[go: up one dir, main page]

EP3455496A1 - Compresseur hermétique à niveau de bruit réduit - Google Patents

Compresseur hermétique à niveau de bruit réduit

Info

Publication number
EP3455496A1
EP3455496A1 EP17725885.2A EP17725885A EP3455496A1 EP 3455496 A1 EP3455496 A1 EP 3455496A1 EP 17725885 A EP17725885 A EP 17725885A EP 3455496 A1 EP3455496 A1 EP 3455496A1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
exhaust
compressor
cylinder
noise attenuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17725885.2A
Other languages
German (de)
English (en)
Inventor
Husnu Kerpicci
Furkan Ahmet TOK
Hasim OTUNC
Ercan KURTULDU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arcelik AS
Original Assignee
Arcelik AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelik AS filed Critical Arcelik AS
Publication of EP3455496A1 publication Critical patent/EP3455496A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes
    • F04B39/0061Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes using muffler volumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/125Cylinder heads

Definitions

  • the present invention relates to a hermetic compressor suitable for use in cooling devices.
  • the refrigerant is sucked from and pumped back to the refrigeration system by means of a piston operating in a cylinder.
  • flow-induced noises occur.
  • high level of noise is generated.
  • the refrigerant in gas state entering the cylinder after the suction process is compressed with the piston and the exhaust valve in the valve table opens when the refrigerant reaches a certain pressure.
  • the refrigerant passes through the outlet port (exhaust port) on the valve table opened by the exhaust valve and fills in the exhaust chamber in the cylinder head.
  • the refrigerant leaving through the small-diameter exhaust port of the exhaust valve at high pressure after the compression process quickly disperses into a large volume, thus increasing the sound power level defined by decibel unit during the operation of the compressor.
  • the European Patent No. EP2580475 and the European Patent Application No. EP2917577 disclose a hermetic compressor a exhaust muffler (9) with a hollow, closed volume, that provides the attenuation of the noise generated during the pumping of the refrigerant fluid.
  • the International Patent Application No. WO2015149833 discloses a reciprocating hermetic compressor wherein the thermodynamic efficiency is improved by providing thermal insulation in the exhaust muffler thereof.
  • the aim of the present invention is the realization of a compressor wherein the refrigerant-induced noise in the exhaust region is enabled to be reduced.
  • the refrigerant circulating in the refrigeration cycle is sucked and pumped by means of a piston operating in a cylinder.
  • the refrigerant in gas state first fills into the exhaust chamber that forms a closed volume in the cylinder head, then the refrigerant is delivered from the exhaust chamber to the exhaust muffler and therefrom added back to the refrigeration cycle.
  • a porous noise attenuator is disposed into the exhaust chamber and/or the exhaust muffler having closed volumes, disposed on the flow path followed in the compressor casing by the refrigerant pressurized by the piston.
  • the noise attenuator can be produced from metal foam or synthetic plastic and shaped in matching form to the geometry of the inner volumes of the exhaust chamber or the exhaust muffler.
  • Figure 1 – is the cross-sectional view of the compressor of the present invention.
  • Figure 2 – is the perspective view of a cylinder head and the noise attenuator disposed into the cylinder head.
  • Figure 3 – is the perspective view of a valve table and the exhaust port, the exhaust valve and the stopper that are disposed on the valve table.
  • Figure 4 - is the perspective view of a compressor body having the exhaust muffler thereon and of a noise attenuator.
  • Figure 5 - is the schematic view of a compressor body having the exhaust muffler thereon and of a noise attenuator in an embodiment of the present invention.
  • the hermetic compressor (1) suitable for use for circulation of the refrigerant fluid in cooling devices, for example refrigerators comprises a casing (2); a cylinder (3) that is disposed in the casing (2) and that enables the refrigerant to be sucked and pumped; a piston (4) that is operated in the cylinder (3); a body (5) that supports the cylinder (3) and the piston (4); a cylinder head (6) that enables the refrigerant sucked and pumped by the movement of the piston (4) into the cylinder (3) to be guided; an exhaust chamber (7) that is disposed in the cylinder head (6) and wherein the refrigerant fluid pumped during the compression movement of the piston (4) is accumulated; a valve table (8) that is disposed between the cylinder (3) and the cylinder head (6); an exhaust port (9) that is arranged on the valve table (8) and that enables the refrigerant to pass from the cylinder (3) to the exhaust chamber (7) during the compression movement of the piston (4); an exhaust valve (10) that is disposed on
  • the compressor (1) of the present invention comprises a porous noise attenuator (13) that is disposed into at least one closed volume wherein the refrigerant in gas state is accumulated at reduced pressure, the closed volume being located on the flow path followed by the refrigerant in gas state in the casing (2), pumped from the cylinder (3) into the refrigeration cycle during the compression movement of the piston (4).
  • the noise attenuator (13) is disposed into the exhaust chamber (7) arranged in the cylinder head (6) ( Figure 2).
  • the refrigerant in gas state passes through the exhaust port (9) on the valve table (8) and fills into the exhaust chamber (7). While the refrigerant passes through the pores of the noise attenuator (13) disposed into the exhaust chamber (7), the flow rate thereof is reduced by a certain amount and thus vortices generated at this region are interrupted.
  • the noise attenuator (13) attenuates the flow-induced noise generated by the refrigerant leaving the small-diameter exhaust port (9) and immediately filling into a wide volume, that is the exhaust chamber (7), thus enabling the sound power level defined by decibel unit to be reduced.
  • the noise attenuator (13) In addition to reducing the flow-induced noise, the noise attenuator (13) generally provides that the surface temperature of the cylinder hand (6) adversely affecting the effectiveness of the compressor (1) is reduced.
  • the porous structure of the noise attenuator (13) increases the contact area with the high-temperature refrigerant gas, thus preventing the cylinder head (6) from heating up excessively and preventing the performance of the compressor (1) from decreasing.
  • the noise attenuator (13) is shaped in matching form to the geometry of the exhaust chamber (7) so as to be seated in a gapless manner into the exhaust chamber (7) in the cylinder head (6) and fixed to the cylinder head (6) by adhesion or snap-fitting.
  • the compressor (1) comprises a stopper (14) that is fixed onto the valve table (8), that extends into the exhaust chamber (7) and that limits the movement of the exhaust valve (10).
  • the noise attenuator (13) comprises a recess (15) that is arranged in alignment with the stopper (14) and that is formed so as to receive the stopper (14) ( Figure 2).
  • the noise attenuator (13) is disposed into the exhaust muffler (11) ( Figure 4).
  • the refrigerant in gas state filling into the exhaust chamber (7) during the compression process in the cylinder (3) passes through the exhaust pass port (not shown in the figures) on the valve table (8) so as to be delivered to the exhaust muffler (11) by means of the discharge channel (12). While the refrigerant in gas state filling into the exhaust muffler (11) from the discharge channel (12) passes through the pores of the noise attenuator (13) disposed into the exhaust muffler (11), the flow rate thereof is reduced by a certain amount and thus vortices generated at this region are interrupted.
  • the noise attenuator (13) attenuates the flow-induced noise generated by the refrigerant leaving the small-diameter discharge channel (12) and immediately filling into a wide volume that is the exhaust muffler (11).
  • the noise attenuator (13) is cylindrical and sized so as to be disposed into the exhaust muffler (13) in a gapless manner.
  • the compressor (1) comprises a cover (16) that covers the exhaust muffler (11).
  • the cover (16) is fixed onto the exhaust muffler (11) by being screwed to the noise attenuator (13) in the exhaust muffler (11) by means of a screw hole bored from the center of the upper surface of the noise attenuator (13) towards the interior thereof ( Figure 5).
  • the noise attenuator (13) is produced from metal foam, preferably from open-cell metal foam called metal sponge.
  • the noise attenuator (13) is produced from metal foam aluminum.
  • the noise attenuator (13) is produced from synthetic plastic sponge.
  • the plastic sponge of the noise attenuator (13) is produced from materials such as polyethylene (PE), polypropylene (PP) or polytetrafluoroethylene (PTFE).
  • the porous noise attenuator (13) disposed into the exhaust chamber (7) and/or the exhaust muffler (11) by means of the porous noise attenuator (13) disposed into the exhaust chamber (7) and/or the exhaust muffler (11), the flow-induced noise generated by the refrigerant in gas state during the compression movement of the piston (4) is reduced and the sound power level of the compressor (1) defined by decibel unit is decreased.
  • the noise attenuator (13) increases the surface area that the high-temperature refrigerant contacts in the cylinder head (6), thus preventing the cylinder head (6) from excessive heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

La présente invention concerne un compresseur hermétique (1) conçu pour être utilisé pour la circulation d'un fluide frigorigène dans un cycle de réfrigération dans des dispositifs de refroidissement, par exemple dans des réfrigérateurs, comprenant un cylindre (3) qui permet au fluide frigorigène d'être aspiré et pompé ; un piston (4) qui est actionné dans le cylindre (3) ; une culasse (6) qui permet au fluide frigorigène aspiré et pompé dans le cylindre (3) avec le mouvement du piston (4) d'être guidé ; une chambre d'échappement (7) qui est disposée dans la culasse (6) et dans laquelle le fluide frigorigène pompé pendant le mouvement de compression du piston (4) est accumulé, et au moins un pot d'échappement (11) qui présente un volume fermé creux et qui assure l'atténuation du bruit généré pendant le pompage du fluide frigorigène, le bruit induit par le fluide frigorigène dans la chambre d'échappement (7) et le pot d'échappement (11) étant réduit.
EP17725885.2A 2016-05-09 2017-05-09 Compresseur hermétique à niveau de bruit réduit Withdrawn EP3455496A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR2016/06032A TR201606032A2 (tr) 2016-05-09 2016-05-09 Gürültü sevi̇yesi̇ azaltilan hermeti̇k kompresör
PCT/EP2017/060974 WO2017194492A1 (fr) 2016-05-09 2017-05-09 Compresseur hermétique à niveau de bruit réduit

Publications (1)

Publication Number Publication Date
EP3455496A1 true EP3455496A1 (fr) 2019-03-20

Family

ID=58772849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17725885.2A Withdrawn EP3455496A1 (fr) 2016-05-09 2017-05-09 Compresseur hermétique à niveau de bruit réduit

Country Status (3)

Country Link
EP (1) EP3455496A1 (fr)
TR (1) TR201606032A2 (fr)
WO (1) WO2017194492A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192886A1 (fr) * 2018-04-03 2019-10-10 Arcelik Anonim Sirketi Culasse améliorée utilisée dans un compresseur hermétiquement clos d'un appareil de réfrigération
TR202015443A2 (tr) 2020-09-29 2022-04-21 Arçeli̇k Anoni̇m Şi̇rketi̇ Kisitlayici i̇çeren hermeti̇k kompresör

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308266A (ja) * 1994-05-19 1995-11-28 Toto Ltd 手乾燥装置
US6176688B1 (en) * 1999-10-12 2001-01-23 Tecumseh Products Company Discharge muffler arrangement
KR100422364B1 (ko) * 2001-11-19 2004-03-11 삼성광주전자 주식회사 밀폐형 압축기의 토출밸브
KR100593847B1 (ko) * 2004-09-14 2006-06-28 삼성광주전자 주식회사 토출머플러를 갖춘 압축기
US20090189111A1 (en) * 2006-08-16 2009-07-30 Hitachi Chemical Co., Ltd. Composites for sound control applications
BRPI0700748A (pt) * 2007-02-13 2008-09-30 Whirlpool Sa arranjo construtivo de filtro acústico para um compressor de refrigeração
EP2580475B1 (fr) 2010-06-09 2014-04-30 Arçelik Anonim Sirketi Compresseur hermétique
EP2917577A1 (fr) 2012-10-05 2015-09-16 Arçelik Anonim Sirketi Compresseur hermétique comprenant un silencieux d'échappement
WO2015149833A1 (fr) 2014-03-31 2015-10-08 Arcelik Anonim Sirketi Chemisage interne thermiquement isolant pour l'utilisation dans un silencieux d'échappement d'un compresseur à va-et-vient hermétique
RU2581969C1 (ru) * 2015-01-12 2016-04-20 Олег Савельевич Кочетов Звукопоглотитель кочетова для глушителей шума компрессорных станций

Also Published As

Publication number Publication date
WO2017194492A1 (fr) 2017-11-16
TR201606032A2 (tr) 2017-11-21

Similar Documents

Publication Publication Date Title
US9909581B2 (en) Thermal insulation system for the discharge of gas in a refrigeration compressor
US9903356B2 (en) Compressor and discharging muffler thereof
EP2859235A1 (fr) Compresseur comprenant une culasse
US8858194B2 (en) Constructive arrangement for a hermetic refrigeration compressor
WO2017194492A1 (fr) Compresseur hermétique à niveau de bruit réduit
US20090038329A1 (en) Suction muffler for a refrigeration compressor
WO2002101239A1 (fr) Silencieux d'aspiration pour compresseur hermetique alternatif
JP3816885B2 (ja) 往復動式圧縮機の吸入マフラー
WO2017194516A1 (fr) Compresseur hermétique à étanchéité améliorée
KR20070085071A (ko) 밀폐형 압축기
WO2017191228A1 (fr) Compresseur hermétique à performances accrues
WO2017191229A1 (fr) Compresseur hermétique à performances accrues
CN205013289U (zh) 一种回转式压缩机
EP1718869B1 (fr) Compresseur de refrigerant
EP1797324A1 (fr) Compresseur
EP1771660A1 (fr) Compresseur
JP2002235667A (ja) 冷媒圧縮機
WO2016139267A1 (fr) Compresseur comprenant un silencieux d'aspiration
WO2007128713A1 (fr) Comresseur
KR20180037538A (ko) 토출 머플러 및 이를 포함하는 압축기
WO2019091665A1 (fr) Compresseur hermétique à étanchéité améliorée
WO2017211705A1 (fr) Compresseur hermétique comprenant un silencieux d'aspiration partiellement élastique
WO2009132932A1 (fr) Compresseur à circulation de fluide frigorigène améliorée
EP1853822A1 (fr) Compresseur
TR201908251A2 (tr) Performansi arttirilan hermeti̇k kompresör

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180911

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELIK ANONIM SIRKETI

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200325

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200805