EP3049733B1 - Fluid heater - Google Patents
Fluid heater Download PDFInfo
- Publication number
- EP3049733B1 EP3049733B1 EP15827258.3A EP15827258A EP3049733B1 EP 3049733 B1 EP3049733 B1 EP 3049733B1 EP 15827258 A EP15827258 A EP 15827258A EP 3049733 B1 EP3049733 B1 EP 3049733B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- fluid
- wafer
- tank
- fuel mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V30/00—Apparatus or devices using heat produced by exothermal chemical reactions other than combustion
Definitions
- This disclosure relates to heat transfer systems, and in particular to devices for transferring heat to a fluid.
- heat transfer systems use hot fluids as a heat transfer medium.
- Such systems include a heat generator for generating heat, a heat transfer medium in thermal communication with the energy source, and a pump to move the heated medium to wherever the heat is needed. Because of its high heat capacity and its abundance, a common heat transfer fluid is water, both in its liquid and gas phase.
- a variety of heat generators are in common use. For instance, in nuclear power plants, nuclear fission provides energy for heating water. There also exist solar water heaters that use solar energy. Also known in the art are self contained heat sources for heating food and drink wherein an energetic nanolaminate is electrically initiated via resistive heating, see for instance US 2008/0131316 A1 . However, most heat transfer sources rely on an exothermal chemical reaction, and in particular, on combustion of some fuel.
- the invention features an apparatus for heating fluid, the apparatus including a tank for holding fluid to be heated, and a fuel wafer in fluid communication with the fluid, the fuel wafer including a fuel mixture including reagents and a catalyst, and a heat source in thermal communication with the fuel mixture and the catalyst.
- the heat source is an electrical resistor.
- the fuel mixture includes lithium and lithium aluminum hydride, those in which the catalyst includes a group 10 element, such as nickel in powdered form, or in any combination thereof.
- the catalyst in powdered form has been treated to enhance its porosity.
- the catalyst can be nickel powder that has been treated to enhance porosity thereof.
- the apparatus can also include an electrical energy source, such as a voltage source and/or current source in electrical communication with the heat source.
- the fuel wafer includes a multi-layer structure having a layer of the fuel mixture in thermal communication with a layer containing the heat source.
- the fuel wafer includes a central heating insert and a pair of fuel inserts disposed on either side of the heating insert.
- the tank includes a recess for receiving the fuel wafer therein.
- the tank further includes a door for sealing the recess.
- the tank includes a radiation shield.
- the apparatus further includes a controller in communication with the voltage source. Among these are controllers that are configured to vary the voltage in response to temperature of the fluid to be heated.
- a heat transfer system 10 includes a pipe 12 for transporting a heated fluid in a closed loop between a heat source 14 and a thermal load 16.
- a pump 18 propels the heated fluid.
- the fluid's own pressure is sufficient to propel the fluid.
- a typical thermal load 16 includes radiators such as those commonly used for heating interior spaces.
- the heat source 14 is a tank 20 having a lead composite shield, an inlet 22 and an outlet 24 , both of which are connected to the pipe 12.
- the interior of the tank 20 contains fluid to be heated.
- the fluid is water.
- other fluids can be used.
- the fluid need not be a liquid fluid but can also be a gas, such as air.
- the tank 20 further includes a door 26 that leads to a receptacle 28 protruding into the tank 20.
- Radiating fins 30 protrude from walls of the receptacle 28 into the tank 20.
- the receptacle 28 and the fins 30 are typically made of a material having high thermal conductivity, such as metal.
- a suitable metal is one not subject to corrosion, such as stainless steel.
- the receptacle 28 holds a multi-layer wafer 32 for generating heat.
- a voltage source 33 is connected to the wafer 32 , and a controller 35 for controlling the voltage source 33 in response to temperature of fluid in the tank 20 as sensed by a sensor 37.
- the multilayer fuel wafer 32 includes a heating section 34 sandwiched between two fuel sections 36, 38.
- the heating section 34 features a central layer 40 made of an insulating material, such as mica, that supports a resistor 42.
- insulating material such as mica
- other heating sources can be used, including heat sources that rely on combustion of, for example, natural gas, as well as heat sources that rely on electrical induction. The use of gas thus avoids the need to have a source of electrical energy for initiating the reaction.
- FIG. 4 shows an exemplary central layer 40 having holes 44 through which a resistive wire 42 has been wound. This resistive wire 42 is connected to the voltage source 33.
- First and second insulating layers 46, 48 such as mica layers, encase the central layer 40 to provide electrical insulation from the adjacent fuel sections 36, 38.
- Each fuel section 36, 38 features a pair of thermally conductive layers 50, 52 , such as steel layers.
- Sandwiched between each pair of conductive layers 50, 52 is a fuel layer 54 that contains a fuel mixture having nickel, lithium, and lithium aluminum hydride LiAlH 4 ("LAH"), all in powdered form.
- LAH lithium aluminum hydride
- the nickel has been treated to increase its porosity, for example by heating the nickel powder to for times and temperatures selected to superheat any water present in micro-cavities that are inherently in each particle of nickel powder.
- the resulting steam pressure causes explosions that create larger cavities, as well as additional smaller nickel particles.
- the entire set of layers is welded together on all sides to form a sealed unit.
- the size of the wafer 32 is not important to its function. However, the wafer 32 is easier to handle if it is on the order of 0,85 cm (1/3 inch) thick and 30,5 cm (12 inches) on each side.
- the steel layers 50, 52 are typically 1 mm thick, and the mica layers 40, 48 , which are covered by a protective polymer coating, are on the order of 0.1 mm thick. However, other thicknesses can also be used.
- the voltage source 33 can be turned off, as the reaction sequence is self-sustaining. However, the reaction rate may not be constant. Hence, it may be desirable to turn on the voltage source 33 at certain times to reinvigorate the reaction.
- the temperature sensor 37 provides a signal to the controller 35 , which then determines whether or not to apply a voltage in response to the temperature signal. It has been found that after the reaction has generated approximately 6 kilowatt hours of energy, it is desirable to apply approximately 1 kilowatt hour of electrical energy to reinvigorate the reaction sequence.
- the efficiency of the wafer 32 will decrease to the point where it is uneconomical to continually reinvigorate the reaction sequence. At this point, the wafer 32 can simply be replaced. Typically, the wafer 32 will sustain approximately 180 days of continuous operation before replacement becomes desirable.
- the powder in the fuel mixture consists largely of spherical particles having diameters in the nanometer to micrometer range, for example between 1 nanometer and 100 micrometers. Variations in the ratio of reactants and catalyst tend to govern reaction rate and are not critical. However, it has been found that a suitable mixture would include a starting mixture of 50% nickel, 20% lithium, and 30% LAH. Within this mixture, nickel acts as a catalyst for the reaction, and is not itself a reagent. While nickel is particularly useful because of its relative abundance, its function can also be carried out by other elements in column 10 of the periodic table, such as platinum or palladium.
- FIGS. 5-7 show a variety of ways to connect the heat source 14 in FIG. 1 .
- the heat source 14 is placed downstream from a conventional furnace 56.
- the controller 35 is optionally connected to control the conventional furnace.
- the conventional furnace 56 will remain off unless the output temperature of the heat source 14 falls below some threshold, at which point the furnace 56 will start.
- the conventional furnace 56 functions as a back-up unit.
- first and second heat sources 58, 60 like that described in FIGS. 1-4 are connected in series. This configuration provides a hotter output temperature than can be provided with only a single heat source 58 by itself. Additional heat sources can be added in series to further increase the temperature.
- first and second heat sources 62, 64 like that described in FIGS. 1-4 are connected in parallel.
- the output volume can be made greater than what could be provided by a single heat transfer unit by itself. Additional heat transfer units can be added in parallel to further increase volume.
- the reagents are placed in the reaction chamber at a pressure of 3-6 bar and a temperature of from 400 C to 600 C.
- An anode is placed at one side of the reactor and a cathode is placed at the other side of the reactor. This accelerates electrons between them to an extent sufficient to have very high energy, in excess of 100 KeV. Regulation of the electron energy can be carried out by regulating the electric field between the cathode and the anode.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Resistance Heating (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Pipe Accessories (AREA)
- Processing Of Solid Wastes (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Feeding And Controlling Fuel (AREA)
- Gas Burners (AREA)
Description
- This application claims the benefit of the August 1, 2014 priority date of
.U.S. Application No. 61/999, 582 - This disclosure relates to heat transfer systems, and in particular to devices for transferring heat to a fluid.
- Many heat transfer systems use hot fluids as a heat transfer medium. Such systems include a heat generator for generating heat, a heat transfer medium in thermal communication with the energy source, and a pump to move the heated medium to wherever the heat is needed. Because of its high heat capacity and its abundance, a common heat transfer fluid is water, both in its liquid and gas phase.
- A variety of heat generators are in common use. For instance, in nuclear power plants, nuclear fission provides energy for heating water. There also exist solar water heaters that use solar energy. Also known in the art are self contained heat sources for heating food and drink wherein an energetic nanolaminate is electrically initiated via resistive heating, see for instance
US 2008/0131316 A1 . However, most heat transfer sources rely on an exothermal chemical reaction, and in particular, on combustion of some fuel. - In one aspect, the invention features an apparatus for heating fluid, the apparatus including a tank for holding fluid to be heated, and a fuel wafer in fluid communication with the fluid, the fuel wafer including a fuel mixture including reagents and a catalyst, and a heat source in thermal communication with the fuel mixture and the catalyst. The heat source is an electrical resistor. According to the invention, the fuel mixture includes lithium and lithium aluminum hydride, those in which the catalyst includes a
group 10 element, such as nickel in powdered form, or in any combination thereof. - In other embodiments, the catalyst in powdered form, has been treated to enhance its porosity. For example, the catalyst can be nickel powder that has been treated to enhance porosity thereof. The apparatus can also include an electrical energy source, such as a voltage source and/or current source in electrical communication with the heat source.
- Among the other embodiments are those in which the fuel wafer includes a multi-layer structure having a layer of the fuel mixture in thermal communication with a layer containing the heat source.
- In yet other embodiments, the fuel wafer includes a central heating insert and a pair of fuel inserts disposed on either side of the heating insert.
- A variety of tanks can be used. For example, in some embodiments, the tank includes a recess for receiving the fuel wafer therein. Among these are embodiments in which the tank further includes a door for sealing the recess. In yet other embodiments the tank includes a radiation shield. According to the invention, the apparatus further includes a controller in communication with the voltage source. Among these are controllers that are configured to vary the voltage in response to temperature of the fluid to be heated.
- These and other features of the invention will be apparent from the following detailed description and the accompanying figures, in which:
-
-
FIG. 1 shows a heat transfer system having a heat source; -
FIG. 2 is a cut-away view of the heat source inFIG. 1 ; -
FIG. 3 is a cross-section of the wafer for use in the heat source ofFIG. 2 ; -
FIG. 4 shows an exemplary resistor in the central layer of the wafer shown inFIG. 3 . -
FIG. 5 shows the heat source ofFIG. 1 operating with a conventional furnace. -
FIG. 6 shows plural heat sources like that inFIG. 2 connected in series. -
FIG. 7 shows plural heat sources like that inFIG. 2 connected in parallel. - Referring to
FIG. 1 , aheat transfer system 10 includes apipe 12 for transporting a heated fluid in a closed loop between aheat source 14 and athermal load 16. In most cases, for example where there is hydraulic resistance to be overcome, apump 18 propels the heated fluid. However, in some cases, such as where the heated fluid is steam, the fluid's own pressure is sufficient to propel the fluid. A typicalthermal load 16 includes radiators such as those commonly used for heating interior spaces. - As shown in
FIG. 2 , theheat source 14 is atank 20 having a lead composite shield, aninlet 22 and anoutlet 24, both of which are connected to thepipe 12. The interior of thetank 20 contains fluid to be heated. In many cases, the fluid is water. However, other fluids can be used. In addition, the fluid need not be a liquid fluid but can also be a gas, such as air. - The
tank 20 further includes adoor 26 that leads to areceptacle 28 protruding into thetank 20. Radiating fins 30 protrude from walls of thereceptacle 28 into thetank 20. To maximize heat transfer, thereceptacle 28 and thefins 30 are typically made of a material having high thermal conductivity, such as metal. A suitable metal is one not subject to corrosion, such as stainless steel. - The
receptacle 28 holds amulti-layer wafer 32 for generating heat. Avoltage source 33 is connected to thewafer 32, and acontroller 35 for controlling thevoltage source 33 in response to temperature of fluid in thetank 20 as sensed by asensor 37. - As shown in
FIG. 3 , themultilayer fuel wafer 32 includes aheating section 34 sandwiched between two 36, 38. Thefuel sections heating section 34 features acentral layer 40 made of an insulating material, such as mica, that supports aresistor 42. It should be noted that other heating sources can be used, including heat sources that rely on combustion of, for example, natural gas, as well as heat sources that rely on electrical induction. The use of gas thus avoids the need to have a source of electrical energy for initiating the reaction. -
FIG. 4 shows an exemplarycentral layer 40 havingholes 44 through which aresistive wire 42 has been wound. Thisresistive wire 42 is connected to thevoltage source 33. First and second 46, 48, such as mica layers, encase theinsulating layers central layer 40 to provide electrical insulation from the 36, 38.adjacent fuel sections - Each
36, 38 features a pair of thermallyfuel section 50, 52, such as steel layers. Sandwiched between each pair ofconductive layers 50, 52 is aconductive layers fuel layer 54 that contains a fuel mixture having nickel, lithium, and lithium aluminum hydride LiAlH4 ("LAH"), all in powdered form. Preferably, the nickel has been treated to increase its porosity, for example by heating the nickel powder to for times and temperatures selected to superheat any water present in micro-cavities that are inherently in each particle of nickel powder. The resulting steam pressure causes explosions that create larger cavities, as well as additional smaller nickel particles. - The entire set of layers is welded together on all sides to form a sealed unit. The size of the
wafer 32 is not important to its function. However, thewafer 32 is easier to handle if it is on the order of 0,85 cm (1/3 inch) thick and 30,5 cm (12 inches) on each side. The steel layers 50, 52 are typically 1 mm thick, and the mica layers 40, 48, which are covered by a protective polymer coating, are on the order of 0.1 mm thick. However, other thicknesses can also be used. - In operation, a voltage is applied by the
voltage source 33 to heat theresistor 42. Heat from theresistor 42 is then transferred by conduction to the fuel layers 54, where it initiates a sequence of reactions, the last of which is reversible. These reactions, which are catalyzed by the presence of the nickel powder, are:
3LiAlH4 → Li3AlH6 + 2Al + 3H2
2Li3AlH6 → 6LiH + 2Al + 3H2
2LiH + 2Al → 2LiAl + H2
- Once the reaction sequence is initiated, the
voltage source 33 can be turned off, as the reaction sequence is self-sustaining. However, the reaction rate may not be constant. Hence, it may be desirable to turn on thevoltage source 33 at certain times to reinvigorate the reaction. To determine whether or not thevoltage source 33 should be turned on, thetemperature sensor 37 provides a signal to thecontroller 35, which then determines whether or not to apply a voltage in response to the temperature signal. It has been found that after the reaction has generated approximately 6 kilowatt hours of energy, it is desirable to apply approximately 1 kilowatt hour of electrical energy to reinvigorate the reaction sequence. - Eventually, the efficiency of the
wafer 32 will decrease to the point where it is uneconomical to continually reinvigorate the reaction sequence. At this point, thewafer 32 can simply be replaced. Typically, thewafer 32 will sustain approximately 180 days of continuous operation before replacement becomes desirable. - The powder in the fuel mixture consists largely of spherical particles having diameters in the nanometer to micrometer range, for example between 1 nanometer and 100 micrometers. Variations in the ratio of reactants and catalyst tend to govern reaction rate and are not critical. However, it has been found that a suitable mixture would include a starting mixture of 50% nickel, 20% lithium, and 30% LAH. Within this mixture, nickel acts as a catalyst for the reaction, and is not itself a reagent. While nickel is particularly useful because of its relative abundance, its function can also be carried out by other elements in
column 10 of the periodic table, such as platinum or palladium. -
FIGS. 5-7 show a variety of ways to connect theheat source 14 inFIG. 1 . - In
FIG. 5 , theheat source 14 is placed downstream from aconventional furnace 56. In this case, thecontroller 35 is optionally connected to control the conventional furnace. As a result, theconventional furnace 56 will remain off unless the output temperature of theheat source 14 falls below some threshold, at which point thefurnace 56 will start. In this configuration, theconventional furnace 56 functions as a back-up unit. - In
FIG. 6 , first and 58, 60 like that described insecond heat sources FIGS. 1-4 are connected in series. This configuration provides a hotter output temperature than can be provided with only asingle heat source 58 by itself. Additional heat sources can be added in series to further increase the temperature. - In
FIG. 7 , first and 62, 64 like that described insecond heat sources FIGS. 1-4 are connected in parallel. In this configuration, the output volume can be made greater than what could be provided by a single heat transfer unit by itself. Additional heat transfer units can be added in parallel to further increase volume. - In one embodiment, the reagents are placed in the reaction chamber at a pressure of 3-6 bar and a temperature of from 400 C to 600 C. An anode is placed at one side of the reactor and a cathode is placed at the other side of the reactor. This accelerates electrons between them to an extent sufficient to have very high energy, in excess of 100 KeV. Regulation of the electron energy can be carried out by regulating the electric field between the cathode and the anode.
- Having described the invention, and a preferred embodiment thereof, what I claim as new and secured by letters patent is:
Claims (10)
- An apparatus for heating fluid, said apparatus comprising a tank (20) for holding fluid to be heated and a fuel wafer (32) in fluid communication with said fluid, said fuel wafer (32) including a fuel mixture including reagents and a catalyst, and an heat source (14) in thermal communication with said fuel mixture and said catalyst, wherein the heat source (14) comprises an electrical resistor (42), wherein said tank (20) is configured for holding fluid to be heated, wherein said fuel wafer (32) is configured to be in thermal communication with said fluid, wherein said resistor (42) is configured to be coupled to a voltage source (33), wherein said apparatus further comprises a controller (35) in communication with said voltage source (33), and a temperature sensor (37), wherein said fuel mixture comprises lithium, and lithium aluminum hydride, wherein said catalyst comprises a group 10 element, wherein said controller (35) is configured to monitor a temperature from said temperature sensor (37), and, based at least in part on said temperature, to reinvigorate a reaction in said fuel mixture, wherein reinvigorating said reaction comprises varying a voltage of said voltage source (33).
- The apparatus of claim 1, wherein said catalyst comprises nickel powder.
- The apparatus of claim 2, wherein said nickel powder has been treated to enhance porosity thereof.
- The apparatus of claim 1, wherein said fuel wafer (32) comprises a multi -layer structure having a layer of said fuel mixture in thermal communication with a layer containing said electrical resistor (42).
- The apparatus of claim 1, wherein said fuel wafer (32) comprises a central heating insert and a pair of fuel inserts disposed on either side of said heating insert.
- The apparatus of claim 1, wherein said tank (20) comprises a recess for receiving said fuel wafer (32) therein.
- The apparatus of claim 6, wherein said tank (20) further comprises a door (26) for sealing said recess.
- The apparatus of claim 1, wherein said tank (20) comprises a radiation shield.
- The apparatus of claim 1, wherein said reaction in said fuel mixture is at least partially reversible.
- The apparatus of claim 9, wherein said reaction comprises reacting lithium hydride with aluminum to yield hydrogen gas.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL15827258T PL3049733T3 (en) | 2014-08-01 | 2015-07-28 | Fluid heater |
| HRP20171960TT HRP20171960T1 (en) | 2014-08-01 | 2015-07-28 | LIQUID HEATER |
| SM20170610T SMT201700610T1 (en) | 2014-08-01 | 2015-07-28 | Fluid heater |
| SI201530147T SI3049733T1 (en) | 2014-08-01 | 2015-07-28 | Fluid heater |
| RS20171313A RS56749B1 (en) | 2014-08-01 | 2015-07-28 | Fluid heater |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201461999582P | 2014-08-01 | 2014-08-01 | |
| PCT/US2015/042353 WO2016018851A1 (en) | 2014-08-01 | 2015-07-28 | Fluid heater |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP3049733A1 EP3049733A1 (en) | 2016-08-03 |
| EP3049733A4 EP3049733A4 (en) | 2017-03-22 |
| EP3049733B1 true EP3049733B1 (en) | 2017-09-27 |
Family
ID=55218222
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP15827258.3A Active EP3049733B1 (en) | 2014-08-01 | 2015-07-28 | Fluid heater |
Country Status (23)
| Country | Link |
|---|---|
| EP (1) | EP3049733B1 (en) |
| JP (1) | JP6145808B1 (en) |
| CN (1) | CN106133457B (en) |
| AU (1) | AU2015296800B2 (en) |
| BR (1) | BR112016013488B1 (en) |
| CA (1) | CA2920500C (en) |
| CL (1) | CL2016001856A1 (en) |
| CY (1) | CY1119675T1 (en) |
| DK (1) | DK3049733T3 (en) |
| ES (1) | ES2652548T3 (en) |
| HR (1) | HRP20171960T1 (en) |
| HU (1) | HUE036258T2 (en) |
| LT (1) | LT3049733T (en) |
| MX (1) | MX348291B (en) |
| NO (1) | NO2788577T3 (en) |
| PL (1) | PL3049733T3 (en) |
| PT (1) | PT3049733T (en) |
| RS (1) | RS56749B1 (en) |
| RU (1) | RU2628472C1 (en) |
| SI (1) | SI3049733T1 (en) |
| SM (1) | SMT201700610T1 (en) |
| WO (1) | WO2016018851A1 (en) |
| ZA (1) | ZA201604152B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2709009C1 (en) * | 2019-01-31 | 2019-12-13 | Борис Александрович Астахов | Heat carrier heating device |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3083526A (en) * | 1958-12-19 | 1963-04-02 | Phillips Petroleum Co | Hybrid method of rocket propulsion using tetranitromethane |
| CS178965B1 (en) * | 1971-04-02 | 1977-10-31 | Jan Mach | Method of heating medium, and arrangement for utilization of this method |
| US3958625A (en) * | 1974-07-01 | 1976-05-25 | General Electric Company | Transport of heat as chemical energy |
| US4288346A (en) * | 1978-07-18 | 1981-09-08 | Johnson Matthey Inc. | Catalyst for catalytic heat exchange |
| SU1697280A1 (en) * | 1989-07-27 | 1991-12-07 | Государственный научно-исследовательский и проектный институт лакокрасочной промышленности | Induction heater of flowing medium |
| JPH08277207A (en) * | 1995-04-05 | 1996-10-22 | G C:Kk | Adhesive for dental resin composite |
| US5770838A (en) * | 1996-09-11 | 1998-06-23 | Drever Company | Induction heaters to improve transitions in continuous heating system, and method |
| US20040065314A1 (en) * | 2000-07-20 | 2004-04-08 | Layer James H. | Apparatus, systems, and methods for warming materials |
| JP3835368B2 (en) * | 2002-07-23 | 2006-10-18 | 株式会社デンソー | Heating device for hydrogen consuming equipment |
| US20040234914A1 (en) * | 2003-05-21 | 2004-11-25 | Alexza Molecular Delivery Corporation | Percussively ignited or electrically ingnited self-contained heating unit and drug-supply unit employing same |
| US7867441B2 (en) * | 2006-12-05 | 2011-01-11 | Lawrence Livermore National Security, Llc | Low to moderate temperature nanolaminate heater |
| JP5265158B2 (en) * | 2007-09-05 | 2013-08-14 | キネテイツク・リミテツド | Hydrogen generator and fuel stick |
| ITMI20080629A1 (en) * | 2008-04-09 | 2009-10-10 | Pascucci Maddalena | PROCESS AND EQUIPMENT TO OBTAIN EXOTHERMIC REACTIONS, IN PARTICULAR FROM NICKEL AND HYDROGEN. |
| JP4869375B2 (en) * | 2009-03-27 | 2012-02-08 | 中国電力株式会社 | Hot water system |
| US9055841B2 (en) * | 2009-04-07 | 2015-06-16 | Heatgenie, Inc. | Package heating apparatus |
| SG10201701293QA (en) * | 2009-08-07 | 2017-04-27 | Blacklight Power Inc | Heterogeneous hydrogen-catalyst power system |
| DE102009055026A1 (en) * | 2009-12-18 | 2011-06-22 | Heete, Lars Christian, 46240 | Method and device for tempering an exothermic reaction |
| DE102012023257B4 (en) * | 2012-11-29 | 2014-10-09 | C-Nox Gmbh & Co. Kg | Method and device for thermal afterburning of hydrocarbons containing gases |
-
2012
- 2012-12-07 NO NO12806782A patent/NO2788577T3/no unknown
-
2015
- 2015-07-28 HU HUE15827258A patent/HUE036258T2/en unknown
- 2015-07-28 CN CN201580013552.9A patent/CN106133457B/en active Active
- 2015-07-28 LT LTEP15827258.3T patent/LT3049733T/en unknown
- 2015-07-28 DK DK15827258.3T patent/DK3049733T3/en active
- 2015-07-28 RS RS20171313A patent/RS56749B1/en unknown
- 2015-07-28 AU AU2015296800A patent/AU2015296800B2/en active Active
- 2015-07-28 BR BR112016013488-5A patent/BR112016013488B1/en active IP Right Grant
- 2015-07-28 PT PT158272583T patent/PT3049733T/en unknown
- 2015-07-28 JP JP2016567541A patent/JP6145808B1/en not_active Expired - Fee Related
- 2015-07-28 MX MX2016002006A patent/MX348291B/en active IP Right Grant
- 2015-07-28 SM SM20170610T patent/SMT201700610T1/en unknown
- 2015-07-28 ES ES15827258.3T patent/ES2652548T3/en active Active
- 2015-07-28 SI SI201530147T patent/SI3049733T1/en unknown
- 2015-07-28 RU RU2016129722A patent/RU2628472C1/en active
- 2015-07-28 PL PL15827258T patent/PL3049733T3/en unknown
- 2015-07-28 CA CA2920500A patent/CA2920500C/en active Active
- 2015-07-28 WO PCT/US2015/042353 patent/WO2016018851A1/en not_active Ceased
- 2015-07-28 HR HRP20171960TT patent/HRP20171960T1/en unknown
- 2015-07-28 EP EP15827258.3A patent/EP3049733B1/en active Active
-
2016
- 2016-06-20 ZA ZA2016/04152A patent/ZA201604152B/en unknown
- 2016-07-21 CL CL2016001856A patent/CL2016001856A1/en unknown
-
2017
- 2017-12-13 CY CY20171101307T patent/CY1119675T1/en unknown
Non-Patent Citations (1)
| Title |
|---|
| None * |
Also Published As
| Publication number | Publication date |
|---|---|
| LT3049733T (en) | 2018-02-12 |
| MX348291B (en) | 2017-06-05 |
| MX2016002006A (en) | 2016-08-03 |
| ES2652548T3 (en) | 2018-02-05 |
| SMT201700610T1 (en) | 2018-01-11 |
| CL2016001856A1 (en) | 2017-03-24 |
| RS56749B1 (en) | 2018-03-30 |
| EP3049733A4 (en) | 2017-03-22 |
| AU2015296800B2 (en) | 2016-05-05 |
| CN106133457A (en) | 2016-11-16 |
| CY1119675T1 (en) | 2018-04-04 |
| ZA201604152B (en) | 2016-11-30 |
| JP6145808B1 (en) | 2017-06-14 |
| RU2628472C1 (en) | 2017-08-17 |
| BR112016013488A2 (en) | 2017-03-21 |
| JP2017523369A (en) | 2017-08-17 |
| BR112016013488B1 (en) | 2018-06-12 |
| WO2016018851A1 (en) | 2016-02-04 |
| PT3049733T (en) | 2017-12-22 |
| CN106133457B (en) | 2018-07-27 |
| CA2920500C (en) | 2016-09-06 |
| CA2920500A1 (en) | 2016-02-04 |
| PL3049733T3 (en) | 2018-03-30 |
| EP3049733A1 (en) | 2016-08-03 |
| HUE036258T2 (en) | 2018-06-28 |
| DK3049733T3 (en) | 2018-01-02 |
| SI3049733T1 (en) | 2018-02-28 |
| AU2015296800A1 (en) | 2016-04-07 |
| HRP20171960T1 (en) | 2018-02-23 |
| NO2788577T3 (en) | 2018-07-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US9115913B1 (en) | Fluid heater | |
| US5273635A (en) | Electrolytic heater | |
| CA2963775C (en) | Sofc-thermal conduction | |
| US20140356742A1 (en) | Hydrogen gas generator | |
| TWI620906B (en) | Heater and related methods therefor | |
| Bonanno et al. | Evaluation of the efficiency of an elevated temperature proton exchange membrane water electrolysis system | |
| WO2006072178A1 (en) | Thermal storage medium | |
| JP2005100821A (en) | High temperature fuel cell system | |
| EP3049733B1 (en) | Fluid heater | |
| CA2613910A1 (en) | Forced-air heating system utilizing circulated pulsed electrolysis system medium and method of using same | |
| JP6794466B2 (en) | A device that converts a liquid into vapor | |
| US6383360B1 (en) | Electrode and method for use in an electrolysis cell | |
| US20190123370A1 (en) | Adaptive electrical heater for fuel cell systems | |
| CA2304752C (en) | Hydrogen catalysis power cell for energy conversion systems | |
| CN108701499A (en) | Ignition system for lighting combustion mixture | |
| EP4453496A1 (en) | Energy storage | |
| CA2613931A1 (en) | On-demand water heater utilizing medium from a pulsed electrolysis system and method of using same | |
| US11971221B2 (en) | Thermal battery and electricity generation system | |
| CA2613726A1 (en) | On-demand water heater utilizing integrated pulsed electrolysis system and method of using same | |
| JPS62131101A (en) | Steam generator | |
| CN108905239A (en) | A kind of methyl alcohol vaporizing device | |
| US9695043B2 (en) | Fuel unit, gas generator and system | |
| JP7423360B2 (en) | boiler | |
| CA2613908A1 (en) | Radiant heating system utilizing heat exchanger and circulated pulsed electrolysis system medium and method of using same | |
| WO2025107028A1 (en) | Energy storage apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20160427 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24J 1/00 20060101AFI20170118BHEP |
|
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20170222 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24J 1/00 20060101AFI20170216BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20170705 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 932327 Country of ref document: AT Kind code of ref document: T Effective date: 20171015 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015005046 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602015005046 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F24J0001000000 Ipc: F24V0030000000 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
| REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20171960 Country of ref document: HR |
|
| REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
| REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3049733 Country of ref document: PT Date of ref document: 20171222 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20171215 |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20171221 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2652548 Country of ref document: ES Kind code of ref document: T3 Effective date: 20180205 |
|
| REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E014792 Country of ref document: EE Effective date: 20171220 |
|
| REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20171960 Country of ref document: HR |
|
| REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20170927 |
|
| REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 26171 Country of ref document: SK |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602015005046 Country of ref document: DE Representative=s name: SCHIEBER - FARAGO PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602015005046 Country of ref document: DE Representative=s name: FARAGO PATENTANWALTSGESELLSCHAFT MBH, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602015005046 Country of ref document: DE Representative=s name: FARAGO PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602015005046 Country of ref document: DE Representative=s name: FARAGO PATENTANWALTS- UND RECHTSANWALTSGESELLS, DE |
|
| REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20170403460 Country of ref document: GR Effective date: 20180518 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015005046 Country of ref document: DE Ref country code: HU Ref legal event code: AG4A Ref document number: E036258 Country of ref document: HU |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20180628 |
|
| REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171960 Country of ref document: HR Payment date: 20190724 Year of fee payment: 5 |
|
| REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171960 Country of ref document: HR Payment date: 20200722 Year of fee payment: 6 |
|
| REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20171960 Country of ref document: HR Payment date: 20210720 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20210721 Year of fee payment: 7 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 932327 Country of ref document: AT Kind code of ref document: T Effective date: 20170927 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20210721 Year of fee payment: 7 Ref country code: LT Payment date: 20210715 Year of fee payment: 7 Ref country code: SM Payment date: 20210729 Year of fee payment: 7 Ref country code: LU Payment date: 20210720 Year of fee payment: 7 Ref country code: AT Payment date: 20210720 Year of fee payment: 7 Ref country code: BG Payment date: 20210719 Year of fee payment: 7 Ref country code: FI Payment date: 20210720 Year of fee payment: 7 Ref country code: EE Payment date: 20210720 Year of fee payment: 7 Ref country code: CZ Payment date: 20210716 Year of fee payment: 7 Ref country code: IE Payment date: 20210726 Year of fee payment: 7 Ref country code: HR Payment date: 20210720 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20210721 Year of fee payment: 7 Ref country code: HU Payment date: 20210721 Year of fee payment: 7 Ref country code: PL Payment date: 20210715 Year of fee payment: 7 Ref country code: NO Payment date: 20210721 Year of fee payment: 7 Ref country code: GR Payment date: 20210720 Year of fee payment: 7 Ref country code: LV Payment date: 20210720 Year of fee payment: 7 Ref country code: BE Payment date: 20210721 Year of fee payment: 7 Ref country code: CH Payment date: 20210723 Year of fee payment: 7 Ref country code: SK Payment date: 20210719 Year of fee payment: 7 Ref country code: TR Payment date: 20210727 Year of fee payment: 7 Ref country code: RS Payment date: 20210726 Year of fee payment: 7 Ref country code: RO Payment date: 20210721 Year of fee payment: 7 Ref country code: SI Payment date: 20210719 Year of fee payment: 7 Ref country code: DK Payment date: 20210721 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MK Payment date: 20210716 Year of fee payment: 7 Ref country code: PT Payment date: 20210727 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CY Payment date: 20210721 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MT Payment date: 20210723 Year of fee payment: 7 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AL Payment date: 20210730 Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170927 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602015005046 Country of ref document: DE Representative=s name: SCHIEBER - FARAGO PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R082 Ref document number: 602015005046 Country of ref document: DE Representative=s name: FARAGO PATENTANWALTSGESELLSCHAFT MBH, DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602015005046 Country of ref document: DE Representative=s name: SCHIEBER - FARAGO PATENTANWAELTE, DE |
|
| REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20171960 Country of ref document: HR Effective date: 20220728 |
|
| REG | Reference to a national code |
Ref country code: EE Ref legal event code: MM4A Ref document number: E014792 Country of ref document: EE Effective date: 20220731 |
|
| REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP Ref country code: LT Ref legal event code: MM4D Effective date: 20220728 Ref country code: DK Ref legal event code: EBP Effective date: 20220731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220801 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220801 |
|
| REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 26171 Country of ref document: SK Effective date: 20220728 Ref country code: AT Ref legal event code: MM01 Ref document number: 932327 Country of ref document: AT Kind code of ref document: T Effective date: 20220728 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230223 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230130 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: LT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 |
|
| REG | Reference to a national code |
Ref country code: SI Ref legal event code: KO00 Effective date: 20230314 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: SI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220729 Ref country code: RS Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: LV Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220729 Ref country code: HR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230209 Ref country code: EE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220801 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220728 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220728 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20250819 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250520 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20250731 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230208 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20250724 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20250723 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20250723 Year of fee payment: 11 |