EP3124584A1 - Water-soluble metalworking oil, and metalworking coolant - Google Patents
Water-soluble metalworking oil, and metalworking coolant Download PDFInfo
- Publication number
- EP3124584A1 EP3124584A1 EP15769952.1A EP15769952A EP3124584A1 EP 3124584 A1 EP3124584 A1 EP 3124584A1 EP 15769952 A EP15769952 A EP 15769952A EP 3124584 A1 EP3124584 A1 EP 3124584A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- mass
- component
- fluid
- metalworking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/72—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing sulfur, selenium or tellurium
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M105/00—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
- C10M105/08—Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
- C10M105/22—Carboxylic acids or their salts
- C10M105/24—Carboxylic acids or their salts having only one carboxyl group bound to an acyclic carbon atom, cycloaliphatic carbon atom or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/04—Hydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
- C10M173/02—Lubricating compositions containing more than 10% water not containing mineral or fatty oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/125—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
- C10M2207/126—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/085—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing carboxyl groups; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/10—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
- C10M2219/104—Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/02—Unspecified siloxanes; Silicones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/20—Metal working
- C10N2040/22—Metal working with essential removal of material, e.g. cutting, grinding or drilling
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Lubricants (AREA)
Abstract
Description
- The present invention relates to a water-soluble metalworking fluid and a metalworking coolant provided by diluting the fluid with water.
- A metalworking fluid used in metalworking is generally categorized into oil-type (oil-based) fluid and water-type (water-based) fluid, the latter of which is more frequently used because such water-based fluid is excellent in cooling capabilities and penetration capabilities and free from a risk of causing a fire.
- Particularly, since cooling capabilities of the fluid is significant in grinding, a solution-type fluid not containing a mineral oil is frequently used (see, for instance, Patent Literature 1). The solution-type fluid exhibits favorable cooling capabilities and rot resistance, but exhibits inferior lubricity to those of non-water-type, emulsion-type and soluble-type fluids. An insufficient lubricity causes deterioration in roughness of a machined surface, a decrease in lifetime of a grinding stone, or grinding burn.
- Accordingly, in order to add the lubricity to the soluble-type fluid, polyalkylene glycol (PAG) is sometimes blended with the fluid (see Patent Literatures 2 and 3).
-
- Patent Literature 1:
JP-A-40-14480 - Patent Literature 2:
JP-A-10-324888 - Patent Literature 3:
JP-A-2010-70736 - In the soluble-type fluids disclosed in Patent Literatures 2 and 3, a favorable lubricity is obtained by increasing an amount of PAG. However, even if a great amount of PAG is blended, improvement in the lubricity is limited. Accordingly, under severe machining conditions, a friction coefficient between a grinding stone and a ground material is increased to cause a decrease in lifetime of the grinding stone and grinding burn.
- An object of the invention is to provide a water-soluble metalworking fluid exhibiting excellent lubricity and wear resistance even under severe machining conditions, and a metalworking coolant provided by diluting the water-soluble metalworking fluid with water.
- The inventors have found that a system including a dicarboxylic acid having a sulfide structure and a long-chain carboxylic acid is excellent in both of lubricity and wear resistance when PAG is preferably excluded from the system. The invention has been reached based on this finding.
- Specifically, the invention provides a water-based metalworking fluid and a metalworking coolant as follows.
- According to an aspect of the invention, a water-soluble metalworking fluid contains a component (A) that is a dicarboxylic acid including a sulfide structure and a component (B) that is a monocarboxylic acid, in which the fluid contains no polyalkylene glycol.
- According to another aspect of the invention, a water-soluble metalworking coolant is provided by diluting the above-mentioned water-soluble metalworking fluid with water by 2 to 200 times in volume.
- Since the water-soluble metalworking fluid (undiluted solution) according to the above aspect of the invention contains the component (A) that is a dicarboxylic acid including a sulfide structure and the component (B) that is a monocarboxylic acid but does not contain a polyalkylene glycol, the water-soluble metalworking fluid exhibits favorable lubricity and wear resistance in a form of a metalworking coolant provided by diluting the fluid with water. Accordingly, when the metalworking coolant according to the above aspect of the invention is used for grinding, the metalworking coolant is unlikely to cause deterioration in roughness of a machined surface even under severe machining conditions, so that grinding burn and a decrease in lifetime of the grinding stone can be sufficiently restrained.
- Exemplary embodiment(s) of the invention will be described in detail below.
- A water-soluble metalworking fluid in an exemplary embodiment of the invention (hereinafter, also referred to as "the present fluid") is an undiluted solution provided by blending a component (A) that is a dicarboxylic acid including a sulfide structure and a component (B) that is a monocarboxylic acid, in which the present fluid contains no polyalkylene glycol. The present fluid and a metalworking coolant provided by diluting the present fluid with water will be described in detail below.
- A component (A) of the present fluid is a dicarboxylic acid including a sulfide structure and provides lubricity. As the component (A), a dicarboxylic acid represented by a formula (1) below is particularly excellent in lubricity.
HOOC-R1-Sn-R2-COOH (1)
- Herein, R1 and R2 each are a hydrocarbon group having 1 to 5 carbon atoms. n is an integer from 1 to 8. When R1 and R2 each contain 6 or more carbon atoms, water solubility may be deteriorated.
- The total number of the carbon atoms in the dicarboxylic acid of the formula (1) is in a range from 4 to 12, however, is preferably in a range from 6 to 10 in terms of water solubility and lubricity. R1 and R2 each are preferably an alkylene group, examples of which include a methylene group, ethylene group, methylethylene group, propylene group, and butylene group. An ethylene group is particularly preferable in terms of water solubility and lubricity.
- When n is 9 or more, the dicarboxylic acid becomes structurally unstable and may be decomposed. Accordingly, n is preferably 6 or less, more preferably 2 or less, further preferably 1.
- Examples of the dicarboxylic acid include thiodipropionic acid, dithiodipropionic acid, thiodiacetate, thiodisuccinate, dithiodiacetate, and dithiodibutyrate.
- A content of the component (A) is preferably in a range from 0.1 mass% to 14 mass% based on the total amount of the undiluted solution, more preferably from 1 mass% to 10 mass%, further preferably from 2 mass% to 5 mass%. When the content of the component (A) is excessively large, rust resistance of the present fluid (undiluted solution) diluted with water may be decreased.
- A component (B) of the present fluid, which is a monocarboxylic acid, contributes to improvement in lubricity and wear resistance. The monocarboxylic acid is preferably a so-called long-chain carboxylic acid, specifically a compound represented by a formula (2) below.
R3-COOH (2)
- R3 is a hydrocarbon group having 11 or more carbon atoms. The hydrocarbon group may be linear or branched and saturated or unsaturated. Tall oil fatty acid is preferable in terms of lubricity and wear resistance.
- Specific examples of the long-chain carboxylic acid include lauric acid, stearic acid, oleic acid, linolic acid, linolenic acid, erucic acid, palmitic acid, ricinoleic acid, hydroxy fatty acid (e.g., ricinoleic acid, 12-hydroxystearic acid), arachidic acid, behenic acid, melissic acid, isostearic acid, soy oil fatty acid extracted from fat and oil, coconut oil fatty acid, rape-seed oil fatty acid, and tall oil fatty acid (C 18).
- A content of the component (B) is preferably in a range from 1 mass% to 20 mass% of the total amount of the present fluid in terms of lubricity and wear resistance at a typical dilution ratio.
- The present fluid is provided in a form of the undiluted solution obtained by blending the above components (A) and (B) with water, but does not contain a polyalkylene glycol (PAG). However, the invention encompasses an instance where a polyalkylene glycol is mixed as an impurity at a slight amount as low as the polyalkylene glycol does not damage the advantages of the invention.
- In the present fluid (undiluted solution), a total content of the components (A) and (B) is preferably in a range from 4 mass% to 40 mass% of the total amount of the present fluid, more preferably from 5 mass% to 15 mass%.
- When the total content of the components (A) and (B) is less than 4 mass%, a decrease in lubricity (an increase in a friction coefficient) may occur if the present fluid is diluted with water at an excessively high dilution ratio at a working site. On the other hand, when the total content of the components (A) and (B) exceeds 40 mass%, stability of the undiluted solution may be decreased. The stability of the undiluted solution means that uniformity of the undiluted solution is lost due to phase separation, undissolved mass or precipitation of solid content and the like.
- Water for preparing the undiluted solution is preferably 20 mass% to 75 mass% of the total amount of the present fluid. When water is less than 20 mass%, dissolution of the components (A) and (B) becomes difficult and preparation of the undiluted solution becomes complicated. When water for preparing the undiluted solution exceeds 75 mass%, an excessive amount of the undiluted solution has to be stored or transported, thereby lowering handleability.
- The fluid (undiluted solution) may be directly used, but, is preferably diluted with water at a ratio (volume ratio) of 2 to 200 times, preferably 5 to 100 times to be used as a metalworking coolant.
- It is preferable that the present fluid further contains a nonion-based surfactant as a component (C). By blending such a surfactant, wettability of the present fluid is improved, so that the present fluid easily penetrates between the grinding stone and a ground material.
- An acethylene glycol surfactant is particularly preferable as the component (C) in terms of the effects. As the acethylene glycol surfactant, for instance, acethylene glycol and an alkylene oxide adduct thereof disclosed in
are suitably usable. For instance, an acethylene glycol EO adduct is suitable. Examples of a commercially available acethylene glycol surfactant include Dynol 604, Surfynol 420 and Surfynol 465 which are manufactured by Air Products and Chemicals, Inc.JP-A-2011-12249 - A content of the component (C) is preferably in a range from 0.1 mass% to 20 mass% of the total amount of the undiluted solution, more preferably from 1 mass% to 10 mass%. When the content of the component (C) is excessively large, antifoaming performance of the present fluid after being diluted is deteriorated.
- It is preferable that the present fluid further contains alkanolamine as a component (D). Alkanolamine reacts with the component (A) or the component (B) to form alkanolamine carboxylate, thereby improving lubricity. Moreover, alkanolamine also serves as a rust inhibitor.
- The kind of alkanolamine is not particularly limited. A combination of primary, secondary and tertiary amines is usable. However, when only the primary amine is used, since volatility of the primary amine is high, working environments may be deteriorated because of odor generation. Accordingly, when the primary amine is used, it is preferable to combine the secondary amine and/or tertiary amine with the primary amine. The tertiary amine is preferable in terms of odor generation.
- Examples of the primary amine are 1-amino-2-propanol, 2-amino-2-methyl-1-propanol, 1-amino-2-butanol, 2-amino-1-propanol, and 3-amino-2-butanol. Among the above, in view of the rust resistance for iron, 1-amino-2-propanol and 2-amino-2-methyl-1-propanol are particularly preferable. In the present fluid, one of the above components may be used alone, or two or more thereof may be used.
- Examples of the secondary amine include diethanolamine, di(n-propanol)amine, diisopropanolamine, N-methylmonoethanolamine, N-ethylmonoethanolamine, N-cyclomonoethanolamine, N-n-propylmonoethanolamine, N-i-propylmonoethanolamine, N-n-butylmonoethanolamine, N-i-butylmonoethanolamine, and N-t-butylmonoethanolamine. In the present fluid, one of the above components may be used alone, or two or more thereof may be used.
- Examples of the tertiary amine include N-methyldiethanolamine, N-ethyldiethanolamine, triethanolamine, N-cyclohexyldiethanolamine, N-n-propyldiethanolamine, N-i-propyldiethanolamine, N-n-butyldiethanolamine, N-i-butyldiethanolamine, and N-t-butyldiethanolamine. One of the above components may be used alone, or two or more thereof may be used.
- A content of the component (D) is preferably in a range from 20 mass% to 55 mass% of the total amount of the present fluid (undiluted solution). When the content of the component (D) is less than 20 mass%, rust resistance may be decreased if the present fluid is diluted with water at an excessively high dilution ratio at a working site. On the other hand, when the content of the component (D) exceeds 55 mass%, the stability of the undiluted solution is lowered.
- Herein, in order to improve the rust resistance, it is preferable to use carboxylic acid containing no sulfur as the rust inhibitor together with the component (D). In view of antifoaming capabilities and hard water stability, preferable examples of the carboxylic acid include: a monocarboxylic acid such as caproic acid, nonane acid, isononane acid, trimethylhexanoic acid, neodecanoic acid and decane acid having 8 to 10 carbon atoms; and a dicarboxylic acid such as nonane diacid, undecanoic diacid, sebacic acid, dodecanoic diacid having 9 to 12 carbon atoms.
- Particularly, the above-mentioned trimethylhexanoic acid is excellent in reducing solid substances being formed on a surface of the present fluid (hard water stability) when the present fluid (undiluted solution) is diluted with water.
- In view of rot resistance, the alkyl group that is a main chain of the carboxylic acid preferably has a branched structure. For the carboxylic acid, although dibasic acids are excellent in rust resistance as a salt, dibasic acids and monobasic acids are preferably mixed in use in view of stability (unlikeliness to be insoluble) of the undiluted solution.
- The present fluid may be blended as necessary with publicly-known various kinds of additives as long as such addition is compatible with an object of the present invention. Examples of the additives include an extreme pressure agent, oiliness agent, fungicide (preservative), metal deactivator and antifoaming agent.
- Examples of the extreme pressure agent include a sulfur-based extreme pressure agent, a phosphorus-based extreme pressure agent, an extreme pressure agent containing sulfur and metal, and an extreme pressure agent containing phosphorus and metal. One of the extreme pressure agents may be used alone or two or more thereof may be used in combination. The extreme pressure agent may be any extreme pressure agent, as long as the extreme pressure agent contains sulfur atoms or phosphorus atoms in its molecule and the extreme pressure agent can provide load bearing effects and wear resistance. Examples of the extreme pressure agent containing sulfur in its molecule include: sulfurized fat and oil, sulfurized fatty acid, ester sulfide, olefin sulfide, dihydrocarbyl polysulfide, a thiadiazole compound, an alkylthiocarbamoyl compound, a triazine compound, a thioterpene compound, a dialkylthiodipropionate compound and the like. In view of blending effects, the extreme pressure agent is blended in the undiluted solution with a content of approximately 0.05 mass% to 0.5 mass% of the total amount of the final diluted fluid (coolant).
- Examples of the oiliness agent include: an aliphatic compound such as aliphatic alcohol and fatty acid metal salt; and an ester compound such as polyol ester, sorbitan ester and glyceride. In view of blending effects, the oiliness agent is blended in the undiluted solution with a content of approximately 0.2 mass% to 2 mass% of the total amount of the coolant.
- The fungicide is exemplified by 2-pyridylthio-1-oxide salt. Examples of the fungicide are 2-pyridylthio-1-oxide sodium, zinc bis(2-pyridyldithio-1-oxide), and bis(2-sulfidepyridine-1-olato) copper. In view of blending effects, the fungicide is blended in the undiluted solution with a content of approximately 0.01 mass% to 5 mass% of the total amount of the coolant.
- Examples of the metal deactivator include benzotriazole, benzotriazole derivative, imidazoline, pyrimidine derivative, and thiadiazole. One of the metal deactivator may be used alone or two or more thereof may be used in combination. In view of blending effects, the metal deactivator is blended in the undiluted solution with a content of approximately 0.01 mass% to 3 mass% of the total amount of the coolant.
- Examples of the antifoaming agent include methyl silicone oil, fluorosilicone oil, polyacrylates and the like. In view of blending effects, the antifoaming agent is blended in the undiluted solution with a content of approximately 0.004 mass% to 0.08 mass% of the total amount of the coolant.
- The water-soluble metalworking fluid according to the above aspect of the invention, which is diluted as necessary with water so that its concentration is adjusted suitably for the usage, is preferably applied in various metalworking fields such as grinding, cutting, polishing, squeezing, drawing, flatting and the like. Examples of the grinding include cylinder grinding, internal grinding, plane grinding, centerless grinding, tool grinding, honing grinding, super finishing, and special curve grinding (e.g., screw grinding, gear grinding, cum grinding, and roll grinding).
- Herein, in the invention, the composition provided by blending the components (A) and (B) means not only a "composition containing the components (A) and (B)" but also a "composition containing a modified substance of at least one of the components (A) and (B) in place of the at least one of the components (A) and (B), and a "composition containing a reaction product obtained by reacting the component (A) with the component (B)."
- Next, the invention will be described in detail with reference to Examples, but is not limited at all by the Examples.
- After water-soluble metalworking fluids (undiluted solutions) were prepared according to blending compositions shown in Table 1, the undiluted solutions were respectively diluted with tap water by 20 times in volume to obtain sample oils. The sample oils were subjected to a block-on-ring test to evaluate lubricity and wear resistance. Testing conditions and evaluation items (evaluation method) are as follows. Results are shown in Table 1.
-
- Test machine: block-on-ring test machine (manufactured by Marubishi Engineering Co., Ltd.)
- Load: 100N
- Rotation rate: 500 rpm (53m/min)
- Time: 10 min
- Ring: SAE 4620STEEL
- Block: S45C
- Standards of the evaluation based on a friction force (N) are as follows.
- A: 13.5N or less
- B: more than 13.5N
- Standards of the evaluation based on a width of a wear track (µm) are as follows.
- A: 1100 µm or less
- B: more than 1100 µm
- As each of coolants obtained by diluting the undiluted solutions of Examples 1 to 2 contains the components (A) and (B) of the invention but does not contain PAG, all the coolants are excellent in lubricity and wear resistance.
- In contrast, as each of coolants obtained by diluting the undiluted solutions of Comparatives 1 to 6 does not contain one of the components (A) and (B) or contains PAG, the coolants cannot simultaneously exhibit lubricity and wear resistance.
Claims (10)
- A water-soluble metalworking fluid comprising:a component (A) that is a dicarboxylic acid comprising a sulfide structure; anda component (B) that is a monocarboxylic acid, whereinthe water-soluble metalworking fluid comprises no polyalkylene glycol.
- The water-soluble metalworking fluid according to claim 1, wherein
the component (A) is a compound represented by a formula (1) below,
HOOC-R1-Sn-R2-COOH (1)
where: R1 and R2 are each independently a hydrocarbon group having 1 to 5 carbon atoms, andn is an integer from 1 to 8. - The water-soluble metalworking fluid according to claim 1 or 2, wherein
a content of the component (A) is in a range from 0.1 mass% to 14 mass% of a total amount of the fluid. - The water-soluble metalworking fluid according to any one of claims 1 to 3, wherein
the component (B) is a compound represented by a formula (2) below,
R3-COOH (2)
where: R3 is a hydrocarbon group having 11 or more carbon atoms. - The water-soluble metalworking fluid according to any one of claims 1 to 4, wherein
a content of the component (B) is in a range from 1 mass% to 20 mass% of the total amount of the fluid. - The water-soluble metalworking fluid according to any one of claims 1 to 5, further comprising:a component (C) that is an acethylene glycol surfactant.
- The water-soluble metalworking fluid according to claim 6, wherein a content of the component (C) is in a range from 1 mass% to 15 mass% of the total amount of the fluid.
- The water-based metalworking fluid according to any one of claims 1 to 7, wherein
the water-based metalworking fluid is in a form of an undiluted solution comprising water in a range from 15 mass% to 75 mass%. - A metalworking coolant provided by diluting the water-based metalworking fluid according to any one of claims 1 to 8 with water by 2 to 200 times in volume.
- The metalworking coolant according to claim 9, wherein
the metalworking coolant is used for grinding.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014070522A JP6445247B2 (en) | 2014-03-28 | 2014-03-28 | Water-soluble metalworking oil and coolant for metalworking |
| PCT/JP2015/058734 WO2015146909A1 (en) | 2014-03-28 | 2015-03-23 | Water-soluble metalworking oil, and metalworking coolant |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP3124584A1 true EP3124584A1 (en) | 2017-02-01 |
| EP3124584A4 EP3124584A4 (en) | 2017-10-25 |
Family
ID=54195422
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP15769952.1A Withdrawn EP3124584A4 (en) | 2014-03-28 | 2015-03-23 | Water-soluble metalworking oil, and metalworking coolant |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20180171255A1 (en) |
| EP (1) | EP3124584A4 (en) |
| JP (1) | JP6445247B2 (en) |
| KR (1) | KR20160137982A (en) |
| CN (1) | CN106459822B (en) |
| TW (1) | TW201602334A (en) |
| WO (1) | WO2015146909A1 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11319507B2 (en) * | 2016-12-28 | 2022-05-03 | Kao Corporation | Cleaning liquid for aqueous ink comprising an acetylene glycol-based surfactant |
| JP7724060B2 (en) * | 2018-03-30 | 2025-08-15 | 出光興産株式会社 | Water-soluble metalworking oil and metalworking method |
| TWI698506B (en) * | 2018-04-10 | 2020-07-11 | 中國鋼鐵股份有限公司 | Anti-rust oil composition and anti-rust method for steel |
| JP7636943B2 (en) * | 2021-03-31 | 2025-02-27 | 出光興産株式会社 | Machining fluid, composition for machining fluid, and brittle material machining fluid composition |
| US12325821B2 (en) | 2022-07-12 | 2025-06-10 | Secure Specialty Chemicals Corp. | Lubricant blends and methods for improving lubricity of brine-based drilling fluids |
| WO2024204296A1 (en) * | 2023-03-31 | 2024-10-03 | 出光興産株式会社 | Processing fluid |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3079340A (en) * | 1959-10-05 | 1963-02-26 | Shell Oil Co | Metal working lubricant |
| JPS602359B2 (en) * | 1982-05-19 | 1985-01-21 | 一方社油脂工業株式会社 | Grinding and cutting fluids |
| JPH0765065B2 (en) * | 1987-04-24 | 1995-07-12 | 出光興産株式会社 | Water-based lubricant |
| JPH0676590B2 (en) * | 1987-08-12 | 1994-09-28 | ユシロ化学工業株式会社 | Water-soluble cutting fluid |
| JP2579502B2 (en) * | 1987-11-26 | 1997-02-05 | 日清製油株式会社 | Lubricant |
| JP2719571B2 (en) * | 1992-11-12 | 1998-02-25 | 日本パーカライジング株式会社 | Water-based lubricating coating composition |
| US5391310A (en) * | 1993-11-23 | 1995-02-21 | Cincinnati Milacron Inc. | Sulfurized aqueous machining fluid composition |
| AU719520B2 (en) * | 1995-09-19 | 2000-05-11 | Lubrizol Corporation, The | Additive compositions for lubricants and functional fluids |
| JPH10110181A (en) * | 1996-10-08 | 1998-04-28 | Elf Atochem Japan Kk | Water-soluble lubricant for plastic working for metal |
| JP3267894B2 (en) | 1997-05-26 | 2002-03-25 | 協同油脂株式会社 | Water-soluble oil for metal processing |
| JP2001140080A (en) * | 1999-11-12 | 2001-05-22 | Nippon Steel Corp | Lubricated stainless steel sheet, lubricated stainless steel pipe, and method for producing lubricated stainless steel pipe |
| FR2809117B1 (en) * | 2000-05-19 | 2002-07-05 | Atofina | MULTIFUNCTIONAL AQUEOUS LUBRICANT BASED ON DITHIODIGLYCOLIC ACID |
| JP3975342B2 (en) * | 2002-06-05 | 2007-09-12 | 三彩化工株式会社 | Water-soluble metal processing oil |
| JP5394691B2 (en) | 2008-08-22 | 2014-01-22 | 出光興産株式会社 | Water-soluble metalworking fluid and metalworking coolant |
| JP5509583B2 (en) * | 2008-10-21 | 2014-06-04 | 新日本理化株式会社 | Industrial or automotive lubricating oil composition |
| JP5464055B2 (en) * | 2009-06-02 | 2014-04-09 | 日信化学工業株式会社 | Water-based cutting fluid and water-based cutting agent |
| JP5685481B2 (en) * | 2011-04-25 | 2015-03-18 | 株式会社Adeka | Lubricating oil additive composition and method for improving storage stability of lubricating oil additive composition |
-
2014
- 2014-03-28 JP JP2014070522A patent/JP6445247B2/en active Active
-
2015
- 2015-03-23 US US15/128,279 patent/US20180171255A1/en not_active Abandoned
- 2015-03-23 KR KR1020167023758A patent/KR20160137982A/en not_active Withdrawn
- 2015-03-23 WO PCT/JP2015/058734 patent/WO2015146909A1/en not_active Ceased
- 2015-03-23 CN CN201580016334.0A patent/CN106459822B/en active Active
- 2015-03-23 EP EP15769952.1A patent/EP3124584A4/en not_active Withdrawn
- 2015-03-26 TW TW104109793A patent/TW201602334A/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CN106459822B (en) | 2020-01-24 |
| TW201602334A (en) | 2016-01-16 |
| KR20160137982A (en) | 2016-12-02 |
| EP3124584A4 (en) | 2017-10-25 |
| JP6445247B2 (en) | 2018-12-26 |
| WO2015146909A1 (en) | 2015-10-01 |
| JP2015189955A (en) | 2015-11-02 |
| CN106459822A (en) | 2017-02-22 |
| US20180171255A1 (en) | 2018-06-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3124583A1 (en) | Water-soluble metalworking fluid, and metalworking coolant | |
| EP2928992B1 (en) | Additive compositions and industrial process fluids | |
| US8969270B2 (en) | Water-soluble metal working fluid, and coolant for metal working | |
| EP3124584A1 (en) | Water-soluble metalworking oil, and metalworking coolant | |
| JP6009378B2 (en) | Water-soluble metalworking fluid and metalworking coolant | |
| KR100665790B1 (en) | Water Soluble Cutting Oil Composition | |
| JP6355339B2 (en) | Metalworking fluid composition, processing method using the same, and metalworked part manufactured by the metalworking method | |
| JP5748439B2 (en) | Oil for metal processing and method for processing metal | |
| US9828566B2 (en) | Boron free corrosion inhibitors for metalworking fluids | |
| CN105073964A (en) | Water-based metalworking oil | |
| WO2014000166A1 (en) | Emulsifier for lubricatiing oil concentrate | |
| US20060270569A1 (en) | Emulsions and products thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20160929 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20170922 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10N 40/22 20060101ALI20170918BHEP Ipc: C10M 129/40 20060101ALI20170918BHEP Ipc: C10M 129/08 20060101ALI20170918BHEP Ipc: C10M 129/32 20060101ALI20170918BHEP Ipc: C10N 30/06 20060101ALI20170918BHEP Ipc: C10M 173/02 20060101AFI20170918BHEP Ipc: C10M 135/26 20060101ALI20170918BHEP Ipc: C10N 40/20 20060101ALI20170918BHEP |
|
| 17Q | First examination report despatched |
Effective date: 20180604 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20181213 |