EP2982701B1 - Composition comprising a latex and a heur thickener - Google Patents
Composition comprising a latex and a heur thickener Download PDFInfo
- Publication number
- EP2982701B1 EP2982701B1 EP15178211.7A EP15178211A EP2982701B1 EP 2982701 B1 EP2982701 B1 EP 2982701B1 EP 15178211 A EP15178211 A EP 15178211A EP 2982701 B1 EP2982701 B1 EP 2982701B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- polymer particles
- composition
- monomer
- weight percent
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
- C08F265/06—Polymerisation of acrylate or methacrylate esters on to polymers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/003—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/04—Thixotropic paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/43—Thickening agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/53—Core-shell polymer
Definitions
- the present invention relates to a composition
- a composition comprising a latex, more particularly a latex with acorn morphology, and a hydrophobically modified ethylene oxide urethane based rheology modifier (HEUR).
- HEUR hydrophobically modified ethylene oxide urethane based rheology modifier
- EP2462155 relates to a multistage emulsion polymer including, as copolymerized units: from 0.5% to 5%, by weight P-acid monomer, based on the weight of the emulsion polymer; from 0% to 0.05% by weight multiethylenically unsaturated monomer, based on the weight of the emulsion polymer; and at least one second monoethylenically unsaturated monomer; the emulsion polymer having a calculated Tg of from -20 °C to 50 °C; wherein the emulsion polymer is formed by emulsion copolymerization of the at least one second monoethylenically unsaturated monomer wherein 75% to 100% of the P-acid monomer is added concurrently with the second monoethylenically unsaturated monomer during a stage including from 10% to 50% of the total monomer weight.
- a composite particle including a TiO2 particle and a plurality of polymer particles of the multistage emulsion polymer adsorbed on the surface of the TiO2 particle, an aqueous coating composition including the composite particle, and a method for providing a coating are also provided.
- EP1433797 relates to a pigmented polymer composition containing colorant particles and polymer particles having phosphorus acid groups.
- the polymer particles are prepared by the polymerization of phosphorus acid monomer.
- a method of preparing a colored coating using the pigmented polymer composition is useful as a paint or an ink.
- EP2762502 relates to a process comprising contacting methyl methacrylate or styrene; a C1 - C10-alkyl acrylate; and a polymerizable carboxylic acid monomer with a stable aqueous dispersion of first polymer particles, under emulsion polymerization conditions, to form a stable aqueous dispersion of second polymer particles.
- the first polymer particles have a Tg in the range of from -30 °C to 30 °C, and the monomers have a calculated Tg in the range of 50 °C to 120 °C.
- WO2014/113411 relates to a coatings composition
- a coatings composition comprising an aqueous dispersion of polymer particles, pigment particles, and extender particles.
- the polymer particles comprise from 35 to 99.8 weight percent structural units of vinyl acetate and from 0.1 to 6 weight percent structural units of a phosphorus acid monomer or a salt thereof, and the coating composition has a pigment volume concentration in the range of from 25 up to the critical pigment volume concentration of the composition.
- CA2893695 relates to a stable aqueous dispersion of multiphase amphoteric polymer particles comprising a crosslinked polymer phase comprising structural units of a phosphorus acid monomer, a carboxylic acid monomer, a multiethylenically unsaturated monomer, and an ethylenically unsaturated nonionic monomer; and a second polymer phase comprising a carboxylic acid monomer and an ethylenically unsaturated nonionic monomer.
- Stable aqueous dispersions of particle particles characterized by a core-shell morphology wherein the core protuberates from the shell have been described.
- US 7,179,531 (Brown et al. ) discloses a dispersion of multistage polymer particles characterized by a relatively small core portion protuberating from a relatively large shell portion of each particle, with the core portion being preferentially functionalized with TiO 2 -adsorbing groups.
- These socalled "acorn” particles are disclosed as being useful for preparing TiO 2 -polymer composite particles that provide dried coatings with improved hiding.
- WO 2013116318 A1 (Bohling et al. ) discloses acorn dispersions with phosphorus acid groups concentrated at the protuberating core portion of the acorn, resulting in overall reduction in grit formation in a coating formulation.
- the present invention addresses a need in the art by providing a composition
- a composition comprising 1) a stable aqueous dispersion of polymer particles having a particle size as measured by dynamic light scattering in the range of from 70 nm to 300 nm, wherein the polymer particles have a core-shell morphology wherein the core protuberates from the shell; 2) a hydrophobically modified ethylene oxide urethane based rheology modifier; 3) an extender; and 4) a substantial absence of pigment particles with a refractive index in the range of from 2.0 and 3.0.
- the composition of the present invention gives surprisingly higher KU and ICI viscosities or higher thickening efficiency than compositions comprising dispersions of non-acorn polymers at comparable levels of HEUR thickener.
- the present invention is a composition
- a composition comprising 1) a stable aqueous dispersion of polymer particles having a particle size as measured by dynamic light scattering in the range of from 70 nm to 300 nm, wherein the polymer particles have a core-shell morphology wherein the core protuberates from the shell; 2) a hydrophobically modified ethylene oxide urethane based rheology modifier; 3) an extender; and 4) a substantial absence of pigment particles with a refractive index in the range of from 2.0 and 3.0.
- a substantial absence of pigment particles means that the pigment volume concentration (PVC) of pigment particles with a refractive index (RI) from 2.0 to 3.0 is not more than 5%, more preferably not more than 1%.
- the polymer particles are characterized by a core-shell morphology wherein the core protuberates from the shell (also referred to as acorn morphology), as illustrated:
- the polymer particles are preferably acrylic, styrene-acrylic, or vinyl ester-acrylic polymers (including vinyl acetate-acrylic and vinyl versatate-acrylic polymers).
- the protuberating core portion of the polymer particles preferably comprises from 50 to 99 weight percent structural units of a styrene or acrylate monomer or combinations thereof.
- acrylate monomer refers to acrylates such as ethyl acrylate, butyl acrylate, and 2-ethyhexyl acrylate, as well as methacrylates such as methyl methacrylate and butyl methacrylate.
- structural unit of the named monomer, refers to the remnant of the monomer after polymerization.
- a structural unit of methyl methacrylate is as illustrated: structural unit of methyl methacrylate, where the dotted lines represent the points of attachment of the structural unit to the polymer backbone.
- the core preferably comprises structural units of i) methyl methacrylate, butyl methacrylate, or styrene or a combination thereof; and ii) ethyl acrylate, butyl acrylate, or 2-ethylhexyl acrylate or a combination thereof.
- a more preferred combination of bulk monomers is methyl methacrylate or styrene or a combination thereof with ethyl acrylate, butyl acrylate, or 2-ethylhexyl acrylate or a combination thereof, with methyl methacrylate and butyl acrylate being especially preferred.
- the core preferably comprises structural units of methyl methacrylate or styrene or a combination thereof at a concentration of from 5 weight percent, more preferably from 20 weight percent, to 60 weight percent, more preferably to 40 weight percent, based on the weight of the core; and preferably contains structural units of butyl acrylate, preferably at a concentration of from 35 weight percent, more preferably from 50 weight percent, to 90 weight percent, more preferably to 70 weight percent, based on the weight of the core.
- the core further preferably comprises from 0.2, more preferably from 0.5 to preferably 10, more preferably to 5, and most preferably to 3 weight percent structural units of a carboxylic acid monomer or a sulfur acid monomer or a salt thereof or a combination thereof.
- Suitable carboxylic acid monomers include acrylic acid, methacrylic acid, itaconic acid, and salts thereof;
- suitable sulfur acids include sulfoethyl methacrylate, sulfopropyl methacrylate, styrene sulfonic acid, vinyl sulfonic acid, and 2-(meth)acrylamido-2-methyl propanesulfonic acid, and salts thereof.
- the core comprises only structural units of a carboxylic acid monomer or a salt thereof, more preferably acrylic acid or methacrylic acid or salts thereof or combinations thereof.
- a preferred concentration of structural units of acrylic acid or methacrylic acid is from 0.1, more preferably from 0.5, to 3 weight percent, based on the weight of the core.
- the core further preferably comprises from 0.1, more preferably from 0.3, and most preferably from 0.5 weight percent to preferably 20, more preferably to 5, and most preferably to 3 weight percent structural units of a multiethylenically unsaturated monomer, based on the weight of the core.
- a preferred multiethylenically unsaturated monomer is a diethylenically unsaturated monomer such as allyl methacrylate.
- the core further comprises from 0, preferably from 2, more preferably from 5, to 15 preferably to 10 weight percent structural units of a phosphorous acid monomer or a salt thereof, based on the weight of the core.
- suitable phosphorus acid monomers include phosphonates and dihydrogen phosphate esters of an alcohol in which the alcohol contains or is substituted with a polymerizable vinyl or olefinic group.
- Preferred dihydrogen phosphate esters are phosphates of hydroxyalkyl(meth)acrylates, including phosphoethyl methacrylate and phosphopropyl methacrylates, with phosphoethyl methacrylate being especially preferred.
- PEM Phosphoethyl methacrylate
- R is H or wherein the dotted line represents the point of attachment to the oxygen atom.
- the shell of the polymer particles preferably comprises methyl methacrylate or styrene or a combination thereof at a concentration preferably in the range of from 35 weight percent to 75 weight percent, more preferably to 55 weight percent, based on the weight of the shell; and 2) structural units of butyl acrylate or ethyl acrylate or a combination thereof, more preferably structural units of butyl acrylate, preferably at a concentration in the range of from 25 weight percent, more preferably from 45 weight percent to preferably 70 weight percent, more preferably to 65 weight percent, based on the weight of the shell.
- HEUR rheology modifiers are well known in the art. Commercially available examples include ACRYSOLTM RM-2020 and ACRYSOLTM RM-8W Rheology Modifiers. (ACRYSOL is a trademark of The Dow Chemical Company or its affiliates).
- the remainder of the first monomer emulsion was added over 40 min, followed by a rinse (25 g), then an initiator solution of sodium persulfate (0.64 g) dissolved in deionized water (50 g) was added over 50 min.
- an initiator solution of sodium persulfate (0.64 g) dissolved in deionized water (50 g) was added over 50 min.
- the contents of the flask were held at 85 °C for 10 min, after which time the co-feed was complete; and the contents of the flask were then held at 85 °C for an additional 10 min.
- the contents of the flask were cooled to room temperature and neutralized to pH 3 with a dilute solution of ammonium hydroxide.
- the measured particle size was 60 - 75 nm by dynamic light scattering, using a Brookhaven BI-90 Dynamic Light Scattering Particle Size Analyzer, and the solids was found to be 40 - 41 %.
- a second monomer emulsion was prepared using deionized water (360 g), sodium dodecylbenzene sulfonate (66.5 g, 23% active), Disponil FES 993 surfactant (51 g, 30% active), butyl acrylate (810.9 g), methyl methacrylate (685.1 g), and acrylic acid (34 g).
- deionized water 950 g
- the contents of the flask were heated to 84 °C under N 2 and stirring was initiated.
- the contents of the flask were cooled to 65 °C and a catalyst / activator pair was added to the flask to reduce residual monomer.
- the polymer was then neutralized to pH 8.5 with a dilute ammonium hydroxide solution.
- the measured particle size was 145 nm and the solids content was found to be 48%.
- a first monomer emulsion was prepared by mixing deionized water (200 g), Disponil FES 993 surfactant (43 g, 30% active), butyl acrylate (371.2 g), methyl methacrylate (214.4 g), allyl methacrylate (9.6 g), acrylic acid (32 g) and methacrylic acid (12.8 g).
- deionized water 600 g
- Disponil FES 32 surfactant 43 g, 30% active
- the contents of the flask were heated to 85 °C under N 2 and stirring was initiated.
- a portion of the first monomer emulsion 70 g was then added, quickly followed by a solution of sodium persulfate (2.56 g) dissolved in deionized water (30 g) followed by a rinse of deionized water (5 g).
- the remainder of the first monomer emulsion was added over 40 min, followed by a rinse (25 g), then an initiator solution of sodium persulfate (0.64 g) dissolved in deionized water (50 g) was added over 50 min.
- an initiator solution of sodium persulfate (0.64 g) dissolved in deionized water (50 g) was added over 50 min.
- the contents of the flask were held at 85 °C for 10 min, after which time the co-feed was complete; and the contents of the flask were then held at 85 °C for an additional 10 min.
- the contents of the flask were cooled to room temperature and neutralized to pH 5.5 with a dilute solution of ammonium hydroxide.
- the measured particle size was 66 nm by dynamic light scattering, using a Brookhaven BI-90 Dynamic Light Scattering Particle Size Analyzer, and the solids was found to be 40 .8%.
- Example 1 Step B The process of Example 1 Step B was substantially followed in the amounts specified to yield a polymeric dispersion with particle size of 135 nm and a solids content of 47.8%.
- deionized water 900 g
- Disponil FES 32 surfactant 8.55 g, 30% active
- the contents of the flask were heated to 85 °C under N 2 and stirring was initiated.
- a portion of the first monomer emulsion 130 g was then added, quickly followed by a solution of sodium persulfate (6.85 g) dissolved in deionized water (20 g) followed by a rinse of deionized water (5 g).
- Table 1 shows the correlation between particle morphology and viscosity.
- Table 1 - Comparison of ICI and KU Viscosities for Acorn and non-Acorn Dispersions
- Example No. Comp 1 1 Comp 2 2 Particle Size (nm) 116 145 122 135 Polymer solids (wt %) 46.9 48 49.1 47.8 Polymer (g) 80.47 78.64 76.88 78.97 Water (g) 12.70 14.52 16.28 14.19 BYK-348
- Surfactant (g) 0.37 0.37 0.37 0.37 Foamstar A-34 Defoamer (g) 0.16 0.16 0.16 0.16 Texanol Coalescent (g) 0.75 0.75 0.75 0.75 NH 3 (28 wt% solution in water) (g) 0.44 0.37 0.23 0.25
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Graft Or Block Polymers (AREA)
- Cosmetics (AREA)
- Polymerisation Methods In General (AREA)
Description
- The present invention relates to a composition comprising a latex, more particularly a latex with acorn morphology, and a hydrophobically modified ethylene oxide urethane based rheology modifier (HEUR).
-
EP2462155 relates to a multistage emulsion polymer including, as copolymerized units: from 0.5% to 5%, by weight P-acid monomer, based on the weight of the emulsion polymer; from 0% to 0.05% by weight multiethylenically unsaturated monomer, based on the weight of the emulsion polymer; and at least one second monoethylenically unsaturated monomer; the emulsion polymer having a calculated Tg of from -20 °C to 50 °C; wherein the emulsion polymer is formed by emulsion copolymerization of the at least one second monoethylenically unsaturated monomer wherein 75% to 100% of the P-acid monomer is added concurrently with the second monoethylenically unsaturated monomer during a stage including from 10% to 50% of the total monomer weight. A composite particle including a TiO2 particle and a plurality of polymer particles of the multistage emulsion polymer adsorbed on the surface of the TiO2 particle, an aqueous coating composition including the composite particle, and a method for providing a coating are also provided. -
EP1433797 relates to a pigmented polymer composition containing colorant particles and polymer particles having phosphorus acid groups. The polymer particles are prepared by the polymerization of phosphorus acid monomer. Also provided is a method of preparing a colored coating using the pigmented polymer composition. The pigmented polymer composition is useful as a paint or an ink. -
EP2762502 relates to a process comprising contacting methyl methacrylate or styrene; a C1 - C10-alkyl acrylate; and a polymerizable carboxylic acid monomer with a stable aqueous dispersion of first polymer particles, under emulsion polymerization conditions, to form a stable aqueous dispersion of second polymer particles. The first polymer particles have a Tg in the range of from -30 °C to 30 °C, and the monomers have a calculated Tg in the range of 50 °C to 120 °C. -
WO2014/113411 relates to a coatings composition comprising an aqueous dispersion of polymer particles, pigment particles, and extender particles. The polymer particles comprise from 35 to 99.8 weight percent structural units of vinyl acetate and from 0.1 to 6 weight percent structural units of a phosphorus acid monomer or a salt thereof, and the coating composition has a pigment volume concentration in the range of from 25 up to the critical pigment volume concentration of the composition. -
CA2893695 relates to a stable aqueous dispersion of multiphase amphoteric polymer particles comprising a crosslinked polymer phase comprising structural units of a phosphorus acid monomer, a carboxylic acid monomer, a multiethylenically unsaturated monomer, and an ethylenically unsaturated nonionic monomer; and a second polymer phase comprising a carboxylic acid monomer and an ethylenically unsaturated nonionic monomer. - Stable aqueous dispersions of particle particles (latexes) characterized by a core-shell morphology wherein the core protuberates from the shell have been described. For example,
US 7,179,531 (Brown et al. ) discloses a dispersion of multistage polymer particles characterized by a relatively small core portion protuberating from a relatively large shell portion of each particle, with the core portion being preferentially functionalized with TiO2-adsorbing groups. These socalled "acorn" particles are disclosed as being useful for preparing TiO2-polymer composite particles that provide dried coatings with improved hiding.WO 2013116318 A1 (Bohling et al. ) discloses acorn dispersions with phosphorus acid groups concentrated at the protuberating core portion of the acorn, resulting in overall reduction in grit formation in a coating formulation. - The advantages of acorn technology in coatings formulations have yet to be fully explored and it would be desirable to determine the effects of this morphology on the efficiency of rheology modifiers such as HEURs.
- The present invention addresses a need in the art by providing a composition comprising 1) a stable aqueous dispersion of polymer particles having a particle size as measured by dynamic light scattering in the range of from 70 nm to 300 nm, wherein the polymer particles have a core-shell morphology wherein the core protuberates from the shell; 2) a hydrophobically modified ethylene oxide urethane based rheology modifier; 3) an extender; and 4) a substantial absence of pigment particles with a refractive index in the range of from 2.0 and 3.0. The composition of the present invention gives surprisingly higher KU and ICI viscosities or higher thickening efficiency than compositions comprising dispersions of non-acorn polymers at comparable levels of HEUR thickener.
- The present invention is a composition comprising 1) a stable aqueous dispersion of polymer particles having a particle size as measured by dynamic light scattering in the range of from 70 nm to 300 nm, wherein the polymer particles have a core-shell morphology wherein the core protuberates from the shell; 2) a hydrophobically modified ethylene oxide urethane based rheology modifier; 3) an extender; and 4) a substantial absence of pigment particles with a refractive index in the range of from 2.0 and 3.0.
- As used herein, "a substantial absence of pigment particles" means that the pigment volume concentration (PVC) of pigment particles with a refractive index (RI) from 2.0 to 3.0 is not more than 5%, more preferably not more than 1%.
-
- The polymer particles are preferably acrylic, styrene-acrylic, or vinyl ester-acrylic polymers (including vinyl acetate-acrylic and vinyl versatate-acrylic polymers).
- The protuberating core portion of the polymer particles preferably comprises from 50 to 99 weight percent structural units of a styrene or acrylate monomer or combinations thereof. As used herein, acrylate monomer refers to acrylates such as ethyl acrylate, butyl acrylate, and 2-ethyhexyl acrylate, as well as methacrylates such as methyl methacrylate and butyl methacrylate. As used herein, the term "structural unit" of the named monomer, refers to the remnant of the monomer after polymerization. For example, a structural unit of methyl methacrylate is as illustrated:
structural unit of methyl methacrylate, where the dotted lines represent the points of attachment of the structural unit to the polymer backbone. - The core preferably comprises structural units of i) methyl methacrylate, butyl methacrylate, or styrene or a combination thereof; and ii) ethyl acrylate, butyl acrylate, or 2-ethylhexyl acrylate or a combination thereof. A more preferred combination of bulk monomers is methyl methacrylate or styrene or a combination thereof with ethyl acrylate, butyl acrylate, or 2-ethylhexyl acrylate or a combination thereof, with methyl methacrylate and butyl acrylate being especially preferred.
- The core preferably comprises structural units of methyl methacrylate or styrene or a combination thereof at a concentration of from 5 weight percent, more preferably from 20 weight percent, to 60 weight percent, more preferably to 40 weight percent, based on the weight of the core; and preferably contains structural units of butyl acrylate, preferably at a concentration of from 35 weight percent, more preferably from 50 weight percent, to 90 weight percent, more preferably to 70 weight percent, based on the weight of the core.
- The core further preferably comprises from 0.2, more preferably from 0.5 to preferably 10, more preferably to 5, and most preferably to 3 weight percent structural units of a carboxylic acid monomer or a sulfur acid monomer or a salt thereof or a combination thereof. Suitable carboxylic acid monomers include acrylic acid, methacrylic acid, itaconic acid, and salts thereof; suitable sulfur acids include sulfoethyl methacrylate, sulfopropyl methacrylate, styrene sulfonic acid, vinyl sulfonic acid, and 2-(meth)acrylamido-2-methyl propanesulfonic acid, and salts thereof. Preferably, the core comprises only structural units of a carboxylic acid monomer or a salt thereof, more preferably acrylic acid or methacrylic acid or salts thereof or combinations thereof. A preferred concentration of structural units of acrylic acid or methacrylic acid is from 0.1, more preferably from 0.5, to 3 weight percent, based on the weight of the core.
- The core further preferably comprises from 0.1, more preferably from 0.3, and most preferably from 0.5 weight percent to preferably 20, more preferably to 5, and most preferably to 3 weight percent structural units of a multiethylenically unsaturated monomer, based on the weight of the core. An example of a preferred multiethylenically unsaturated monomer is a diethylenically unsaturated monomer such as allyl methacrylate.
- The core further comprises from 0, preferably from 2, more preferably from 5, to 15 preferably to 10 weight percent structural units of a phosphorous acid monomer or a salt thereof, based on the weight of the core. Examples of suitable phosphorus acid monomers include phosphonates and dihydrogen phosphate esters of an alcohol in which the alcohol contains or is substituted with a polymerizable vinyl or olefinic group. Preferred dihydrogen phosphate esters are phosphates of hydroxyalkyl(meth)acrylates, including phosphoethyl methacrylate and phosphopropyl methacrylates, with phosphoethyl methacrylate being especially preferred. "Phosphoethyl methacrylate" (PEM) is used herein to refer to the following structure:
where R is H or wherein the dotted line represents the point of attachment to the oxygen atom. - The core preferably has a volume average diameter in the range of from 30, more preferably from 40 nm, to 90, more preferably to 80 nm (as measured by a BI-90 Dynamic Light Scattering Particle Analyzer) and preferably a Tg as calculated by the Fox equation in the range of from -30 °C, more preferably from -20 °C, to preferably 60 °C, more preferably to 40 °C, and most preferably to 20 °C.
- The shell of the polymer particles preferably comprises methyl methacrylate or styrene or a combination thereof at a concentration preferably in the range of from 35 weight percent to 75 weight percent, more preferably to 55 weight percent, based on the weight of the shell; and 2) structural units of butyl acrylate or ethyl acrylate or a combination thereof, more preferably structural units of butyl acrylate, preferably at a concentration in the range of from 25 weight percent, more preferably from 45 weight percent to preferably 70 weight percent, more preferably to 65 weight percent, based on the weight of the shell.
- The shell also preferably comprises from 0.1 to 5 weight percent structural units of a carboxylic acid monomer or a sulfur acid monomer or a combination thereof, based on the weight of the shell. More preferably the shell comprises from 1 to 2 weight percent structural units of acrylic acid or methacrylic acid, or a combination thereof, based on the weight of the shell.
- The polymer particles may comprise up to 4 weight percent structural units of a phosphorus acid monomer and, in one embodiment, may be absent or substantially absent of phosphorus acid functionality (that is, < 0.1 weight percent, based on the weight of the polymer particles); phosphorus acid functionality may be distributed throughout the particle, but the shell preferably comprises less than 0.1, more preferably less than 0.01 weight percent structural units of a phosphorus acid monomer, based on the weight of the shell, and preferably less than 0.1, more preferably less than 0.01 weight percent structural units of a multiethylenically unsaturated monomer, based on the weight of the shell. The shell most preferably includes neither structural units of a phosphorus acid monomer nor of a multiethylenically unsaturated monomer.
- The weight-to-weight ratio of the shell to the core is preferably in the range of from 3:1, more preferably from 5:1, to 50:1, preferably to 35 to 1. The polymer particles preferably have a particle size as measured by dynamic light scattering in the range of from 90 nm to 200 nm.
- In a preferred method of making the stable aqueous dispersions of polymer particles, a first monomer emulsion can be prepared by contacting water, butyl acrylate, methyl methacrylate, allyl methacrylate, optionally phosphoethyl methacrylate, and a carboxylic acid monomer under emulsion polymerization conditions to form a precursor to the protuberating core. Then, water, the precursor, and a monomer emulsion of butyl acrylate, methyl methacrylate, and a carboxylic acid monomer are reacted under emulsion polymerization conditions to form the stable aqueous dispersion of polymer particles with acorn morphology.
- The dispersion of polymer particles with acorn morphology are then combined with the HEUR rheology modifier to make a composition that is substantially free of pigment particles with a refractive index in the range of from 2.0 and 3.0 such as TiO2 and ZnO. HEUR rheology modifiers are well known in the art. Commercially available examples include ACRYSOL™ RM-2020 and ACRYSOL™ RM-8W Rheology Modifiers. (ACRYSOL is a trademark of The Dow Chemical Company or its Affiliates).
- The composition may include other ingredients selected from the group consisting of dispersants, defoamers, surfactants, solvents, additional binders, coalescents, biocides, opaque polymers, and colorants.
- It has surprisingly been discovered that the polymer particles with acorn morphology impart improvements in HEUR efficiency, especially for deep base formulations that are absent or substantially absent of pigment particles such as TiO2 or ZnO. As the following examples demonstrate, this improvement in efficiency has even been observed for acorn particles that are free of phosphorus acid functionality.
- A first monomer emulsion was prepared by mixing deionized water (200 g), Disponil FES 993 surfactant (43 g, 30% active), butyl acrylate (371.2 g), methyl methacrylate (195.2 g), allyl methacrylate (9.6 g), phosphoethyl methacrylate (51.2 g, 60% active), and methacrylic acid (12.8 g).
- To a 5-L, four necked round bottom flask equipped with a paddle stirrer, a thermometer, nitrogen inlet, and a reflux condenser was added deionized water (600 g) and Disponil FES 32 surfactant (43 g, 30% active). The contents of the flask were heated to 85 °C under N2 and stirring was initiated. A portion of the first monomer emulsion (70 g) was then added, quickly followed by a solution of sodium persulfate (2.56 g) dissolved in deionized water (30 g) followed by a rinse of deionized water (5 g). After stirring for 10 min, the remainder of the first monomer emulsion was added over 40 min, followed by a rinse (25 g), then an initiator solution of sodium persulfate (0.64 g) dissolved in deionized water (50 g) was added over 50 min. After the monomer emulsion feed was complete, the contents of the flask were held at 85 °C for 10 min, after which time the co-feed was complete; and the contents of the flask were then held at 85 °C for an additional 10 min. The contents of the flask were cooled to room temperature and neutralized to pH 3 with a dilute solution of ammonium hydroxide. The measured particle size was 60 - 75 nm by dynamic light scattering, using a Brookhaven BI-90 Dynamic Light Scattering Particle Size Analyzer, and the solids was found to be 40 - 41 %.
- A second monomer emulsion was prepared using deionized water (360 g), sodium dodecylbenzene sulfonate (66.5 g, 23% active), Disponil FES 993 surfactant (51 g, 30% active), butyl acrylate (810.9 g), methyl methacrylate (685.1 g), and acrylic acid (34 g). To a 5-L, four necked round bottom flask equipped with a paddle stirrer, a thermometer, N2 inlet, and a reflux condenser was added deionized water (950 g). The contents of the flask were heated to 84 °C under N2 and stirring was initiated. An aqueous solution sodium persulfate (5.1 g in 20 g deionized water), followed by a rinse of deionized water (5 g) was added to the kettle. The pre-form from Step A was then added (425 g) and the temperature of contents of the flask was readjusted to 84 °C. The second monomer emulsion was then added to the flask, followed by addition of a solution containing sodium persulfate (1.7 g) and ammonium hydroxide (4 g, 29% active) dissolved in deionized water (56 g) over a total period of 80 min. The contents of the flask were maintained at a temperature of 84 °C during these additions. When all additions were complete, the flask containing the second monomer emulsion was rinsed with deionized water (25 g), which was then added to the flask.
- The contents of the flask were cooled to 65 °C and a catalyst / activator pair was added to the flask to reduce residual monomer. The polymer was then neutralized to pH 8.5 with a dilute ammonium hydroxide solution. The measured particle size was 145 nm and the solids content was found to be 48%.
- A first monomer emulsion was prepared by mixing deionized water (200 g), Disponil FES 993 surfactant (43 g, 30% active), butyl acrylate (371.2 g), methyl methacrylate (214.4 g), allyl methacrylate (9.6 g), acrylic acid (32 g) and methacrylic acid (12.8 g).
- To a 5-L, four necked round bottom flask equipped with a paddle stirrer, a thermometer, nitrogen inlet, and a reflux condenser was added deionized water (600 g) and Disponil FES 32 surfactant (43 g, 30% active). The contents of the flask were heated to 85 °C under N2 and stirring was initiated. A portion of the first monomer emulsion (70 g) was then added, quickly followed by a solution of sodium persulfate (2.56 g) dissolved in deionized water (30 g) followed by a rinse of deionized water (5 g). After stirring for 10 min, the remainder of the first monomer emulsion was added over 40 min, followed by a rinse (25 g), then an initiator solution of sodium persulfate (0.64 g) dissolved in deionized water (50 g) was added over 50 min. After the monomer emulsion feed was complete, the contents of the flask were held at 85 °C for 10 min, after which time the co-feed was complete; and the contents of the flask were then held at 85 °C for an additional 10 min. The contents of the flask were cooled to room temperature and neutralized to pH 5.5 with a dilute solution of ammonium hydroxide. The measured particle size was 66 nm by dynamic light scattering, using a Brookhaven BI-90 Dynamic Light Scattering Particle Size Analyzer, and the solids was found to be 40 .8%.
- The process of Example 1 Step B was substantially followed in the amounts specified to yield a polymeric dispersion with particle size of 135 nm and a solids content of 47.8%.
- A first monomer emulsion was prepared by mixing deionized water (200 g), Disponil FES 993 surfactant (42.45 g, 30% active), butyl acrylate (270.3 g), methyl methacrylate (199.75 g), phosphoethyl methacrylate (60% active, 29.75 g), and acrylic acid (10.2 g). A second monomer emulsion was prepared by mixing deionized water (420 g), sodium dodecylbenzene sulfonate (23% active, 66.52 g), butyl acrylate (630.7 g), methyl methacrylate (535.5 g), and acrylic acid (23.8 g).
- To a 5-L, four necked round bottom flask equipped with a paddle stirrer, a thermometer, nitrogen inlet, and a reflux condenser was added deionized water (900 g) and Disponil FES 32 surfactant (8.55 g, 30% active). The contents of the flask were heated to 85 °C under N2 and stirring was initiated. A portion of the first monomer emulsion (130 g) was then added, quickly followed by a solution of sodium persulfate (6.85 g) dissolved in deionized water (20 g) followed by a rinse of deionized water (5 g). After stirring for 10 min, the remainder of the first monomer emulsion was added over 40 min, followed by a rinse (25 g), then an initiator solution of sodium persulfate (0.40 g) dissolved in deionized water (30 g) was added over 30 min. After the monomer emulsion feed was complete, the contents of the flask were held at 85 °C for 10 min, after which time the co-feed was complete; and the contents of the flask were then held at 85 °C for an additional 10 min.
- The second monomer emulsion, an ammonium persulfate solution (1.1 g dissolved in 80 g of water), and aqueous NH3 (12 g, 29% active, dissolved in 28 g of water) were added linearly and separately to the flask over 80 min. The contents were maintained at 85 °C during the addition. After the completion of the additions, the container with the second monomer emulsion was rinsed with deionized water (25 g), which was added to the reaction flask.
- The contents of the flask were cooled to 65 °C and a catalyst / activator pair was added to the flask to reduce residual monomer. The polymer was neutralized to pH 8.5 with dilute NH3 (aq). (Particle size = 115 nm; solids = 46.9%).
- A first monomer emulsion was prepared by mixing deionized water (450 g), Disponil FES 993 surfactant (42.45 g, 30% active), sodium dodecylbenzene sulfonate (23% active, 66,52 g), butyl acrylate (901 g), methyl methacrylate (765 g), and acrylic acid (34 g). A second monomer emulsion was prepared by mixing deionized water (420 g), sodium dodecylbenzene sulfonate (23% active, 66.52 g), butyl acrylate (630.7 g), methyl methacrylate (535.5 g), and acrylic acid (23.8 g).
- To a 5-L, four necked round bottom flask equipped with a paddle stirrer, a thermometer, nitrogen inlet, and a reflux condenser was added deionized water (900 g) and Disponil FES 32 surfactant (8.55 g, 30% active). The contents of the flask were heated to 85 °C under N2 and stirring was initiated. A portion of the monomer emulsion (130 g) was then added, quickly followed by a solution of sodium persulfate (6.85 g) dissolved in deionized water (20 g) followed by a rinse of deionized water (5 g). After stirring for 10 min, the remainder of the monomer emulsion and an initiator solution of sodium persulfate (1.5 g) dissolved in deionized water (120 g) were added linearly and separately over 120 min. After 40 min from the onset of monomer emulsion addition, an aqueous solution ammonium hydroxide (29% active, 8 g dissolved in 32 g of water) was added linearly and separately over the remaining 80 min of the monomer emulsion addition.
- The contents of the flask were maintained at 85 °C during the monomer emulsion addition. After the completion of the additions, the container with the monomer emulsion was rinsed with deionized water (25 g), which was added to the reaction flask. The contents of the reaction flask were maintained at 85 °C for an additional 10 min. The contents of the flask were cooled to 65 °C, at which time a catalyst / activator pair was added to the flask to reduce residual monomer. The polymer was neutralized to pH 8.5 with dilute NH3(aq). (Particle size = 122 nm; solids = 49.1%).
- Table 1 shows the correlation between particle morphology and viscosity.
Table 1 - Comparison of ICI and KU Viscosities for Acorn and non-Acorn Dispersions Example No. Comp 1 1 Comp 2 2 Particle Size (nm) 116 145 122 135 Polymer solids (wt %) 46.9 48 49.1 47.8 Polymer (g) 80.47 78.64 76.88 78.97 Water (g) 12.70 14.52 16.28 14.19 BYK-348 Surfactant (g) 0.37 0.37 0.37 0.37 Foamstar A-34 Defoamer (g) 0.16 0.16 0.16 0.16 Texanol Coalescent (g) 0.75 0.75 0.75 0.75 NH3 (28 wt% solution in water) (g) 0.44 0.37 0.23 0.25 ACRYSOL RM-2020 NPR HEUR (g) 2.29 2.29 2.29 2.29 ACRYSOL RM-8W HEUR (g) 0.79 0.79 0.79 0.79 Water (g) 2.02 2.10 2.24 2.22 Total Weight (g) 100.00 100.00 100.00 100.00 Paint pH 9.0 9.1 9.1 8.9 Equilibrated (2 week) KU Viscosity (Krebs Units) 122 132 111 127 Equilibrated (2 week) ICI Viscosity (Poise) 1.1 1.3 1.0 1.2 - As Table 1 shows, higher KU and ICI viscosities are observed for formulations containing polymeric dispersions having acorn morphology as compared with dispersions that are non-acorns. This phenomenon was observed whether the acorn was functionalized with a phosphorus acid monomer (PEM in this case) or not, although acorns functionalized with PEM showed even higher viscosities.
Claims (7)
- A composition comprising 1) a stable aqueous dispersion of polymer particles having a particle size as measured by dynamic light scattering in the range of from 70 nm to 300 nm, wherein the polymer particles have a core-shell morphology wherein the core protuberates from the shell; 2) a hydrophobically modified ethylene oxide urethane based rheology modifier; 3) an extender; and 4) less than 5% pigment volume concentration of pigment particles with a refractive index in the range of from 2.0 and 3.0.
- The composition of Claim 1 wherein the polymer particles are acrylic, styrene-acrylic, or vinyl ester polymers; and wherein the particle size of the polymer particles is 90 nm to 200 nm.
- The composition of either of Claims 1 or 2 wherein the polymer particles comprise structural units of a phosphorus acid monomer.
- The composition of Claim 3 wherein the cores of the polymer particles comprise from 2 to 15 weight percent structural units of phosphoethyl methacrylate.
- The composition of either of Claims 1 or 2 wherein the shells of the polymer particles contain less than 0.1 weight percent structural units of a phosphorus acid monomer, based on the weight of the shells of the polymer particles.
- The composition of Claim 5 which comprises less than 1% pigment volume concentration of pigment particles with a refractive index in the range of from 2.0 and 3.0.
- The composition of any of Claims 1 to 6 which further includes one or more ingredients selected from the group consisting of dispersants, defoamers, surfactants, solvents, additional binders, coalescents, biocides, opaque polymers, and colorants.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201462034824P | 2014-08-08 | 2014-08-08 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2982701A1 EP2982701A1 (en) | 2016-02-10 |
| EP2982701B1 true EP2982701B1 (en) | 2017-11-15 |
Family
ID=54148319
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP15178211.7A Active EP2982701B1 (en) | 2014-08-08 | 2015-07-24 | Composition comprising a latex and a heur thickener |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9475932B2 (en) |
| EP (1) | EP2982701B1 (en) |
| CN (1) | CN105367717B (en) |
| AU (1) | AU2015205830B2 (en) |
| BR (1) | BR102015017727B1 (en) |
| CA (1) | CA2899060C (en) |
| MX (1) | MX2015009916A (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9475932B2 (en) * | 2014-08-08 | 2016-10-25 | Rohm And Haas Company | Composition comprising a latex and a HEUR thickener |
| CA2940732C (en) | 2015-09-17 | 2023-10-03 | Rohm And Haas Company | Pigmented paint formulation with a phosphorus acid functionalized latex binder and an associative thickener |
| CA2940734C (en) | 2015-09-17 | 2023-09-26 | Rohm And Haas Company | Pigmented paint formulation with a phosphorus acid functionalized latex binder and an associative thickener |
| US10676623B2 (en) * | 2016-10-14 | 2020-06-09 | Valspar Sourcing, Inc. | Waterborne latex coating compositions with viscosity-modifying coalescence aids |
| AU2017239546B2 (en) | 2016-10-21 | 2022-01-13 | Rohm And Haas Company | Deep base paint formulation |
| CN108219620A (en) * | 2016-12-09 | 2018-06-29 | 罗门哈斯公司 | The aqueous liquid dispersion of polymer particle with acorn form |
| CN108219075B (en) * | 2016-12-09 | 2021-09-07 | 罗门哈斯公司 | Aqueous dispersion of fluoroalkylated polymer particles with acorn morphology |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE60208098T3 (en) * | 2001-02-28 | 2010-05-20 | Rohm And Haas Co. | Process for improving the viscosity stability after addition of a colorant component |
| US6887928B2 (en) * | 2001-02-28 | 2005-05-03 | Rohm And Haas Company | Method of improving viscosity stability upon addition of a colorant component |
| AU785282B2 (en) | 2001-06-20 | 2006-12-21 | Rohm And Haas Company | Coating with improved hiding, compositions prepared therewith, and processes for the preparation thereof |
| US7179531B2 (en) * | 2002-09-12 | 2007-02-20 | Rohm And Haas Company | Polymer particles having select pendant groups and composition prepared therefrom |
| DE60319202T2 (en) * | 2002-12-19 | 2009-02-12 | Rohm & Haas Company | Pigmentationspolymerzusammensetzung |
| JP2012067283A (en) * | 2010-09-03 | 2012-04-05 | Rohm & Haas Co | Multistage emulsion polymer and improved pigment efficiency |
| KR102014744B1 (en) * | 2012-01-31 | 2019-08-27 | 롬 앤드 하스 캄파니 | Dispersion of adsorbing emulsion polymer particles |
| CN104837936B (en) * | 2012-12-13 | 2017-10-17 | 陶氏环球技术有限责任公司 | Amphiphilic polymers particle and its composition |
| US9505944B2 (en) * | 2013-01-16 | 2016-11-29 | Rohm And Haas Company | Coatings composition with pigment and adsorbing vinyl acetate binders |
| EP2762502B1 (en) * | 2013-02-04 | 2020-07-29 | Rohm and Haas Company | Acrylic latex binder and method of preparation |
| US9475932B2 (en) * | 2014-08-08 | 2016-10-25 | Rohm And Haas Company | Composition comprising a latex and a HEUR thickener |
-
2015
- 2015-07-13 US US14/797,696 patent/US9475932B2/en active Active
- 2015-07-21 AU AU2015205830A patent/AU2015205830B2/en active Active
- 2015-07-23 CN CN201510437103.9A patent/CN105367717B/en active Active
- 2015-07-24 EP EP15178211.7A patent/EP2982701B1/en active Active
- 2015-07-24 BR BR102015017727-5A patent/BR102015017727B1/en active IP Right Grant
- 2015-07-27 CA CA2899060A patent/CA2899060C/en active Active
- 2015-07-30 MX MX2015009916A patent/MX2015009916A/en active IP Right Grant
Non-Patent Citations (1)
| Title |
|---|
| None * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20160040004A1 (en) | 2016-02-11 |
| EP2982701A1 (en) | 2016-02-10 |
| BR102015017727A2 (en) | 2016-05-24 |
| CN105367717B (en) | 2019-10-01 |
| US9475932B2 (en) | 2016-10-25 |
| AU2015205830A1 (en) | 2016-02-25 |
| AU2015205830B2 (en) | 2019-07-04 |
| MX2015009916A (en) | 2016-02-08 |
| CA2899060A1 (en) | 2016-02-08 |
| BR102015017727B1 (en) | 2020-11-17 |
| CA2899060C (en) | 2022-10-11 |
| CN105367717A (en) | 2016-03-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2982701B1 (en) | Composition comprising a latex and a heur thickener | |
| US9499691B2 (en) | Dispersion of adsorbing emulsion polymer particles | |
| KR102128766B1 (en) | Bimodal Adsorbing Latex | |
| CA2893386C (en) | Dispersion of adsorbing emulsion polymer particles | |
| EP3299400B1 (en) | Latex functionalized with structural units of an amino acid | |
| EP3333202B1 (en) | Aqueous dispersion of fluoralkylated polymer particles with acorn morphology | |
| CN108368188B (en) | Multistage aqueous emulsion polymers and aqueous coating compositions formed therefrom | |
| EP3339339B1 (en) | Latex functionalized with structural units of an arginine functionalized monomer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| 17P | Request for examination filed |
Effective date: 20160803 |
|
| RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C08L 75/04 20060101ALI20170606BHEP Ipc: C09D 7/00 20060101ALI20170606BHEP Ipc: C08F 265/06 20060101AFI20170606BHEP Ipc: C08L 33/14 20060101ALI20170606BHEP Ipc: C08L 51/00 20060101ALI20170606BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20170622 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Ref country code: AT Ref legal event code: REF Ref document number: 946212 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602015005974 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20171115 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 946212 Country of ref document: AT Kind code of ref document: T Effective date: 20171115 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180215 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180215 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180216 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602015005974 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20180817 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180724 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180724 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180724 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150724 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171115 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171115 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180315 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200610 Year of fee payment: 6 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210724 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20250605 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20250610 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250604 Year of fee payment: 11 |