EP2726650A1 - Electrolytic freezing of zinc surfaces - Google Patents
Electrolytic freezing of zinc surfacesInfo
- Publication number
- EP2726650A1 EP2726650A1 EP12725788.9A EP12725788A EP2726650A1 EP 2726650 A1 EP2726650 A1 EP 2726650A1 EP 12725788 A EP12725788 A EP 12725788A EP 2726650 A1 EP2726650 A1 EP 2726650A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- galvanized
- acid
- iron
- alloy
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052725 zinc Inorganic materials 0.000 title abstract description 16
- 239000011701 zinc Substances 0.000 title abstract description 16
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title abstract description 15
- 230000008014 freezing Effects 0.000 title 1
- 238000007710 freezing Methods 0.000 title 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 45
- 229910052742 iron Inorganic materials 0.000 claims abstract description 36
- 239000003792 electrolyte Substances 0.000 claims abstract description 27
- 229910001335 Galvanized steel Inorganic materials 0.000 claims abstract description 25
- 239000008397 galvanized steel Substances 0.000 claims abstract description 25
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 24
- -1 iron cations Chemical class 0.000 claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims abstract description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 12
- 150000004715 keto acids Chemical class 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000011593 sulfur Substances 0.000 claims abstract description 6
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 5
- 230000003647 oxidation Effects 0.000 claims abstract description 5
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 17
- 230000008569 process Effects 0.000 claims description 15
- 238000000576 coating method Methods 0.000 claims description 10
- 150000001768 cations Chemical class 0.000 claims description 9
- 239000008139 complexing agent Substances 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000003973 paint Substances 0.000 claims description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 4
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 claims description 4
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N iron (II) ion Substances [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 239000003446 ligand Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- HXKKHQJGJAFBHI-UHFFFAOYSA-N 1-aminopropan-2-ol Chemical compound CC(O)CN HXKKHQJGJAFBHI-UHFFFAOYSA-N 0.000 claims description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 2
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 claims description 2
- XNCSCQSQSGDGES-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)C(C)CN(CC(O)=O)CC(O)=O XNCSCQSQSGDGES-UHFFFAOYSA-N 0.000 claims description 2
- DMQQXDPCRUGSQB-UHFFFAOYSA-N 2-[3-[bis(carboxymethyl)amino]propyl-(carboxymethyl)amino]acetic acid Chemical compound OC(=O)CN(CC(O)=O)CCCN(CC(O)=O)CC(O)=O DMQQXDPCRUGSQB-UHFFFAOYSA-N 0.000 claims description 2
- SDOFMBGMRVAJNF-UHFFFAOYSA-N 6-aminohexane-1,2,3,4,5-pentol Chemical compound NCC(O)C(O)C(O)C(O)CO SDOFMBGMRVAJNF-UHFFFAOYSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 2
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 claims description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 claims description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 2
- DSLZVSRJTYRBFB-UHFFFAOYSA-N Galactaric acid Natural products OC(=O)C(O)C(O)C(O)C(O)C(O)=O DSLZVSRJTYRBFB-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 2
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 claims description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 claims description 2
- 235000010323 ascorbic acid Nutrition 0.000 claims description 2
- 239000011668 ascorbic acid Substances 0.000 claims description 2
- 229960005070 ascorbic acid Drugs 0.000 claims description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims description 2
- 229960001484 edetic acid Drugs 0.000 claims description 2
- DSLZVSRJTYRBFB-DUHBMQHGSA-N galactaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O DSLZVSRJTYRBFB-DUHBMQHGSA-N 0.000 claims description 2
- 239000000174 gluconic acid Substances 0.000 claims description 2
- 235000012208 gluconic acid Nutrition 0.000 claims description 2
- 239000008103 glucose Substances 0.000 claims description 2
- 239000004310 lactic acid Substances 0.000 claims description 2
- 235000014655 lactic acid Nutrition 0.000 claims description 2
- 229940048195 n-(hydroxyethyl)ethylenediaminetriacetic acid Drugs 0.000 claims description 2
- 229960003330 pentetic acid Drugs 0.000 claims description 2
- WSHYKIAQCMIPTB-UHFFFAOYSA-M potassium;2-oxo-3-(3-oxo-1-phenylbutyl)chromen-4-olate Chemical compound [K+].[O-]C=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 WSHYKIAQCMIPTB-UHFFFAOYSA-M 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 125000004434 sulfur atom Chemical group 0.000 claims description 2
- 235000002906 tartaric acid Nutrition 0.000 claims description 2
- 239000011975 tartaric acid Substances 0.000 claims description 2
- 238000002203 pretreatment Methods 0.000 abstract description 4
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 2
- 239000011247 coating layer Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 13
- 238000000151 deposition Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 238000001465 metallisation Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229910052726 zirconium Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- DKKCQDROTDCQOR-UHFFFAOYSA-L Ferrous lactate Chemical compound [Fe+2].CC(O)C([O-])=O.CC(O)C([O-])=O DKKCQDROTDCQOR-UHFFFAOYSA-L 0.000 description 1
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000004532 chromating Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007739 conversion coating Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- XQRLCLUYWUNEEH-UHFFFAOYSA-N diphosphonic acid Chemical compound OP(=O)OP(O)=O XQRLCLUYWUNEEH-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 235000013924 ferrous gluconate Nutrition 0.000 description 1
- 239000004222 ferrous gluconate Substances 0.000 description 1
- 235000013925 ferrous lactate Nutrition 0.000 description 1
- 239000004225 ferrous lactate Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229940074391 gallic acid Drugs 0.000 description 1
- 235000004515 gallic acid Nutrition 0.000 description 1
- TVZISJTYELEYPI-UHFFFAOYSA-N hypodiphosphoric acid Chemical compound OP(O)(=O)P(O)(O)=O TVZISJTYELEYPI-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/20—Electroplating: Baths therefor from solutions of iron
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
Definitions
- the present invention relates to a process for the metallizing pretreatment of galvanized and / or alloy-galvanized steel surfaces or assembled metallic components, which at least partially have surfaces of zinc, in which from an aqueous
- the method is carried out at least partially or permanently with the application of an electrolysis voltage, wherein the galvanized and / or alloy-galvanized steel surfaces are connected as a cathode.
- the aqueous electrolyte additionally contains an accelerator selected from oxo acids of the elements phosphorus, nitrogen and / or sulfur, where the elements
- Phosphorus, nitrogen and / or sulfur are present in middle oxidation states.
- WO 2008/135478 describes a pretreatment process for electroless deposition of metallic coatings, in particular of iron and tin, on galvanized and / or alloy-galvanized steel surfaces.
- the pretreatment provides moderately metallized zinc surfaces suitable for application
- the deposition of iron is preferably carried out from aqueous compositions which additionally contain accelerators based on oxo acids of the elements phosphorus and / or nitrogen in medium oxidation states. It has been found in the practice of pretreatment that the deposition of metallic coatings from such compositions results in a significant enrichment of zinc ions in the pre-treatment bath. At the same time a strong decrease in the effectiveness of the metal deposition is observed, which can be counteracted by metering in additional amounts of the accelerator and metal cations to be deposited. The object of the present invention is now to keep the performance of the pre-treatment bath stable over a longer period of time, which can be dispensed as possible with a metered addition of active components of the deposition bath.
- This object has been achieved by a method for the metallizing pre-treatment of galvanized or alloy-galvanized steel surfaces, wherein the galvanized or Alloy-galvanized steel surface is brought as a cathode in contact with an aqueous electrolyte whose pH is not greater than 9, characterized in that in the aqueous electrolyte
- Sulfur atom of the respective oxo acid is present in a middle oxidation state, and c) a total of less than 10 ppm of electropositive metal cations selected from cations of the elements Ni, Co, Cu, Sn are contained,
- the galvanized or alloy-galvanized steel surface is at least temporarily connected as a cathode during the contact time with the aqueous electrolyte, wherein the galvanized or alloy-galvanized steel surface in this time a cathodic electrolytic current is impressed which at least 0.001 mAcm "2 , preferably at least 0.01 mAcm " 2 but not greater than 500 mAcm "2 , preferably not greater than 50 mAcm " 2 .
- the method according to the invention is suitable for all metal surfaces, for example strip steel, and / or assembled metallic components, which at least partially also consist of zinc surfaces, for example automobile bodies.
- Alloy-galvanized steel surfaces are according to the invention, characterized in that the surface has more than 50 at .-% zinc based on all metallic elements, wherein the surface fraction of zinc by X-ray photoelectron spectroscopy using AI K-alpha radiation (1486.6 eV) is to be determined ,
- pretreatment is defined as the passivation by means of inorganic barrier layers (for example phosphating, chromating) or a process step preceding the lacquer coating for conditioning the cleaned metallic surface.
- inorganic barrier layers for example phosphating, chromating
- Such conditioning of the surface causes the entire, at the end of a process chain for corrosion-protective surface treatment resulting
- Pretreatment process that directly causes a metallic deposition of iron or an iron alloy on the zinc surface, wherein after metallizing Pretreatment of the pretreated metal surface is at least 50 at .-% of iron based on all metallic elements, wherein the proportion of metallic iron is at least 50%, the determination of the surface layer coating and the metallic state by means of X-ray photoelectron spectroscopy (XPS) using AI K-alpha radiation (1486.6 eV).
- XPS X-ray photoelectron spectroscopy
- the contact time or pretreatment time with the aqueous electrolyte should preferably be at least 1 second but not longer than 60 seconds, preferably not longer than 20 seconds.
- the ratio of electrolysis time to contact time should preferably be at least 0.5, more preferably at least 0.8.
- the application of the cathodic electrolysis in the process according to the invention can be carried out potentiostatically or galvanostatically and in each case by pulses, wherein
- Galvanostatic methods are preferred.
- the galvanized or alloy-galvanized steel surface does not function as the anode during the contact time, so that no anodic electrolytic current is impressed.
- the metallization is particularly effective when the concentration of water-soluble compounds which are a source of iron cations, based on the element iron in the electrolyte, is preferably at least 0.01 mol / l, but preferably 0.4 mol / l, more preferably 0.1 mol / l does not exceed.
- the water-soluble compounds are preferably a source of iron (II) ions and thus preferably water-soluble salts selected from iron (II) sulfate, iron (II) nitrate, iron (II) lactate and / or iron (II) gluconate.
- the iron ions in the electrolyte represent at least 50% iron (II) ions.
- the accelerators with reduction action contained in the pretreatment process according to the invention for increasing the rate of deposition of the iron cations, ie the metallization of the galvanized or alloy-galvanized surface, are preferably selected from
- Oxo acids of phosphorus are again preferably selected from Hyposalpetriger acid, hypos nitric acid, nitrous acid, hypophosphoric acid, hypo- diphosphonic acid, diphosphoric (III, V) acid, phosphonic acid, diphosphonic acid and / or phosphinic acid and salts thereof, particularly preferably from phosphinic acid and salts thereof.
- the molar ratio of accelerator to the concentration of the water-soluble compounds, which are a source of iron cations, in the aqueous electrolyte is preferably not greater than 2: 1, more preferably not greater than 1: 1 and preferably not below 1: 5, the Concentration of the water-soluble compounds, which are a source of iron cations, referred to the element iron.
- the pH of the electrolyte should preferably not be less than 2, and preferably not greater than 6, in order to minimize the acid corrosion of the zinc-containing substrate on the one hand and to ensure the stability of the iron (II) ions in the treatment solution on the other hand.
- the electrolyte containing the water-soluble compounds of iron may further contain chelating complexing agents with oxygen and / or nitrogen ligands for stabilization, surprisingly a faster kinetics of iron deposition is observed, so that a shorter contact time can be achieved with optimum iron occupancy of the galvanized surface.
- Particularly suitable chelating complexing agents are those which are selected from triethanolamine, diethanolamine, monoethanolamine, monoisopropanolamine, aminoethyl ethanolamine, 1-amino-2,3,4,5,6-pentahydroxyhexane, N- (hydroxyethyl) ethylenediamine tri- acetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, 1, 2-diamino-propane tetraacetic acid, 1, 3-diaminopropane-tetraacetic acid, tartaric acid, ascorbic acid, lactic acid, mucic acid, gallic acid, gluconic acid and / or glucoheptonic acid and their salts and stereoisomers as well as sorbitol, glucose and glucamine and their stereoisomers.
- the electrolyte for the metallizing pretreatment may additionally contain surfactants which are able to liberate the metallic surface from impurities without itself inhibiting the surface by forming compact adsorbate layers for the metallization. Nonionic surfactants with average HLB values of at least 8 and at most 14 may be used for this purpose.
- the electrolyte is essentially free of electropositive metal cations selected from cations of the elements Ni, Co, Cu, and / or Sn, since these compete with the deposition of the iron cations.
- substantially free in this context, means that no water-soluble compounds that are a source of the electropositive metal cations are intentionally added to the electrolyte.
- the treatment according to the invention of alloy-zinc plated steel surfaces containing electropositive metals as an alloy constituent or composite metal surfaces may cause small amounts of these elements to enter the electrolyte.
- the electrolyte in the process according to the invention has a total of less than 2000 ppm of zinc ions, since zinc ions are able to displace the iron ions from their complexes in the presence of complexing agents according to a preferred embodiment of the invention.
- a dipping process which is common in strip steel production and strip steel refinement is practicable.
- layer deposits of preferably at least 1 mg / m 2 , but preferably not more than 100 mg / m 2 , and particularly preferably not more than 50 mg / m 2, based on the element iron result .
- the layer support is defined as the area-related mass fraction of iron on the galvanized or alloy-galvanized steel surface immediately after the pretreatment according to the invention.
- the pretreatment process according to the invention is based on the subsequent process steps of the surface treatment of galvanized and / or alloy-galvanized steel surfaces with regard to optimized corrosion protection and outstanding paint adhesion, especially tailored to cut edges, surface defects and bimetallic contacts.
- the present invention encompasses various aftertreatment processes, ie conversion and lacquer coatings, which, in conjunction with the pretreatment described above, provide the desired results in terms of corrosion protection.
- the invention therefore relates in a further aspect to the production of a passivating conversion coating on the metallized pretreated galvanized and / or alloy-galvanized steel surface with or without intermediate rinsing and / or drying step.
- a chromium-containing or preferably chromium-free conversion solution can be used.
- Preferred conversion solutions with which the metal surfaces pretreated according to the present invention can be treated prior to the application of a permanent corrosion-protective organic coating can be found in DE-A-199 23 084 and in the literature cited therein.
- a chromium-free aqueous conversion agent besides hexafluoro anions of Ti, Si and / or Zr may contain as further active ingredients: phosphoric acid, one or more compounds of Co, Ni, V, Fe, Mn, Mo or W, a water-soluble or water-dispersible film-forming organic polymer or copolymer and organophosphonic acids that have complexing properties.
- phosphoric acid one or more compounds of Co, Ni, V, Fe, Mn, Mo or W
- water-soluble and / or water-dispersible polymeric complexing agents with oxygen and / or nitrogen ligands based on Mannich addition products of polyvinylphenols with formaldehyde and aliphatic amino alcohols may be present.
- Such polymers are disclosed in US Pat. No. 5,298,289.
- the process parameters for a conversion treatment in the context of this invention, such as treatment temperature, treatment time and contact time are to be chosen such that a conversion layer is produced, the per m 2 surface at least 0.05, preferably at least 0.2, but not more than 3, Contains 5, preferably not more than 2.0 and more preferably not more than 1, 0 mmol of the metal M, which is the essential component of the conversion solution.
- metals M are Cr (III), B, Si, Ti, Zr, Hf.
- the occupation density of the zinc surface with the metal M can be determined, for example, by an X-ray fluorescence method.
- the metallizing pretreatment comprises the following conversion treatment, the chromium-free conversion medium additionally contains copper ions.
- the molar ratio of metal atoms M selected from zirconium and / or titanium to copper atoms in such a conversion agent is preferably selected such that it produces a conversion layer in which at least 0.1 mmol, preferably at least 0.3 mmol, but not more than 2 mmol of copper are additionally included.
- the present invention thus also relates to a process (IIa) which follows
- Process steps including the metallizing pretreatment and a conversion treatment of the galvanized and / or alloy-galvanized steel surface include:
- metals M are selected from Cr (III), B, Si, Ti, Zr, Hf.
- Coating follows, can also be applied a method in which the metallization of the invention follows a zinc phosphating to form a crystalline phosphate layer having a preferred coating weight of not less than 3 g / m 2 .
- the metallizing pretreatment and the subsequent conversion treatment usually follow further process steps for the application of additional layers, in particular organic paints or coating systems.
- the present invention relates in a further aspect to the galvanized and / or
- alloy-galvanized steel surface and the metallic component which consists at least partially of a zinc surface, which is pretreated metallizing in the aqueous electrolyte according to the method of the invention or is subsequently coated this pretreatment with other passivating conversion layers and / or paints.
- Such a treated steel surface or treated component is used in body construction in automotive manufacturing, shipbuilding, construction and for the production of white goods.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Treatment Of Metals (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL12725788T PL2726650T3 (en) | 2011-06-29 | 2012-06-06 | Electrolytic iron plating on zinc surfaces |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102011078258A DE102011078258A1 (en) | 2011-06-29 | 2011-06-29 | Electrolytic icing of zinc surfaces |
| PCT/EP2012/060642 WO2013000674A1 (en) | 2011-06-29 | 2012-06-06 | Electrolytic freezing of zinc surfaces |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2726650A1 true EP2726650A1 (en) | 2014-05-07 |
| EP2726650B1 EP2726650B1 (en) | 2015-04-29 |
Family
ID=46208558
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20120725788 Not-in-force EP2726650B1 (en) | 2011-06-29 | 2012-06-06 | Electrolytic iron plating on zinc surfaces |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US9309602B2 (en) |
| EP (1) | EP2726650B1 (en) |
| JP (1) | JP2014518332A (en) |
| KR (1) | KR101991141B1 (en) |
| CN (1) | CN103764878B (en) |
| AU (1) | AU2012278121B2 (en) |
| CA (1) | CA2840117C (en) |
| DE (1) | DE102011078258A1 (en) |
| PL (1) | PL2726650T3 (en) |
| WO (1) | WO2013000674A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3504356B1 (en) | 2016-08-24 | 2024-08-21 | PPG Industries Ohio, Inc. | Alkaline composition for treating metal substartes |
| US11155928B2 (en) | 2019-12-19 | 2021-10-26 | The United States Of America As Represented By The Secretary Of The Navy | Electrolytic process for deposition of chemical conversion coatings |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3974044A (en) * | 1975-03-31 | 1976-08-10 | Oxy Metal Industries Corporation | Bath and method for the electrodeposition of bright nickel-iron deposits |
| US4089754A (en) * | 1977-07-18 | 1978-05-16 | Oxy Metal Industries Corporation | Electrodeposition of nickel-iron alloys |
| JPS5573888A (en) * | 1978-11-22 | 1980-06-03 | Nippon Kokan Kk <Nkk> | High corrosion resistant zinc-electroplated steel sheet with coating and non-coating |
| DE3217145A1 (en) * | 1982-05-07 | 1983-11-10 | Gerhard Collardin GmbH, 5000 Köln | Method for cleaning, degreasing and activating metal surfaces |
| JPH0654986B2 (en) * | 1985-07-08 | 1994-07-20 | ソニー株式会社 | Vertical center-position adjustment circuit |
| JPH0657871B2 (en) * | 1986-10-15 | 1994-08-03 | 大洋製鋼 株式会社 | Steel plate with both corrosion resistance and conductivity |
| JPS63195296A (en) * | 1987-02-09 | 1988-08-12 | Nippon Steel Corp | Manufacturing method of colored surface-treated steel sheet |
| JPS63243299A (en) * | 1987-03-30 | 1988-10-11 | Nippon Steel Corp | Manufacturing method of composite plated steel sheet |
| US5298289A (en) | 1987-12-04 | 1994-03-29 | Henkel Corporation | Polyphenol compounds and treatment and after-treatment of metal, plastic and painted surfaces therewith |
| JPH0637711B2 (en) * | 1989-06-22 | 1994-05-18 | 新日本製鐵株式会社 | Method for producing black surface-treated steel sheet |
| JP2978208B2 (en) * | 1990-05-18 | 1999-11-15 | シチズン時計株式会社 | Font data compression method for character generator |
| JPH0790610A (en) * | 1993-09-20 | 1995-04-04 | Kobe Steel Ltd | Production of glavanized steel sheet excellent in resistance to blackening and corrosion and coating film adhesion |
| CA2176332C (en) * | 1993-11-16 | 2005-05-03 | David Peter Buxton | Anticorrosion treatment of metal coated steel having coatings of aluminium, zinc or alloys thereof |
| US5849423A (en) * | 1995-11-21 | 1998-12-15 | Nkk Corporation | Zinciferous plated steel sheet and method for manufacturing same |
| JP3211686B2 (en) * | 1996-11-13 | 2001-09-25 | トヨタ自動車株式会社 | Iron / phosphorus electroplating bath |
| DE19923084A1 (en) * | 1999-05-20 | 2000-11-23 | Henkel Kgaa | Chromium-free corrosion protection agent for coating metallic substrates contains hexafluoro anions, phosphoric acid, metal compound, film-forming organic polymer or copolymer and organophosphonic acid |
| WO2004067802A1 (en) * | 2003-01-31 | 2004-08-12 | Jfe Steel Corporation | Black zinc-plated steel sheet |
| DE102007021364A1 (en) * | 2007-05-04 | 2008-11-06 | Henkel Ag & Co. Kgaa | Metallizing pretreatment of zinc surfaces |
-
2011
- 2011-06-29 DE DE102011078258A patent/DE102011078258A1/en not_active Ceased
-
2012
- 2012-06-06 KR KR1020137034840A patent/KR101991141B1/en not_active Expired - Fee Related
- 2012-06-06 JP JP2014517557A patent/JP2014518332A/en active Pending
- 2012-06-06 CA CA2840117A patent/CA2840117C/en not_active Expired - Fee Related
- 2012-06-06 WO PCT/EP2012/060642 patent/WO2013000674A1/en not_active Ceased
- 2012-06-06 CN CN201280031855.XA patent/CN103764878B/en not_active Expired - Fee Related
- 2012-06-06 PL PL12725788T patent/PL2726650T3/en unknown
- 2012-06-06 AU AU2012278121A patent/AU2012278121B2/en not_active Ceased
- 2012-06-06 EP EP20120725788 patent/EP2726650B1/en not_active Not-in-force
-
2013
- 2013-03-12 US US13/795,528 patent/US9309602B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2013000674A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| KR101991141B1 (en) | 2019-06-19 |
| CN103764878A (en) | 2014-04-30 |
| PL2726650T3 (en) | 2015-10-30 |
| US20130206603A1 (en) | 2013-08-15 |
| CA2840117C (en) | 2019-07-02 |
| EP2726650B1 (en) | 2015-04-29 |
| DE102011078258A1 (en) | 2013-01-03 |
| KR20140037149A (en) | 2014-03-26 |
| CN103764878B (en) | 2016-06-15 |
| AU2012278121B2 (en) | 2016-07-21 |
| US9309602B2 (en) | 2016-04-12 |
| JP2014518332A (en) | 2014-07-28 |
| CA2840117A1 (en) | 2013-01-03 |
| WO2013000674A1 (en) | 2013-01-03 |
| AU2012278121A1 (en) | 2014-01-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2507408B1 (en) | Multi-stage pre-treatment method for metal components having zinc and iron surfaces | |
| EP2145031B1 (en) | Preliminary metallizing treatment of zinc surfaces | |
| EP2817434B1 (en) | Pre-treatment of zinc surfaces before passivation | |
| EP2534279B1 (en) | Composition for the alkaline passivation of zinc surfaces | |
| EP1254279A2 (en) | Anti-corrosive agents and method for protecting metal surfaces against corrosion | |
| EP1692325A1 (en) | Two-stage conversion treatment | |
| WO2012126734A1 (en) | Multi-stage anti-corrosion treatment of metal components having zinc surfaces | |
| EP1402083A1 (en) | Corrosion protection agent and corrosion protection method for metal surfaces | |
| EP4363632A2 (en) | Method for sequentially constructing a conversion layer on components comprising steel surfaces | |
| EP2215285A1 (en) | Zirconium phosphating of metal components, in particular iron | |
| EP2726650B1 (en) | Electrolytic iron plating on zinc surfaces | |
| DE102018216216A1 (en) | Process for improving the phosphatability of metallic surfaces, which are provided with a temporary pretreatment or aftertreatment | |
| DE102009047523A1 (en) | Multi-stage method for corrosion-inhibiting pretreatment of metallic components having the surfaces of zinc, comprises subjecting the metallic components with an aqueous treatment solution, and cleaning and degreasing the metal surface | |
| EP3728693A1 (en) | Method for the corrosion-protective and cleaning pretreatment of metal components | |
| WO2025051958A1 (en) | Multistage process for coating components having steel surfaces with corrosion protection | |
| WO2001016397A1 (en) | Zinc phosphatizing using epoxides | |
| DE102017011379A1 (en) | Anti-corrosion coating for metallic substrates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20131205 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 3/20 20060101AFI20141010BHEP Ipc: C23C 22/78 20060101ALI20141010BHEP Ipc: C25D 5/36 20060101ALI20141010BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20141119 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 724496 Country of ref document: AT Kind code of ref document: T Effective date: 20150515 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012003007 Country of ref document: DE Effective date: 20150611 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150729 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150831 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150730 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150829 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012003007 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150429 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150606 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| 26N | No opposition filed |
Effective date: 20160201 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150606 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120606 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150429 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190619 Year of fee payment: 8 Ref country code: IT Payment date: 20190624 Year of fee payment: 8 Ref country code: NL Payment date: 20190619 Year of fee payment: 8 Ref country code: PL Payment date: 20190523 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190619 Year of fee payment: 8 Ref country code: FR Payment date: 20190619 Year of fee payment: 8 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190619 Year of fee payment: 8 Ref country code: AT Payment date: 20190621 Year of fee payment: 8 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502012003007 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20200701 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 724496 Country of ref document: AT Kind code of ref document: T Effective date: 20200606 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200606 |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200606 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200701 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200630 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200606 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210101 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200606 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200606 |