EP3592843A1 - Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse - Google Patents
Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuseInfo
- Publication number
- EP3592843A1 EP3592843A1 EP18713321.0A EP18713321A EP3592843A1 EP 3592843 A1 EP3592843 A1 EP 3592843A1 EP 18713321 A EP18713321 A EP 18713321A EP 3592843 A1 EP3592843 A1 EP 3592843A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cells
- μιη
- smooth muscle
- microfiber
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920001410 Microfiber Polymers 0.000 title claims abstract description 137
- 239000003658 microfiber Substances 0.000 title claims abstract description 137
- 230000001413 cellular effect Effects 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 210000000329 smooth muscle myocyte Anatomy 0.000 claims abstract description 78
- 210000002889 endothelial cell Anatomy 0.000 claims abstract description 61
- 239000000017 hydrogel Substances 0.000 claims abstract description 58
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims abstract description 20
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims abstract description 20
- 210000002744 extracellular matrix Anatomy 0.000 claims abstract description 20
- 210000004027 cell Anatomy 0.000 claims description 111
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 46
- 229940072056 alginate Drugs 0.000 claims description 46
- 235000010443 alginic acid Nutrition 0.000 claims description 46
- 229920000615 alginic acid Polymers 0.000 claims description 46
- 238000001125 extrusion Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 31
- 238000004132 cross linking Methods 0.000 claims description 25
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 14
- 210000004204 blood vessel Anatomy 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- 239000000600 sorbitol Substances 0.000 claims description 14
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 239000008280 blood Substances 0.000 claims description 9
- 210000001365 lymphatic vessel Anatomy 0.000 claims description 9
- 210000003462 vein Anatomy 0.000 claims description 9
- 210000004088 microvessel Anatomy 0.000 claims description 7
- 210000003954 umbilical cord Anatomy 0.000 claims description 6
- 230000002500 effect on skin Effects 0.000 claims description 5
- 210000003491 skin Anatomy 0.000 claims description 4
- 210000004369 blood Anatomy 0.000 claims description 3
- 210000000130 stem cell Anatomy 0.000 claims description 3
- XXUKNWCJFNYLDP-UHFFFAOYSA-N 2-(4-amino-2-oxopyrimidin-1-yl)ethoxymethylphosphonic acid Chemical compound NC=1C=CN(CCOCP(O)(O)=O)C(=O)N=1 XXUKNWCJFNYLDP-UHFFFAOYSA-N 0.000 claims description 2
- 210000005252 bulbus oculi Anatomy 0.000 claims description 2
- 230000003511 endothelial effect Effects 0.000 claims description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 claims description 2
- 210000003734 kidney Anatomy 0.000 claims description 2
- 210000004072 lung Anatomy 0.000 claims description 2
- 230000001926 lymphatic effect Effects 0.000 claims description 2
- 210000003606 umbilical vein Anatomy 0.000 claims description 2
- 210000004509 vascular smooth muscle cell Anatomy 0.000 claims description 2
- 241000124008 Mammalia Species 0.000 claims 1
- 210000000621 bronchi Anatomy 0.000 claims 1
- 210000004207 dermis Anatomy 0.000 claims 1
- 210000003709 heart valve Anatomy 0.000 claims 1
- 230000003301 hydrolyzing effect Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 210000004325 uterine smooth muscle cell Anatomy 0.000 claims 1
- 239000000243 solution Substances 0.000 description 104
- 239000010410 layer Substances 0.000 description 74
- 239000001963 growth medium Substances 0.000 description 12
- 239000011575 calcium Substances 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 229920002307 Dextran Polymers 0.000 description 9
- 150000001768 cations Chemical class 0.000 description 9
- 239000003550 marker Substances 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 8
- 230000002792 vascular Effects 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- BELBBZDIHDAJOR-UHFFFAOYSA-N Phenolsulfonephthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2S(=O)(=O)O1 BELBBZDIHDAJOR-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 108010082117 matrigel Proteins 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 229960003531 phenolsulfonphthalein Drugs 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 210000004351 coronary vessel Anatomy 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000001802 infusion Methods 0.000 description 4
- 230000003834 intracellular effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- -1 polydimethylsiloxane Polymers 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 3
- 102100033902 Endothelin-1 Human genes 0.000 description 3
- 101800004490 Endothelin-1 Proteins 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 239000003431 cross linking reagent Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000003038 endothelium Anatomy 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 235000012209 glucono delta-lactone Nutrition 0.000 description 3
- 239000000182 glucono-delta-lactone Substances 0.000 description 3
- 229960003681 gluconolactone Drugs 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000003102 growth factor Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 210000002460 smooth muscle Anatomy 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 102000007469 Actins Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 102000003952 Caspase 3 Human genes 0.000 description 2
- 108090000397 Caspase 3 Proteins 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 2
- FBPFZTCFMRRESA-NQAPHZHOSA-N Sorbitol Chemical compound OCC(O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-NQAPHZHOSA-N 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- QOMNQGZXFYNBNG-UHFFFAOYSA-N acetyloxymethyl 2-[2-[2-[5-[3-(acetyloxymethoxy)-2,7-difluoro-6-oxoxanthen-9-yl]-2-[bis[2-(acetyloxymethoxy)-2-oxoethyl]amino]phenoxy]ethoxy]-n-[2-(acetyloxymethoxy)-2-oxoethyl]-4-methylanilino]acetate Chemical compound CC(=O)OCOC(=O)CN(CC(=O)OCOC(C)=O)C1=CC=C(C)C=C1OCCOC1=CC(C2=C3C=C(F)C(=O)C=C3OC3=CC(OCOC(C)=O)=C(F)C=C32)=CC=C1N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O QOMNQGZXFYNBNG-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000001772 anti-angiogenic effect Effects 0.000 description 2
- 230000002785 anti-thrombosis Effects 0.000 description 2
- 239000003146 anticoagulant agent Substances 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 210000001367 artery Anatomy 0.000 description 2
- 230000003185 calcium uptake Effects 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000012595 freezing medium Substances 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229920001477 hydrophilic polymer Polymers 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- 230000008521 reorganization Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 239000005526 vasoconstrictor agent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-AZLKCVHYSA-N (2r,3s,4s,5s,6r)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid Chemical compound O[C@@H]1O[C@@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-AZLKCVHYSA-N 0.000 description 1
- AEMOLEFTQBMNLQ-SYJWYVCOSA-N (2s,3s,4s,5s,6r)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid Chemical compound O[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@@H]1O AEMOLEFTQBMNLQ-SYJWYVCOSA-N 0.000 description 1
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- 238000010146 3D printing Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 102100028668 C-type lectin domain family 4 member C Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 102000012422 Collagen Type I Human genes 0.000 description 1
- 108010022452 Collagen Type I Proteins 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108010073385 Fibrin Proteins 0.000 description 1
- 102000009123 Fibrin Human genes 0.000 description 1
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000766907 Homo sapiens C-type lectin domain family 4 member C Proteins 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 101100204458 Schizosaccharomyces pombe (strain 972 / ATCC 24843) svf2 gene Proteins 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 102000008790 VE-cadherin Human genes 0.000 description 1
- 108010031318 Vitronectin Proteins 0.000 description 1
- 102100035140 Vitronectin Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000033115 angiogenesis Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000003678 bronchial smooth muscle cell Anatomy 0.000 description 1
- 108010018828 cadherin 5 Proteins 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229940045110 chitosan Drugs 0.000 description 1
- 239000000512 collagen gel Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000003436 cytoskeletal effect Effects 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- BFMYDTVEBKDAKJ-UHFFFAOYSA-L disodium;(2',7'-dibromo-3',6'-dioxido-3-oxospiro[2-benzofuran-1,9'-xanthene]-4'-yl)mercury;hydrate Chemical compound O.[Na+].[Na+].O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C([O-])C([Hg])=C1OC1=C2C=C(Br)C([O-])=C1 BFMYDTVEBKDAKJ-UHFFFAOYSA-L 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 229950003499 fibrin Drugs 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- 235000010492 gellan gum Nutrition 0.000 description 1
- 239000000216 gellan gum Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 238000010820 immunofluorescence microscopy Methods 0.000 description 1
- 210000004692 intercellular junction Anatomy 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 229940006186 sodium polystyrene sulfonate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 210000001644 umbilical artery Anatomy 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 210000000264 venule Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000010865 video microscopy Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/069—Vascular Endothelial cells
- C12N5/0691—Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0661—Smooth muscle cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0697—Artificial constructs associating cells of different lineages, e.g. tissue equivalents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2506/00—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
- C12N2506/45—Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/70—Polysaccharides
- C12N2533/74—Alginate
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/90—Substrates of biological origin, e.g. extracellular matrix, decellularised tissue
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2537/00—Supports and/or coatings for cell culture characterised by physical or chemical treatment
- C12N2537/10—Cross-linking
Definitions
- the invention relates to an artificial hollow cell microfiber having a structure, histology and mechanical properties similar to those of vessels of the animal vascular system.
- the invention also relates to a manufacturing method for obtaining such a hollow cellular microfiber.
- the invention finds applications particularly in the field of tissue engineering and tissue grafts, to allow the vascularization of tissues, and in the pharmacological field, for the study in particular of candidate molecules having activity related to vascularization.
- tissue engineering has been developed, with the aim of artificially recreating blood or lymphatic vessels, in particular to allow tissue vascularization in vitro.
- one method is to mold a cell-loaded hydrogel around agarose-based tubes.
- the agarose tubes are subsequently removed to create microtube networks (Bertassoni et al., Lab Chip 2014 Jul 7; 14 (13): 2202-2211).
- Another technique is to flow a collagen gel onto a gelatin or polydimethylsiloxane (PDMS) tube, which is removed once the gelled collagen matrix (Backer et al., Lab Chip. 2013 Aug 21; 13 (16): 3246 -3252 and Jimenez-Torres et al., Mol Mol Methods 2016, 1458: 59-69).
- PDMS polydimethylsiloxane
- microfibers containing endothelial cells wrapped in a hydrogel layer have been obtained by coextrusion (Onoe et al., Nature Materials 31 March 2013). However, these microfibers do not have mechanical properties comparable to those of the blood or lymphatic vessels.
- the inventors have discovered that it is possible to manufacture hollow cell microfibers reproducing histologically and mechanically vessels of the mammalian vascular system, such as blood vessels. . More specifically, the inventors have developed a method of encapsulation of endothelial cells and smooth muscle cells in an alginate envelope, inside which the cells organize themselves in homocentric layers around the skin. 'a light.
- the method according to the invention makes it possible to obtain tubes of lengths and diameters that can be modulated according to the needs. In particular, it is possible to produce tubes of a few centimeters and up to more than 1 meter.
- the outer diameter of the tubes according to the invention may vary from 70 ⁇ to more than 5 mm, so as to mimic any type of blood and lymphatic vessels, from the veins to the arteries.
- the light extends throughout the length of the tube, making said tubes perfusable. The vessels thus obtained can be easily individualized and manipulated.
- the subject of the invention is therefore an artificial hollow cellular microfiber comprising, successively, organized around a light
- At least one layer of smooth muscle cells at least one layer of smooth muscle cells; an extracellular matrix layer; and optionally
- the cellular microfiber is a blood vessel or lymphatic vessel.
- the invention also relates to a process for preparing such a hollow cellular microfiber, according to which a hydrogel solution and a solution of cells comprising endothelial cells and smooth muscle cells in an extracellular matrix are coextruded concentric in a crosslinking solution capable of crosslinking at least one polymer of the hydrogel solution.
- FIG. 1 Cross-sectional representation of a hollow cellular microfiber according to an exemplary embodiment of the invention, comprising successively, from the outside towards the inside, an alginate outer layer (1), an extracellular matrix layer ( 2), a layer of smooth muscle cells (3), a layer of endothelial cells (4) and a central lumen (5);
- FIG. 2 Schematic representation of a concentric coextrusion system that can be used to produce the cellular microfibers according to the invention, wherein a first pump comprises an alginate solution (ALG), a second pump comprising an intermediate solution comprising sorbitol (SI), and the third pump comprising a solution of cells (C), these three solutions being brought to a coextrusion tip and the tip (6) being immersed in a crosslinking bath (7) to form the cellular microfiber hollow (8);
- ALG alginate solution
- SI intermediate solution comprising sorbitol
- C solution of cells
- Figure 3 Microscope views of the tubular structure of a cellular microfiber obtained according to the method of the invention.
- the cells are round and disposed within the entire alginate tube;
- the cells are anchored on the internal edges of the alginate tube, via the extracellular matrix, to form a lumen inside the tube;
- Figure 4 Study of the impact of the co-extrusion rates of an alginate solution (a), a solution of sorbitol (s) and a solution of cells (c) on the thickness of the outer layer of alginate in the hollow cell microfibers obtained;
- FIG. 5 Study of the external (EXT) and internal (INT) diameters of various hollow cellular microfibers obtained according to the method of the invention, as a function of the diameter of the coextrusion outlet tip (abscissa axis: 300 ⁇ , 350 ⁇ , 450 ⁇ );
- Figure 6 View of an empty alginate tube 900 ⁇ diameter, obtained by extrusion with an outlet nozzle diameter 900 ⁇ ;
- Figure 7 Study of the contraction of hollow cellular microfibers according to the invention in the presence of Endotheline 1 (ET1);
- Figure 8 Study of the increase in intracellular calcium concentration (l // uo ) in endothelial cells of the human umbilical cord vein (HUVEC) and in the smooth muscle cells (SMC) of hollow cellular microspheres over time , under the effect of endothelin 1.
- the invention relates to artificial hollow cell microfibers, the histology and mechanical and physiological properties of which mimic those of vessels of the animal vascular system, and in particular of the mammalian vascular system.
- microfibers based on smooth muscle cells and endothelial cells, whose organization in concentric layers around a light renders said microfibers perfusable.
- perfusable is meant in the context of the invention that it is possible to inject a fluid into said microfiber, within which it can circulate.
- the hollow cellular microfibers according to the invention are also impervious in that the fluid injected into said microfibers does not escape or only very slightly through the thickness of the microfibres.
- the tightness of a microfiber according to the invention depends mainly on the degree of confluence of the cells in said microfiber. The degree of confluence can in particular be adapted by varying the number of cells injected during the formation of the microfiber.
- the microfibers according to the invention can be manipulated because they are individualized.
- the cellular microfiber is a hollow tubular structure, containing substantially homocentric layers, in that they are organized successively around the same point.
- the central lumen 5 of the microfiber is bordered by the endothelial cell layer 4, which is surrounded by the smooth muscle cell layer 3, itself surrounded by an extracellular matrix layer 2 and optionally an outer layer of hydrogel 1 (figure 1).
- a cross section of the cellular microfiber according to the invention thus comprises successive substantially concentric layers.
- the light is generated, at the time of tube formation, by the smooth and endothelial muscle cells that self-assemble and orient spontaneously with respect to the extracellular matrix.
- the light contains a liquid and more particularly the culture medium.
- the hollow cellular microfiber comprises an outer layer of hydrogel.
- the "outer layer of hydrogel” designates a three-dimensional structure formed from a matrix of polymer chains swollen with a liquid, and preferably water.
- the polymer or polymers of the outer layer of hydrogel are crosslinkable polymers when subjected to a stimulus, such as a temperature, a pH, ions, etc.
- the hydrogel used is biocompatible, in that it is not toxic to the cells.
- the hydrogel layer must allow the diffusion of oxygen and nutrients to feed the cells contained in the microfiber and allow their survival.
- the polymers of the hydrogel layer may be of natural or synthetic origin.
- the outer layer of hydrogel contains one or more polymers among sulfonate-based polymers, such as sodium polystyrene sulfonate, acrylate-based polymers, such as sodium polyacrylate, polyethylene glycol diacrylate, the gelatin methacrylate compound, polysaccharides, and especially polysaccharides of bacterial origin, such as gellan gum, or of plant origin, such as pectin or alginate.
- the outer hydrogel layer comprises at least one of alginate.
- the outer layer of hydrogel comprises only alginate.
- alginate is understood to mean linear polysaccharides formed from ⁇ -D-mannuronate (M) and ⁇ -L-guluronate (G), salts and derivatives thereof.
- the alginate is a sodium alginate, composed of more than 80% of G and less than 20% of M, with an average molecular mass of 100 to 400 kDa (for example: PRONOVA ® SLG100) and a total concentration of between 0.5% and 5% by weight (weight / volume).
- the outer layer of hydrogel can strengthen the rigidity of the cellular microfiber and thus facilitate its handling.
- the hydrogel layer comprises polymers capable of limiting cell adhesion ("cell-repellent”), in order to facilitate, if necessary, the separation of said hydrogel layer from the cellular microfiber or its degradation without affecting the structure of the cellular microfiber.
- cell-repellent polymers capable of limiting cell adhesion
- the cellular microfiber is devoid of an outer hydrogel layer and directly comprises, as the outermost layer, an extracellular matrix layer.
- the extracellular matrix layer forms a gel on the inner face of the hydrogel layer, that is to say the face directed towards the light of the microcompartment.
- the extracellular matrix layer comprises a mixture of proteins and extracellular compounds required for cell culture.
- the extracellular matrix comprises structural proteins, such as laminins containing the subunits ⁇ 1, ⁇ 4 or ⁇ 5, the subunits ⁇ or ⁇ 2, and the subunits ⁇ or ⁇ 3, vitronectin, laminins, collagen, as well as growth factors, such as TGF-beta and / or EGF.
- the extracellular matrix layer consists of or contains Matrigel ®, the Geltrex ®, collagen, including type 1 collagen to 19, modified or not, gelatin, fibrin, hyaluronic acid, chitosan, or a mixture of at least two of these components.
- the cellular microfiber comprises smooth muscle cells, organized in one or more layers around and possibly at least partly in the extracellular matrix layer.
- the smooth muscle cells can be chosen in particular from vascular smooth muscle cells, smooth muscle cells, smooth muscle cells of the digestive tract, bronchial smooth muscle cells, smooth muscle cells of the kidneys, smooth muscle cells of the bladder, dermal smooth muscle cells, smooth muscle cells of the uterus and smooth muscle cells of the eyeball, mammalian and especially human.
- the smooth muscle cells are selected from smooth muscle cells of lymphatic or vascular origin, such as smooth muscle cells of umbilical artery, smooth muscle cells of coronary artery, smooth muscle cells of pulmonary artery, etc. .
- the smooth muscle cells are coronary artery smooth muscle cells, such as smooth muscle cells of the human coronary artery.
- smooth muscle cells are obtained from pluripotent induced stem cells, which have been forced to differentiate into smooth muscle cells.
- the thickness of the smooth muscle cell layer (s) may vary depending on the destination of the cellular microfiber. "Thickness” means the dimension in a cross section of the microfiber extending radially from the center of said cross section. Smooth muscle cells allow the contraction of the microfiber. It is therefore possible to adapt the contractile force of the cellular microfiber, depending on whether it is intended to be used as a blood vessel or lymphatic vessel, but also according to the nature of said reproduced vessel (artery, vena cava, vein). , venule, etc.). The person skilled in the art knows what is the expected contractile force as a function of the vessel to be reproduced, and thus knows how to adapt the thickness of the layer (s) of the smooth muscle layers, as well as the nature of the smooth muscle cells.
- the layer or layers of smooth muscle cells contains at least 95% by volume, preferably at least 96%, 97%, 98%, 99% of smooth muscle cells and matrix produced by said cells.
- the layer or layers of smooth muscle cells may optionally include endothelial cells.
- the volume percentage of endothelial cells in the smooth muscle cell layer is less than 5%, preferably less than 4%, 3%, 2%, 1%.
- the hollow cellular microfiber comprises a layer of endothelial cells, bordering and delimiting the central lumen.
- the endothelial cells may be chosen from umbilical cord vein endothelial cells (UVEC), skin microvessel endothelial cells (DMEC), dermal blood endothelial cells (DBEC), dermal endothelial cells (DLEC), endothelial cells of heart microvessels (CMEC), endothelial cells of lung microvessels (PMEC) and endothelial cells of uterine microvessels (UtMEC), mammalian and especially human.
- UVEC umbilical cord vein endothelial cells
- DMEC skin microvessel endothelial cells
- DBEC dermal blood endothelial cells
- DLEC dermal endothelial cells
- CMEC endothelial cells of heart microvessels
- PMEC endothelial cells of lung microvessels
- UtMEC endo
- the endothelial cells are endothelial cells of the umbilical cord vein (UVEC), including endothelial cells of the human umbilical cord vein (HUVEC).
- UVEC umbilical cord vein
- HAVEC human umbilical cord vein
- endothelial cells are obtained from pluripotent induced stem cells, which have been forced to differentiate into endothelial cells.
- the cellular microfiber comprises a single layer of endothelial cells.
- the endothelial cell layer or layers contain at least 95% by volume, preferably at least 96%, 97%, 98%, 99% endothelial cells and matrix produced by said cells.
- the layer or layers of endothelial cells can possibly include smooth muscle cells.
- the volume percentage of smooth muscle cells in the endothelial cell layer is less than 5%, preferably less than 4%, 3%, 2%, 1%.
- the cells used to produce the cellular microfiber according to the invention are human cells.
- the ratio of average endothelial cells / smooth muscle cells, in cm 2 , in a hollow cellular microfiber of the invention is between 3/1 and 2/1.
- the internal diameter of the cellular microfiber is between 50 ⁇ and 500 ⁇ , preferably between 50 ⁇ and 200 ⁇ , more preferably between 50 ⁇ and 150 ⁇ , still more preferably between 50 ⁇ and 100 ⁇ , +/- 10 ⁇ .
- internal diameter is meant the diameter of the light of the microfiber.
- the internal diameter of the cellular microfiber is 100 ⁇ .
- the internal diameter is 70 ⁇ .
- the outer diameter of the cellular microfiber may also vary.
- outer diameter is meant the largest diameter of the microfiber.
- the outer diameter is advantageously between 250 ⁇ and 5 mm.
- the outer diameter is advantageously between 70 ⁇ and 5 mm, preferably between 70 ⁇ and 500 ⁇ , more preferably between 70 ⁇ and 200 ⁇ , even more preferably between 70 ⁇ and 150 ⁇ . , +/- 10 ⁇ .
- the outer diameter of the microfiber, in the presence of the outer layer of hydrogel is 300 ⁇ .
- the outer diameter of the microfiber, in the absence of the outer layer of hydrogel is 150 ⁇ .
- the cellular microfiber according to the invention comprises an outer layer of hydrogel of 100 to 150 ⁇ in thickness, a thickness of cells (endothelial cells and smooth muscle cells) of 150 to 200 ⁇ and a light from 100 to 150 ⁇ in diameter.
- the cellular microfiber according to the invention has a length, or greater dimension, of at least 50 cm, preferably at least 60 cm, 70 cm, 80 cm, 90 cm, 100 cm, 110 cm, or more.
- the invention also relates to a process for preparing a hollow cellular microfiber according to the invention. More particularly, the invention proposes to encapsulate endothelial cells and smooth muscle cells in an outer hydrogel shell within which said cells will rearrange to form substantially concentric layers and provide a central lumen. The encapsulation is done by means of a concentric coextrusion process, in which the hydrogel solution is coextruded with the cell solution directly in a crosslinking bath, or crosslinking solution, comprising a crosslinking agent for crosslinking the hydrogel and thus form the outer shell around the cells.
- any extrusion process for concentrically coextruding hydrogel and cells can be used.
- the method according to the invention is implemented by means of an extrusion device with double or triple concentric envelopes as described in patent FR2986165.
- crosslinking solution means a solution comprising at least one crosslinking agent adapted to crosslink a hydrogel comprising at least one hydrophilic polymer, such as alginate, when it is applied. contact with it.
- the crosslinking solution may for example be a solution comprising at least one divalent cation.
- the crosslinking solution may also be a solution comprising another known crosslinking agent of the alginate or of the hydrophilic polymer to be crosslinked, or a solvent, for example water or an alcohol, adapted to allow crosslinking by irradiation or by any other means. other technique known in the art.
- the crosslinking solution is a solution comprising at least one divalent cation.
- the divalent cation is a cation which makes it possible to crosslink alginate in solution, it may be, for example, a divalent cation chosen from the group. comprising Ca 2+ , Mg 2+ , Ba 2+ and 5r 2+ , or a mixture of at least two of these divalent cations.
- the divalent cation, for example Ca 2+ may be combined with a counter-ion to form, for example, solutions of the CaC or CaCOs type, which are well known to those skilled in the art.
- the crosslinking solution may also be a solution comprising CaCO3 coupled to Glucono delta-lactone (GDL) forming a CaCOs-GDL solution.
- the crosslinking solution can also be a mixture of CaCOs-CaSC GDL.
- the crosslinking solution is a solution comprising calcium, in particular in the Ca 2+ form,
- the divalent cation concentration in the crosslinking solution is between 10 and 1000 mM.
- the crosslinking solution may comprise other constituents, which are well known to those skilled in the art, than those described above, in order to improve the crosslinking of the hydrogel sheath under the conditions, in particular time and / or temperature, special.
- the endothelial cells have previously been cultured in a culture medium comprising vascular endothelial growth factors (VEGF) so as to promote the formation of endothelium and angiogenesis.
- VEGF vascular endothelial growth factors
- the endothelial cells were previously cultured in EGM-2 ® medium.
- the smooth muscle cells have been previously cultured in a culture medium comprising growth factors adapted to the culture of smooth muscle cells, such as transforming growth factor ⁇ , EGF factor, bFGF factor, etc.
- growth factors adapted to the culture of smooth muscle cells such as transforming growth factor ⁇ , EGF factor, bFGF factor, etc.
- smooth muscle cells have been previously cultured in medium SmGM2 ® from Lonza or in a culture medium specifically adapted to the smooth muscle cells marketed by Promoceli society (eg the middle HCASMC ®, HAoSMC ® , etc.),
- the cell solution used for coextrusion comprises endothelial cells and smooth muscle cells suspended in extracellular matrix.
- the cell solution comprises between 20 and 30% by volume of cells and between 70 and 80% by volume of extracellular matrix.
- the volume ratio of endothelial cells / smooth muscle cells in the cell solution is advantageously between 3/1 and 2/1.
- the coextrusion is carried out so that the hydrogel solution surrounds the cell solution.
- coextrusion also involves an intermediate solution, including sorbitol.
- the coextrusion is carried out so that the intermediate solution is disposed between the hydrogel solution and the cell solution (FIG. 2A).
- the extrusion rate of the alginate solution is between 1 and 10 ml / h, preferably between 2 and 5 ml / h, even more preferably equal to 3 ml / h, and preferred way equal to 2 ml / h, +/- 0.5 ml / h.
- the extrusion rate of the intermediate solution is between 0.1 and 5 ml / h, preferably between 0.5 and 1 ml / h, more preferably equal to 0.5 ml. / h, +/- 0.05 ml / h.
- the extrusion rate of the cell solution is between 0.1 and 5 ml / h, preferably between 0.5 and 1 ml / h, more preferably still equal to 0.5. ml / h, +/- 0.05 ml / h.
- the coextrusion speed of the different solutions can be easily modulated by those skilled in the art, so as to adapt the internal diameter of the microfiber and the thickness of the hydrogel layer.
- the extrusion rate of the hydrogel solution is greater than the extrusion rate of the cell solution and optionally of the intermediate solution.
- the extrusion rate of the hydrogel solution is at least two, three, or four times greater than the extrusion rate of the cell solution.
- the extrusion rates of the cell solution and the intermediate solution are identical.
- the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h, and the extrusion speed of the cell solution as the intermediate solution is 0.5 ml / h, +/- 0.05 ml / h.
- the extrusion rate of the hydrogel solution is 9 ml / h, +/- 0.05 ml / h, and the extrusion rate of the cell solution as the intermediate solution is 3 ml / h, +/- 0.05 ml / h.
- the extrusion rate of the hydrogel solution is 3 ml / h, +/- 0.05 ml / h
- the extrusion speed of the cell solution is 2 ml / h
- the extrusion rate of the intermediate solution is 1 ml / h, +/- 0.05 ml / h.
- the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h, and the coextrusion rate of the cell solution as the intermediate solution is 0.5 ml / h, +/- 0.05 ml / h.
- the extrusion rate of the hydrogel solution is 2 ml / h
- the coextrusion rate of the cell solution as the intermediate solution is In another particular embodiment of the process according to the invention, the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h
- the extrusion rate of the cell solution is 0.5 ml / h, +/- 0.05 ml / h
- the extrusion rate of the intermediate solution is 1.5 ml / h, +/- - 0.05 ml / h.
- the extrusion rate of the hydrogel solution is 2 ml / h, +/- 0.05 ml / h
- the extrusion speed of the cell solution is 1.5 ml / h
- the extrusion rate of the intermediate solution is 0.5 ml / h, +/- 0.05 ml / h.
- the reticuiation solution, the intermediate solution and the cell solution are loaded into three concentric compartments of a coextrusion device. so that the crosslinking solution (ALG), forming the first stream, surrounds the intermediate solution (SI) which forms the second stream, which itself surrounds the cell solution (C) which forms the third stream.
- the first flow is the rigid outer shell of hydrogel.
- the second stream constitutes the intermediate envelope and the third flows the inner envelope containing the cells.
- the method according to the invention makes it possible to encapsulate smooth muscle cells and endothelial cells in an external hydrogel sheath.
- the inventors have observed that after only a few hours, the cells contained in this hydrogel sheath reorganize themselves, so that the endothelial cells delimit a longitudinal internal lumen extending over the entire length of the cellular microfiber, and that the smooth muscle cells are oriented outwards with respect to the light.
- the presence of extracellular matrix during coextrusion seems necessary for the cells to become anchored to the matrix and thus spread, divide and proliferate.
- the matrix also makes it possible to reduce the risks of apoptosis of the cells inside the cellular microfiber, and promotes the phenomenon of cellular reorganization within the hydrogel sheath.
- the cellular microfiber obtained by coextrusion is maintained in a suitable culture medium for at least 10 h, preferably at least 20 h, even more preferably at least 24 h before being used.
- This latency advantageously allows the cells to reorganize in the hydrogel sheath so as to form the concentric layers around a light, as described above.
- the hollow cellular microfiber obtained by coextrusion that is to say a microfiber comprising a hydrogel sheath, or to proceed with hydrolysis of said sheath in order to recover a microfiber free of hydrogel.
- the hollow cell microfibers that are the subject of the present invention can be used for many applications, in particular for medical or pharmacological purposes.
- the cellular microfibers according to the invention can in particular be used for identification and / or validation tests of candidate molecules having an action on all or part of the vascular system, and in particular on the blood or lymphatic vessels.
- such microfibers can be used to test the anti-angiogenic, anti-thrombotic, blood pressure regulating, blood gas transporting, etc., properties of candidate molecules.
- the hollow cell microfibers according to the invention can also be used in tissue engineering, in order to vascularize samples of synthetic biological tissues and thus increase their viability.
- tissue engineering in order to vascularize samples of synthetic biological tissues and thus increase their viability.
- vascularized tissue samples can be used for example by the pharmaceutical and cosmetics industries, in order to carry out in vitro tests, in particular as an alternative to animal testing.
- hollow cell microfibers according to the invention can be used in regenerative medicine, in order to allow the vascularization of synthetic organs, such as skin, cornea, liver tissue, etc. obtained by 3D printing or other, before grafting them into a subject.
- Human umbilical cord endothelial cells (HUVEC) cultured in culture medium comprising passage VEGF 3 (p3), 4 (p4) or 5 (p5), supplied cryopreserved in -80 liquid nitrogen ° C under the reference c-12205 by the company PromoCell ® .
- Human coronary artery smooth muscle cells in passage 2 (p2), supplied in the cryopreserved state in liquid nitrogen at -80 ° C. under the reference CC-2583 by the company Lonza.
- Endothelial cell freezing medium Cryo-SFM from PromoCell (ref C-29912).
- Smooth muscle cell culture medium SmGm2-bullet ® kit from the company Lonza (ref CC-3182) (medium at + 4 ° C and supplements at -20 ° C).
- Medium for detaching smooth muscle cells Detach KIT ® from PromoCell Company (ref C-41210).
- Freezing medium for smooth muscle cells Cryo-SFM from PromoCell (ref C-29912). Solutions:
- Hydrogel Solution 2.5% Alginate w / v (LF200FTS) in 0.5mM SDS
- Extracellular matrix Matrigel ® classic (without phenol red and with growth factors) Treatment of HUVEC endothelial cells: Amplification
- HUVEC cells at stage p3 are thawed and amplified according to the usual protocols up to stage p5, p6 or p7, the coextrusion being carried out with cells between stages p5 and p7.
- SMC cells at stage p2 are thawed and then cultured according to the usual protocols up to stage p5, p6 or p7, the coextrusion being carried out with cells between stages p5 and p7.
- Coextrusion system
- Coextrusion of the three solutions in a solution of Ca 2+ as described above made it possible to obtain tubes, or cellular hollow microfibers, of approximately 1 meter in length and with an external diameter of 300 ⁇ .
- the cells After 24 hours (FIG. 3B), the cells reorganized and self-assembled inside the alginate tube so as to create a central lumen with a diameter of approximately 150 ⁇ .
- the tube then comprises successively, and organized concentrically around the light, a layer of HUVEC cells, an SMC cell layer, a Matrigel ® layer and a crosslinked alginate layer.
- Example 1 The hollow cell microfibers obtained in Example 1 were characterized by means of specific markers by immunofluorescence and confocal microscopy. The reorganization of the cells within the alginate envelope was followed by videomicroscopy.
- the cellular microfibers, or tubes, were fixed at different times (J1 / J5), with 4% paraformaldehyde diluted in DMEM without phenol red (PAN), overnight at 4 ° C.
- the cells of the tubes were then permeabilized (30 min in 1% triton in DMEM without phenol red, at room temperature with stirring). Non-specific sites of cells were saturated for one hour at 4 ° C in BSA1% / SVF2% solution (bovine serum albumin and fetal calf serum).
- the cellular microfibers were then placed in the presence of specific primary antibodies, each directed against a protein of interest: - CD31: endothelial cell membrane specific marker
- aSMA alpha smooth muscle actin
- VE-Cadherin a specific marker for endothelial cell junctions and the formation of an impermeable endothelium
- KI67 Specific marker of cell proliferation
- aCaspase3 Specific marker of apoptosis.
- the primary antibody was diluted to l / 100th in DMEM without phenol red + 1% BSA / 2% FCS overnight under stirring at 4 ° C. After 2x15 min of washing in DMEM without phenol red, the tubes were incubated with a secondary antibody (which will specifically recognize the primary antibody) coupled to a fluorochrome, diluted to 1/1000 in DMEM without red phenol + 1% BSA. / 2% FCS for 1h at room temperature. After 2x15 min washes in DMEM without red phenol, the tubes were analyzed by confocal microscopy to visualize the fluorescence. Results:
- SMC specific aSMA marker, alpha Smooth Muscle Actin
- HUVEC specific CD31 marker
- microfibers The perfusability of the microfibers was also evaluated by connecting them to an injection system comprising fluorescent solutions.
- An infusion system for hollow cellular microfibers has been developed using Pasteur glass pipettes drawn under the flame to a diameter corresponding to the internal diameter of the cellular microfibers, ie 150 ⁇ .
- the drawn pipettes were connected to a syringe containing the culture medium (EGM2 ® Promocell), itself connected to a syringe pump to allow the liquid infusion to a physiological speed 50 ⁇ / ⁇ .
- the infusion rate may vary depending on the internal diameter of the microfiber cell.
- the cellular microfibers are cut into pieces a few centimeters long and are placed in culture medium in petri dish 3cm, under a binocular loupe. They are then connected to the tip of the Pasteur pipettes stretched.
- the complete system (microfibre cell / culture medium, stretched pipette, syringe) is then re-cultured (37 ° C incubator, 5% C0 2) and allows the continuously ® EGM2 medium perfusion in the vascular tubes.
- - Positive control cell-free alginate tube + FITC-Dextran 20kDa: Dextran molecules, of low molecular weight, easily diffuse through the pores of alginate; - Microfiber alginate / HUVEC / SMC according to the invention + FITC Dextran 20kDa: Dextran molecules, low molecular weight, do not diffuse or very little through the cell layers, which make the microfiber waterproof;
- HUVEC / SMC microfibre according to the invention (after hydrolysis of the outer layer of alginate) + FITC Dextran 20kDa: the diffusion rate of the Dextran molecules through the cell layers is close to that observed for the microfiber according to US Pat. the invention further comprising the outer layer of alginate.
- Three hollow cell microfibers were fabricated according to the protocol described in Example 1, varying the extrusion rates of the sorbitol solution and the cell solution for a constant alginate extrusion rate.
- the extrusion rates for the three hollow cell microfibers are summarized in the table below.
- the purpose of this experiment is to verify the reproducibility of the dimensions of the hollow cell microfibers with identical parameters, the impact of the flow rates on the thickness of the external wall of alginate.
- Hollow cellular microfibers were manufactured, according to the protocol described in Example 1, by modifying the outlet tip of the solutions of the concentric coextrusion system (see tip / coextrusion tip 6, FIG. obtain an outlet tip diameter 300 ⁇ , 350 ⁇ , 450 ⁇ and 900 ⁇ . With the 900 ⁇ tip, the alginate solution was extruded alone, to produce empty alginate tubes (without cell suspension).
- the outer diameter and the internal diameter that is to say the light of the microfibres, were measured after synthesis of said microfibers.
- results shown in the table below and in FIG. 5 confirm that it is possible to modify the dimensions of the microfibers and to modify the diameter of the coextrusion spike of the coextrusion system.
- obtaining a hollow alginate tube with a diameter of 900 ⁇ and an outlet tip of 900 ⁇ confirms that the process according to the invention makes it possible to obtain hollow cell microfibers that are perfectly of diameter. perfectly controlled.
- Hollow cellular microfibers with an internal diameter of approximately 400 ⁇ were produced according to Example 1.
- the microfibers are incubated for 45 min in the presence of a calcium-sensitive fluorescent probe, Fluo-4 AM (Thermo Fisher Scientific, F23917, 50 ⁇ g dissolved in 4 ⁇ l of Pluronic acid-at 20% in DMSO-, then diluted in 800 ⁇ l of EGM2, final concentration: 50 ⁇ l), at 37 ° C.
- the AM group acetoxymethyl allows the molecule to cross the plasma membrane, it is cleaved by intracellular esterases which traps the probe in the cytoplasmic compartment.
- the variations of the fluorescence signal intensity provide information on the qualitative variations (non-ratiometric probe) of free calcium accessible at the binding site of the molecule. This information is an indirect measure of activation of signaling pathways involving extracellular calcium entry, and / or release of endoplasmic reticulum calcium stocks.
- the microfibers After rinsing in EGM2 culture medium, the microfibers are imaged epifluorescence with a stereo-microscope.
- a vasoconstrictor specific for the blood vessels, endothelin 1 (ET1, 0.1 ⁇ ) is applied in the vicinity of the tube, in the culture medium.
- the fluorescence signal is collected before, during and after the application of the vasoconstrictor.
- the collected data make it possible to measure: 1 / the contraction of the microfibers (measurement of the external diameter), 2 / the fluorescence signal intensity variations of the Fluo-4 AM, (the intracellular calcium is the second messenger involved in the cascade of signaling triggering the contraction of muscle fibers and thus the decrease of the internal diameter of the vesseloid).
- Endotheline 1 causes the contraction of the microfibers, and a significant decrease in the internal diameter of about 5% ( Figure 7).
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Vascular Medicine (AREA)
- Rheumatology (AREA)
- Materials For Medical Uses (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR1751941A FR3063736B1 (fr) | 2017-03-09 | 2017-03-09 | Microfibre cellulaire creuse et procede de fabrication d'une telle microfibre cellulaire creuse |
| PCT/FR2018/050541 WO2018162857A1 (fr) | 2017-03-09 | 2018-03-08 | Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3592843A1 true EP3592843A1 (fr) | 2020-01-15 |
Family
ID=59153031
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP18713321.0A Withdrawn EP3592843A1 (fr) | 2017-03-09 | 2018-03-08 | Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20200002681A1 (fr) |
| EP (1) | EP3592843A1 (fr) |
| FR (1) | FR3063736B1 (fr) |
| WO (1) | WO2018162857A1 (fr) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021165905A1 (fr) | 2020-02-19 | 2021-08-26 | Association For The Advancement Of Tissue Engineering And Cell Based Technologies & Therapies (A4Tec) - Associação | Fibres d'hydrogel à compartiments multiples, leur préparation et leurs utilisations |
| US20240010983A1 (en) | 2020-08-21 | 2024-01-11 | Merck Patent Gmbh | Consumable tissue-like structure generated with muscle cells grown on edible hollow fibers |
| JP2024521447A (ja) * | 2021-06-16 | 2024-05-31 | ツリーフロッグ テラピューティクス | 複数の嚢胞を含む大型細胞微小区画 |
| FR3124193B3 (fr) * | 2021-06-16 | 2023-09-22 | Treefrog Therapeutics | Microcompartiments cellulaires de grande taille comprenant plusieurs cystes |
| CN113318273B (zh) * | 2021-06-25 | 2022-11-25 | 温州医科大学慈溪生物医药研究院 | Ecm梯度微纤维管及其制备方法 |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2986165B1 (fr) | 2012-01-31 | 2015-07-24 | Capsum | Procede de preparation de capsules rigidifiees |
| ES2615102T3 (es) * | 2012-03-16 | 2017-06-05 | Novahep Ab | Vaso sanguíneo alogénico obtenido mediante bioingeniería |
| US20150118747A1 (en) * | 2013-10-31 | 2015-04-30 | The Johns Hopkins University | Electrostretched polymer microfibers for microvasculature development |
| US10221382B2 (en) * | 2014-05-20 | 2019-03-05 | The University Of Tokyo | Hollow microfiber |
-
2017
- 2017-03-09 FR FR1751941A patent/FR3063736B1/fr not_active Expired - Fee Related
-
2018
- 2018-03-08 WO PCT/FR2018/050541 patent/WO2018162857A1/fr not_active Ceased
- 2018-03-08 EP EP18713321.0A patent/EP3592843A1/fr not_active Withdrawn
- 2018-03-08 US US16/491,662 patent/US20200002681A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| FR3063736B1 (fr) | 2021-06-25 |
| WO2018162857A1 (fr) | 2018-09-13 |
| FR3063736A1 (fr) | 2018-09-14 |
| US20200002681A1 (en) | 2020-01-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018162857A1 (fr) | Microfibre cellulaire creuse et procédé de fabrication d'une telle microfibre cellulaire creuse | |
| Lovett et al. | Silk fibroin microtubes for blood vessel engineering | |
| AU2018285579B2 (en) | Blood vessel organoid, methods of producing and using said organoids | |
| Wang et al. | Bottom‐up Nanoencapsulation from Single Cells to Tunable and Scalable Cellular Spheroids for Hair Follicle Regeneration | |
| Ruther et al. | Biofabrication of vessel-like structures with alginate di-aldehyde—gelatin (ADA-GEL) bioink | |
| Yin et al. | Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties | |
| Kopeć et al. | Polydopamine and gelatin coating for rapid endothelialization of vascular scaffolds | |
| Nguyen et al. | Oxidation-mediated scaffold engineering of hyaluronic acid-based microcarriers enhances corneal stromal regeneration | |
| Nayak et al. | Silk sericin–alginate–chitosan microcapsules: Hepatocytes encapsulation for enhanced cellular functions | |
| Zhang et al. | Anticoagulant Hydrogel Tubes with Poly (ɛ‐Caprolactone) Sheaths for Small‐Diameter Vascular Grafts | |
| Fink et al. | Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism—a promising modification for vascular grafts | |
| FR2917425A1 (fr) | Procede de proliferation de cellules sur des multicouches de polyelectrolytes et son application, notamment a la preparation de biomateriaux cellularises | |
| Zhi et al. | Polysaccharide multilayer nanoencapsulation of insulin-producing β-cells grown as pseudoislets for potential cellular delivery of insulin | |
| US20210386786A1 (en) | Compositions comprising cell-delivered vesicles and uses thereof | |
| Woods et al. | Fabrication of blood‐derived elastogenic vascular grafts using electrospun fibrinogen and polycaprolactone composite scaffolds for paediatric applications | |
| KR101366454B1 (ko) | 이식용 마이크로파이버 및 그 제조방법 | |
| Li et al. | Engineering superstable islets-laden chitosan microgels with carboxymethyl cellulose coating for long-term blood glucose regulation in vivo | |
| Owji et al. | Mussel inspired chemistry and bacteria derived polymers for oral mucosal adhesion and drug delivery | |
| Dasgupta et al. | Vitamin D3-incorporated chitosan/collagen/fibrinogen scaffolds promote angiogenesis and endothelial transition via HIF-1/IGF-1/VEGF pathways in dental pulp stem cells | |
| Chen et al. | Genipin cross‐linked polymeric alginate‐chitosan microcapsules for oral delivery: in‐vitro analysis | |
| Zhu et al. | Polydopamine-modified konjac glucomannan scaffold with sustained release of vascular endothelial growth factor to promote angiogenesis | |
| He et al. | An injectable and retrievable bioartificial pancreas fabricated by time-sequentially assembling islets-laden microgels for minimally invasive treatment of type 1 diabetes | |
| Zhou et al. | Passivated hydrogel interface: Armor against foreign body response and inflammation in small-diameter vascular grafts | |
| Jacoby et al. | Fabrication of capillary‐like structures with Pluronic F127® and Kerria lacca resin (shellac) in biocompatible tissue‐engineered constructs | |
| WO2018185439A1 (fr) | Microcompartiment de cellules hématopoïétiques malignes et procédé de préparation d'un tel microcompartiment |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20191001 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20210420 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20230103 |