EP2785781A1 - Polymer composition - Google Patents
Polymer compositionInfo
- Publication number
- EP2785781A1 EP2785781A1 EP12788549.9A EP12788549A EP2785781A1 EP 2785781 A1 EP2785781 A1 EP 2785781A1 EP 12788549 A EP12788549 A EP 12788549A EP 2785781 A1 EP2785781 A1 EP 2785781A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- polymer
- recurring units
- ocf
- cation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 121
- 239000000203 mixture Substances 0.000 title claims abstract description 61
- 150000001768 cations Chemical class 0.000 claims abstract description 50
- 150000003839 salts Chemical class 0.000 claims abstract description 40
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 13
- 239000011737 fluorine Substances 0.000 claims abstract description 13
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 12
- 125000005843 halogen group Chemical group 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 8
- 239000002184 metal Substances 0.000 claims abstract description 8
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims abstract description 7
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims abstract description 7
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical group FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims abstract description 5
- 150000008054 sulfonate salts Chemical class 0.000 claims abstract description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 48
- 125000003118 aryl group Chemical group 0.000 claims description 45
- -1 aromatic sulfone Chemical class 0.000 claims description 28
- 229920006260 polyaryletherketone Polymers 0.000 claims description 27
- 239000002253 acid Substances 0.000 claims description 21
- 239000004642 Polyimide Substances 0.000 claims description 13
- 229920001721 polyimide Polymers 0.000 claims description 13
- 229920000106 Liquid crystal polymer Polymers 0.000 claims description 12
- 125000005462 imide group Chemical group 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 6
- 239000003513 alkali Substances 0.000 claims description 6
- 238000013329 compounding Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 4
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 claims description 3
- 125000003342 alkenyl group Chemical group 0.000 claims description 3
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 125000005600 alkyl phosphonate group Chemical group 0.000 claims description 3
- 150000008052 alkyl sulfonates Chemical class 0.000 claims description 3
- 125000000304 alkynyl group Chemical group 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 150000001412 amines Chemical class 0.000 claims description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 150000003949 imides Chemical class 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 3
- 150000003568 thioethers Chemical class 0.000 claims description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 22
- 229920002530 polyetherether ketone Polymers 0.000 description 22
- 239000000654 additive Substances 0.000 description 10
- 229920002312 polyamide-imide Polymers 0.000 description 10
- 239000004962 Polyamide-imide Substances 0.000 description 9
- 229920002492 poly(sulfone) Polymers 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 230000000996 additive effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- 239000000835 fiber Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229920000491 Polyphenylsulfone Polymers 0.000 description 5
- 230000007062 hydrolysis Effects 0.000 description 5
- 238000006460 hydrolysis reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000155 melt Substances 0.000 description 5
- 150000003457 sulfones Chemical class 0.000 description 5
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 5
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 4
- 239000004695 Polyether sulfone Substances 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 150000004985 diamines Chemical class 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229920003055 poly(ester-imide) Polymers 0.000 description 4
- 229920006393 polyether sulfone Polymers 0.000 description 4
- 229920001601 polyetherimide Polymers 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- HJJVPARKXDDIQD-UHFFFAOYSA-N bromuconazole Chemical compound ClC1=CC(Cl)=CC=C1C1(CN2N=CN=C2)OCC(Br)C1 HJJVPARKXDDIQD-UHFFFAOYSA-N 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 238000003682 fluorination reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 3
- 239000012763 reinforcing filler Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 229920003295 Radel® Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000005695 dehalogenation reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000003709 fluoroalkyl group Chemical group 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 239000012760 heat stabilizer Substances 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000001023 inorganic pigment Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 239000012860 organic pigment Substances 0.000 description 2
- 238000005453 pelletization Methods 0.000 description 2
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000012744 reinforcing agent Substances 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 230000002110 toxicologic effect Effects 0.000 description 2
- 231100000027 toxicology Toxicity 0.000 description 2
- QARLOMBMXGVKNV-UHFFFAOYSA-N 1,2,2-trifluoroethenesulfonyl fluoride Chemical compound FC(F)=C(F)S(F)(=O)=O QARLOMBMXGVKNV-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- JGZVUTYDEVUNMK-UHFFFAOYSA-N 5-carboxy-2',7'-dichlorofluorescein Chemical compound C12=CC(Cl)=C(O)C=C2OC2=CC(O)=C(Cl)C=C2C21OC(=O)C1=CC(C(=O)O)=CC=C21 JGZVUTYDEVUNMK-UHFFFAOYSA-N 0.000 description 1
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004954 Polyphthalamide Substances 0.000 description 1
- 239000004963 Torlon Substances 0.000 description 1
- 229920003997 Torlon® Polymers 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910021502 aluminium hydroxide Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- ZRHOFLXFAAEXEE-UHFFFAOYSA-J butanoate;titanium(4+) Chemical compound [Ti+4].CCCC([O-])=O.CCCC([O-])=O.CCCC([O-])=O.CCCC([O-])=O ZRHOFLXFAAEXEE-UHFFFAOYSA-J 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- VMUWIFNDNXXSQA-UHFFFAOYSA-N hypofluorite Chemical compound F[O-] VMUWIFNDNXXSQA-UHFFFAOYSA-N 0.000 description 1
- AQYSYJUIMQTRMV-UHFFFAOYSA-N hypofluorous acid Chemical class FO AQYSYJUIMQTRMV-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010330 laser marking Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012764 mineral filler Substances 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical class C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000005519 non-carbonaceous material Substances 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003022 phthalic acids Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005649 polyetherethersulfone Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920006375 polyphtalamide Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- GJAWHXHKYYXBSV-UHFFFAOYSA-N quinolinic acid Chemical class OC(=O)C1=CC=CN=C1C(O)=O GJAWHXHKYYXBSV-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- OBTWBSRJZRCYQV-UHFFFAOYSA-N sulfuryl difluoride Chemical compound FS(F)(=O)=O OBTWBSRJZRCYQV-UHFFFAOYSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- NJMOHBDCGXJLNJ-UHFFFAOYSA-N trimellitic anhydride chloride Chemical compound ClC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 NJMOHBDCGXJLNJ-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/41—Compounds containing sulfur bound to oxygen
- C08K5/42—Sulfonic acids; Derivatives thereof
Definitions
- the invention pertains to a polymer composition having improved flammability properties, to a process for its manufacture and to its use for the manufacture of shaped articles.
- High performance plastics in particular polyetherketone polymers, thanks to their attractive properties, are currently used for the manufacture of several parts and articles intended to deliver outstanding mechanical properties, as replacement for materials like metals, alloys and the like.
- Polyether ether ketone (PEEK) polymer for instance, is well known as an ultra-performance polymer. It is a semi-crystalline, highly chemically resistant, fatigue resistant and dimensionally stable material at high temperatures; these unique properties place it in the ultra-performance class of polymers. While generally considered as an inherently flame retardant materials, flammability performances of high performance plastics might still not be adequate in certain high end fields of use, wherein they are called to compete with non-carbonaceous materials and wherein flammability rating should be extremely highly, including compliance with UL (Underwrite Laboratories) 94 V-0 flame ratings.
- UL Underwrite Laboratories
- Flame retardants including brominated compounds, chlorinated compounds, organophosphorus compounds, and minerals such as aluminium hydroxide ATH, magnesium hydroxide MDH, hydromagnesite, various hydrates, red phosphorus, and boron compounds have thus already been proposed for filling this gap in flammability performance which might make it difficult for ultra-performance polymers, and especially for PEEK, to compete and be specified as the material of choice for certain field of use.
- a polymer composition comprising: - at least one polycondensation polymer having a heat deflection temperature (HDT) of above 80°C under a load of 1.82 MPa when measured according to ASTM D648 [polymer (P)]; - at least one fluorinated sulfonate salt [salt (F)] of either of formulae: (X n+ ) 1/n - O 3 S-R* d F -SO 3 - (X n+ ) 1/n and R* m F -SO 3 - (X n+ ) 1/n wherein R* d F is a divalent C 1 -C 14 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, in particular Cl; R* m F is a monovalent C 1 -C 14 perfluorocarbon group, possibly comprising
- the salt (F) is selected from the group consisting of perfluoroalkoxysulphonic derivatives [salt (OF)] of either of formulae: (X n+ ) 1/n - O 3 S-(CF 2 ) s -CF 2 CF 2 O-R d f -OCF 2 CF 2 -(CF 2 ) s -SO 3 - (X n+ ) 1/n and R m f -OCF 2 CF 2 -(CF 2 ) s’ -SO 3 - (X n+ ) 1/n wherein R d f is a divalent C 1 -C 12 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, preferably Cl; s and s’ are independently zero or integers from 1 to 5; R m f is a monovalent C
- salts (OF) as above mentioned can be synthesized and isolated as pure materials with well defined chemical structure: possibility of finely controlling chemical structure of these compounds would enable predict and control with much more accuracy toxicological and environmental behaviour, which both are extremely sensitive to structural parameters.
- the salts (OF) useful in the compositions according to this first embodiment of the invention preferably comply with formula: R alk f -OCF 2 CF 2 -(CF 2 ) s” -SO 3 - (Y m+ ) 1/m wherein R alk f is a C 1 -C 12 per(halo)fluoroalkyl group possibly comprising one or more ethereal oxygen atom, optionally comprising one or more halogen atoms different from fluorine, typically Cl, Y being NH 4 or an alkaline or alkali-earth metal cation, s” is zero or an integer of 1 to 3; and m being the valence of the cation Y.
- R alk f can be a linear or branched per(halo)fluoroalkyl group.
- Non limitative examples of compounds which have been found useful to the purpose of this first embodiment of the invention include notably CF 3 -CF 2 -OCF 2 CF 2 -SO 3 K, CF 3 -CF 2 -OCF 2 CF 2 -SO 3 Na, CF 3 -CF 2 -OCF 2 CF 2 -SO 3 NH 4 , (CF 3 -CF 2 -OCF 2 CF 2 -SO 3 ) 2 Ba, (CF 3 -CF 2 -OCF 2 CF 2 -SO 3 ) 2 Ca, CF 3 -CF 2 -OCF 2 CF 2 CF 2 -SO 3 K, CF 3 -CF 2 -OCF 2 CF 2 CF 2 -SO 3 Na, CF 3 -CF 2 -OCF 2 CF 2 CF 2 -SO 3 NH 4 , (CF 3 -CF 2 -OCF 2 CF 2 CF 2 -SO 3 ) 2 Ba, (CF 3 -CF 2 -OCF 2 CF
- the perfluoroalkoxysulphonic derivatives can be advantageously obtained from corresponding sulphonyl fluoride precursors by appropriate hydrolysis and/or neutralization procedures, as taught notably in BURDON, J., et al, Fluorinated sulphonic acids.
- Part I Perfluoro-methane-, -octane- and -decane-sulphonic acids and their simple derivatives, J. Chem Soc., 1957, 2574 BURDON J. et al Fluorinated sulphonic acids.
- Part I Perfluoro-methane-, -octane- and -decane-sulphonic acids and their simple derivatives J. Chem Soc. 1957 2574
- the salts (AF) useful in the compositions according to this second embodiment of the invention preferably comply with formula: CF 3 (CF 2 ) z -SO 3 - (Y m+ ) 1/m wherein z is an integer of 1 to 5, preferably 2 or 3, even preferably 3, Y being NH 4 or an alkaline or alkali-earth metal cation and m being the valence of the cation Y.
- Non limitative examples of compounds which have been found useful to the purpose of this second embodiment of the invention include notably CF 3 -CF 2 CF 2 CF 2 -SO 3 K, CF 3 -CF 2 CF 2 CF 2 -SO 3 Na, CF 3 -CF 2 CF 2 CF 2 -SO 3 NH 4 , (CF 3 -CF 2 CF 2 CF 2 -SO 3 ) 2 Ba, (CF 3 -CF 2 CF 2 CF 2 -SO 3 ) 2 Ca, CF 3 -CF 2 CF 2 CF 2 CF 2 -SO 3 K, CF 3 -CF 2 CF 2 CF 2 -SO 3 Na, CF 3 -CF 2 CF 2 CF 2 CF 2 -SO 3 NH 4 , (CF 3 -CF 2 CF 2 CF 2 -SO 3 ) 2 Ba, (CF 3 -CF 2 CF 2 CF 2 -SO 3 ) 2 Ca.
- the salt (F) is generally used in the inventive composition in amounts of from 1 to about 3 000 ppm, preferably about 100 ppm to about 2 000 ppm, most preferably about 150 ppm to about 1500 ppm, by weight based on the total weight of the composition.
- High performance plastics suitable for the compositions of the invention are as mentioned above polycondensation polymers that have a heat deflection temperature (HDT) of above 80°C under a load of 1.82 MPa when measured according to ASTM D648 [polymers (P)]. Typical heat deflection temperatures of certain high performance plastics are listed in Table 1.
- Heat deflection temperatures of polymer (P) can be determined according to ASTM D648, Method A, using a span of 4 inches.
- the polymer is injection moulded into plaques that are 5 inches long, 1/2 inch wide, and 1/8 inch thick.
- the plaques are immersed in a suitable liquid heat-transfer medium, such as oil, during the HDT test.
- a suitable liquid heat-transfer medium such as oil, during the HDT test.
- Dow Corning 710 silicone oil for example, can be used.
- High performance plastics useful herein include, but are not limited to, aromatic polyimides (PI), in particular polyester-imides (PEI) and polyamide-imides (PAI), polyaryletherketones (PAEK), such as polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), liquid crystal polymers (LCP), and aromatic sulfone polymers (SP).
- PI aromatic polyimides
- PEI polyester-imides
- PAI polyamide-imides
- PAEK polyaryletherketones
- PEEK polyetheretherketone
- PEKK polyetherketoneketone
- LCP liquid crystal polymers
- SP aromatic sulfone polymers
- the high performance polymer [polymer (P)] is a polyaryletherketones (PAEK).
- aromatic polyimide (PI) is intended to denote any polymer comprising recurring units, more than 50 % moles of said recurring units comprising at least one aromatic ring and at least one imide group, as such (formula 1A) or in its amic acid form (formula 1B) [recurring units (R PI )] :
- the imide group as such or in its corresponding amic acid form, is advantageously linked to an aromatic ring, as illustrated below : whereas Ar’ denotes a moiety containing at least one aromatic ring.
- the imide group is advantageously present as condensed aromatic system, yielding a five- or six-membered heteroaromatic ring, such as, for instance, with benzene (phthalimide-type structure, formula 3) and naphthalene (naphthalimide-type structure, formula 4).
- VESPEL ® polyimides Commercialized by DuPont as VESPEL ® polyimides or by Mitsui as AURUM ® polyimides are suitable for the purpose of the invention.
- the recurring units (R PI ) of the aromatic polyimide can comprise one or more functional groups other than the imide group, as such and/or in its amic acid form.
- Non limitative examples of polymers complying with this criterion are aromatic polyetherimides (PEI), aromatic polyesterimides and aromatic polyamide-imides (PAI).
- aromatic polyesterimide is intended to denote any polymer more than 50 wt. % of the recurring units comprise at least one aromatic ring, at least one imide group, as such and/or in its amic acid form, and at least one ester group [recurring units (R PEI )].
- aromatic polyesterimides are made by reacting at least one acid monomer chosen from trimellitic anhydride and trimellitic anhydride monoacid halides with at least one diol, followed by reaction with at lest one diamine.
- aromatic polyamide-imide PAI
- PAI aromatic polyamide-imide
- R PAI The recurring units
- the aromatic polyamide-imide comprises more than 50 % of recurring units (R PAI ) comprising an imide group in which the imide group is present as such, like in recurring units (R PAI -a), and/or in its amic acid form, like in recurring units (R PAI -b).
- R PAI recurring units
- R PAI -a recurring units
- R PAI -b amic acid form
- Recurring units are preferably chosen from recurring units (l), (m) and ( n), in their amide-imide (a) or amide-amic acid (b) forms: (l) wherein the attachment of the two amide groups to the aromatic ring as shown in (l-b) will be understood to represent the 1,3 and the 1,4 polyamide-amic acid configurations; (m) wherein the attachment of the two amide groups to the aromatic ring as shown in (m-b) will be understood to represent the 1,3 and the 1,4 polyamide-amic acid configurations; and (n) wherein the attachment of the two amide groups to the aromatic ring as shown in (n-b) will be understood to represent the 1,3 and the 1,4 polyamide-amic acid configurations.
- the aromatic polyamide-imide comprises more than 90 wt. % of recurring units (R PAI ). Still more preferably, it contains no recurring unit other than recurring units (R PAI ).
- Polymers commercialized by Solvay Advanced Polymers, L.L.C., as TORLON ® polyamide-imides comply with this criterion.
- the aromatic polyamide-imide can be notably manufactured by a process including the polycondensation reaction between at least one acid monomer chosen from trimellitic anhydride and trimellitic anhydride monoacid halides and at least one comonomer chosen from diamines and diisocyanates.
- trimellitic anhydride monoacid chloride is preferred.
- the comonomer comprises preferably at least one aromatic ring. Besides, it comprises preferably at most two aromatic rings. More preferably, the comonomer is a diamine. Still more preferably, the diamine is chosen from the group consisting of 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylether, m ⁇ phenylenediamine and mixtures thereof.
- Fully aromatic liquid crystalline polyester generally comprise recurring units derived from polycondensation of - an aromatic acid component [monomer (AA)] comprising one or more than one aromatic dicarboxylic acid or derivative thereof, preferably selected from phthalic acids, naphthalene dicarboxylic acids and pyridine dicarboxylic acids, and corresponding substituted counterparts; and - a dihydroxyl component [monomer (BB)] comprising one or more than one di-hydroxyl aromatic derivative or derivative thereof, preferably selected from biphenol, 4,4’-dihydroxy-1,1-biphenyl, and corresponding substituted counterparts; and/or from polycondensation of one or more than one aromatic hydroxyl-substituted carboxylic acid or derivatives thereof [monomer (AB)], preferably selected from 4-hydroxybenzoic acid, 6-hydroxy-é-naphthoic acids, and corresponding substituted counterparts, being understood that monomers (AB) can be polymerized alone or in combinations with monomers (AA
- Fully aromatic liquid crystalline polyesters can be produced in the melt by three main processes :
- Non limitative examples of commercially available fully aromatic liquid crystalline polyesters are notably VECTRA ® LCP from Hoechst-Celanese, known for possessing T g of 145°C or above and XYDAR ® LCP from Solvay Specialty Polymers USA, L.L.C, generally characterized by HDT values exceeding 200°C, when determined under a 1.8 MPa load according to ASTM D648.
- VECTRA ® LCP is typically synthesized from 4-hydrobenzoic acid and 6-hydroxy-2-naphtoic acid; VECTRA ® LCP is a polymer the recurring units of which are recurring units (lcp-A) and (lcp-B), typically in a ratio (lcp-A)/(lcp-B) of about 25/75 :
- XYDAR ® LCP is typically synthesized from 4-hydroxybenzoic acid, 4,4’ ⁇ dihydroxy-1,1’-biphenyl, and terephthalic acid; the basic structure can be modified by using other monomers such as isophthalic acid or 4-aminobenzoic acid;
- XYDAR ® LCP is generally a polymer the recurring units of which are recurring units (lcp-C), (lcp-D) and (lcp-B), typically in a ratio [(lcp ⁇ C)+(lcp ⁇ D)]/(lcp-B) of about 1/2 :
- the polymer (P) is preferably an aromatic sulfone polymer (SP).
- SP aromatic sulfone polymer
- the expression “aromatic sulfone polymer (SP)” is intended to denote any polymer, at least 50 % moles of the recurring units thereof comprise at least one group of formula (SP) [recurring units (R SP )]: -Ar-SO 2 -Ar’- formula (SP) with Ar and Ar’, equal to or different from each other, being aromatic groups.
- the Applicant has found that by the use of the salt (F) as above detailed in the sulfone polymer (SP), it is not only possible to improve flammability properties, but also simultaneously maintain transparency, which is a particularly valuable property for sulfone polymers (SP).
- fluoropolymers like PTFE, PFA or MFA have been used in the past for improvement of flammability properties in said sulfone polymers (SP): nevertheless, incorporation of said flammability additives makes the polymer composition opaque and the fluoropolymer tends to delaminate during extrusion and cause issues owing to it immiscibility.
- the salt (F) does not cause such issues, while suitably improving flammability.
- polymer (SP) as above preferably more than 60 %, more preferably more than 80 %, still more preferably more than 90 % moles of the recurring units are recurring units (R SP ), as above detailed.
- substantially all recurring units of polymer (SP) are recurring units (R SP ), as above detailed; chain defects, or very minor amounts of other units might be present, being understood that these latter do not substantially modify the properties of polymer (SP).
- Recurring units can be notably selected from the group consisting of those of formulae (S-A) to (S-D) herein below: wherein: - each of R’, equal to or different from each other, is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium; - j’ is zero or is an integer from 0 to 4; - T and T’, equal to or different from each other are a bond or a divalent group optionally comprising one or more than one heteroatom; preferably T’ is selected from the group consisting of a bond, -CH 2 -, -C(O)-, -
- the aromatic sulfone polymer (P) has a glass transition temperature of advantageously at least 150°C, preferably at least 160°C, more preferably at least 175°C.
- At least 50 % wt of the recurring units of aromatic sulfone polymer (SP) are recurring units (R SP-1 ), in their imide form (R SP-1 -A) and/or amic acid forms [(R SP-1 -B) and (R SP-1 -C)] : wherein :
- At least 50 % wt of the recurring units of aromatic sulfone polymer (SP) are recurring units (R SP-2 ) and/or recurring units (R SP-3 ) : wherein :
- Recurring units ( R SP-2 ) are preferably chosen from :
- Recurring units ( R SP-3 ) are preferably chosen from : and mixtures thereof.
- Aromatic sulfone polymer (SP) according to the second preferred embodiment of the invention comprises at least 50 % wt, preferably 70 % wt, more preferably 75 % wt of recurring units (R SP-2 ) and/or (R SP-3 ), still more preferably, it contains no recurring unit other than recurring units (R SP-2 ) and/or (R SP-3 ).
- Polyphenylsulfone is notably available as RADEL ® R PPSU from Solvay Specialty Polymers USA, L.L.C.
- Polysulfone is notably available as UDEL ® PSF from Solvay Specialty Polymers USA, L.L.C.
- Polyethersulfone is notably available as RADEL ® A PES from Solvay Specialty Polymers USA, L.L.C.
- aromatic sulfone polymer is chosen among the group consisting of polybiphenyldisulfone, polysulfone, polyphenylsulfone, polyethersulfone, copolymers and mixtures thereof.
- the polymer (P) is preferably a polyaryletherketone (PAEK) polymer.
- PAEK polyaryletherketone
- the term “polyaryletherketone (PAEK)” is intended to denote any polymer, comprising recurring units, more than 50 % moles of said recurring units are recurring units (R PAEK ) comprising a Ar-C(O)-Ar’ group, with Ar and Ar’, equal to or different from each other, being aromatic groups.
- PAEK polymer
- R PAEK recurring units
- substantially all recurring units of polymer are recurring units (R PAEK ), as above detailed; chain defects, or very minor amounts of other units might be present, being understood that these latter do not substantially modify the properties of polymer (PAEK).
- Said recurring units (R PAEK ) are generally selected from the group consisting of formulae (J-A) to (J-O), herein below: wherein: - each of R’, equal to or different from each other, is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium; - j’ is zero or is an integer from 0 to 4.
- the respective phenylene moieties may independently have 1,2-, 1,4- or 1,3 -linkages to the other moieties different from R’ in the recurring unit.
- said phenylene moieties have 1,3- or 1,4- linkages, more preferably they have 1,4-linkage.
- PAEK polymer
- j’ is at each occurrence zero, that is to say that the phenylene moieties have no other substituents than those enabling linkage in the main chain of the polymer.
- R PAEK Preferred recurring units
- Polyaryletherketones are generally crystalline aromatic polymers, readily available from a variety of commercial sources.
- the polyaryletherketones (PAEK) have preferably reduced viscosities in the range of from about 0.8 to about 1.8 dl/g as measured in concentrated sulfuric acid at 25° C and at atmospheric pressure.
- Non limitative examples of commercially available polyaryletherketone (PAEK) resins suitable for the invention include the KETASPIRE ® polyetheretherketone commercially available from Solvay Advanced Polymers and VICTREX ® PEEK polyetheretherketone, from Imperial Chemicals, Inc., which are polymers, the recurring units of which are recurring units (J’-A), as above detailed.
- the salt (F) as above detailed is particularly effective in improving flammability properties of polyaryletherketone (PAEK) polymers, as above detailed, and more particularly of polymers (PAEK) comprising recurring units (R PAEK ) of formula (J’-A), as above detailed.
- PAEK polyaryletherketone
- a preferred composition of the invention thus includes a polymer (PAEK), as above detailed, and more preferably a polymer (PAEK) comprising recurring units (R PAEK ) of formula (J’-A), as above detailed and a salt (F), preferably selected from salts (OF) and salts (AF), as above detailed.
- PAEK polymer
- R PAEK recurring units
- F salt
- OF salts
- AF salts
- the polymer composition of the invention can further comprise fillers, lubricating agents, flow modifiers, heat stabilizer, anti-static agents, extenders, reinforcing agents, organic and/or inorganic pigments like TiO 2 , carbon black, antioxidants, and the like.
- the composition of the invention can advantageously comprise at least one filler chosen from reinforcing fillers, structural fibers and mixtures thereof.
- Structural fibers may include glass fiber, carbon or graphite fibers, and fibers formed of silicon carbide, alumina, titania, boron and the like, and may include mixtures comprising two or more such fibers.
- Reinforcing fillers which can also be used in the composition of the invention include notably pigments, flake, spherical and fibrous particulate filler reinforcements and nucleating agents such as talc, mica, titanium dioxide, potassium titanate, silica, kaolin, chalk, alumina, mineral fillers, and the like.
- the reinforcing fillers and structural fibers can be used alone or in any combination.
- Another aspect of the present invention concerns a process for manufacturing the polymer composition as above described, which comprises mixing :
- the process of the invention comprises mixing by dry blending and/or melt compounding polymer (P) and salt (F).
- polymer (P) and salt (F) are mixed by melt compounding.
- polymer (P) and salt (F) are melt compounded in continuous or batch devices. Such devices are well-known to those skilled in the art.
- polymer (P) and salt (F) and, optionally, other ingredients are advantageously fed in powder or granular form in an extruder and the composition is extruded into strands and the strands are chopped into pellets.
- fillers may be added to the composition during the compounding step.
- lubricating agents may be added to the composition during the compounding step.
- flow modifiers heat stabilizer, anti-static agents, extenders, reinforcing agents, organic and/or inorganic pigments like TiO 2 , carbon black, antioxidants, flame retardants, smoke-suppressing agents.
- polymer (P) and salt (F) are melt compounded in a twin-screw extruder.
- composition can be further processed following standard methods for injection moulding, extrusion, thermoforming, machining, and blow moulding. Solution-based processing for coatings and membranes is also possible. Finished articles comprising the composition as above described can undergo standard post-fabrication operations such as ultrasonic welding, adhesive bonding, and laser marking as well as heat staking, threading, and machining.
- Another object of the invention is a shaped article comprising the polymer composition as above described.
- the article is an injection moulded article, an extrusion moulded article, a shaped article, a coated article or a casted article.
- the articles according to the invention can be fabricated by processing the composition as above described following standard methods.
- KetaSpire ® PEEK KT-820 NT and KetaSpire ® PEEK KT-880 NT are polyetheretherketone polymers commercially available from Solvay Specialty Polymers USA, LLC.
- UDEL® PSU P-1700 NT is a polysulfone polymer commercially available from Solvay Specialty Polymers USA, LLC.
- the viscosity of a melt was measured as a function of shear rate at several temperatures using an LCR-7000 Capillary Rheometer.
- the viscosity of a melt was measured as a function of shear rate at several temperatures using an LCR-7000 Capillary Rheometer.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The invention pertains to a polymer composition having improved flammability properties comprising: - at least one polycondensation polymer having a heat deflection temperature (HDT) of above 80°C under a load of 1.82 MPa when measured according to ASTM D648 [polymer (P)]; - at least one fluorinated sulfonate salt [salt (F)] of either of formulae: (Xn+)1/n O3S-R*dF-SO3-(Xn+)1/n and R*m
F-SO3-(Xn+)1/n wherein R*d
F is a divalent C1-C14 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, in particular CI; R*mp is a monovalent C1-C 14 perfluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, in particular CI; X = H, a metal cation, or an ammonium group; n is the valence of the cation X, preferably 1 or 2.
Description
- The invention pertains to a polymer composition having improved flammability properties, to a process for its manufacture and to its use for the manufacture of shaped articles.
- High performance plastics, in particular polyetherketone polymers, thanks to their attractive properties, are currently used for the manufacture of several parts and articles intended to deliver outstanding mechanical properties, as replacement for materials like metals, alloys and the like.
- Polyether ether ketone (PEEK) polymer, for instance, is well known as an ultra-performance polymer. It is a semi-crystalline, highly chemically resistant, fatigue resistant and dimensionally stable material at high temperatures; these unique properties place it in the ultra-performance class of polymers. While generally considered as an inherently flame retardant materials, flammability performances of high performance plastics might still not be adequate in certain high end fields of use, wherein they are called to compete with non-carbonaceous materials and wherein flammability rating should be extremely highly, including compliance with UL (Underwrite Laboratories) 94 V-0 flame ratings. Complying with such rating is particularly challenging when submitting to the test shaped articles of reduced thickness, which are nevertheless representative of actual spare parts which might be used in aerospace applications or other highly demanding fields of use, wherein a variety of parts (especially electrical parts) with thin wall geometries are required.
- Flame retardants including brominated compounds, chlorinated compounds, organophosphorus compounds, and minerals such as aluminium hydroxide ATH, magnesium hydroxide MDH, hydromagnesite, various hydrates, red phosphorus, and boron compounds have thus already been proposed for filling this gap in flammability performance which might make it difficult for ultra-performance polymers, and especially for PEEK, to compete and be specified as the material of choice for certain field of use.
- Nevertheless, high processing temperatures of the plastics require additives to possess outstanding stability; moreover, their addition should not impair all other relevant properties of the high performance plastics hosting the same.
- There is thus a continuous shortfall in the art for additives which could improve flammability behaviour of ultra-performance polymers, and in particular PEEK, which are able to withstand processing temperatures without undergoing degradation phenomena, and which can effectively improve said flammability behaviour, without negatively affecting their mechanical performances.
- It is thus an object of the present invention a polymer composition comprising:
- at least one polycondensation polymer having a heat deflection temperature (HDT) of above 80°C under a load of 1.82 MPa when measured according to ASTM D648 [polymer (P)];
- at least one fluorinated sulfonate salt [salt (F)] of either of formulae:
(Xn+)1/n -O3S-R*d F-SO3 -(Xn+)1/n and
R*m F-SO3 -(Xn+)1/n
wherein R*d F is a divalent C1-C14 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, in particular Cl; R*m F is a monovalent C1-C14 perfluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, in particular Cl; X = H, a metal cation, or an ammonium group; n is the valence of the cation X, preferably 1 or 2. - The Applicant has found that the incorporation of the salt (F) as above detailed in said high performance plastics successfully enables achievement of improved flammability behaviour, significantly enhancing rating under UL 94 standard and enabling achieving V-0 rating also for thinner articles, without affecting mechanical properties of polymer (P) hosts nor undergoing decomposition/degradation phenomena at processing conditions of said polymer (P).
- According to a first embodiment of the invention, the salt (F) is selected from the group consisting of perfluoroalkoxysulphonic derivatives [salt (OF)] of either of formulae:
(Xn+)1/n -O3S-(CF2)s-CF2CF2O-Rd f-OCF2CF2-(CF2)s-SO3 -(Xn+)1/n and
Rm f-OCF2CF2-(CF2)s’-SO3 -(Xn+)1/n
wherein Rd f is a divalent C1-C12 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, preferably Cl; s and s’ are independently zero or integers from 1 to 5; Rm f is a monovalent C1-C12 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, preferably Cl; X = H, a metal cation, or an ammonium group; n is the valence of the cation X, preferably 1 or 2. - Methods for manufacturing salts (OF) as above detailed are known, and include the reaction of beta-sultone of tetrafluoroethylene with fluorine in the presence of a catalyst to yield corresponding hypofluorite and reaction thereof with haloolefins, notably as described in
, possibly followed by dehalogenation and fluorination, if required for providing perfluoroderivatives, and subsequent hydrolysis/salification ; the reaction of a fluoroacyl sulfonyl derivative with fluorine and olefin in liquid phase, notably as described inUS 4962282 AUSIMONT SRL 19901009 , possibly followed by dehalogenation and fluorination, if required for providing perfluoroderivatives, and subsequent hydrolysis/salification; the reaction of perfluorovinylsulphonyl fluoride with hypofluorites or bis-hypofluorites, notably as described inUS 7157600 SOLVAY SOLEXIS SPA 20041007 , and subsequent hydrolysis/salification; by fluorination of perfluorinated vinylethers having fluorosulphonyl group, notably such as those described inUS 5374770 AUSIMONT SPA 19941220 andWO WO 2004/060857 3M INNOVATIVE PROPERTIES CO 20040722 , and subsequent hydrolysis/salification.US 2006111584 ASAHI GLASS CO LTD 20060525 - The Applicant has found that salts (OF) as above mentioned, which are endowed with more favourable environmental profile thanks to the presence of their oxygen atoms in the molecule chain are effective in providing polymer compositions possessing improved flammability behaviour, with no impact on mechanical properties nor general appearance of articles made therefrom.
- Further, in addition, the salts (OF) as above mentioned can be synthesized and isolated as pure materials with well defined chemical structure: possibility of finely controlling chemical structure of these compounds would enable predict and control with much more accuracy toxicological and environmental behaviour, which both are extremely sensitive to structural parameters.
- The salts (OF) useful in the compositions according to this first embodiment of the invention preferably comply with formula:
Ralk f-OCF2CF2-(CF2)s”-SO3 -(Ym+)1/m
wherein Ralk f is a C1-C12 per(halo)fluoroalkyl group possibly comprising one or more ethereal oxygen atom, optionally comprising one or more halogen atoms different from fluorine, typically Cl, Y being NH4 or an alkaline or alkali-earth metal cation, s” is zero or an integer of 1 to 3; and m being the valence of the cation Y. - It is further understood that Ralk f can be a linear or branched per(halo)fluoroalkyl group.
- Among classes of compounds which have been found particularly useful as salts (OF) in the composition of this first embodiment of the invention mention can be notably made of following compounds:
(i) CF3-(CF2)w-OCF2CF2-SO3 -(Zp+)1/p
wherein w is an integer from 1 to 3, preferably w = 1, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;
(ii) CF2Cl-CFCl-(CF2)z-OCF2CF2-SO3 -(Zp+)1/p
wherein z is an integer from 0 to 3, preferably z = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;
(iii) CF2Cl-CF2-(CF2)z”-OCF2CF2-SO3 -(Zp+)1/p
wherein z” is an integer from 0 to 3, preferably z” = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;
(iv) CF3-CFCl-(CF2)z”-OCF2CF2-SO3 -(Zp+)1/p
wherein z”’ is an integer from 0 to 3, preferably z’” = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;
(v) CF3-(CF2)w’OCF2CF2-OCF2CF2-SO3 -(Zp+)1/p
wherein w’ is an integer from 0 to 2, preferably w’ = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;
(vi) CF2Cl-CFCl-(CF2)z’OCF2CF2-OCF2CF2-SO3 -(Zp+)1/p
wherein z’ is an integer from 0 to 2, preferably z’ = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;
(vii) CF3-(CF2)q-(OCF2CFXF)r-OCF2CF2-SO3 -(Zp+)1/p
wherein q and r being integers from 1 to 3, preferably q = 1 and r = 1, XF is F or CF3 and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z; and
(viii) CF3-CF2-OCF2CF2-(CF2)t’-SO3 -(Zp+)1/p
wherein t’ is an integer from 1 to 3, preferably t’ is 1 or 2, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z. - Non limitative examples of compounds which have been found useful to the purpose of this first embodiment of the invention include notably CF3-CF2-OCF2CF2-SO3K, CF3-CF2-OCF2CF2-SO3Na, CF3-CF2-OCF2CF2-SO3NH4, (CF3-CF2-OCF2CF2-SO3)2Ba, (CF3-CF2-OCF2CF2-SO3)2Ca, CF3-CF2-OCF2CF2CF2-SO3K, CF3-CF2-OCF2CF2CF2-SO3Na, CF3-CF2-OCF2CF2CF2-SO3NH4, (CF3-CF2-OCF2CF2CF2-SO3)2Ba, (CF3-CF2-OCF2CF2CF2-SO3)2Ca, CF3-CF2-OCF2CF2CF2CF2-SO3K, CF3-CF2-OCF2CF2CF2CF2-SO3Na, CF3-CF2-OCF2CF2CF2CF2-SO3NH4, (CF3-CF2-OCF2CF2CF2CF2-SO3)2Ba, (CF3-CF2-OCF2CF2CF2CF2-SO3)2Ca, CClF2-CFCl-OCF2CF2-SO3K, CClF2-CFCl-OCF2CF2-SO3Na, CClF2-CFCl-OCF2CF2-SO3NH4, (CClF2-CFCl-OCF2CF2-SO3)2Ba, (CClF2-CFCl-OCF2CF2-SO3)2Ca, CF3-CFCl-OCF2CF2-SO3K, CF3-CFCl-OCF2CF2-SO3Na, CF3-CFCl-OCF2CF2-SO3NH4, (CF3-CFCl-OCF2CF2-SO3)2Ba, (CF3-CFCl-OCF2CF2-SO3)2Ca, CF2Cl-CF2-OCF2CF2-SO3K, CF2Cl-CF2-OCF2CF2-SO3Na, CF2Cl-CF2-OCF2CF2-SO3NH4, (CF2Cl-CF2-OCF2CF2-SO3)2Ba, (CF2Cl-CF2-OCF2CF2-SO3)2Ca, CF3-OCF2CF2-OCF2CF2-SO3K, CF3-OCF2CF2-OCF2CF2-SO3Na, CF3-OCF2CF2-OCF2CF2-SO3NH4, (CF3-OCF2CF2-OCF2CF2-SO3)2Ba, (CF3-OCF2CF2-OCF2CF2-SO3)2Ca, CF3CF2-OCF2CF(CF3)-OCF2CF2-SO3K, CF3CF2-OCF2CF(CF3)-OCF2CF2-SO3Na, CF3CF2-OCF2CF(CF3)-OCF2CF2-SO3NH4, (CF3CF2-OCF2CF(CF3)-OCF2CF2-SO3)2Ba and (CF3CF2-OCF2CF(CF3)-OCF2CF2-SO3)2Ca.
- The perfluoroalkoxysulphonic derivatives can be advantageously obtained from corresponding sulphonyl fluoride precursors by appropriate hydrolysis and/or neutralization procedures, as taught notably in BURDON, J., et al, Fluorinated sulphonic acids. Part I. Perfluoro-methane-, -octane- and -decane-sulphonic acids and their simple derivatives, J. Chem Soc., 1957, 2574
- According to a second embodiment of the invention, the salt (F) is selected from the group consisting of perfluoroalkylsulphonic derivatives [salt (AF)] of either of formulae:
(Xn+)1/n -O3S-Rd af-SO3 -(Xn+)1/n and
Rm af-SO3 -(Xn+)1/n
wherein Rd af is a divalent C1-C6 perfluoroalkyl group; Rm af is a monovalent C1-C6 perfluoroalkyl group; X = H, a metal cation, or an ammonium group; n is the valence of the cation X, preferably 1 or 2. - The Applicant has found that such short chain perfluoroalkylsulphonic derivatives [salt (AF)] are endowed with good performances in improving the flammability performances of polymer (P), and possess appropriate stability in polymer (P) processing conditions, and widely recognized acceptable toxicological behaviour.
- The salts (AF) useful in the compositions according to this second embodiment of the invention preferably comply with formula:
CF3(CF2)z-SO3 -(Ym+)1/m
wherein z is an integer of 1 to 5, preferably 2 or 3, even preferably 3, Y being NH4 or an alkaline or alkali-earth metal cation and m being the valence of the cation Y. - Non limitative examples of compounds which have been found useful to the purpose of this second embodiment of the invention include notably CF3-CF2CF2CF2-SO3K, CF3-CF2CF2CF2-SO3Na, CF3-CF2CF2CF2-SO3NH4, (CF3-CF2CF2CF2-SO3)2Ba, (CF3-CF2CF2CF2-SO3)2Ca, CF3-CF2CF2CF2CF2-SO3K, CF3-CF2CF2CF2CF2-SO3Na, CF3-CF2CF2CF2CF2-SO3NH4, (CF3-CF2CF2CF2CF2-SO3)2Ba, (CF3-CF2CF2CF2CF2-SO3)2Ca.
- The salt (F) is generally used in the inventive composition in amounts of from 1 to about 3 000 ppm, preferably about 100 ppm to about 2 000 ppm, most preferably about 150 ppm to about 1500 ppm, by weight based on the total weight of the composition.
- High performance plastics suitable for the compositions of the invention are as mentioned above polycondensation polymers that have a heat deflection temperature (HDT) of above 80°C under a load of 1.82 MPa when measured according to ASTM D648 [polymers (P)]. Typical heat deflection temperatures of certain high performance plastics are listed in Table 1.
Table 1 Polycondensation Polymer Heat Deflection Temperature (°C) Polysulfone (PSU) 174 Polyethersulfone (PES) 203 Polyphenylsulfone 204 Polyphthalamide 120 Polyamideimide 278 Liquid crystalline polymers (LCP) 180 – 310 Polyimide 360 Polyetherimide 200 Polyetheretherketone (low flow) 160 Polyetheretherketone (high flow) 171 Polyphenylene sulfide 135 Polycarbonate 132 - Heat deflection temperatures of polymer (P) can be determined according to ASTM D648, Method A, using a span of 4 inches. The polymer is injection moulded into plaques that are 5 inches long, 1/2 inch wide, and 1/8 inch thick. The plaques are immersed in a suitable liquid heat-transfer medium, such as oil, during the HDT test. Dow Corning 710 silicone oil, for example, can be used.
- High performance plastics useful herein include, but are not limited to, aromatic polyimides (PI), in particular polyester-imides (PEI) and polyamide-imides (PAI), polyaryletherketones (PAEK), such as polyetheretherketone (PEEK) and polyetherketoneketone (PEKK), liquid crystal polymers (LCP), and aromatic sulfone polymers (SP). Preferably, the high performance polymer [polymer (P)] is a polyaryletherketones (PAEK).
- To the purpose of the present invention, “aromatic polyimide (PI)” is intended to denote any polymer comprising recurring units, more than 50 % moles of said recurring units comprising at least one aromatic ring and at least one imide group, as such (formula 1A) or in its amic acid form (formula 1B) [recurring units (RPI)] :
- The imide group, as such or in its corresponding amic acid form, is advantageously linked to an aromatic ring, as illustrated below : whereas Ar’ denotes a moiety containing at least one aromatic ring.
- The imide group is advantageously present as condensed aromatic system, yielding a five- or six-membered heteroaromatic ring, such as, for instance, with benzene (phthalimide-type structure, formula 3) and naphthalene (naphthalimide-type structure, formula 4).
- The formulae here below depict examples of recurring units (RPI) (formulae 5A to 5C) :
wherein : - Ar represents an aromatic tetravalent group; typically Ar is selected from the group consisting of following structures: and corresponding optionally substituted structures, with X being –O-, -C(O)-, -CH2-, -C(CF3)2-, -(CF2)n-, with n being an integer from 1 to 5;
- R represents an aromatic divalent group; typically R is selected from the group consisting of following structures: and corresponding optionally substituted structures, with Y being –O-, -S-, -SO2-, -CH2-, -C(O)-, -C(CF3)2-, -(CF2)n, n being an integer from 0 to 5.
- Polyimides commercialized by DuPont as VESPEL® polyimides or by Mitsui as AURUM® polyimides are suitable for the purpose of the invention.
- The recurring units (RPI) of the aromatic polyimide can comprise one or more functional groups other than the imide group, as such and/or in its amic acid form. Non limitative examples of polymers complying with this criterion are aromatic polyetherimides (PEI), aromatic polyesterimides and aromatic polyamide-imides (PAI).
- To the purpose of the present invention, “aromatic polyesterimide” is intended to denote any polymer more than 50 wt. % of the recurring units comprise at least one aromatic ring, at least one imide group, as such and/or in its amic acid form, and at least one ester group [recurring units (RPEI)]. Typically, aromatic polyesterimides are made by reacting at least one acid monomer chosen from trimellitic anhydride and trimellitic anhydride monoacid halides with at least one diol, followed by reaction with at lest one diamine.
- To the purpose of the present invention, “aromatic polyamide-imide (PAI)” is intended to denote any polymer comprising recurring units, more than 50 % moles of said recurring units comprising at least one aromatic ring, at least one imide group, as such and/or in its amic acid form, and at least one amide group which is not included in the amic acid form of an imide group [recurring units (RPAI)].
- The recurring units (RPAI) are advantageously chosen among : wherein :
- Ar is a trivalent aromatic group; typically Ar is selected from the group consisting of following structures: and corresponding optionally substituted structures, with X being –O-, -C(O)-, -CH2-, -C(CF3)2-, -(CF2)n-, with n being an integer from 1 to 5;
- R is a divalent aromatic group; typically R is selected from the group consisting of following structures: and corresponding optionally substituted structures, with Y being –O-, -S-, -SO2-, -CH2-, -C(O)-, -C(CF3)2-, -(CF2)n, n being an integer from 0 to 5.
- Preferably, the aromatic polyamide-imide comprises more than 50 % of recurring units (RPAI) comprising an imide group in which the imide group is present as such, like in recurring units (RPAI-a), and/or in its amic acid form, like in recurring units (RPAI-b).
- Recurring units (RPAI) are preferably chosen from recurring units (l), (m) and (n), in their amide-imide (a) or amide-amic acid (b) forms:
(l) wherein the attachment of the two amide groups to the aromatic ring as shown in (l-b) will be understood to represent the 1,3 and the 1,4 polyamide-amic acid configurations;
(m) wherein the attachment of the two amide groups to the aromatic ring as shown in (m-b) will be understood to represent the 1,3 and the 1,4 polyamide-amic acid configurations; and
(n)
wherein the attachment of the two amide groups to the aromatic ring as shown in (n-b) will be understood to represent the 1,3 and the 1,4 polyamide-amic acid configurations. - Very preferably, the aromatic polyamide-imide comprises more than 90 wt. % of recurring units (RPAI). Still more preferably, it contains no recurring unit other than recurring units (RPAI). Polymers commercialized by Solvay Advanced Polymers, L.L.C., as TORLON® polyamide-imides comply with this criterion.
- The aromatic polyamide-imide can be notably manufactured by a process including the polycondensation reaction between at least one acid monomer chosen from trimellitic anhydride and trimellitic anhydride monoacid halides and at least one comonomer chosen from diamines and diisocyanates.
- Among the trimellitic anhydride monoacid halides, trimellitic anhydride monoacid chloride is preferred.
- The comonomer comprises preferably at least one aromatic ring. Besides, it comprises preferably at most two aromatic rings. More preferably, the comonomer is a diamine. Still more preferably, the diamine is chosen from the group consisting of 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylether, m‑phenylenediamine and mixtures thereof.
- Fully aromatic liquid crystalline polyester generally comprise recurring units derived from polycondensation of
- an aromatic acid component [monomer (AA)] comprising one or more than one aromatic dicarboxylic acid or derivative thereof, preferably selected from phthalic acids, naphthalene dicarboxylic acids and pyridine dicarboxylic acids, and corresponding substituted counterparts; and
- a dihydroxyl component [monomer (BB)] comprising one or more than one di-hydroxyl aromatic derivative or derivative thereof, preferably selected from biphenol, 4,4’-dihydroxy-1,1-biphenyl, and corresponding substituted counterparts;
and/or from polycondensation of one or more than one aromatic hydroxyl-substituted carboxylic acid or derivatives thereof [monomer (AB)], preferably selected from 4-hydroxybenzoic acid, 6-hydroxy-é-naphthoic acids, and corresponding substituted counterparts,
being understood that monomers (AB) can be polymerized alone or in combinations with monomers (AA) and (BB), as above detailed. - Fully aromatic liquid crystalline polyesters can be produced in the melt by three main processes :
- direct esterification of optionally substituted diphenols with aromatic carboxylic acids in the presence of catalysts such as titanium tetrabutyrate or dibutyl tin diacetate at high temperature;
- reaction between phenyl esters of aromatic carboxylic acids with relevant optionally substituted diphenols;
- acidolysis of diphenolic acetates with aromatic carboxylic acids.
- Non limitative examples of commercially available fully aromatic liquid crystalline polyesters are notably VECTRA® LCP from Hoechst-Celanese, known for possessing Tg of 145°C or above and XYDAR® LCP from Solvay Specialty Polymers USA, L.L.C, generally characterized by HDT values exceeding 200°C, when determined under a 1.8 MPa load according to ASTM D648.
- VECTRA® LCP is typically synthesized from 4-hydrobenzoic acid and 6-hydroxy-2-naphtoic acid; VECTRA® LCP is a polymer the recurring units of which are recurring units (lcp-A) and (lcp-B), typically in a ratio (lcp-A)/(lcp-B) of about 25/75 :
- XYDAR® LCP is typically synthesized from 4-hydroxybenzoic acid, 4,4’‑dihydroxy-1,1’-biphenyl, and terephthalic acid; the basic structure can be modified by using other monomers such as isophthalic acid or 4-aminobenzoic acid; XYDAR® LCP is generally a polymer the recurring units of which are recurring units (lcp-C), (lcp-D) and (lcp-B), typically in a ratio [(lcp‑C)+(lcp‑D)]/(lcp-B) of about 1/2 :
- According to a first preferred embodiment of the invention, the polymer (P) is preferably an aromatic sulfone polymer (SP). For the purpose of the invention, the expression “aromatic sulfone polymer (SP)” is intended to denote any polymer, at least 50 % moles of the recurring units thereof comprise at least one group of formula (SP) [recurring units (RSP)]:
-Ar-SO2-Ar’- formula (SP)
with Ar and Ar’, equal to or different from each other, being aromatic groups. - The Applicant has found that by the use of the salt (F) as above detailed in the sulfone polymer (SP), it is not only possible to improve flammability properties, but also simultaneously maintain transparency, which is a particularly valuable property for sulfone polymers (SP). Actually, fluoropolymers like PTFE, PFA or MFA have been used in the past for improvement of flammability properties in said sulfone polymers (SP): nevertheless, incorporation of said flammability additives makes the polymer composition opaque and the fluoropolymer tends to delaminate during extrusion and cause issues owing to it immiscibility. The salt (F) does not cause such issues, while suitably improving flammability.
- In the polymer (SP) as above detailed preferably more than 60 %, more preferably more than 80 %, still more preferably more than 90 % moles of the recurring units are recurring units (RSP), as above detailed.
- Still, it is generally preferred that substantially all recurring units of polymer (SP) are recurring units (RSP), as above detailed; chain defects, or very minor amounts of other units might be present, being understood that these latter do not substantially modify the properties of polymer (SP).
- Said recurring units (RSP) generally comply with formula:
-Ar1-(T’-Ar2)n-O-Ar3-SO2-[Ar4-(T-Ar2)n-SO2]m-Ar5-O-
wherein:
- Ar1, Ar2, Ar3, Ar4, and Ar5, equal to or different from each other and at each occurrence, are independently a aromatic mono- or polynuclear group;
- T and T’, equal to or different from each other and at each occurrence, is independently a bond or a divalent group optionally comprising one or more than one heteroatom; preferably T’ is selected from the group consisting of a bond, -CH2-, -C(O)-, -C(CH3)2-, -C(CF3)2-, -C(=CCl2)-, -SO2-,
-C(CH3)(CH2CH2COOH)-, and a group of formula:
preferably T is selected from the group consisting of a bond, -CH2-, -C(O)-, -C(CH3)2-, -C(CF3)2-, -C(=CCl2)-, -C(CH3)(CH2CH2COOH)-, and a group of formula:
- n and m, equal to or different from each other, are independently zero or an integer of 1 to 5.
Recurring units (RSP) can be notably selected from the group consisting of those of formulae (S-A) to (S-D) herein below:
wherein:
- each of R’, equal to or different from each other, is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium;
- j’ is zero or is an integer from 0 to 4;
- T and T’, equal to or different from each other are a bond or a divalent group optionally comprising one or more than one heteroatom; preferably T’ is selected from the group consisting of a bond, -CH2-, -C(O)-, -C(CH3)2-, -C(CF3)2-, -C(=CCl2)-, -C(CH3)(CH2CH2COOH)-, -SO2-, and a group of formula:
preferably T is selected from the group consisting of a bond, -CH2-, -C(O)-, -C(CH3)2-, -C(CF3)2-, -C(=CCl2)-, -C(CH3)(CH2CH2COOH)-, and a group of formula:
. - The aromatic sulfone polymer (P) has a glass transition temperature of advantageously at least 150°C, preferably at least 160°C, more preferably at least 175°C.
- In a variant of this first preferred embodiment, at least 50 % wt of the recurring units of aromatic sulfone polymer (SP) are recurring units (RSP-1), in their imide form (RSP-1-A) and/or amic acid forms [(RSP-1-B) and (RSP-1-C)] :
wherein : - the → denotes isomerism so that in any recurring unit the groups to which the arrows point may exist as shown or in an interchanged position;
- Ar” is selected from the group consisting of : and corresponding optionally substituted structures, with Y being –O-, -C(O)-, -(CH2)n-, -C(CF3)2-, -(CF2)n-, with n being an integer from 1 to 5, and mixtures thereof.
- In another variant of this first preferred embodiment of the invention, at least 50 % wt of the recurring units of aromatic sulfone polymer (SP) are recurring units (RSP-2) and/or recurring units (RSP-3) :
wherein : - Q and Ar*, equal or different from each other and at each occurrence, are independently a divalent aromatic group; preferably Ar* and Q equal or different from each other and at each occurrence, are independently selected from the group consisting of the following structures :
and corresponding optionally substituted structures, with Y being –O-, -CH=CH-, -C≡C-, -S-, -C(O)-, -(CH2)n-, -C(CF3)2-, -C(CH3)2-, -SO2-, -(CF2)n-, with n being an integer from 1 to 5 and mixtures thereof; and mixtures thereof. - Recurring units (RSP-2 ) are preferably chosen from :
- and mixtures thereof.
- Recurring units (RSP-3 ) are preferably chosen from :
and mixtures thereof. - Aromatic sulfone polymer (SP) according to the second preferred embodiment of the invention comprises at least 50 % wt, preferably 70 % wt, more preferably 75 % wt of recurring units (RSP-2) and/or (RSP-3), still more preferably, it contains no recurring unit other than recurring units (RSP-2) and/or (RSP-3).
- Good results were obtained with aromatic sulfone polymer (P) the recurring units of which are recurring units (ii) (polybiphenyldisulfone, herein after), with aromatic sulfone polymer (P) the recurring units of which are recurring units (j) (polyphenylsulfone, hereinafter), with aromatic sulfone polymer (P) the recurring units of which are recurring units (jj) (polyetherethersulfone, hereinafter), with aromatic sulfone polymer (P) the recurring units of which are recurring units (jjj) and, optionally in addition, recurring units (jj) (polyethersulfone, hereinafter), and with aromatic sulfone polymer (P) the recurring units of which are recurring units (jv) (polysulfone, hereinafter).
- Polyphenylsulfone is notably available as RADEL® R PPSU from Solvay Specialty Polymers USA, L.L.C. Polysulfone is notably available as UDEL® PSF from Solvay Specialty Polymers USA, L.L.C. Polyethersulfone is notably available as RADEL® A PES from Solvay Specialty Polymers USA, L.L.C.
- Preferably, aromatic sulfone polymer (SP) is chosen among the group consisting of polybiphenyldisulfone, polysulfone, polyphenylsulfone, polyethersulfone, copolymers and mixtures thereof.
- According to another preferred embodiment of the invention, the polymer (P) is preferably a polyaryletherketone (PAEK) polymer. For the purpose of the invention, the term “polyaryletherketone (PAEK)” is intended to denote any polymer, comprising recurring units, more than 50 % moles of said recurring units are recurring units (RPAEK) comprising a Ar-C(O)-Ar’ group, with Ar and Ar’, equal to or different from each other, being aromatic groups.
- In the polymer (PAEK) as above detailed preferably more than 60 %, more preferably more than 80 %, still more preferably more than 90 % moles of the recurring units are recurring units (RPAEK), as above detailed.
- Still, it is generally preferred that substantially all recurring units of polymer (PAEK) are recurring units (RPAEK), as above detailed; chain defects, or very minor amounts of other units might be present, being understood that these latter do not substantially modify the properties of polymer (PAEK).
- Said recurring units (RPAEK) are generally selected from the group consisting of formulae (J-A) to (J-O), herein below:
wherein:
- each of R’, equal to or different from each other, is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium;
- j’ is zero or is an integer from 0 to 4. - In recurring unit (RPAEK), the respective phenylene moieties may independently have 1,2-, 1,4- or 1,3 -linkages to the other moieties different from R’ in the recurring unit. Preferably, said phenylene moieties have 1,3- or 1,4- linkages, more preferably they have 1,4-linkage.
- Preferably, all recurring units of polymer (PAEK) are
- Still, in recurring units (RPAEK), j’ is at each occurrence zero, that is to say that the phenylene moieties have no other substituents than those enabling linkage in the main chain of the polymer.
- Preferred recurring units (RPAEK) are thus selected from those of formulae (J'-A) to (J'-O) herein below:
- Polyaryletherketones (PAEK) are generally crystalline aromatic polymers, readily available from a variety of commercial sources. The polyaryletherketones (PAEK) have preferably reduced viscosities in the range of from about 0.8 to about 1.8 dl/g as measured in concentrated sulfuric acid at 25° C and at atmospheric pressure.
- Non limitative examples of commercially available polyaryletherketone (PAEK) resins suitable for the invention include the KETASPIRE® polyetheretherketone commercially available from Solvay Advanced Polymers and VICTREX® PEEK polyetheretherketone, from Imperial Chemicals, Inc., which are polymers, the recurring units of which are recurring units (J’-A), as above detailed.
- The Applicant has found that the salt (F) as above detailed is particularly effective in improving flammability properties of polyaryletherketone (PAEK) polymers, as above detailed, and more particularly of polymers (PAEK) comprising recurring units (RPAEK) of formula (J’-A), as above detailed.
- A preferred composition of the invention thus includes a polymer (PAEK), as above detailed, and more preferably a polymer (PAEK) comprising recurring units (RPAEK) of formula (J’-A), as above detailed and a salt (F), preferably selected from salts (OF) and salts (AF), as above detailed.
- Optionally, the polymer composition of the invention can further comprise fillers, lubricating agents, flow modifiers, heat stabilizer, anti-static agents, extenders, reinforcing agents, organic and/or inorganic pigments like TiO2, carbon black, antioxidants, and the like.
- The composition of the invention can advantageously comprise at least one filler chosen from reinforcing fillers, structural fibers and mixtures thereof. Structural fibers may include glass fiber, carbon or graphite fibers, and fibers formed of silicon carbide, alumina, titania, boron and the like, and may include mixtures comprising two or more such fibers. Reinforcing fillers which can also be used in the composition of the invention include notably pigments, flake, spherical and fibrous particulate filler reinforcements and nucleating agents such as talc, mica, titanium dioxide, potassium titanate, silica, kaolin, chalk, alumina, mineral fillers, and the like. The reinforcing fillers and structural fibers can be used alone or in any combination.
- Another aspect of the present invention concerns a process for manufacturing the polymer composition as above described, which comprises mixing :
- at least one polymer (P), as above detailed;
- at least one salt (F), as above detailed.
- Advantageously, the process of the invention comprises mixing by dry blending and/or melt compounding polymer (P) and salt (F).
- Preferably, polymer (P) and salt (F) are mixed by melt compounding.
- Advantageously, polymer (P) and salt (F) are melt compounded in continuous or batch devices. Such devices are well-known to those skilled in the art.
- Examples of suitable continuous devices to melt compound the polymer composition of the invention are notably screw extruders. Thus, polymer (P) and salt (F) and, optionally, other ingredients, are advantageously fed in powder or granular form in an extruder and the composition is extruded into strands and the strands are chopped into pellets.
- Optionally, fillers, lubricating agents, flow modifiers, heat stabilizer, anti-static agents, extenders, reinforcing agents, organic and/or inorganic pigments like TiO2, carbon black, antioxidants, flame retardants, smoke-suppressing agents may be added to the composition during the compounding step.
- Preferably, polymer (P) and salt (F) are melt compounded in a twin-screw extruder.
- The composition can be further processed following standard methods for injection moulding, extrusion, thermoforming, machining, and blow moulding. Solution-based processing for coatings and membranes is also possible. Finished articles comprising the composition as above described can undergo standard post-fabrication operations such as ultrasonic welding, adhesive bonding, and laser marking as well as heat staking, threading, and machining.
- Another object of the invention is a shaped article comprising the polymer composition as above described.
- Advantageously, the article is an injection moulded article, an extrusion moulded article, a shaped article, a coated article or a casted article.
- The articles according to the invention can be fabricated by processing the composition as above described following standard methods.
- The invention will be now described in more details with reference to the following examples, whose purpose is merely illustrative and not intended to limit the scope of the invention.
- Should the disclosure of any patents, patent applications, and publications which are incorporated herein by reference conflict with the description of the present application to the extent that it may render a term unclear, the present description shall take precedence.
- Raw materials
KetaSpire® PEEK KT-820 NT and KetaSpire® PEEK KT-880 NT are polyetheretherketone polymers commercially available from Solvay Specialty Polymers USA, LLC.
UDEL® PSU P-1700 NT is a polysulfone polymer commercially available from Solvay Specialty Polymers USA, LLC. - Preparative Example 1 : Synthesis of CF 3 -CF 2 -OCF 2 CF 2 -SO 3 K (additive #1, hereinafter)
In a 250ml round-bottom glass flask equipped with thermometer, reflux condenser, dropping funnel and magnetic stirrer in the following order were introduced 12.4 g of KOH 86% and 126 g of de-mineralized water; then 27.6 g of neat 2-perfluoroethoxyethylsulfonylfluoride (C4F10SO3) were added at 20°C while stirring. The flask was then heated at 55°C for 30 minutes. Upon completion of the reaction, the crude mixture turned into a single aqueous phase. Heating and stirring were set off and the reactor was left cooling slowly to room temperature. The product crystallized spontaneously in white needles and was recovered by filtration, rinsed with cold water and dried. 28.8 g of substantially pure CF 3 -CF 2 -OCF 2 CF 2 -SO 3 K were recovered. - Preparative Example 2 : Synthesis of CF 2 Cl-CFCl-OCF 2 CF 2 -SO 3 K (additive #2, hereinafter)
In a 500ml round-bottom glass flask equipped with thermometer, reflux condenser, dropping funnel and magnetic stirrer were introduced 21,5 g of KOH 86% and 236 g of de-mineralized water; then 50,0 g of neat 2-(1,2 dichlorodifluoroethoxy)tetrafluoroethylsulfonylfluoride were added (C4Cl2F8SO3) at 20°C while stirring. The flask was then heated at 65°C for 3 hours. Heating and stirring were set off and the reactor was left cooling slowly to room temperature. The product crystallized spontaneously in white needles and was recovered by filtration, rinsed with cold water and dried. 53.1 g of substantially pure ClCF 2 -CFCl-OCF 2 CF 2 -SO 3 K were recovered. - General description of the compounding process of PEEK resins
A dry blend of PEEK resins with the desired amount of salt (F) additive was first prepared by tumble blending. The preblended mixture was then fed into a Berstorff 25 mm twin screw extruder. The barrel temperatures of the extruder were maintained at 350°C to give an adequate melt temperature. The screw speed was set at 250 rpm. The extrusion conditions are summarized in table 5. The melt was extruded through a single hole die and the polymer strands were cooled using a water bath prior to pelletization. Composition, flammability, physical and mechanical properties of the blends are summarized in table 2, 3, and 4 (control experiments) respectively. - Capillary Rheology Test Method (viscosity):
- The viscosity of a melt was measured as a function of shear rate at several temperatures using an LCR-7000 Capillary Rheometer.
-
Table 2 Run 1 2 3 4 5 6 PEEK type KetaSpire® PEEK KT-820 NT additive type #1 #1 #1 #2 #2 #2 (%wt) 0.2 0.2 0.2 0.2 0.2 0.2 Flammability properties Nominal thickness mm 3 1.5 0.8 3 1.5 0.8 flame rating UL(1) V-0 V-0 NR V-0 V-0 V-1 Rheological Properties VR40 (2) 1.02 - - 0.99 - - MFR(3) g/10 min 7.24 - - 6.54 - - -
Table 3 Run 7 8 9 10 11 12 PEEK type KetaSpire® PEEK KT-880 NT additive type #1 #1 #1 #2 #2 #2 (%wt) 0.2 0.2 0.2 0.2 0.2 0.2 Flammability properties Nominal thickness mm 3 1.5 0.8 3 1.5 0.8 Flame rating UL(1) V-0 V-0 NR V-0 V-0 V-0 Rheological Properties VR40 (2) 0.9 - - 0.86 - - MFR(3) g/10 min 46.78 - - 46.84 - - -
Table 4 Run Comparative Control 2 Polymer Type KetaSpire® PEEK KT-820 NT KetaSpire® PEEK KT-880 NT Flammability Properties Nominal thickness mm 3 1.5 0.8 3 1.5 0.8 Flame Rating UL(1) V-0 V-1 NR V-0 NR NR Rheological Properties VR40 (2) 1.18 - - 0.99 - - MFR(3) g/10min 7.13 - - 46.63 - - - Notes for tables 2 to 4:
(1) Flame rating based on UL 94 vertical burn test; this flame rating, with V-0 being best, followed by V-1, V-2 and NR (not rated), depends on both the average of burn times and the variability in burn times. Each bar is subjected to a vertical flame burn twice and typically five bars are tested leading to a population of 10 burn times to assign the flame rating; (2) ratio of melt viscosity after 40 min heating at 410°C at a shear rate of 46 s-1 over melt viscosity after 10 minutes at 410°C at same shear rate; (3) Melt flow rate at 365°C, under a piston load of 5.0 kg. -
Table 5 Extrusion parameters Set Point Run Value Zone 1 (°C) 300 300 Zone 2 (°C) 340 340 Zone 3 (°C) 350 350 Zone 4 (°C) 350 350 Zone 5 (°C) 350 350 Die (°C) 350 350 Screw Speed (rpm) 250 250 Drive torque (%) 65 Pelletizer rate (Hz) 182 Feed rate (lb/h) 4 Vacuum (mm Hg) ~ 800 - General description of the compounding process of sulfone polymers
A dry blend of sulfone polymers (UDEL® polysulfone P-1700 NT) with the desired amount of salt (F) additive was first prepared by tumble blending. The preblended mixture was then fed into a Berstorff 25 mm twin screw extruder. The barrel temperatures of the extruder were maintained at 340°C to give an adequate melt temperature. The screw speed was set at 200 rpm. The extrusion conditions are summarized in table 6. The melt was extruded through a single hole die and the polymer strands were cooled using a water bath prior to pelletization. Composition, flammability, physical and mechanical properties of the blends are summarized in table 7. - Capillary Rheology Test Method (viscosity):
- The viscosity of a melt was measured as a function of shear rate at several temperatures using an LCR-7000 Capillary Rheometer.
-
Table 6 Extrusion parameters Set Point Run Value Zone 1 (°C) 300 300 Zone 2 (°C) 325 325 Zone 3 (°C) 330 330 Zone 4 (°C) 335 335 Zone 5 (°C) 340 340 Melt temp (°C) 365 364 Die (°C) 345 345 Screw Speed (rpm) 200 209 Drive torque (%) 60 59 Pelletizer rate (Hz) 163 Feed rate (lb/h) 2.8 Vacuum (mmHg) ~ 500 -
Table 7 Run 13 14 15 16 17 SP polym type UDEL® PSU P-1700 NT additive type none #1 #1 #2 #2 (%wt) - 0.2 0.4 0.2 0.4 Flammability properties Nominal thickness = 3 mm Flame rating UL NR V-0 V-0 V-0 V-0 Nominal thickness = 1.5 mmV-2 Flame rating UL NR NR NR V-2 V-2 Nominal thickness = 0.8 mm Flame rating UL NR NR NR V-2 V-2 -
Claims (15)
- A polymer composition comprising:- at least one polycondensation polymer having a heat deflection temperature (HDT) of above 80°C under a load of 1.82 MPa when measured according to ASTM D648 [polymer (P)];- at least one fluorinated sulfonate salt [salt (F)] of either of formulae:(Xn+)1/n -O3S-R*d F-SO3 -(Xn+)1/n andR*m F-SO3 -(Xn+)1/nwherein R*d F is a divalent C1-C14 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, in particular Cl; R*m F is a monovalent C1-C14 perfluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, in particular Cl; X = H, a metal cation, or an ammonium group; n is the valence of the cation X, preferably 1 or 2.
- The polymer composition of claim 1, wherein the salt (F) is selected from the group consisting of perfluoroalkylsulphonic derivatives [salt (AF)] of either of formulae:(Xn+)1/n -O3S-Rd af-SO3 -(Xn+)1/n andRm af-SO3 -(Xn+)1/nwherein Rd af is a divalent C1-C6 perfluoroalkyl group; Rm af is a monovalent C1-C6 perfluoroalkyl group; X = H, a metal cation, or an ammonium group; n is the valence of the cation X, preferably 1 or 2.
- The polymer composition of claim 1, wherein the salt (F) is selected from the group consisting of perfluoroalkoxysulphonic derivatives [salt (OF)] of either of formulae:(Xn+)1/n -O3S-(CF2)p-CF2CF2O-Rd f-OCF2CF2-(CF2)p-SO3 -(Xn+)1/n andRm f-OCF2CF2-(CF2)p-SO3 -(Xn+)1/nwherein Rd f is a divalent C1-C12 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, preferably Cl; p is zero or an integer from 1 to 5; Rm f is a monovalent C1-C12 per(halo)fluorocarbon group, possibly comprising one or more ethereal oxygen atom, comprising optionally one or more halogen atom(s) different from fluorine, preferably Cl; X = H, a metal cation, or an ammonium group; n is the valence of the cation X, preferably 1 or 2.
- The polymer composition of claim 3, wherein the salt (OF) is selected from the group consisting of:(i) CF3-(CF2)w-OCF2CF2-SO3 -(Zp+)1/pwherein w is an integer from 1 to 3, preferably w = 1, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;(ii) CF2Cl-CFCl-(CF2)z-OCF2CF2-SO3 -(Zp+)1/pwherein z is an integer from 0 to 3, preferably z = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;(iii) CF2Cl-CF2-(CF2)z”-OCF2CF2-SO3 -(Zp+)1/pwherein z” is an integer from 0 to 3, preferably z” = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;(iv) CF3-CFCl-(CF2)z”-OCF2CF2-SO3 -(Zp+)1/pwherein z”’ is an integer from 0 to 3, preferably z’” = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;(v) CF3-(CF2)w’OCF2CF2-OCF2CF2-SO3 -(Zp+)1/pwherein w’ is an integer from 0 to 2, preferably w’ = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;(vi) CF2Cl-CFCl-(CF2)z’OCF2CF2-OCF2CF2-SO3 -(Zp+)1/pwherein z’ is an integer from 0 to 2, preferably z’ = 0, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z;(vii) CF3-(CF2)q-(OCF2CFXF)r-OCF2CF2-SO3 -(Zp+)1/pwherein q and r being integers from 1 to 3, preferably q = 1 and r = 1, XF is F or CF3 and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z; and(viii) CF3-CF2-OCF2CF2-(CF2)t’-SO3 -(Zp+)1/pwherein t’ is an integer from 1 to 3, preferably t’ is 1 or 2, and Z is NH4 or a alkaline or alkali-earth metal cation, and p being the valence of the cation Z.
- The polymer composition of anyone of claims 1 to 4, wherein polymer (P) is selected among aromatic polyimides (PI), polyaryletherketones (PAEK), liquid crystal polymers (LCP), and aromatic sulfone polymers (SP).
- The polymer composition of claim 5, wherein polymer (P) is an aromatic polyimide (PI) comprising recurring units, wherein more than 50 % moles of said recurring units comprising at least one aromatic ring and at least one imide group, as such (formula 1A) or in its amic acid form (formula 1B) [recurring units (RPI)] : and wherein said recurring units (RPI) are selected from formulae 5A to 5C :wherein :Ar represents an aromatic tetravalent group; typically Ar is selected from the group consisting of following structures: and corresponding optionally substituted structures, with X being –O-, -C(O)-, -CH2-, -C(CF3)2-, -(CF2)n-, with n being an integer from 1 to 5;R represents an aromatic divalent group; typically R is selected from the group consisting of following structures: and corresponding optionally substituted structures, with Y being –O-, -S-, -SO2-, -CH2-, -C(O)-, -C(CF3)2-, -(CF2)n, n being an integer from 0 to 5.
- The polymer composition of claim 5, wherein polymer (P) is a polyaryletherketone (PAEK) polymer, comprising recurring units, more than 50 % moles of said recurring units being recurring units (RPAEK) selected from the group consisting of formulae (J-A) to (J-O), herein below:wherein:- each of R’, equal to or different from each other, is selected from the group consisting of halogen, alkyl, alkenyl, alkynyl, aryl, ether, thioether, carboxylic acid, ester, amide, imide, alkali or alkaline earth metal sulfonate, alkyl sulfonate, alkali or alkaline earth metal phosphonate, alkyl phosphonate, amine and quaternary ammonium;- j’ is zero or is an integer from 0 to 4.
- The polymer composition of claim 4, wherein polymer (P) is an aromatic sulfone polymer (SP), wherein at least 50 % wt of the recurring units thereof comprise at least one group of formula (SP) [recurring units (RSP)]: .
- The polymer composition of claim 7, wherein at least 50 % wt of the recurring units of aromatic sulfone polymer (SP) are recurring units (RSP-1), in their imide form (RSP-1-A) and/or amic acid forms [(RSP-1-B) and (RSP-1-C)] : wherein :the → denotes isomerism so that in any recurring unit the groups to which the arrows point may exist as shown or in an interchanged position;Ar” is chosen among the following structures :and corresponding optionally substituted structures, with Y being –O-, -C(O)-, -(CH2)n-, -C(CF3)2-, -(CF2)n-, with n being an integer from 1 to 5and mixtures thereof.
- The polymer composition of claim 7, wherein at least 50 % wt of the recurring units of aromatic sulfone polymer (SP) are recurring units (RSP-2) and/or recurring units (RSP-3) : wherein :- Q and Ar*, equal or different from each other and at each occurrence, are independently a divalent aromatic group; preferably Ar* and Q equal or different from each other and at each occurrence, are independently selected from the group consisting of the following structures : and corresponding optionally substituted structures, with Y being –O-, -CH=CH-, -C≡C-, -S-, -C(O)-, -(CH2)n-, -C(CF3)2-, -C(CH3)2-, -SO2-, -(CF2)n-, with n being an integer from 1 to 5 and mixtures thereof; and mixtures thereof.
- The polymer composition of claim 10, wherein recurring units (RSP-2 ) are chosen from : and mixtures thereof, and wherein recurring units (RSP-3 ) are chosen from : and mixtures thereof.
- A process for manufacturing the polymer composition according to anyone of claim 1 to 11, which comprises mixing :- at least one polymer (P);- at least one salt (F).
- The process of claim 12, wherein polymer (P) and salt (F) are mixed by melt compounding.
- A shaped article comprising the polymer composition according to anyone of claim 1 to 11.
- The article of claim 14, selected among an injection moulded article, an extrusion moulded article, a shaped article, a coated article or a casted article.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161564136P | 2011-11-28 | 2011-11-28 | |
| PCT/EP2012/073286 WO2013079383A1 (en) | 2011-11-28 | 2012-11-22 | Polymer composition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2785781A1 true EP2785781A1 (en) | 2014-10-08 |
Family
ID=47216289
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12788549.9A Withdrawn EP2785781A1 (en) | 2011-11-28 | 2012-11-22 | Polymer composition |
Country Status (2)
| Country | Link |
|---|---|
| EP (1) | EP2785781A1 (en) |
| WO (1) | WO2013079383A1 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160053107A1 (en) * | 2014-08-21 | 2016-02-25 | Ticona Llc | Composition Containing a Polyaryletherketone and Low Naphthenic Liquid Crystalline Polymer |
| WO2017087438A1 (en) * | 2015-11-20 | 2017-05-26 | Ticona Llc | High flow polyaryletherketone composition |
| US11352480B2 (en) * | 2016-03-18 | 2022-06-07 | Ticona Llc | Polyaryletherketone composition |
| CN108976152B (en) * | 2018-09-10 | 2020-10-23 | 江汉大学 | Alkyl ether sulfonyl fluoride compound and synthesis method thereof |
| WO2020083683A1 (en) * | 2018-10-22 | 2020-04-30 | Solvay Specialty Polymers Usa, Llc | Polyphenylene sulfide polymer compositions and corresponding laser welding applications |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| IT1230718B (en) | 1989-02-13 | 1991-10-29 | Ausimont Srl | DIRECT FLUORURATION OF FLUOR B SULTONI TO THE CORRESPONDING FLUOROSS FLUOROSULPHONYL FLUOROCOMPOSITES. |
| IT1246357B (en) | 1990-07-12 | 1994-11-17 | Ausimont Spa | PROCESS FOR THE PREPARATION OF PERFLUOROALCOXYSULPHONIC COMPOUNDS |
| US6624328B1 (en) | 2002-12-17 | 2003-09-23 | 3M Innovative Properties Company | Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group |
| ITMI20030444A1 (en) | 2003-03-11 | 2004-09-12 | Solvay Solexis Spa | PROCESS TO PREPARE (PER) FLUOROALOGENOETERI. |
| JP4770461B2 (en) | 2003-07-04 | 2011-09-14 | 旭硝子株式会社 | Method for producing fluorine-containing sulfonyl fluoride |
| US20090043016A1 (en) * | 2007-08-06 | 2009-02-12 | Jing-Chung Chang | Flame retardant polytrimethylene terephthalate composition |
-
2012
- 2012-11-22 WO PCT/EP2012/073286 patent/WO2013079383A1/en not_active Ceased
- 2012-11-22 EP EP12788549.9A patent/EP2785781A1/en not_active Withdrawn
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2013079383A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2013079383A1 (en) | 2013-06-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101809693B1 (en) | High temperature polymer blends of poly(aryl ether ketone phthalazinone) | |
| CN102365312B (en) | Method for producing low-chlorine polybiphenyl sulfone polymers | |
| JP2007502347A (en) | Flame retardant fiber reinforced composition with improved fluidity | |
| JP7739279B2 (en) | Polyaryletherketone copolymer blends | |
| EP2785781A1 (en) | Polymer composition | |
| JP2009508998A (en) | Blends of polyaryl ether ketones and polyetherimide sulfones | |
| CN102212256A (en) | Liquid-crystalline polymer composition and molded article thereof | |
| EP2987833A1 (en) | Light-resistant resin composition, and moulded body thereof | |
| JP2011178830A (en) | Thermoplastic resin composition and molded article thereof | |
| EP3443020B1 (en) | Polyisoindolinones, methods of manufacture, and compositions and articles formed therefrom | |
| US8735510B2 (en) | Polymer composition | |
| US7649040B2 (en) | Flame retardant fiber reinforced composition with improved flow | |
| KR20150143691A (en) | Light-resistance improver | |
| JP2008516028A (en) | Sulfone polymer composition | |
| WO2015046630A1 (en) | Resin composition for sliding member | |
| US20190055360A1 (en) | Sulfone polymer and method of making | |
| EP0243000B1 (en) | Polycyanoaryl ether, method for preparing the same and uses thereof | |
| TWI701274B (en) | Resin composition and molded body | |
| CN114641534A (en) | Resin composition and electronic and electrical device member | |
| JPH05132621A (en) | Resin composition | |
| JP2025007207A (en) | Resin composition, its manufacturing method, molded body and gear | |
| KR20240132347A (en) | Shaped articles comprising poly(aryl ether sulfone) (PAES) polymers and methods for making them using melt processing | |
| JP2007153983A (en) | Bending product of flame retardant resin composition | |
| WO2025047385A1 (en) | Polyether nitrile and polyether nitrile particle | |
| CN119790104A (en) | Thermoplastic resin composition and molded article made therefrom |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20140630 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20180830 |