by attenuating light between about 560nm and about 620nm. In another embodiment, improvements may be realized by attenuating light between about 570nm and about 610nm. In yet another embodiment, improvements may be realized by attenuating light using a filter substantially centered at a wavelength of 590nm with a full-width at half-maximum of about 50nm.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Ophthalmology & Optometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Psychology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Acoustics & Sound (AREA)
- Hematology (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Hospice & Palliative Care (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Heart & Thoracic Surgery (AREA)
- Anesthesiology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biophysics (AREA)
- Neurosurgery (AREA)
- Optical Filters (AREA)
- Eyeglasses (AREA)
Abstract
La présente invention concerne un filtre optique qui peut réduire la fréquence et/ou la gravité de réponses photophobes ou moduler les cycles circadiens en contrôlant l'exposition à la lumière de cellules dans l'œil humain à certaines longueurs d'onde, telles que 480 nm et 590 nm, et une réponse spectrale visuelle de l'œil humain. Le filtre optique peut perturber l'isomérisation de la mélanopsine dans l'œil humain de manière à réduire la disponibilité de l'isoforme active, tandis que l'atténuation de lumière pondérée sur l'ensemble du spectre d'action potentiel de l'isoforme active atténue la cascade de phototransduction conduisant à des réponses photophobes. Des modes de réalisation d'un filtre optique sont décrits. Dans un mode de réalisation, un filtre optique peut être conçu pour transmettre moins qu'une première quantité de lumière à certaines longueurs d'onde, et pour transmettre plus d'une seconde quantité de lumière pondérée sur l'ensemble de la réponse spectrale visuelle. La présente invention concerne en outre des procédés d'utilisation et des procédés de fabrication de filtres optiques.The present invention relates to an optical filter that can reduce the frequency and / or severity of photophobic responses or modulate circadian cycles by controlling light exposure of cells in the human eye at certain wavelengths, such as 480 nm and 590 nm, and a visual spectral response of the human eye. The optical filter may interfere with the isomerization of melanopsin in the human eye to reduce the availability of the active isoform, while the attenuation of weighted light over the entire spectrum of potential action of the isoform active attenuates the phototransduction cascade leading to photophobic responses. Embodiments of an optical filter are described. In one embodiment, an optical filter may be configured to transmit less than a first amount of light at certain wavelengths, and to transmit more than a second amount of weighted light over the entire visual spectral response. . The present invention further relates to methods of use and methods of making optical filters.
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/673,264 US10359552B2 (en) | 2011-01-17 | 2017-08-09 | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles |
| PCT/US2018/044835 WO2019032348A1 (en) | 2017-08-09 | 2018-08-01 | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP3664745A1 true EP3664745A1 (en) | 2020-06-17 |
| EP3664745A4 EP3664745A4 (en) | 2021-04-14 |
Family
ID=65271688
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP18843639.8A Pending EP3664745A4 (en) | 2017-08-09 | 2018-08-01 | METHODS, SYSTEMS AND APPARATUS FOR REDUCING THE FREQUENCY AND / OR SEVERITY OF PHOTOPHOBIC RESPONSES OR FOR MODULATING CIRCADIAN CYCLES |
Country Status (10)
| Country | Link |
|---|---|
| EP (1) | EP3664745A4 (en) |
| JP (3) | JP2020530587A (en) |
| KR (1) | KR102674937B1 (en) |
| CN (1) | CN111148482A (en) |
| AU (1) | AU2018314216B2 (en) |
| CA (1) | CA3072541A1 (en) |
| IL (1) | IL272453B2 (en) |
| SG (1) | SG11202000912SA (en) |
| WO (1) | WO2019032348A1 (en) |
| ZA (1) | ZA202000810B (en) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10359552B2 (en) | 2011-01-17 | 2019-07-23 | University Of Utah Research Foundation | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles |
| WO2015073933A1 (en) | 2013-11-15 | 2015-05-21 | University Of Utah Research Foundation | Nanoparticle light filtering method and apparatus |
| JP2020530587A (en) * | 2017-08-09 | 2020-10-22 | ユニバーシティ オブ ユタ リサーチ ファウンデーション | Methods, systems, and devices that reduce the frequency and / or extent of photophobic reactions or regulate circadian cycles. |
| TWI680341B (en) * | 2019-02-27 | 2019-12-21 | 台灣彩光科技股份有限公司 | Light source module for projecting device |
| US12135472B2 (en) | 2019-04-19 | 2024-11-05 | Mitsui Chemicals, Inc. | Optical material, polymerizable composition for optical material, cured product, optical material, plastic lens, method of producing optical material, and method of using optical material |
| EP3783420A1 (en) * | 2019-08-21 | 2021-02-24 | Carl Zeiss Vision International GmbH | Spectacles and spectacle lens with filter effect for blue light |
| EP4318104A4 (en) * | 2021-03-31 | 2025-05-07 | Mitsui Chemicals, Inc. | OPTICAL ELEMENT, EYEGLASSES LENS, AUTONOMOUS NERVE REGULATION METHOD, AND EVALUATION METHOD FOR OPTICAL ELEMENT |
| JP7734757B6 (en) * | 2021-11-25 | 2025-10-14 | 三井化学株式会社 | Method for providing, designing, and device for retinal sensitivity adjusting member |
| EP4513256A1 (en) * | 2023-08-23 | 2025-02-26 | Carl Zeiss Vision International GmbH | Method for calculating a digital twin of a spectacle lens |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2874811B1 (en) * | 2004-09-03 | 2006-11-24 | Anteis Sa | ANTIPHOTOPHOBIC OCULAR DEVICE AND METHOD FOR PREPARING THE SAME |
| CA2756668A1 (en) * | 2009-03-25 | 2010-09-30 | High Performance Optics, Inc. | Photochromic ophthalmic systems that selectively filter specific blue light wavelengths |
| JP5807237B2 (en) * | 2010-09-17 | 2015-11-10 | 東海光学株式会社 | Shade glasses |
| US9764157B2 (en) * | 2011-01-17 | 2017-09-19 | University Of Utah Research Foundation | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles |
| EP4245347A3 (en) * | 2011-01-17 | 2023-12-06 | University of Utah Research Foundation | Apparatus and methods for reducing frequency or severity of photophobic responses or modulating circadian cycles |
| WO2013070417A1 (en) | 2011-10-20 | 2013-05-16 | Oakley, Inc. | Eyewear with chroma enhancement |
| EP2602653B1 (en) * | 2011-12-08 | 2020-09-16 | Essilor International | Method of determining the configuration of an ophthalmic filter |
| EP2602655B1 (en) * | 2011-12-08 | 2024-04-03 | Essilor International | Ophthalmic filter |
| US20150192800A1 (en) | 2012-07-10 | 2015-07-09 | Photokinetics, Inc. | Optimization of light filters and illuminants and products derived therefrom |
| US20160282532A1 (en) * | 2013-10-30 | 2016-09-29 | Tecport Optics, Inc. | Ophthalmic optical filters for prevention and reduction of photophobic effects and responses |
| US20150234207A1 (en) * | 2014-02-17 | 2015-08-20 | Daniel Koifman | Device and method for selective wavelength filtration and selective wavelength transmission for therapeutic effect |
| CN103969725B (en) * | 2014-05-30 | 2016-04-13 | 奥特路(漳州)光学科技有限公司 | The anti glare anti static coatings optical mirror slip that a kind of driver is special and manufacture method thereof |
| ES2989740T3 (en) * | 2014-07-22 | 2024-11-27 | Univ Utah Res Found | Methods, systems and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles |
| JP2020530587A (en) * | 2017-08-09 | 2020-10-22 | ユニバーシティ オブ ユタ リサーチ ファウンデーション | Methods, systems, and devices that reduce the frequency and / or extent of photophobic reactions or regulate circadian cycles. |
-
2018
- 2018-08-01 JP JP2020507060A patent/JP2020530587A/en active Pending
- 2018-08-01 AU AU2018314216A patent/AU2018314216B2/en active Active
- 2018-08-01 EP EP18843639.8A patent/EP3664745A4/en active Pending
- 2018-08-01 SG SG11202000912SA patent/SG11202000912SA/en unknown
- 2018-08-01 IL IL272453A patent/IL272453B2/en unknown
- 2018-08-01 WO PCT/US2018/044835 patent/WO2019032348A1/en not_active Ceased
- 2018-08-01 KR KR1020207003867A patent/KR102674937B1/en active Active
- 2018-08-01 CA CA3072541A patent/CA3072541A1/en active Pending
- 2018-08-01 CN CN201880062191.0A patent/CN111148482A/en active Pending
-
2020
- 2020-02-07 ZA ZA2020/00810A patent/ZA202000810B/en unknown
-
2023
- 2023-03-13 JP JP2023038409A patent/JP2023082005A/en active Pending
-
2024
- 2024-07-12 JP JP2024112402A patent/JP2024147673A/en active Pending
Also Published As
| Publication number | Publication date |
|---|---|
| IL272453B2 (en) | 2025-07-01 |
| JP2023082005A (en) | 2023-06-13 |
| EP3664745A4 (en) | 2021-04-14 |
| IL272453A (en) | 2020-03-31 |
| JP2024147673A (en) | 2024-10-16 |
| SG11202000912SA (en) | 2020-02-27 |
| IL272453B1 (en) | 2025-03-01 |
| JP2020530587A (en) | 2020-10-22 |
| KR20200053471A (en) | 2020-05-18 |
| AU2018314216A1 (en) | 2020-02-27 |
| KR102674937B1 (en) | 2024-06-12 |
| CA3072541A1 (en) | 2019-02-14 |
| CN111148482A (en) | 2020-05-12 |
| ZA202000810B (en) | 2021-04-28 |
| WO2019032348A1 (en) | 2019-02-14 |
| AU2018314216B2 (en) | 2023-12-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12383698B2 (en) | Methods, systems, and apparatus for modulating or reducing photophobic responses | |
| JP7689062B2 (en) | Methods, systems and devices for reducing the frequency and/or magnitude of photophobia or for modulating circadian cycles - Patents.com | |
| US9759848B2 (en) | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles | |
| AU2018314216B2 (en) | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles | |
| US9764157B2 (en) | Methods, systems, and apparatus for reducing the frequency and/or severity of photophobic responses or for modulating circadian cycles | |
| US11561416B2 (en) | Ophthalmic tinted glass |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20200203 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20210315 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: A61F 2/00 20060101AFI20210309BHEP Ipc: A61F 2/02 20060101ALI20210309BHEP Ipc: A61M 21/00 20060101ALI20210309BHEP Ipc: A61M 21/02 20060101ALI20210309BHEP Ipc: A61N 5/06 20060101ALI20210309BHEP Ipc: G02B 5/20 20060101ALI20210309BHEP |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20240709 |