EP3245307A1 - Procédé et système de traitement thermique sélectif d'une feuille métallique - Google Patents
Procédé et système de traitement thermique sélectif d'une feuille métalliqueInfo
- Publication number
- EP3245307A1 EP3245307A1 EP16700815.0A EP16700815A EP3245307A1 EP 3245307 A1 EP3245307 A1 EP 3245307A1 EP 16700815 A EP16700815 A EP 16700815A EP 3245307 A1 EP3245307 A1 EP 3245307A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grid pattern
- sheet metal
- metal material
- heated
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 47
- 229910052751 metal Inorganic materials 0.000 title abstract description 20
- 239000002184 metal Substances 0.000 title abstract description 20
- 239000007769 metal material Substances 0.000 claims description 129
- 238000001816 cooling Methods 0.000 claims description 38
- 239000000463 material Substances 0.000 claims description 38
- 229910001566 austenite Inorganic materials 0.000 claims description 25
- 229910000712 Boron steel Inorganic materials 0.000 claims description 23
- 229910000734 martensite Inorganic materials 0.000 claims description 21
- 238000005520 cutting process Methods 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 30
- 230000003014 reinforcing effect Effects 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 230000002787 reinforcement Effects 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 6
- 239000003570 air Substances 0.000 description 5
- 238000009966 trimming Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0294—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a localised treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/38—Heating by cathodic discharges
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2261/00—Machining or cutting being involved
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0494—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a localised treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a method for improving the formability and/or component properties of a sheet metal material by selective heat treatment.
- Press hardening processes allow for the production of light weight, high strength sheet metal components. Press hardened materials are highly deformation resistant.
- Press hardening techniques have played an increasingly important role with the vehicle industry during recent years, as the press hardened materials are suitable for absorbing great deformation energies such as in a vehicle collision.
- the sheet metal used in press hardening techniques are boron steel with a ferrous or pearlitic base structure being characterized by a tensile strength of 600MPa and extension degree of about 26% for uncoated sheets and about 10% for sheets coated with AISi (Aluminum Silicon).
- the sheet metal In current press hardening processes the sheet metal is transported through a furnace and thus heated up to its austenization temperature of about 900 to 950 °C whereby it is transformed into 100% austenite. In the austenitic state the material has a tensile strength of about 200MPa and an extension degree of about 40%. After the heat treatment the austenite material is rapidly moved into a processing tool for shaping the material before it starts to oxidize. Usually the duration of the shaping stage is about 8 to 10 seconds. During the shaping the shaped material is subject to cooling during which the austenite is transformed to marteniste. In other words a phase transformation occurs during the cooling. When the shaped material leaves the shaping tool, its temperature is about 150 to 200 °C. Normally the shaping tools are provided with a cooling system to cool the shaped material down to the desired temperature.
- Press hardening parts therefore currently represent one of the most advanced lightweight solutions for the car body structure.
- a drawback of current press hardening techniques is that it is a relatively slow process. Moreover, the final product has far higher/larger tensile strength than the original sheet material which may not always be desired due to desired deformability characteristics of the sheet metal in us.
- An object of the present invention is to eliminate or alleviate at least one of the drawbacks mentioned above, in accordance with the appended claims.
- An advantage of the present invention is that the thickness of the sheet metal material may be reduced while providing reinforcement at desired locations of the sheet metal material.
- a further advantage is that the formability of the sheet metal material is improved.
- the deformation capability of the resulting component may be tailor made.
- a method for providing a sheet metal material with a certain component property comprises providing a sheet metal material in a non- formed state, said sheet metal material comprising boron steel.
- the method comprises conducting a selective heat treatment on the sheet metal material when in its non- formed state.
- the selective heat treatment comprises selectively heating the sheet metal material according to a grid pattern designed based on the certain component property, thereby forming a heated grid pattern in the sheet metal material, said heated grid pattern having a first material characteristic being different than that of the non-heated areas of the sheet metal material, wherein the first material characteristic relates to the boron steel of the selectively heated sheet metal material forming into a grid pattern of austenite.
- the method further comprises cooling the locally heated grid pattern, thereby forming a locally cooled grid pattern having a second material characteristic being different from the first material characteristic and the material characteristic of the non-heated areas, and wherein second material characteristic relates to the austenite grid pattern forming into a martensite grid pattern.
- a component comprising a reinforced sheet metal material being produced by the method is provided.
- a system for providing a sheet metal material comprising boron steel with a certain component property comprising boron steel with a certain component property.
- the sheet metal material is provided in a non-press formed state.
- the system comprises a heating unit selectively heating the sheet metal material, when in its non-press formed state, according to a grid pattern designed based on the certain component property, thereby producing a heated grid pattern in the sheet metal material, said heated grid pattern having a first material characteristic being different than that of the non-heated areas of the sheet metal material wherein the first material characteristic relates to the boron steel of the selectively heated sheet metal material forming into a grid pattern of austenite.
- Fig. 1 is a flow chart of a method according to an embodiment
- Fig. 2 is a flow chart of a method according to an embodiment
- Fig. 3 shows a system for reinforcing a sheet metal material according to an embodiment
- Fig. 4 shows a system for reinforcing a sheet metal material according to an embodiment
- Figs 5 to 8 illustrate exemplary grid patterns according to an embodiment, respectively
- Figs 9a to 9c illustrate exemplary grid patterns applied to a sheet metal material according to an embodiment, respectively;
- Fig. 10 illustrates a press forming tool according to an embodiment
- Figs 1 la to l id illustrates a component being provided with a grid pattern according to an embodiment.
- An idea of the present invention is to conduct selective heat treatment to the sheet metal material based on required sheet material formability/trimability or required component properties.
- the selective heat treatment includes heating the sheet metal material according to a specific heat pattern, e.g. grid pattern, followed by cooling of the grid pattern thereby forming a grid pattern of local reinforcements in the sheet metal material.
- a specific heat pattern e.g. grid pattern
- the sheet metal material is made of boron steel
- the boron steel at the position of the grid i.e. along the grid lines of the grid pattern, converts into austenite while heating, and during the cooling the austenite converts into martensite along the grid lines of the grid pattern, and the martensite then acts as the reinforcing structure of the processed sheet metal material.
- the sheet metal material may be considered being a ready-use-component.
- press forming and/or cutting is required before the selective heat treated sheet metal material is considered being a ready -to -use component or product.
- the grid pattern may be said to form a skeleton structure in the sheet metal material.
- the grid structure may improve or facilitate subsequent forming of the sheet metal material.
- the grid pattern provided sheet metal may be designed to allow for tailor made deformation capabilities of the resulting sheet metal component.
- the grid pattern, its shape and position in view of the sheet metal material is designed and carried out based on the identified needs/requirements concerning forming, trimming or/and component performance/properties. Hence, the design of the grid pattern may be derived by reverse engineering.
- the grid pattern is applied either before or after sheet material shaping process depending on economic feasibility.
- a method 10 for improving the formability or the reinforcement of a sheet metal material arranged to absorb deformation energies in use comprises supplying a sheet metal material optionally comprising boron steel. Moreover, the method comprises conducting 12 a selective heat treatment on the sheet metal material when in its non-press formed state.
- the selective heat treatment comprises selectively heating 121 the sheet metal material according to a grid pattern designed based on desired or required component properties, thereby forming a heated grid pattern in the sheet metal material.
- the sheet metal material comprises boron steel the sheet metal material along the lines of the grid pattern will convert into austenite during the heating process.
- the selective heat treatment comprises cooling (either passive or active) 122 the selectively heated sheet metal material, whereby the austenite along the lines of the grid pattern is converted into martensite.
- An advantage of conducting the selective heat treatment onto the sheet metal material, when in its non-press formed state, i.e. when it is still flat or essentially flat, is that the heat treatment process and equipment assembly is less complex. Moreover, by providing ready-to-form/trim/cut heat treated metal sheets, the bulkiness during shipping of the treated metal sheets may be kept to a minimum as the heat treated metal sheets can be stacked very efficiently. This leads to reduced environmental impact. Furthermore, the ready -to-form/trim/cut heat treated metal sheets may be used in the same assembly processing lines as conventionally used for press forming, trimming and cutting. Hence, the heat treated metal sheets of the present invention may be used for subsequent processing in existing equipment used e.g. in the vehicle industry for the processing of vehicle components such as car components.
- the method may comprise press forming 13 the sheet metal material being provided with the martensite grid pattern in a press forming tool into a single component having a desired shape.
- the press forming step may be executed immediately after the selective heat treatment, such that parts of the sheet metal material, in particular the martensite grid pattern, has a higher temperature than the ambient temperature.
- the sheet of metal material is first press formed and/or trimmed in press forming tools, e.g. dies, at room temperature.
- press forming tools e.g. dies
- reinforcement is provided by conducting selective heat treatment, according to a grid pattern designed in accordance with desired component properties, of the sheet metal material.
- a method 20 for reinforcing a sheet metal material comprises supplying 21 a sheet metal material, e.g. comprising grid boron steel. Moreover, the method comprises press forming 22 the sheet metal material in a press forming tool into a desired shape. Furthermore, the method 20 comprises conducting 23 a selective heat treatment on the sheet metal material.
- the selective heat treatment comprises selectively heating 231 the shaped sheet metal material according to a grid pattern designed based on desired or required component properties, thereby converting the boron steel into austenite along the lines of the grid pattern of the shaped sheet metal material. Moreover, the selective heat treatment comprises cooling 232 the selectively heat treated sheet metal material, whereby the austenite along the lines of the grid pattern is converted into martensite.
- the selective heat treatment changes the material characteristics of the sheet metal material at the position of the grid pattern, e.g. going from boron steel to austenite during heating and then to martensite during cooling.
- the grid pattern may be designed based on desired or required formability and/or component properties of the end product comprising the grid pattern provided sheet metal material.
- information relating to the grid pattern may be derived from component performance or property analysis. Accordingly, a specific grid pattern may be designed based on input data comprising information of the required behavior of the resulting ready-to-use component and its intended location and use. It should be appreciated that in some situations only some portions of the sheet metal material may require selective heat treatment.
- the component performance or property analysis may identify those areas in which selective heat treatment is required to meet the required performance or properties of the ready-to-use component comprising the grid pattern applied sheet metal material.
- the input data may relate to certain deformability properties of the component, the location of the component in the vehicle in use, the design of the ready -to use component (shape, holes, fittings, supports, etc), as well as information relating to details of the sheet metal material (alignment, width, thickness, material composition) and the press forming process (details regarding the dimensions and geometrical shapes created by the press forming tool, etc).
- the martenisite grid pattern By knowing the position in which the vehicle component is to be positioned in the vehicle in use, it is possible to create a martenisite grid pattern on at least part of the sheet metal material of the component, which will deform in a desirable manner in the event of collision with a foreign object in use. It should be noted that the parts of the sheet metal material not constituting the martensite grid pattern will deform more easily than the martensite grid pattern. Hence, the martensite grid pattern will in effect form a skeleton structure or a number of deformation zones being designed to have improved deformability in certain contemplated deformation directions.
- the resulting deformation zones allow for a predefined and controlled deformation of the component upon impact with a foreign object.
- the design of the grid pattern may therefore be created based on a desired deformation direction in the event of the component being subjected to a deformation force in use.
- a reinforced component for use in a vehicle Such a component may be arranged in the engine compartment at the front end of the vehicle, and essentially extending in a lateral direction in view of the longitudinal axis of the vehicle and at an outer boundary of the vehicle, e.g. close to the grill of the vehicle.
- a frontal collision it is important to protect the occupants in the vehicle.
- it may be desired to as far as possible preventing damage to vital engine components in the vehicle engine compartment.
- a grid pattern designed according to the intended placement of the grid pattern provided component in the vehicle in use is selectively heated in the sheet metal material of the component, whereby it is possible to allow deformation of the component at a higher extent in certain more preferred directions to avoid injuries to the occupants of the vehicle and at the same time minimize the damage to the vehicle vital components.
- Figs 3 to 4 show non-limiting examples of a grid pattern P being selectively heat treated into a sheet metal material, thereby forming a martensite grid pattern.
- the remaining parts of the sheet metal material are denoted with reference numeral C.
- the martensite grid pattern in conjunction with non-heat treated parts C of the sheet metal material together form a number of well defined energy absorbing deformation zones.
- Figs 5 to 8 show further non-limiting examples of components being provided with grid pattern according to some embodiments.
- the applied grid pattern may be arranged to allow for a first degree of deformation when a deformation force acting on the pattern in a first direction, and a second degree of deformation when a deformation force acting on the pattern in a second direction.
- the applied grid pattern is a honeycomb pattern with comparably low density and relatively high out-of-plane compression properties and out-of-plane shear properties.
- the applied grid pattern comprises at least one rhomboid shaped section, wherein each rhomboid section is attached or integral with at least another rhomboid section of the grid pattern.
- the applied grid pattern comprises at least one rectangular shaped section, wherein each rectangular section is attached or integral with at least another rectangular section of the grid pattern.
- the applied grid pattern comprises at least one ring shaped section, wherein each ring section is attached or integral with at least another ring section of the grid pattern.
- the design of the grid pattern could also be a combination of the different designs as presented in Figs 5 to 8.
- Figs 9a to c illustrate three non-limiting examples of different applied grid patterns 91 being provided on a press formed sheet metal material 92.
- the grid pattern is applied before forming/trimming.
- the grid pattern is provided onto the sheet metal material such as to provide local reinforcements of the sheet metal material, thereby facilitating the subsequent press forming of the sheet metal material.
- a grid pattern comprising a single line of reinforcing austenite may be used as a folding support structure, along which the sheet metal material may be folded into the final desired shape.
- the grid pattern is applied to the sheet metal material by means of a heating unit 31, 32 of a laser system.
- a system 30 for reinforcing a sheet metal material comprising boron steel is provided.
- the system 30 comprises a laser system 30 used to provide an austenized grid pattern 33, 34 in the sheet metal material 39.
- the sheet metal material 39 is moved in the direction of the arrow in relation to two laser units 31, 32.
- the first laser unit 31 irradiates the sheet metal material intermittently along a grid line 33 (lateral) extending over the width of the sheet metal material.
- the expression “intermittently” is here meant to be understood as occurring at regular intervals.
- the grid line 33 may e.g.
- a second laser unit may be configured to provide at least one austenized grid line 34 in the longitudinal (i.e. parallel to the direction of movement indicated by the arrow) direction of the sheet metal material 39.
- Such a second laser unit may be provided to irradiate the sheet metal material such as to provide at least one austenized grid line 34 when the sheet metal material is moved in the direction as indicated by the arrow.
- the two austenized grid lines 33, 34 together form the austenized grid pattern in the sheet metal material.
- Fig. 4 illustrates a system 40 for reinforcing a sheet metal material comprising boron steel.
- the system 40 comprises a single laser unit 41 providing the locally austenized grid pattern by locally heating the sheet metal material by means of laser irradiation.
- the single laser unit 41 continuously, or at least more frequent than for the lateral lines of austenization, irradiates at least one position of the sheet metal material by means of laser arrays 32a, 32b such as to provide a longitudinal line of austenization 34.
- a second set of laser arrays 31a intermittently heats a lateral line of the sheet metal material to austenization temperature.
- the resulting locally austenized grid pattern of Fig. 4 is the same as that of Fig. 3.
- the laser system uses a pattern generator for providing the desired austenized grid pattern.
- a control unit (not shown) may be used to control the operation of each laser unit, in conjunction with controlling of the movement of sheet metal material, such as to provide a desired grid pattern in the sheet metal material.
- the control unit may comprise a processor and a memory.
- control unit is configured to receive grid pattern design data, and based on the received grid pattern data control the operation of the selective heat treatment unit such as to selectively heat parts of the sheet metal material according to the grid pattern data.
- the grid pattern of the sheet metal material is provided by means of an induction hardening system.
- coils arranged in accordance with the grid lines of the grid pattern are lowered over the sheet metal, and due to the interaction between the coils and the sheet metal material, the grid lines of the sheet metal material are locally heated.
- the coils may be embedded, e.g. in cavities, in an induction unit in accordance with the grid lines of a predetermined grid pattern. Cooling
- the cooling may be conducted by means on passive cooling by the relatively cooler ambient or still air, such that a passive cooling at a sufficient rate of the defined heat treated pattern is achieved.
- the sufficient rate may be around 27°C per second up to around 50°C per second, since this is the known cooling rate required for the austenite to convert into martensite.
- the passive cooling i.e. not using any cooling device, has shown to meet the sufficient cooling rate of 27 °C per second, since the selective heat treatment is local, meaning that the adjacent areas to the grid pattern are very cool, i.e. close to room temperature, in relation to the temperature of the grid pattern, thereby cooling the heated grid lines sufficiently rapid for the austenite to convert into martensite.
- Passive cooling is advantageous since it does not require any complex cooling system.
- the cooling may be induced by a cooling unit actively cooling the metal sheet, e.g. by an air cooling device or air fan.
- the protective gas e.g. argon
- some lasers e.g. fiber lasers
- the protective gas e.g. argon
- some lasers e.g. fiber lasers
- the cooling unit may e.g. be an air cooling device supplying a cool stream of air around the grid pattern provided sheet metal material.
- the cooling unit may be a heat exchanging unit optionally included in a press forming tool by means of heat exchanging channels provided therein.
- the channels may be filled with a refrigerant fluid flowing there through.
- the refrigerant may either be a gas or a liquid.
- the cooling is preferably conducted rapidly in order for the austenite to convert to martensite.
- the heating temperature of the grid pattern of the sheet metal material may attain temperatures of up to 950°C thereby converting the boron steel into austenite along the grid lines of the grid pattern. Cooling down the grid lines of the grid pattern to a temperature of around 450°C ensures that the austenite converts into martensite.
- the method further may further comprise a step of cutting the formed single component to form ready-to-use component.
- a step of cutting the formed single component to form ready-to-use component.
- it may be required to cut away certain parts of the reinforced component after the two materials have been welded together in the heating step.
- Both the subsequent cutting and optional forming of the selectively heat treated sheet metal may be conducted in ambient air temperature, e.g. room temperature, Press hardening/forming
- Fig. 10 illustrates a side view of a press hardening tool 100 according to an embodiment.
- the press hardening tool 100 comprises a first press part 101, and a corresponding second pressing part 102.
- the press hardening tool further comprises a heating device 103 being provided in the first press part.
- An austenized pattern 104 is provided in the sheet metal material between the first 101 and second 102 press parts.
- Figs 1 la to l id show a ready-to-use component 1 11 being provided with a grid pattern P.
- Figs 1 la and 1 lb is a 3D view of the component, whereas Figs 1 lc to l id show the component in a top view.
- Figs 1 lb and l id respectively show an enlarged section of the component.
- the grid pattern is comprises different shapes at different portions of the component.
- a generally square sized the grid pattern covers a majority of the component (as is best seen in Figs 1 lc and l id).
- This square shaped grid pattern ends some distance from each of the edges formed by cut outs or holes 1 12 of the component and the component exterior edges.
- a contour line grid pattern follows each of the edges, thereby reinforcing the sheet metal material round the holes 1 12 and the outer edges of the component.
- the contour lines of the grid pattern may be provided by the selective heat treatment before the holes are cut out of the sheet metal material. In this sense, the contour lines of the grid pattern being located around the intended holes or cut outs reinforces the sheet metal material in these parts of the component, thereby facilitating for the subsequent cutting process.
- Figs 1 la to l id could e.g. be regarded as a typical component used in a vehicle.
- the non-heat treated parts i.e. the parts not being subject to the selective heat treatment, are denoted C.
- the method according to the embodiments of the invention is not limited to processing only boron steel sheet metal materials.
- Other metal materials, not necessarily converting into austenite and martensite could also be advantageously in order to provide the sheet metal material with a grid pattern using selective heat treatment, wherein the sheet metal material after the selective treatment has an advantageous different material characteristics than the non-treated parts, i.e. the original material characteristics, of the sheet metal material.
- Such a metal could be aluminum.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| SE1550026A SE540366C2 (en) | 2015-01-15 | 2015-01-15 | Method for improving formability of a sheet metal material and/or component properties of a sheet metal material by selective heat treatment |
| PCT/EP2016/050763 WO2016113388A1 (fr) | 2015-01-15 | 2016-01-15 | Procédé et système de traitement thermique sélectif d'une feuille métallique |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP3245307A1 true EP3245307A1 (fr) | 2017-11-22 |
Family
ID=55173833
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP16700815.0A Withdrawn EP3245307A1 (fr) | 2015-01-15 | 2016-01-15 | Procédé et système de traitement thermique sélectif d'une feuille métallique |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP3245307A1 (fr) |
| SE (1) | SE540366C2 (fr) |
| WO (1) | WO2016113388A1 (fr) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020049344A1 (fr) * | 2018-09-07 | 2020-03-12 | Arcelormittal | Procédé d'amélioration de l'aptitude au formage d'ébauches d'acier |
| DE102018217015A1 (de) * | 2018-10-04 | 2020-04-09 | Thyssenkrupp Ag | Verfahren zur Herstellung eines rissbeständigen Metallflachprodukts und rissbeständiges Werkstück oder Halbzeug |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007024797A1 (de) * | 2007-05-26 | 2008-11-27 | Linde + Wiemann Gmbh Kg | Verfahren zur Herstellung eines Profilbauteils, Profilbauteil und Verwendung eines Profilbauteils |
| US20090242086A1 (en) * | 2008-03-31 | 2009-10-01 | Honda Motor Co., Ltd. | Microstructural optimization of automotive structures |
| KR101149728B1 (ko) * | 2009-07-21 | 2012-07-09 | 부산대학교 산학협력단 | 차량용 멤버 제작방법 |
| ES2345029B1 (es) * | 2010-04-19 | 2011-07-18 | Autotech Engineering, Aie | Componente estructural de un vehiculo y procedimiento de fabricacion. |
-
2015
- 2015-01-15 SE SE1550026A patent/SE540366C2/en unknown
-
2016
- 2016-01-15 EP EP16700815.0A patent/EP3245307A1/fr not_active Withdrawn
- 2016-01-15 WO PCT/EP2016/050763 patent/WO2016113388A1/fr not_active Ceased
Also Published As
| Publication number | Publication date |
|---|---|
| SE540366C2 (en) | 2018-08-14 |
| WO2016113388A1 (fr) | 2016-07-21 |
| SE1550026A1 (sv) | 2016-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2585621B1 (fr) | Propriétés personnalisées par post-traitement de formage à chaud | |
| US20110315281A1 (en) | Tailored Properties By Post Hot Forming Processing | |
| JP4833323B2 (ja) | 車両用メンバー製作方法及びこれを利用したサイドメンバー | |
| CN109072322B (zh) | 具有至少两个强度不同的区域的汽车组件的制备方法 | |
| CN103069019B (zh) | 型材件和用于制造型材件的方法 | |
| CN103562416A (zh) | 可硬化的板材构件的热处理 | |
| KR20100096832A (ko) | 프레스 경화용 금형의 냉각장치 및 이를 이용한 자동차 부품의 제조방법 | |
| JP2016534932A (ja) | 硬化された部品のサブアセンブリおよび製造方法 | |
| CN107223076A (zh) | 用于制造由不同材料制成的部件的方法以及部件及其应用 | |
| KR20130112902A (ko) | 프로파일의 롤 포밍 방법 및 이에 의해 제조된 구조 부품 | |
| WO2016113388A1 (fr) | Procédé et système de traitement thermique sélectif d'une feuille métallique | |
| KR101159897B1 (ko) | 프레스 경화용 금형의 냉각장치 및 이를 이용한 자동차 부품의 제조방법 | |
| JP2012180082A (ja) | 車体フレームの製造方法 | |
| KR20190071756A (ko) | 맞춤-조정된 성질을 갖는 금속 시트 | |
| KR20170019758A (ko) | 초고장력강 판넬 및 그 제조방법 | |
| KR101326411B1 (ko) | 국부가열 장치 및 이를 이용한 핫스탬핑 성형 방법 | |
| KR20170094336A (ko) | 복합체 부품, 복합체 부품의 제조 방법 및 복합체 부품의 사용 | |
| EP3497251A1 (fr) | Procédé et dispositif de moulage et de durcissement de matériaux d'acier | |
| KR101315491B1 (ko) | 차량의 센터필러용 보강재의 제조방법 | |
| KR20130122493A (ko) | Tbph 기술을 적용한 차체 부품 제조 방법 | |
| Kolleck et al. | Tools and technologies for hot forming with local adjustment of part properties | |
| US11873537B2 (en) | Method for producing a profiled component, and profiled component | |
| JP2025538100A (ja) | 鋼材の一部を熱処理するプロセス及び鋼板材を形成するためのアセンブリ | |
| KR101371139B1 (ko) | 열처리에 의한 차량용 프론트 사이드 멤버 제조방법 | |
| CA2916123A1 (fr) | Procede et dispositif permettant le durcissement partiel de demi-produits |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20170629 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20180719 |
|
| 19U | Interruption of proceedings before grant |
Effective date: 20180822 |
|
| 19W | Proceedings resumed before grant after interruption of proceedings |
Effective date: 20220801 |
|
| PUAJ | Public notification under rule 129 epc |
Free format text: ORIGINAL CODE: 0009425 |
|
| 32PN | Public notification |
Free format text: COMMUNICATION PURSUANT TO RULE 142 EPC (RESUMPTION OF PROCEEDINGS UNDER RULE 142(2) EPC DATED 18.02.2022) |
|
| PUAJ | Public notification under rule 129 epc |
Free format text: ORIGINAL CODE: 0009425 |
|
| 32PN | Public notification |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 2015C DATED 03/03/2023) |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20221201 |