[go: up one dir, main page]

EP2885865A1 - Ensemble convertisseur de puissance - Google Patents

Ensemble convertisseur de puissance

Info

Publication number
EP2885865A1
EP2885865A1 EP13707869.7A EP13707869A EP2885865A1 EP 2885865 A1 EP2885865 A1 EP 2885865A1 EP 13707869 A EP13707869 A EP 13707869A EP 2885865 A1 EP2885865 A1 EP 2885865A1
Authority
EP
European Patent Office
Prior art keywords
converter
power converter
voltage
transformers
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13707869.7A
Other languages
German (de)
English (en)
Inventor
Erik Wedin
Henrik DAHLBERG
Markus Petterson
Mats Berglund
Olaf Saksvik
Raul MONTANO
Urban ÅSTRÖM
Tommy Holmgren
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Ltd
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Technology AG filed Critical ABB Technology AG
Publication of EP2885865A1 publication Critical patent/EP2885865A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage

Definitions

  • the invention relates to a power converter assembly for converting power between alternating current, AC, and direct current, DC.
  • High voltage DC is increasing in usage due to a number of benefits compared to AC for power transmission.
  • conversion needs to occur from DC to AC or AC to DC. This conversion is performed in converter stations.
  • these converter stations are large and heavy, which not only creates demands during installation, but also when transporting the converter stations from a factory where the converter station is assembled to an installation site.
  • a power converter assembly arranged to convert power between AC on a main AC connection and DC on a DC connection.
  • the power converter assembly comprises: a plurality of converter devices; at least one converter transformer connected between one of the converter devices and an intermediate AC bus, respectively; at least one voltage transformers connected on one side to the intermediate bus and arranged to be connected on the other side to a main AC connection.
  • the converter transformers for transforming to the intermediate bus can be made smaller compared to if the converter transformers would need to be connected to the main AC connection. In this way, the converter devices can be provided with the converter transformers with reduced size and weight.
  • All power between the main AC connection and the DC connection may pass the intermediate AC bus.
  • the power conversion of the power converter assembly can be controlled by controlling the voltage of the intermediate AC bus. For example, when in use, the voltage of the
  • intermediate AC bus may be used to control the voltage on the DC
  • the voltage of the intermediate AC bus can be controlled to control the voltage on the DC connection.
  • this can be achieved by controlling the at least one voltage transformers.
  • Each one of the at least one converter transformer may be a fixed voltage transformer.
  • a fixed voltage transformer is to be interpreted as a transformer with a fixed turns ratio between the primary and secondary side.
  • a fixed voltage transformer is smaller and easier to transport, compared to a variable voltage transformer.
  • the power converter assembly according to claim l further comprising at least one combined transformer connected one side to one of the converter devices and arranged to be connected on the other side to a main AC connection.
  • the magnitude of the DC offset of any converter devices connected to the at least one combined transformer is lower than of any converter devices connected to the at least one converter transformer. In this way, for low DC offsets where voltage conversion requirements are lower, a combined transformer can be provided. Since the voltage conversion requirements are lower, a relatively small combined transformer can still be provided.
  • the number of converter transformers may be equal to the number of converter devices. This provides for a consistent topology which can be easier to maintain and repair.
  • the number of voltage transformers may differ from the number of converter transformers.
  • Each one of the converter devices may be a power converter for converting in at least either direction between alternating current, AC, and direct current, DC.
  • the number of voltage transformers may be equal to the number of converter transformers. This allows for fault isolation, where e.g. a failed converter transformer can be isolated from other converter transformers, where the other converter transformers can then continue to operate with their respective corresponding voltage transformer.
  • the number of voltage transformers may be lower than the number of converter transformers. This can be a more cost effective alternative. For example, there can be only one voltage transformer between the intermediate AC bus and the main AC bus.
  • the converter devices may be connected in series between a positive terminal of the DC connection and a negative terminal of the DC connection.
  • Each converter device may be connected to the intermediate AC bus via a respective converter transformer.
  • the voltage transformation of each one of the voltage transformers is greater than the voltage transformation of each one of the converter transformers. This reduces the size of the converter transformers, which can then be provided and transported assembled to the converter devices.
  • the converter devices and the at least one converter transformer may be contained in a single housing.
  • a power converter comprising a plurality of power converter assemblies according to any one of the preceding claims, wherein the power converter assemblies are connected to the same DC connection but different respective main AC connections, wherein the different respective main AC connections are different phases.
  • All references to "a/an/the element, apparatus, component, means, step, etc.” are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise.
  • the steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
  • Fig l is a schematic diagram showing a power converter assembly according to one embodiment
  • Fig 2 is a schematic diagram showing a power converter assembly according to another embodiment
  • Fig 3 is a schematic diagram showing a power converter assembly according to another embodiment
  • Fig 4 is a schematic diagram of a multi phase power converter for converting between DC and AC.
  • Fig l is a schematic diagram showing a power converter assembly l according to one embodiment.
  • the power converter assembly l or at least part of it, is also known as a converter station.
  • the purpose of the power converter assembly l is to convert power between a high voltage main AC connection ACi and a high voltage DC (HVDC) connection DC.
  • the power converter assembly l could be capable of only unidirectional power conversion in either direction or optionally bidirectional power conversion.
  • the voltage on the main AC bus ACi is higher than the voltage on the intermediate AC bus AC 2 .
  • the voltage on the intermediate bus AC 2 in one example is between 50 and 300 kV and the voltage on the main AC bus ACi is 500 to 1500 kV.
  • the voltage on the intermediate bus is 245 kV and the voltage on the main AC bus is 1000 kV.
  • first converter device 2a On the DC side, there are a first converter device 2a, a second converter device 2b, a third converter device 2c, and a fourth converter device 2d, connected in series between a positive terminal (DC+) of the DC connection and a negative terminal (DC-) of the DC connection.
  • Each power converter device 2a-d can be a voltage source converter or a current source converter, which are both known in the art per se. Being serially connected between the terminals of the DC connection, each converter device 2a-d has a different DC offset.
  • the middle point of the string of converter devices, in this example the point between the second and third converter devices 2b-c can be grounded in the case of a symmetrical DC connection. While the power converter assembly 1 is here shown with four converter devices, the power converter assembly can be provided with any suitable number of converter devices.
  • a converter transformer 5a is provided between an AC side of the first converter device 2a and the intermediate AC bus AC 2 .
  • another converter transformer 5b is provided between the fourth converter device 2d and the intermediate AC bus AC 2 .
  • the converter transformers 5a-b are fixed voltage transformers to keep any size and weight requirements for these low.
  • the intermediate bus AC 2 is connected to the main AC bus ACi via two voltage transformers 6a-b. While this embodiment is shown with two voltage transformers 6a-b, any number of voltage transformers can be provided, including one, three, four, etc.
  • the voltage transformers 6a-b are here shown as variable voltage transformers but they could optionally be fixed voltage transformers.
  • the second converter device 2b is connected via a combined transformer 7a to the main AC bus ACi, without passing via the intermediate AC bus AC 2 .
  • the third converter device 2c is connected via a combined transformer 7b to the main AC bus ACi, without passing via the intermediate AC bus AC 2 .
  • the combined transformers 7a-b are here shown as variable voltage transformers but they could optionally be fixed voltage transformers.
  • the outer converter devices, i.e. the first and the fourth converter devices, 2a, d are connected via two transformers each to the main AC bus ACi. In this way, the converter transformers 5a-b are only responsible for DC isolation, which prevents conflicts between the first and fourth converter devices 2a, d being on different DC offsets.
  • the two voltage transformers 6a, b are then responsible for voltage conversion between the intermediate AC bus AC 2 and the main AC bus ACi, relieving this task from the converter transformers.
  • the two inner converter devices i.e. the second and third converter devices, 2b-c do not need the same extent of voltage conversion as the outer converter devices since the magnitude of the DC offset for these two converter devices 2b-c is lower.
  • the voltage conversion from the inner converter devices 2b-c to the main AC bus can be achieved with combined transformers 7a-b with lower requirements on voltage conversion than is the case for the outer converter devices.
  • the converter transformers 5a-b can be made much smaller.
  • the voltage transformers 6a-b which can be provided externally to the rest of the converter station, on the other hand, can be larger without affecting the transport of the rest of the converter station. In this way, the ability to transport of the converter station from factory to installation site is significantly improved.
  • the converter station comprises the converter devices 2a-d, the converter transformers and the intermediate AC bus AC 2 .
  • the combined transformers and/or intermediate bus filters 9a-b are included in the converter station.
  • filters 9a-b connected to the intermediate AC bus AC 2 , less filtering is required by the filters 8a-b on the main AC bus ACi. This reduces complexity and cost, since filtering at the significantly higher voltage of the main AC bus ACi is more expensive and more complicated.
  • FIG 2 is a schematic diagram showing a power converter assembly 1 according to another embodiment. This embodiment is similar to the embodiment of Fig 1. Here, however, all converter devices 2a-d are connected to the intermediate AC bus AC 2 via respective converter transformers 5a-d.
  • the number of voltage transformers 6a-d is equal to the number of converter transformers 5a-d. In this way, there is no need for any combined transformers, as shown in Fig 1. Moreover, the voltage transformation of the power converter assembly 1 can be controlled by controlling the voltage transformers 6a-d and thus the voltage on the intermediate AC bus AC 2 .
  • Fig 3 is a schematic diagram showing a power converter assembly according to another embodiment. This embodiment is similar to the embodiment of Fig 2. Here, however, only one voltage transformer 6a is provided for voltage transformation between the intermediate AC bus AC 2 and the main AC bus Ad.
  • Fig 4 is a schematic diagram of a multi phase power converter 10 for converting between DC and AC.
  • the multi phase power converter 10 is a three phase power converter and thus comprises three power converter assemblies la-c, as described above.
  • the AC connection here comprises three phase terminals ACLA, ACIB, ACIC to be able to provide a three phase connection, e.g. to an AC grid, an AC power source or an AC power load.
  • an AC ground terminal AC 0 is also provided (not shown).
  • the multi phase power converter 10 can be configured for any number of suitable phases by providing the same number of power converter assemblies as the number of phases which are desired to support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

La présente invention concerne un ensemble convertisseur de puissance entre un courant alternatif sur une connexion de courant alternatif principale et un courant continu sur une connexion de courant continu. L'ensemble convertisseur de puissance comprend : une pluralité de dispositifs convertisseurs ; au moins un transformateur de convertisseur respectivement connecté entre l'un des dispositifs convertisseurs et un bus à courant alternatif intermédiaire ; au moins un transformateur de tension connecté du côté du bus intermédiaire et conçu pour se connecter à l'autre côté d'une connexion à courant alternatif principale.
EP13707869.7A 2012-08-16 2013-03-06 Ensemble convertisseur de puissance Withdrawn EP2885865A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261683926P 2012-08-16 2012-08-16
PCT/EP2013/054463 WO2014026773A1 (fr) 2012-08-16 2013-03-06 Ensemble convertisseur de puissance

Publications (1)

Publication Number Publication Date
EP2885865A1 true EP2885865A1 (fr) 2015-06-24

Family

ID=47833072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13707869.7A Withdrawn EP2885865A1 (fr) 2012-08-16 2013-03-06 Ensemble convertisseur de puissance

Country Status (3)

Country Link
EP (1) EP2885865A1 (fr)
CN (1) CN104718691B (fr)
WO (1) WO2014026773A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020047268A1 (en) * 1996-05-29 2002-04-25 Mats Leijon Rotating electrical machine plants
US20110198847A1 (en) * 2008-10-27 2011-08-18 Rolls-Royce Plc Distributed electrical generation system
WO2012093942A1 (fr) * 2011-01-07 2012-07-12 Smartmotor As Système de conversion d'énergie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971976A (en) * 1975-02-10 1976-07-27 Massachusetts Institute Of Technology Electric power supply
JPS5728572A (en) * 1980-07-25 1982-02-16 Origin Electric Co Ltd Dc high voltage generator
JP2002034245A (ja) * 2000-07-11 2002-01-31 Sony Corp スイッチング電源回路
US20090080225A1 (en) * 2005-12-28 2009-03-26 Abb Research Ltd Voltage source converter and method of controlling a voltage source converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020047268A1 (en) * 1996-05-29 2002-04-25 Mats Leijon Rotating electrical machine plants
US20110198847A1 (en) * 2008-10-27 2011-08-18 Rolls-Royce Plc Distributed electrical generation system
WO2012093942A1 (fr) * 2011-01-07 2012-07-12 Smartmotor As Système de conversion d'énergie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2014026773A1 *

Also Published As

Publication number Publication date
CN104718691B (zh) 2018-01-12
CN104718691A (zh) 2015-06-17
WO2014026773A1 (fr) 2014-02-20

Similar Documents

Publication Publication Date Title
US8729819B2 (en) Multi-output current-balancing circuit
US9214819B2 (en) DC/DC converter circuit and battery system
CN102334039A (zh) 高压技术设备检验装置
US7772953B2 (en) Symmetrical auto transformer delta topologies
US20130182466A1 (en) Excitation control circuit and electrically excited wind power system having the same
US7095636B2 (en) Electromagnetic interference filter for an autotransformer
WO2010139099A8 (fr) Dispositif et procédé d'équilibrage de tensions d'éléments de stockage d'énergie
US20140133201A1 (en) Ups systems and methods using ups modules with differential mode inductor coupling
US9058929B2 (en) Composite AC-to-DC power converter with boosting capabilities
CN101710717A (zh) 用于满标度变换器系统的低压谐波滤波器
US20140368038A1 (en) Systems and methods for uninterruptible power supplies with bidirectional power converters
WO2015126946A4 (fr) Topologie d'onduleur résonant, chargeur sans fil, et procédé de régulation
CN101461123A (zh) 高压交流直接电力变换器
EP2850622B1 (fr) Arrangement à inducteur intégral
US20150222194A1 (en) Current-Modulated Smart Distribution Transformers, Modules, Systems, and Methods
US9991701B2 (en) Direct current power distribution and conversion system
EP3411946A1 (fr) Convertisseur résonant cc-cc bidirectionnel
US8716881B2 (en) Three phase inverter type generator
US9236811B2 (en) Multiphase transformer rectifier unit
US20130293010A1 (en) Current supply arrangement with a first and a second current supply device, wherein the second current supply device is connected to the first current supply device
US20150244280A1 (en) Direct current power transmission networks operating at different voltages
EP3072227B1 (fr) Convertisseur ca/cc à condensateur élévateur de tension de neutre
EP2885865A1 (fr) Ensemble convertisseur de puissance
US20160126857A1 (en) Autotransformer with wide range of, integer turns, phase shift, and voltage
EP2654159B1 (fr) Réseau d'alimentation en énergie, procédé et avion ou engin spatial

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150316

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PETTERSON, MARKUS

Inventor name: MONTANO, RAUL

Inventor name: HOLMGREN, TOMMY

Inventor name: ASTROEM, URBAN

Inventor name: WEDIN, ERIK

Inventor name: DAHLBERG, HENRIK

Inventor name: BERGLUND, MATS

Inventor name: SAKSVIK, OLAF

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB SCHWEIZ AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB POWER GRIDS SWITZERLAND AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210915