EP2715376A1 - Procédé de détection de transition pour contrôle de charge d'appareil électrique à réglage automatique et non intrusif - Google Patents
Procédé de détection de transition pour contrôle de charge d'appareil électrique à réglage automatique et non intrusifInfo
- Publication number
- EP2715376A1 EP2715376A1 EP12724313.7A EP12724313A EP2715376A1 EP 2715376 A1 EP2715376 A1 EP 2715376A1 EP 12724313 A EP12724313 A EP 12724313A EP 2715376 A1 EP2715376 A1 EP 2715376A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- transitions
- value
- residual signal
- signal
- measured signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000007704 transition Effects 0.000 title claims abstract description 189
- 238000012544 monitoring process Methods 0.000 title claims description 18
- 238000001514 detection method Methods 0.000 title description 38
- 238000000034 method Methods 0.000 claims abstract description 118
- 230000001052 transient effect Effects 0.000 claims description 28
- 238000005265 energy consumption Methods 0.000 claims description 21
- 230000002123 temporal effect Effects 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 description 14
- 238000005259 measurement Methods 0.000 description 9
- 238000013459 approach Methods 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 7
- 230000001186 cumulative effect Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013450 outlier detection Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16528—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values using digital techniques or performing arithmetic operations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D4/00—Tariff metering apparatus
- G01D4/002—Remote reading of utility meters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/165—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
- G01R19/16533—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
- G01R19/16538—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
- G01R19/16547—Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies voltage or current in AC supplies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D2204/00—Indexing scheme relating to details of tariff-metering apparatus
- G01D2204/20—Monitoring; Controlling
- G01D2204/24—Identification of individual loads, e.g. by analysing current/voltage waveforms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R22/00—Arrangements for measuring time integral of electric power or current, e.g. electricity meters
- G01R22/06—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
- G01R22/10—Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods using digital techniques
Definitions
- the invention relates to a method for detecting in a measured signal transitions that are induced by elements of a physical system.
- the invention relates to an automatic-setup non-intrusive appliance load monitoring method for identifying appliances energy consumption, said method using a step of detecting transitions according to the first aspect of the invention.
- the invention relates to a detector for detecting transitions in a measured signal.
- the invention relates to a device for automatic-setup non-intrusive appliance load monitoring.
- Another drawback of this method is that at least one transition is always detected in the beginning of a signal provided n int ⁇ 0, even if no real transition occurs.
- This method indeed selects values with the N largest LOF, and it is always possible to define such N values.
- the residual signal has a high amplitude when a transition occurs and a low amplitude in the other cases. Differences including such residual signals are then compared to a threshold H whose expression is given in equation (20). Such a threshold H is not determined a priori. However, such an expression for the threshold H can lead to not detecting some transitions.
- the expression of this threshold H does indeed include a variance calculated from a sequence of variables Y n that constitute the signal whose transitions are to be detected (Y n is indeed a sequence of variables the mean of which changes from m 0 for n ⁇ ⁇ to m for ⁇ , where ⁇ is the time of transition to be estimated).
- the inventors propose such an automatic threshold method because a number of transitions is expected to be constant over a range of threshold values. As a consequence, when a number of transitions does not depend on a threshold value, it might be concluded that noise is not responsible for transitions and a threshold value is then considered as optimal. With the method of the invention, one does not need to choose a predetermined threshold value that is not easy to find. Hence, the method of the invention is more simple with respect to methods where a threshold value has to be fixed a priori.
- the residual signal is a transition likelihood. More preferably, this transition likelihood is given by a ratio between a likelihood of no change and a likelihood of change.
- the residual signal for a time index k, x k is preferably given by: where M is a parameter and i k a value of current at time index k.
- step of detecting transitions uses a method according to the first aspect of the invention.
- - n k represents a background noise determined by values of said residual signal that are temporal neighbours of said residual signal corresponding to a time index k, x k ;
- the invention relates to a device for automatic-setup non-intrusive appliance load monitoring for identifying appliances energy consumption and comprising:
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Complex Calculations (AREA)
Abstract
Selon un premier aspect, l'invention concerne un procédé de détection de transitions (51) comprenant les étapes consistant à : générer un signal résiduel α à partir d'un signal mesuré, et donner des règles indiquant qu'une transition se produit lorsque le signal résiduel α est plus élevé qu'une valeur seuil λ. Le signal résiduel α possède une amplitude élevée lorsque des transitions se produisent, et une amplitude faible dans les autres cas. Le procédé (51) est caractérisé en ce que la valeur seuil λ est automatiquement définie à partir de valeurs locales du signal résiduel.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP12724313.7A EP2715376A1 (fr) | 2011-05-23 | 2012-05-22 | Procédé de détection de transition pour contrôle de charge d'appareil électrique à réglage automatique et non intrusif |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP11167074 | 2011-05-23 | ||
| EP12724313.7A EP2715376A1 (fr) | 2011-05-23 | 2012-05-22 | Procédé de détection de transition pour contrôle de charge d'appareil électrique à réglage automatique et non intrusif |
| PCT/EP2012/059502 WO2012160062A1 (fr) | 2011-05-23 | 2012-05-22 | Procédé de détection de transition pour contrôle de charge d'appareil électrique à réglage automatique et non intrusif |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2715376A1 true EP2715376A1 (fr) | 2014-04-09 |
Family
ID=46178532
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12724313.7A Withdrawn EP2715376A1 (fr) | 2011-05-23 | 2012-05-22 | Procédé de détection de transition pour contrôle de charge d'appareil électrique à réglage automatique et non intrusif |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP2715376A1 (fr) |
| WO (1) | WO2012160062A1 (fr) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AU2012211955A1 (en) | 2011-02-04 | 2013-09-12 | Bidgely Inc. | Systems and methods for improving the accuracy of appliance level disaggregation in non-intrusive appliance load monitoring techniques |
| EP2842011A4 (fr) | 2012-04-25 | 2016-05-04 | Bidgely Inc | Techniques de désagrégation d'énergie destinées à des données à basse résolution sur la consommation d'énergie domestique |
| WO2015059272A1 (fr) | 2013-10-24 | 2015-04-30 | Universite Libre De Bruxelles | Procédé et dispositif de contrôle amélioré non intrusif de charge d'appareil |
| EP3133406B1 (fr) * | 2014-03-13 | 2022-03-30 | Saburo Saito | Dispositif et procédé pour estimer les états de fonctionnement de dispositifs électriques individuels |
| FR3022658B1 (fr) * | 2014-06-20 | 2016-07-29 | Wattgo | Procede de creation d'une structure de donnees representative d'une consommation de fluide d'au moins un equipement, dispositif et programme correspondant. |
| WO2016079229A1 (fr) * | 2014-11-21 | 2016-05-26 | Universite Libre De Bruxelles | Procédé et dispositif de surveillance non intrusive améliorée de charge d'appareils |
| WO2016141978A1 (fr) | 2015-03-11 | 2016-09-15 | You Know Watt | Procédé et dispositif de surveillance non intrusive améliorée de charge d'appareils électriques |
| CN104749214B (zh) * | 2015-04-03 | 2017-06-06 | 哈尔滨工业大学 | 一种基于瞬态平面热源法测量液体导热系数的恒温热浴装置 |
| WO2016177857A1 (fr) * | 2015-05-06 | 2016-11-10 | Torro Ventures Limited | Analyse d'un circuit de puissance |
| GB2538087B (en) * | 2015-05-06 | 2019-03-06 | Torro Ventures Ltd | Analysing a power circuit |
| US11726117B2 (en) | 2020-04-30 | 2023-08-15 | Florida Power & Light Company | High frequency data transceiver and surge protection retrofit for a smart meter |
| CN116956178A (zh) * | 2023-07-24 | 2023-10-27 | 杭州海康消防科技有限公司 | 电器识别方法及其相关设备、和电器识别模型的训练方法 |
| CN118962225B (zh) * | 2024-10-18 | 2025-02-07 | 呼和浩特市奥祥电力自动化有限公司 | 一种跨步电压在线监测系统及方法 |
Family Cites Families (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102007031342A1 (de) * | 2007-07-05 | 2009-01-15 | Siemens Ag | Verfahren zum Gewinnen einer Information über die Verlaufsform eines Fehlerstroms, insbesondere zum Zwecke des an selbige angepassten Verhinderns eines dauerhaften Fehlerstroms in einem Fehlerstromschutzschalter |
| US8094034B2 (en) * | 2007-09-18 | 2012-01-10 | Georgia Tech Research Corporation | Detecting actuation of electrical devices using electrical noise over a power line |
| GB0803140D0 (en) | 2008-02-21 | 2008-03-26 | Sentec Ltd | Technique for inference of multiple appliances' power use from single point measurements |
| GB2465367B (en) * | 2008-11-13 | 2011-01-05 | Isis Innovation | Variable power load detector apparatus and method |
| GB2477366B (en) * | 2009-11-12 | 2013-06-19 | Onzo Ltd | Data storage and transfer |
-
2012
- 2012-05-22 EP EP12724313.7A patent/EP2715376A1/fr not_active Withdrawn
- 2012-05-22 WO PCT/EP2012/059502 patent/WO2012160062A1/fr not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2012160062A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012160062A1 (fr) | 2012-11-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2715376A1 (fr) | Procédé de détection de transition pour contrôle de charge d'appareil électrique à réglage automatique et non intrusif | |
| Jazizadeh et al. | An unsupervised hierarchical clustering based heuristic algorithm for facilitated training of electricity consumption disaggregation systems | |
| CN109387712B (zh) | 基于状态矩阵决策树的非侵入式负荷检测与分解方法 | |
| Munshi et al. | Unsupervised nonintrusive extraction of electrical vehicle charging load patterns | |
| CN111126780B (zh) | 一种非侵入式负荷监测方法及存储介质 | |
| CN111564842B (zh) | 一种非侵入式用电负荷监测中长期能耗统计估算的方法 | |
| De Baets et al. | VI-based appliance classification using aggregated power consumption data | |
| Altrabalsi et al. | A low-complexity energy disaggregation method: Performance and robustness | |
| Ma et al. | Toward energy-awareness smart building: Discover the fingerprint of your electrical appliances | |
| Zhou et al. | Non-intrusive load monitoring based on an efficient deep learning model with local feature extraction | |
| Akarslan et al. | A novel approach based on a feature selection procedure for residential load identification | |
| CN114884075A (zh) | 一种基于监督式学习的事件型非侵入式负荷监测方法 | |
| Mittelsdorf et al. | Submeter based training of multi-class support vector machines for appliance recognition in home electricity consumption data | |
| Li et al. | Disaggregating household loads via semi-supervised multi-label classification | |
| Luan et al. | Unsupervised identification and status assessment for electric bicycle charging load | |
| CN109377052B (zh) | 一种电力负荷匹配方法、装置、设备及可读存储介质 | |
| Li et al. | A training-free non-intrusive load monitoring approach for high-frequency measurements based on graph signal processing | |
| Heracleous et al. | Unsupervised energy disaggregation using conditional random fields | |
| CN116628620B (zh) | 一种非侵入式负荷识别计算方法 | |
| CN118395365A (zh) | 一种具有监测异常计量数据功能的电力箱及监测方法 | |
| Chou et al. | Automatic appliance classification for non-intrusive load monitoring | |
| Tezde et al. | A comprehensive survey for non-intrusive load monitoring | |
| Van Zaen et al. | Detection and classification of refrigeration units in a commercial environment: Comparing neural networks to unsupervised clustering | |
| Zhang et al. | Appliance recognition using VI trajectories based on deep learning | |
| Wójcik et al. | Analysis of transient state signatures in electrical household appliances |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20131223 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20161201 |