EP2800794A1 - Fluides de forage à émulsion inverse à rhéologie améliorée et procédés de forage de puits de forage - Google Patents
Fluides de forage à émulsion inverse à rhéologie améliorée et procédés de forage de puits de forageInfo
- Publication number
- EP2800794A1 EP2800794A1 EP12829221.6A EP12829221A EP2800794A1 EP 2800794 A1 EP2800794 A1 EP 2800794A1 EP 12829221 A EP12829221 A EP 12829221A EP 2800794 A1 EP2800794 A1 EP 2800794A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- drilling fluid
- drilling
- alkyl group
- hydrophobic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 159
- 239000012530 fluid Substances 0.000 title claims abstract description 154
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000000518 rheometry Methods 0.000 title abstract description 25
- 150000001412 amines Chemical class 0.000 claims abstract description 58
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 54
- 239000000839 emulsion Substances 0.000 claims abstract description 48
- 239000000654 additive Substances 0.000 claims description 55
- 230000000996 additive effect Effects 0.000 claims description 40
- 239000000203 mixture Substances 0.000 claims description 36
- 239000003921 oil Substances 0.000 claims description 26
- 239000006254 rheological additive Substances 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 239000002480 mineral oil Substances 0.000 claims description 16
- 235000010446 mineral oil Nutrition 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 11
- 239000004033 plastic Substances 0.000 claims description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 125000004103 aminoalkyl group Chemical group 0.000 claims description 8
- 125000005001 aminoaryl group Chemical group 0.000 claims description 8
- 125000004966 cyanoalkyl group Chemical group 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 6
- 239000001110 calcium chloride Substances 0.000 claims description 6
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical group OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 125000003368 amide group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000005587 carbonate group Chemical group 0.000 claims description 4
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 4
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 4
- 150000001924 cycloalkanes Chemical class 0.000 claims description 4
- 239000002283 diesel fuel Substances 0.000 claims description 4
- 239000003995 emulsifying agent Substances 0.000 claims description 4
- 125000004185 ester group Chemical group 0.000 claims description 4
- 125000001033 ether group Chemical group 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical group C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims description 4
- 125000005067 haloformyl group Chemical group 0.000 claims description 4
- 125000001165 hydrophobic group Chemical group 0.000 claims description 4
- 125000002636 imidazolinyl group Chemical group 0.000 claims description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate group Chemical group [N+](=O)([O-])[O-] NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M nitrite group Chemical group N(=O)[O-] IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 4
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 claims description 4
- 150000003335 secondary amines Chemical class 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- 125000001424 substituent group Chemical group 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate group Chemical group S(=O)(=O)([O-])[O-] QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 4
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- 239000002199 base oil Substances 0.000 claims description 3
- 229910001622 calcium bromide Inorganic materials 0.000 claims description 3
- WGEFECGEFUFIQW-UHFFFAOYSA-L calcium dibromide Chemical compound [Ca+2].[Br-].[Br-] WGEFECGEFUFIQW-UHFFFAOYSA-L 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 claims 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims 2
- 238000005260 corrosion Methods 0.000 claims 1
- 230000007797 corrosion Effects 0.000 claims 1
- 239000006185 dispersion Substances 0.000 claims 1
- 239000010696 ester oil Substances 0.000 claims 1
- 239000003112 inhibitor Substances 0.000 claims 1
- 239000002562 thickening agent Substances 0.000 claims 1
- 150000004985 diamines Chemical class 0.000 abstract description 24
- 239000000539 dimer Substances 0.000 abstract description 23
- 238000009472 formulation Methods 0.000 description 24
- 238000012360 testing method Methods 0.000 description 18
- 238000005755 formation reaction Methods 0.000 description 15
- 239000012071 phase Substances 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 150000004665 fatty acids Chemical class 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 239000005662 Paraffin oil Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 230000002706 hydrostatic effect Effects 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000003784 tall oil Substances 0.000 description 3
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- IMYZQPCYWPFTAG-UHFFFAOYSA-N Mecamylamine Chemical compound C1CC2C(C)(C)C(NC)(C)C1C2 IMYZQPCYWPFTAG-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000015076 Shorea robusta Nutrition 0.000 description 1
- 244000166071 Shorea robusta Species 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 229910052601 baryte Inorganic materials 0.000 description 1
- 239000010428 baryte Substances 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007278 cyanoethylation reaction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/32—Non-aqueous well-drilling compositions, e.g. oil-based
- C09K8/36—Water-in-oil emulsions
Definitions
- the present invention relates to compositions and methods for drilling, cementing and casing boreholes in subterranean formations, particularly hydrocarbon bearing formations. More particularly, the present invention relates to methods for improving the rheology of invert emulsion drilling fluids, particularly at high temperatures, and to compositions for low mud weight, invert emulsion drilling fluids, with good stability and high performance properties.
- a drilling fluid or mud is a specially designed fluid that is circulated through a wellbore as the wellbore is being drilled to facilitate the drilling operation.
- the various functions of a drilling fluid include removing drill cuttings from the wellbore, cooling and lubricating the drill bit, aiding in support of the drill pipe and drill bit, and providing a hydrostatic head to maintain the integrity of the wellbore walls and prevent well blowouts.
- the fluid should be sufficiently viscous to suspend barite and drilled cuttings and to carry the cuttings to the well surface. However, the fluid should not be so viscous as to interfere with the drilling operation.
- Oil based muds are normally used to drill swelling or sloughing shales, salt, gypsum, anhydrite and other evaporate formations, hydrogen sulfide-containing formations, and hot (greater than about 300 degrees Fahrenheit (“° F") holes, but may be used in other holes penetrating a subterranean formation as well.
- An oil-based invert emulsion-based drilling fluid may commonly comprise between about 50:50 to about 95:5 by volume oil phase to water phase.
- Such oil-based muds used in drilling typically comprise: a base oil comprising the external phase of an invert emulsion; a saline, aqueous solution (typically a solution comprising about 30% calcium chloride) comprising the internal phase of the invert emulsion; emulsifiers at the interface of the internal and external phases; and other agents or additives for suspension, weight or density, oil-wetting, fluid loss or filtration control, and rheology control.
- additives commonly included organophilic clays and organophilic lignites. See H.C.H.
- the term "clay- free” means a drilling fluid made without addition of any organophilic clays or organophilic lignites to the drilling fluid composition.
- such "clay-free” drilling fluids may acquire clays and/or lignites from the formation or from mixing with recycled fluids containing clays and/or lignites.
- contamination of "clay-free” drilling fluids is preferably avoided and organophilic clays and organophilic lignites should not be deliberately added to "clay-free” drilling fluids during drilling.
- Invert emulsion-based muds or drilling fluids (also called invert drilling muds or invert muds or fluids) comprise a key segment of the drilling fluids industry, and "clay- free” invert emulsion-based muds, particularly those capable of "fragile gel" behavior as described in U.S. Patent Nos. 7,462,580 and 7,488,704 to Kirsner, et al., are becoming increasingly popular.
- Clay-free invert emulsion drilling fluids like INNOVERT® drilling fluid available from Halliburton Energy Services, Inc., in Duncan, Oklahoma and Houston, Texas, for example, have been shown to yield high performance in drilling, with "fragile gel” strengths and rheology leading to lower equivalent circulating density (ECDs) and improved rate of penetration ROP.
- ECDs equivalent circulating density
- a limiting factor in drilling a particular portion of a well is the mud weight
- a particularly critical drilling scenario is one that combines deepwater and shallow overburden, as is typical of ultra deepwater fields in Brazil. This scenario is characterized by high pore fluid pressure, low effective stresses, low fracturing gradients and narrow mud weight windows.
- inert solids may improve the rheology, but result in a decreased rate of penetration during drilling and loss of or decline in other benefits seen with a clay free system.
- inert solids include for example, fine sized calcium carbonate, and the term as used herein is not meant to be understood to include or refer to drill cuttings.
- Low mud weight or reduced density clay-free oil based invert emulsion drilling fluids also may show a decline in the desired "fragile gel” strength characteristic of clay-free invert emulsion drilling fluids.
- Fraile gel strength generally refers to the ability of the drilling fluid to both suspend drill cuttings at rest and show a lack of a pressure spike upon resumption of drilling.
- the present invention provides oil-based invert emulsion drilling fluids with improved rheology without the addition of inert solids, and at temperatures ranging from about 100°F to about 375°F or higher.
- the present invention also provides improved methods of drilling wellbores in subterranean formations employing oil-based invert emulsion muds or drilling fluids having low mud weight.
- drilling or “drilling wellbores” shall be understood in the broader sense of drilling operations, which include running casing and cementing as well as drilling, unless specifically indicated otherwise.
- the invert emulsion drilling fluid of the present invention comprises an oikwater ratio preferably in the range of 50:50 to 95:5 and preferably employs a natural oil, such as for example without limitation diesel oil or mineral oil, or a synthetic base, as the oil phase and water comprising calcium chloride as the aqueous phase.
- a natural oil such as for example without limitation diesel oil or mineral oil, or a synthetic base
- the rheology modifier or additive for rheology stability is a hydrophobic amine additive, having the following general structure:
- R represents a hydrophobic or partially hydrophobic group with carbon atoms from 16 - 54 which can be straight chained or branched and can be aliphatic, cycloaliphatic and aryl aliphatic;
- N is a primary, secondary or tertiary amine wherein the Rl and R2 groups may be the same or different and are selected from the group consisting of a hydrogen group, alkyl group, cyano alkyl group, amino alkyl group, amino aryl group, hydroxyl alkyl group or a derivative thereof; alternatively the Rl and R2 can be a carbonyl group, carbonate group, alkoxy group, hydroxyl group or a derivative thereof;
- X comprises a hydrophilic group such as an amine which can be primary, secondary or tertiary with substituents being a hydrogen group, alkyl group, cyano alkyl group, amino alkyl group, amino aryl group, hydroxyl alkyl group or a derivative thereof; alternative
- a preferred commercially available C36 dimer diamine contains C18 fatty monoamine and C54 fatty trimer triamine which are obtained during the commercial production of the dimer diamine.
- quantities of such hydrophobic amine ranging from about 1 ppb to about 6 ppb are preferred and are effective even when the mud weight is low, that is, is in the range of about 9 to about 12 ppg.
- the invert emulsion drilling fluid of the present invention comprising the hydrophobic amine additive has increased LSYP, YP, and 10 minute Gel Strength but similar or lower PV, relative to the drilling fluid without the hydrophobic amine additive.
- LSYP Low Shear Yield Point
- YP Yield Point
- 10 minute Gel Strength limits the increase in the Plastic Viscosity (PV) to about 60% or less, relative to the drilling fluid not having the hydrophobic amine additive, when measured at 120°F.
- HPHT High Pressure High Temperature
- the invert emulsion drilling fluid of the present invention comprising the hydrophobic amine additive has increased LSYP, YP, and 10 minute Gel Strength but similar or lower PV, relative to the drilling fluid without the hydrophobic amine additive.
- Such a lower PV seen with the invert emulsion drilling fluid of the invention is believed to help minimize the amount of density increase caused by pumping of the fluid.
- Invert emulsion drilling fluids of the invention may also demonstrate "fragile
- Figure 1 is a bar graph comparing the plastic viscosity, yield point and low shear yield point of example 9 ppg drilling fluid formulations of the invention having various concentrations of a hydrophobic amine rheology modifier, with a formulation without that additive.
- Figure 2a is a graph comparing, at high temperature and pressure, the low shear yield point of an example drilling fluid formulation of the invention having 3 ppb hydrophobic amine rheology modifier, with a base or control fluid not containing a hydrophobic amine rheology modifier.
- Figure 2b is a graph comparing, at high temperature and pressure, the yield point of an example drilling fluid formulation of the invention having 3 ppb hydrophobic amine rheology modifier, with a base or control fluid not containing a hydrophobic amine rheology modifier.
- Figure 2c is a graph comparing, at high temperature and pressure, the plastic viscosity of an example drilling fluid of the invention having 3 ppb hydrophobic amine rheology modifier, with a base or control fluid not containing a hydrophobic amine rheology modifier.
- Figure 3 is a graph showing the effect of a hydrophobic amine rheology modifier on an example drilling fluid of the invention not containing any inert solids additive.
- Figure 4 is bar graph comparing rheological characteristics of example drilling fluids of the invention having different mineral oil bases.
- Figure 5 is a bar graph comparing the rheology of an example 12 ppg drilling fluid of the invention with a base or control drilling fluid not having a hydrophobic amine rheology modifier, after hot rolling for 16 hours at 350°F.
- Figure 6 is a graph showing fragile gel behavior of an example 9 ppg drilling fluid of the invention compared to the behavior of a 9 ppg drilling fluid not having a hydrophobic amine rheology modifier.
- Figure 7a is a graph showing fragile gel behavior of an example drilling fluid of the invention having a mud weight of 16 ppg.
- Figure 7b is a graph showing fragile gel behavior of an example drilling fluid of the invention having a mud weight of 18 ppg
- the present invention provides an oil-based, invert emulsion drilling fluid with improved performance in the field at mud weights in the range of about 9 ppg to about 18 ppg, and a method of drilling employing that drilling fluid.
- the oil base may be a natural oil such as for example diesel oil, or a synthetic base such as, for example, ACCOLADE® base comprising esters or ENCORE® base comprising isomerized olefins, both available from Halliburton Energy Services, Inc., in Houston, Texas and Duncan, Oklahoma.
- a mineral oil may even be successfully used as the oil base in the present invention, even though in the prior art some difficulties have been experienced in obtaining desirable rheological properties with mineral oils under certain conditions such as low mud weights, that is, mud weights ranging from about 9 to about 12 ppg, and particularly at high temperatures (greater than 225 °F).
- Mineral oils particularly suitable for use in the invention are selected from the group consisting of n-paraffins, iso-paraffins, cyclic alkanes, branched alkanes, and mixtures thereof.
- An aqueous solution containing a water activity lowering compound, composition or material comprises the internal phase of the invert emulsion.
- Such solution is preferably a saline solution comprising calcium chloride (typically about 25% to about 30%, depending on the subterranean formation water salinity or activity), although other salts or water activity lowering materials such as for example glycerol or sugar known in the art may alternatively or additionally be used.
- Such other salts may include for example sodium chloride, sodium bromide, calcium bromide and formate salts.
- Water preferably comprises less than 50%, or as much as about 50%, of the drilling fluid and the oikwater ratio preferably ranges from about 50:50 to about 95:5.
- Drilling fluids of the present invention uniquely include a hydrophobic amine additive as a rheology modifier, as will be discussed further below. Further, the drilling fluids of, or for use in, the present invention, have added to them or mixed with their invert emulsion oil base, other fluids or materials needed to comprise complete drilling fluids.
- Such other materials optionally may include, for example: additives to reduce or control low temperature rheology or to provide thinning, for example, additives having the trade names COLDTROL®, ATC®, and OMC2TM; additives for enhancing viscosity, for example, an additive having the trade name RHEMOD LTM (modified fatty acid); additives for providing temporary increased viscosity for shipping (transport to the well site) and for use in sweeps, for example, an additive having the trade name TEMPERUSTM (modified fatty acid); additives for filtration control, for example, additives having the trade names ADAPTA® and BDF-366; an emulsifier activator, such as, for example, lime; additives for high temperature high pressure control (HTHP) and emulsion stability, for example, an additive having the trade name FACTANTTM (highly concentrated tall oil derivative); and additives for emulsification, for example, an additive having the trade name EZ MUL® NT (polyaminated fatty acid).
- a preferred commercially available drilling fluid system for use in the invention is the INNOVERT® drilling fluid system, having a paraffin/mineral oil base, available from Baroid, a Halliburton Company, in Houston, Texas and Duncan, Oklahoma.
- the INNOVERT® drilling fluid system typically comprises the following additives, in addition to the paraffin/mineral oil base and brine, for use as an invert emulsion drilling fluid: RHEMODTM L modified fatty acid suspension and viscosifying agent, BDF-366TM or ADAPTATM copolymer for HPHT filtration control, particularly for use at high temperatures, and EZ MUL® NT polyaminated fatty acid emulsifier/oil wetting agent, also particularly for use at high temperatures.
- TAU-MODTM amorphous/fibrous material as a viscosifier and suspension agent.
- TAU-MODTM material is optional.
- Invert emulsion drilling fluids of the present invention comprising the hydrophobic amine additive, maintain acceptable and even preferred rheology measurements at low mud weights and do not experience a decreased rate of penetration (and with clay-free invert emulsion drilling fluids, also do not experience a decline in desired fragile gel strength) when in use in drilling even at high temperatures and pressures.
- the invert emulsion drilling fluids of the present invention comprising the hydrophobic amine additive, has increased LSYP, YP, and 10 minute Gel Strength but similar or lower PV relative to the drilling fluid without the hydrophobic amine additive.
- Preferred commercially available hydrophobic amines suitable for use in the present invention include without limitation VERSAMINE® 552 hydrogenated fatty C36 dimer diamine, and VERSAMINE® 551 fatty C36 dimer diamine, both available from Cognis Corporation (functional products) of Monheim, Germany and Cincinnati, Ohio and PRIAMINETM 1073 and PRIAMINETM1074 fatty C36 dimer diamine, both available from Croda Internationale Pic of Goole East Yorkshire, United Kingdom and New Castle, Delaware.
- an amount of such dimer diamine in the range of about 1 pound per barrel (ppb) to about 3 ppb is sufficient for purposes of the invention.
- These fatty dimer diamines are prepared commercially from fatty dimer diacids which have been produced from dimerisation of vegetable oleic acid or tall oil fatty acid by thermal or acid catalyzed methods.
- C36 dimer acids This material is a mixture of monocyclic dicarboxylic acid, acyclic dicarboxylic acid and bicyclic dicarboxylic acid along with small quantities of trimeric triacids. These diacids are converted into diamines via the reaction scheme given below:
- diamines are further converted into compounds that fall under the scope of hydrophobic amine additives.
- These diamines are converted into cyanoethyl derivatives via cyanoethylation with acrylonitrile; these cyanoethyl derivatives are further reduced into aminopropyl amines via reduction as shown in the reaction scheme II below, as taught in United States Patent No. 4,250,045, issued February 10, 1981 to Coupland, et al.
- Dicyanoethylated dimer diamine is available commercially as Kemamine DC 3680 and 3695 and di N-aminopropylated dimer diamine is available commercially as Kemamine DD 3680 and 3695 from Chemtura Corporation USA.
- Different structures of the dimeric hydrophobic amine additives are given below:
- the Plastic Viscosity (PV), Yield Point (YP), Yield Stress (Tau zero) and Low Shear Yield Point (LSYP) of the invert emulsion drilling fluid were determined on a direct- indicating rheometer, a FANN 35 rheometer, powered by an electric motor.
- the rheometer consists of two concentric cylinders, the inner cylinder is called a bob, while the outer cylinder is called a rotor sleeve.
- the drilling fluid sample is placed in a thermostatically controlled cup and the temperature of the fluid is adjusted to 120 (+ 2) °F.
- the drilling fluid in the thermostatically controlled cup is then placed in the annular space between the two concentric cylinders of the FANN 35.
- the outer cylinder or rotor sleeve is driven at a constant rotational velocity.
- the rotation of the rotor sleeve in the fluid produces a torque on the inner cylinder or bob.
- a torsion spring restrains the movement of the bob, and a dial attached to the bob indicates displacement of the bob.
- the dial readings are measured at different rotor sleeve speeds of 3, 6, 100, 200, 300 and 600 revolutions per minute (rpm).
- Yield Point is defined as the value obtained from the Bingham- Plastic rheological model when extrapolated to a shear rate of zero. It may be calculated using 300 rpm and 600 rpm shear rate readings as noted above on a standard oilfield rheometer, such as a FANN 35 or a FANN 75 rheometer.
- Yield Stress or Tau zero is the stress that must be applied to a material to make it begin to flow (or yield), and may commonly be calculated from rheometer readings measured at rates of 3, 6, 100, 200, 300 and 600 rpm. The extrapolation may be performed by applying a least-squares fit or curve fit to the Herchel-Bulkley rheological model.
- a more convenient means of estimating the Yield Stress is by calculating the Low-Shear Yield Point (LSYP) by the formula shown below in Equation 2 except with the 6 rpm and 3 rpm readings substituted for the 600-rpm and 300- rpm readings, respectively.
- Plastic Viscosity (PV) is obtained from the Bingham-Plastic rheological model and represents the viscosity of a fluid when extrapolated to infinite shear rate. The PV is obtained from the 600 rpm and the 300 rpm readings as given below in Equation 1.
- a low PV may indicate that a fluid is capable of being used in rapid drilling because, among other things, the fluid has low viscosity upon exiting the drill bit and has an increased flow rate.
- a high PV may be caused by a viscous base fluid, excess colloidal solids, or both.
- the PV and YP are calculated by the following set of equations:
- Samples of 9 ppg INNOVERT® invert emulsion drilling fluid containing 3 ppb C36 dimer diamine were evaluated further with a FANN 75 rheometer using simulated down hole conditions, and particularly testing high temperature and high pressure rheology.
- the FANN 75 rheometer measures similarly as the FANN 35 rheometer but can measure rheology under high temperature and pressure.
- the compositions of these samples are set forth in Table 2(a) below and the results of these tests are graphed in Figures 2(a), 2(b) and 2(c). Before testing, the samples were hot rolled at 325°F.
- Formulation sample 5 in Table 2(a) was a "control," the drilling fluid without a dimer diamine (hydrophobic amine) additive.
- the data for these figures is provided in Table 2(b) (control formulation sample 5) and Table 2(c) (invention formulation sample 6) below.
- Tables 2(b) and 2(c) show that the addition of the hydrophobic amine additive increased the YP and LSYP of the invert emulsion drilling fluid, but maintained similar or lower PV relative to the control (formulation 5), under High Pressure High Temperature (HPHT) conditions.
- HPHT High Pressure High Temperature
- Invert emulsion drilling fluids of the present invention were also prepared and laboratory tested with other commercially available mineral oil invert emulsion bases, particularly EDC 99-DW mineral oil base, available from Total in Paris, France, ESCAID®- 110 mineral oil base, available from ExxonMobil, in Houston, Texas, and XP-07 mineral oil base, available from Petrochem Carless in Wynnewood, Oklahoma and the United Kingdom. More particularly, these samples had the formulations set forth in Table 4 below. Each formulation had a mud weight of 9 ppg and an oil: water ratio of 60:40. After hot rolling at 250°F for 16 hours, the sample rheologies were evaluated with a FANN 35 rheomoter at 120°F. Test data are shown in Table 4 and these results are graphed in Figure 4, showing the invention to be effective with a variety of commercially available mineral oil invert emulsion drilling fluid bases.
- EDC 99-DW mineral oil base available from Total in Paris, France
- ESCAID®- 110 mineral oil base available
- INNOVERT® invert emulsion drilling fluid having an oil:water ratio of 70:30
- C36 dimer diamine Formulation 12
- Table 5 The formulation of the samples tested and the test results are set forth in Table 5 below.
- Figure 6 provides a graph showing the favorable characteristic "fragile gel"
- Figures 7a and 7b provide graphs showing "fragile gel” behavior of example clay-free drilling fluids of the invention having mud weights of 16 and 18 ppg, respectively. These graphs show that even at high mud weight and higher hot roll temperatures, a clay-free invert emulsion drilling fluid with the hydrophobic amine additive of the present invention demonstrates "fragile gel” behavior.
- Table 6 also shows another advantage of the invention— that HPHT fluid losses of high mud weight drilling fluids with a hydrophobic amine additive of the invention are lower than otherwise comparable drilling fluids without the hydrophobic amine additive. In addition, the HPHT filtrate of these fluids without the hydrophobic amine additive showed an undesirable presence of a solid mass.
- a drilling fluid of the invention may be employed in drilling operations.
- the drilling fluid removes drill cuttings from the wellbore, cools and lubricates the drill bit, aids in support of the drill pipe and drill bit, and provides a hydrostatic head to maintain the integrity of the wellbore walls and prevent well blowouts.
- the specific formulation of the drilling fluid in accordance with the present invention is optimized for the particular drilling operation and for the particular subterranean formation characteristics and conditions (such as temperatures).
- the fluid is weighted as appropriate for the formation pressures and thinned as appropriate for the formation temperatures.
- the fluids of the invention afford real-time monitoring and rapid adjustment of the fluid to accommodate changes in such subterranean formation conditions.
- the fluids of the invention may be recycled during a drilling operation such that fluids circulated in a wellbore may be recirculated in the wellbore after returning to the surface for removal of drill cuttings for example.
- the drilling fluid of the invention may even be selected for use in a drilling operation to reduce loss of drilling mud during the drilling operation and/or to comply with environmental regulations governing drilling operations in a particular subterranean formation.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
L'invention concerne un fluide de forage à émulsion inverse, et un procédé de forage au moyen d'un tel fluide, ledit fluide présentant une rhéologie améliorée à des poids de boue faibles et des températures élevées. La rhéologie améliorée est obtenue par ajout d'amines hydrophobes, idéalement de diamines dimères.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/342,179 US9127192B2 (en) | 2010-03-06 | 2012-01-02 | Invert drilling fluids having enhanced rheology and methods of drilling boreholes |
| PCT/US2012/072246 WO2013106213A1 (fr) | 2012-01-02 | 2012-12-30 | Fluides de forage à émulsion inverse à rhéologie améliorée et procédés de forage de puits de forage |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2800794A1 true EP2800794A1 (fr) | 2014-11-12 |
Family
ID=48781815
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12829221.6A Withdrawn EP2800794A1 (fr) | 2012-01-02 | 2012-12-30 | Fluides de forage à émulsion inverse à rhéologie améliorée et procédés de forage de puits de forage |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP2800794A1 (fr) |
| AU (1) | AU2012364697B2 (fr) |
| CA (1) | CA2862135A1 (fr) |
| EA (1) | EA201491109A1 (fr) |
| WO (1) | WO2013106213A1 (fr) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10457847B2 (en) | 2016-11-30 | 2019-10-29 | Saudi Arabian Oil Company | Invert emulsion drilling fluids with fatty acid and fatty amine rheology modifiers |
| EP3548580B1 (fr) * | 2016-11-30 | 2020-12-23 | Saudi Arabian Oil Company | Fluides de forage à émulsion inverse comprenant des modificateurs de rhéologie acides gras et diols gras |
| US10927284B2 (en) | 2016-11-30 | 2021-02-23 | Saudi Arabian Oil Company | Invert emulsion drilling fluids with fatty acid and fatty amine rheology modifiers |
| US10858568B1 (en) * | 2019-07-11 | 2020-12-08 | Saudi Arabian Oil Company | Rheology modifier for organoclay-free invert emulsion drilling fluid systems |
| CN114371257B (zh) * | 2022-01-12 | 2023-11-24 | 成都汇能恒源科技有限公司 | 一种钻井液受二氧化碳污染的室内评价方法 |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4250045A (en) | 1979-06-22 | 1981-02-10 | Exxon Research & Engineering Co. | Polymerized fatty acid amine derivatives useful as friction and wear-reducing additives |
| US7456135B2 (en) | 2000-12-29 | 2008-11-25 | Halliburton Energy Services, Inc. | Methods of drilling using flat rheology drilling fluids |
| US20030130135A1 (en) * | 2001-11-13 | 2003-07-10 | Crompton Corporation | Emulsifier for oil-based drilling fluids |
| US7067460B2 (en) * | 2002-11-14 | 2006-06-27 | Baker Hughes Incorporated | Organofunctional compounds for shale stabilization of the aqueous dispersed phase of non-aqueous based invert emulsion drilling system fluids |
| DE102004051280A1 (de) * | 2004-10-21 | 2006-04-27 | Cognis Ip Management Gmbh | Verwendung von ethoxylierten Amidoaminen als Emulgatoren in Bohrspülungen |
| US8258084B2 (en) * | 2006-01-18 | 2012-09-04 | Georgia-Pacific Chemicals Llc | Spray dried emulsifier compositions, methods for their preparation, and their use in oil-based drilling fluid compositions |
| US8524640B2 (en) * | 2006-07-07 | 2013-09-03 | M-I L.L.C. | Fluid loss additive for oil-based muds |
-
2012
- 2012-12-30 CA CA2862135A patent/CA2862135A1/fr not_active Abandoned
- 2012-12-30 EA EA201491109A patent/EA201491109A1/ru unknown
- 2012-12-30 AU AU2012364697A patent/AU2012364697B2/en active Active
- 2012-12-30 WO PCT/US2012/072246 patent/WO2013106213A1/fr not_active Ceased
- 2012-12-30 EP EP12829221.6A patent/EP2800794A1/fr not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2013106213A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2012364697A1 (en) | 2014-07-31 |
| CA2862135A1 (fr) | 2013-07-18 |
| EA201491109A1 (ru) | 2014-12-30 |
| AU2012364697B2 (en) | 2016-04-21 |
| WO2013106213A1 (fr) | 2013-07-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CA2790724C (fr) | Fluides de forage inverses a rheologie amelioree et procedes de forage de puits de forage | |
| CA2872864C (fr) | Procedes et materiels pour ameliorer la rheologie a temperatures elevees dans les emulsions inverses | |
| EP2900785B1 (fr) | Procédé d'amélioration de la rhéologie à haute température dans les fluides de forage | |
| AU2014249450B2 (en) | Method of drilling boreholes with invert emulsion drilling fluids characterized by flat rheology | |
| US20130303410A1 (en) | Invert Emulsion Drilling Fluids for Flat Rheology Drilling | |
| US20110053808A1 (en) | Suspension Characteristics in Invert Emulsions | |
| US20160230070A1 (en) | Invert emulsion drilling fluids with fumed silica and methods of drilling boreholes | |
| AU2012364697B2 (en) | Invert drilling fluids having enhanced rheology and methods of drilling boreholes | |
| WO2015006101A1 (fr) | Fluides de forage à émulsion inversée pour forage à profil rhéologique plat | |
| AU2013402104B2 (en) | Invert emulsion drilling fluids with fumed silica and methods of drilling boreholes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20140702 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20150924 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20161119 |