EP2775127A1 - Control device for internal-combustion engine - Google Patents
Control device for internal-combustion engine Download PDFInfo
- Publication number
- EP2775127A1 EP2775127A1 EP11874993.6A EP11874993A EP2775127A1 EP 2775127 A1 EP2775127 A1 EP 2775127A1 EP 11874993 A EP11874993 A EP 11874993A EP 2775127 A1 EP2775127 A1 EP 2775127A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- fuel
- intake
- fuel cutoff
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 24
- 239000000446 fuel Substances 0.000 claims abstract description 127
- 238000010790 dilution Methods 0.000 claims abstract description 52
- 239000012895 dilution Substances 0.000 claims abstract description 52
- 239000003921 oil Substances 0.000 claims abstract description 51
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 35
- 230000007246 mechanism Effects 0.000 claims abstract description 34
- 239000010687 lubricating oil Substances 0.000 claims abstract description 24
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 4
- 230000000979 retarding effect Effects 0.000 claims description 4
- 239000003054 catalyst Substances 0.000 abstract description 29
- 230000010485 coping Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 44
- 239000002826 coolant Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 12
- 230000002265 prevention Effects 0.000 description 8
- 238000004821 distillation Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000001464 adherent effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/003—Adding fuel vapours, e.g. drawn from engine fuel reservoir
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
- F02D19/082—Premixed fuels, i.e. emulsions or blends
- F02D19/084—Blends of gasoline and alcohols, e.g. E85
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0005—Controlling intake air during deceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/12—Introducing corrections for particular operating conditions for deceleration
- F02D41/123—Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M25/00—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
- F02M25/06—Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01M—LUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
- F01M13/00—Crankcase ventilating or breathing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/08—Engine blow-by from crankcase chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/11—Oil dilution, i.e. prevention thereof or special controls according thereto
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- a third invention is equipped with a variable valve mechanism that can change valve-opening properties of an intake valve; and fuel cutoff intake valve control means for retarding a valve-opening timing of the intake valve through a use of the variable valve mechanism as the oil dilution amount increases during fuel cutoff.
- the first invention even in a situation where a large amount of blow-by gas is generated, in the case where fuel cutoff is executed, it is possible to increase the opening degree of the throttle valve on the basis of the oil dilution amount and restrain the intake negative pressure from rising. As a result, the amount of blow-by gas that is sucked out from the crankcase due to the intake negative pressure and introduced into an intake system can be held small. Then, the amount of blow-by gas that reaches the catalyst during fuel cutoff can be held small, and the occurrence of catalyst OT or the like can be prevented. Accordingly, good exhaust emission properties can be maintained, and abnormal exhaust noise or the like can be avoided.
- the amount of blow-by gas that is generated in the crankcase increases as the oil dilution amount increases.
- the intake negative pressure can be reduced in accordance with the amount of generation of blow-by gas, and a large amount of blow-by gas can be prevented from flowing into the intake system.
- a combustion chamber 14 is formed by a piston 12 in each cylinder of the engine 10, and the piston 12 is coupled to a crankshaft 16.
- the crankshaft 16 is accommodated in a crankcase 18 (see FIG. 2 ) that is provided on a lower portion of an engine body.
- the engine 10 is equipped with an intake passage 20 through which intake air is sucked into each cylinder, and an exhaust passage 22 through which exhaust gas is discharged from each cylinder.
- the intake passage 20 is provided with an air cleaner 24, a throttle valve 26, and a surge tank 28, sequentially from an upstream side.
- the throttle valve 26 adjusts an amount of intake air that is sucked into the combustion chamber 14 (into the cylinder) via the intake passage 20, and is constituted by an electronically controlled butterfly valve or the like.
- the surge tank 28 constitutes part of the intake passage 20.
- the exhaust passage 22 is provided with a catalyst 30 such as a three-way catalyst or the like, which purifies exhaust gas.
- the system of this embodiment of the invention is equipped with a sensor system that includes sensors 60 to 68, and an engine control unit (an ECU) 70 that controls the operation state of the engine.
- the crank angle sensor 60 outputs a signal that is synchronized with rotation of the crankshaft 16, and the air flow sensor 62 detects an intake air amount.
- the coolant temperature sensor 64 detects a temperature of engine coolant (an engine coolant temperature)
- the oil temperature sensor 66 detects a temperature of lubricating oil (a lubricating oil temperature)
- the alcohol concentration sensor 68 detects a concentration of alcohol in fuel.
- each of the engine coolant temperature and the lubricating oil temperature is an example of an engine temperature that reflects the temperature of the engine.
- the sensor system includes various sensors (e.g., a throttle opening degree sensor that detects an opening degree of the throttle valve 26, an accelerator position sensor that detects an operation amount of an accelerator pedal, and the like) that are needed to control the engine. These sensors are connected to an input side of the ECU 70.
- the throttle valve 26, the fuel injection valves 32 and 34, the ignition plug 36, and actuators such as the VVT 42 and the like are connected to an output side of the ECU 70.
- the predetermined temperatures T1 and T2 are each set as a temperature at which, for example, the evaporation amount of fuel that evaporates from lubricating oil suddenly increases (a temperature corresponding to the vicinity of boiling points of the aforementioned alcohol components). That is, in a state where the condition (1) is fulfilled, the amount of blow-by gas in the crankcase 18 increases and hence the PCV mechanism 50 needs to be continuously operated, but a relatively large amount of blow-by gas is introduced into the intake system if the PCV mechanism 50 is simply operated.
- FIG. 6 is an illustration diagram showing a valve timing and the like of FC intake valve control.
- FIG. 6(a) shows a normal intake stroke at the time when FC intake valve control is not performed
- FIG. 6(b) shows an intake stroke in the case where FC intake valve control is performed.
- step 104 in FIG. 7 represents a concrete example of oil dilution amount estimation means in claim 1
- step 112 in FIG. 7 represents a concrete example of fuel cutoff throttle control means and fuel cutoff intake valve control means in claims 1 through 3.
- the concentration of alcohol in fuel is detected by the alcohol concentration sensor 68 .
- the invention is not limited to this case. It is also appropriate to adopt a configuration in which the concentration of alcohol in fuel is estimated on the basis of an output of an exhaust gas sensor (an air-fuel ratio sensor) that detects an exhaust gas air-fuel ratio.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
Description
- The invention relates to a control apparatus for an internal combustion engine, and more particularly, to a control apparatus for an internal combustion engine that is endowed with a function of introducing blow-by gas in a crankcase into an intake system.
- In recent years, the number of vehicles that can use alcohol fuel, such as flexible fuel vehicles (FFV's), tends to increase. In an internal combustion engine that uses alcohol fuel, the amount of fuel injection is larger and the volatility of fuel is lower than in an internal combustion engine that uses gasoline. Therefore, injected fuel is likely to adhere to an intake passage or a wall surface in a cylinder, and as a result, the amount of fuel that is mixed with engine oil (an oil dilution amount) also tends to increase. Accordingly, in the case where alcohol fuel is used, it is preferable to employ a PCV mechanism or the like.
- As disclosed in, for example, Patent Document 1 (Japanese Patent Application Publication No.
(2009-138571 )), the PCV mechanism introduces blow-by gas in a crankcase into an intake system, and the amount of blow-by gas introduced into the intake system is adjusted in accordance with an intake negative pressure. Thus, the fuel that has evaporated from engine oil can be burned together with the mixture.JP-2009-138571 A - Incidentally, the applicant recognizes documents cited below including the above-mentioned one as those associated with the invention.
-
- Patent Document 1: Japanese Patent Application Publication No.
(2009-138571 )JP-2009-138571 A - Patent Document 2: Japanese Patent Application Publication No.
(2007-198196 )JP-2007-198196 A - Patent Document 3: Japanese Patent Application Publication No.
(2007-285239 )JP-2007-285239 A - By the way, in the internal combustion engine of the conventional art, fuel cutoff is executed in a state where a throttle valve is throttled, for example, during deceleration. Thus, during fuel cutoff, the intake negative pressure increases, and the amount of blow-by gas introduced into the intake system also tends to increase. However, this blow-by gas flows out to an exhaust system without burning in the cylinder due to the execution of fuel cutoff, and reacts with oxygen on a catalyst. Thus, in the conventional art, the internal combustion engine that is mounted with the PCV mechanism so as to cope with the use of alcohol fuel has a problem in that a large amount of blow-by gas reacts with oxygen on the catalyst during fuel cutoff, and that the catalyst is likely to deteriorate due to reaction heat thereof.
- The invention has been made to solve the aforementioned problem. It is an object of the invention to provide a control apparatus for an internal combustion engine that can restrain blow-by gas from reaching a catalyst during fuel cutoff and protect the catalyst while coping with an increase in oil dilution amount resulting from the use of alcohol fuel, in the internal combustion engine that uses the alcohol fuel.
- A first invention is characterized by being equipped with a throttle valve that is provided in an intake passage of an internal combustion engine to adjust an amount of intake air that is sucked into a cylinder via the intake passage;
a fuel injection valve that injects alcohol fuel into the intake passage and/or the cylinder;
a PCV mechanism that introduces, into the intake passage, evaporative fuel that has evaporated from lubricating oil in a crankcase of the internal combustion engine;
oil dilution amount estimation means for estimating an oil dilution amount as an amount of fuel that has been mixed with the lubricating oil in the crankcase; and
fuel cutoff throttle control means for setting an opening degree of the throttle valve during fuel cutoff on a basis of the oil dilution amount when fuel cutoff is executed with the PCV mechanism in operation. - According to a second invention, the fuel cutoff throttle control means is configured to increase the opening degree of the throttle valve during fuel cutoff as the oil dilution amount increases.
- A third invention is equipped with a variable valve mechanism that can change valve-opening properties of an intake valve; and
fuel cutoff intake valve control means for retarding a valve-opening timing of the intake valve through a use of the variable valve mechanism as the oil dilution amount increases during fuel cutoff. - According to the first invention, even in a situation where a large amount of blow-by gas is generated, in the case where fuel cutoff is executed, it is possible to increase the opening degree of the throttle valve on the basis of the oil dilution amount and restrain the intake negative pressure from rising. As a result, the amount of blow-by gas that is sucked out from the crankcase due to the intake negative pressure and introduced into an intake system can be held small. Then, the amount of blow-by gas that reaches the catalyst during fuel cutoff can be held small, and the occurrence of catalyst OT or the like can be prevented. Accordingly, good exhaust emission properties can be maintained, and abnormal exhaust noise or the like can be avoided.
- According to the second invention, the amount of blow-by gas that is generated in the crankcase increases as the oil dilution amount increases. Thus, by increasing the opening degree of the throttle valve during fuel cutoff as the oil dilution amount increases, the intake negative pressure can be reduced in accordance with the amount of generation of blow-by gas, and a large amount of blow-by gas can be prevented from flowing into the intake system.
- According to the third invention, the intake valve is closed in the initial stages of an intake stroke by retarding a valve-opening timing (IVO) of the intake valve, so that a negative pressure can be generated in the cylinder. Thus, even in a state where the throttle opening degree has been increased when fuel cutoff during deceleration is executed, a feeling of deceleration can be generated through the use of the negative pressure in the cylinder, and an improvement in driveability can be achieved.
-
- [
FIG. 1] FIG. 1 is a configuration diagram for illustrating a system configuration of a first embodiment of the invention. - [
FIG. 2] FIG. 2 is a configuration diagram showing a PCV mechanism. - [
FIG. 3] FIG. 3 is a characteristic diagram showing distillation properties of alcohol components in fuel. - [
FIG. 4] FIG. 4 is a characteristic diagram showing a relationship among an integrated oil dilution amount effeldil, a throttle opening degree, and an intake negative pressure in FC throttle control. - [
FIG. 5] FIG. 5 is a characteristic diagram showing a concrete example of FC intake valve control. - [
FIG. 6] FIG. 6 is an illustration diagram showing a valve timing and the like of FC intake valve control. - [
FIG. 7] FIG. 7 is a flowchart showing control performed by an ECU in a first embodiment of the invention. - The first embodiment of the invention will be described hereinafter with reference to
FIGS. 1 to 7 .FIG. 1 is a configuration diagram for illustrating a system configuration of the first embodiment of the invention. Incidentally, inFIG. 1 , the illustration of aPCV mechanism 50, which will be described later, is omitted. A system of this embodiment of the invention is equipped with anengine 10 as an internal combustion engine that is mounted on a vehicle such as a flexible fuel vehicle (an FFV) or the like. Theengine 10 can use alcohol fuel containing, for example, methanol, ethanol, butanol and the like. - A
combustion chamber 14 is formed by apiston 12 in each cylinder of theengine 10, and thepiston 12 is coupled to acrankshaft 16. Thecrankshaft 16 is accommodated in a crankcase 18 (seeFIG. 2 ) that is provided on a lower portion of an engine body. Besides, theengine 10 is equipped with anintake passage 20 through which intake air is sucked into each cylinder, and anexhaust passage 22 through which exhaust gas is discharged from each cylinder. Theintake passage 20 is provided with anair cleaner 24, athrottle valve 26, and asurge tank 28, sequentially from an upstream side. Thethrottle valve 26 adjusts an amount of intake air that is sucked into the combustion chamber 14 (into the cylinder) via theintake passage 20, and is constituted by an electronically controlled butterfly valve or the like. Thesurge tank 28 constitutes part of theintake passage 20. On the other hand, theexhaust passage 22 is provided with acatalyst 30 such as a three-way catalyst or the like, which purifies exhaust gas. - Besides, each cylinder of the
engine 10 is equipped with 32 and 34 that inject fuel into the intake passage 20 (an intake port) and the cylinder respectively, anfuel injection valves ignition plug 36 that ignites the mixture, anintake valve 38 that opens/closes theintake passage 20 to/from the interior of the cylinder, and anexhaust valve 40 that opens/closes theexhaust passage 22 to/from the interior of the cylinder. Incidentally, in the invention, the two 32 and 34 are not absolutely required to be provided, and at least one of the fuel injection valves may be mounted. Besides, thefuel injection valves engine 10 is equipped with a variable valve timing system (a VVT) 42 as a variable valve mechanism that can change valve-opening properties (a valve-opening timing and a valve-closing timing) of theintake valve 38. - The
VVT 42 has a known configuration as disclosed in, for example, Japanese Patent Application Publication No. (2000-87769 ), and is equipped with an actuator that is interposed between a camshaft and a timing pulley. The camshaft rotates through the transmission of rotation of theJP-2000-87769 A crankshaft 16 via a timing chain and the timing pulley, and drives theintake valve 38 in an opening/closing manner. TheVVT 42 causes the camshaft and the timing pulley to rotate relatively to each other with the aid of the actuator, and advances (makes earlier) and retards (makes later) a phase of theintake valve 38 in accordance with a relative rotational angle between the camshaft and the timing pulley. Incidentally, in the invention, it is also appropriate to adopt a configuration that employs a variable valve mechanism other than theVVT 42. More specifically, as indicated by, for example, Japanese Patent Application Publication No. (2007-132326 ), it is also appropriate to employ a variable valve mechanism that can change the valve-opening properties of theJP-2007-132326 A intake valve 38 by interposing a roller and a rocking arm between a rocker arm of the valve and the camshaft. Besides, it is also appropriate to employ an electromagnetically driven variable valve mechanism as indicated by Japanese Patent Application Publication No. (2007-16710 ). Furthermore, a mechanism (a VVL or the like) that changes the working angle of theJP-2007-16710 A intake valve 38 may be adopted as the variable valve mechanism. - Next, the positive crankcase ventilation (PCV)
mechanism 50 that is mounted on theengine 10 will be described with reference toFIG. 2. FIG. 2 is a configuration diagram showing the PCV mechanism. ThePCV mechanism 50 is equipped with agas introduction passage 52, aPCV valve 54, and a freshair introduction passage 56. Thegas introduction passage 52 introduces gas (blow-by gas containing evaporative fuel that has evaporated from lubricating oil) in thecrankcase 18 into theintake passage 20. Thegas introduction passage 52 is connected on one end side thereof to a space in thecrankcase 18, and is connected on the other end side thereof to theintake passage 20 downstream of thethrottle valve 26. - Besides, the
PCV valve 54 adjusts the amount of blow-by gas that is introduced from thecrankcase 18 into theintake passage 20 via thegas introduction passage 52, and is constituted by a negative pressure-type flow rate control valve that opens/closes on the basis of an intake negative pressure, or the like. The freshair introduction passage 56 introduces outside air (fresh air) into thecrankcase 18 when blow-by gas flows out from thecrankcase 18. The freshair introduction passage 56 is connected on one end side thereof to theintake passage 20 upstream of thethrottle valve 26, and is connected on the other end side thereof to the space in thecrankcase 18. - Then, the
PCV mechanism 50 operates during operation of the engine, and introduces gas in thecrankcase 18 into theintake passage 20. Concretely, during operation of the engine, a negative pressure (an intake negative pressure) that is generated in theintake passage 20 is applied to thePCV valve 54, so that thePCV valve 54 opens. Thus, the intake negative pressure is applied to thegas introduction passage 52, and sucks gas in thecrankcase 18 from thegas introduction passage 52 into theintake passage 20. Accordingly, due to operation of thePCV mechanism 50, gas such as evaporative fuel or the like that has accumulated in thecrankcase 18 is scavenged, and this gas can be burned in the cylinder together with the mixture. - Next, a control system of the
engine 10 will be described with reference to the foregoingFIG. 1 . The system of this embodiment of the invention is equipped with a sensor system that includessensors 60 to 68, and an engine control unit (an ECU) 70 that controls the operation state of the engine. First of all, the sensor system will be described. Thecrank angle sensor 60 outputs a signal that is synchronized with rotation of thecrankshaft 16, and theair flow sensor 62 detects an intake air amount. Besides, thecoolant temperature sensor 64 detects a temperature of engine coolant (an engine coolant temperature), theoil temperature sensor 66 detects a temperature of lubricating oil (a lubricating oil temperature), and thealcohol concentration sensor 68 detects a concentration of alcohol in fuel. It should be noted herein that each of the engine coolant temperature and the lubricating oil temperature is an example of an engine temperature that reflects the temperature of the engine. In addition, the sensor system includes various sensors (e.g., a throttle opening degree sensor that detects an opening degree of thethrottle valve 26, an accelerator position sensor that detects an operation amount of an accelerator pedal, and the like) that are needed to control the engine. These sensors are connected to an input side of theECU 70. On the other hand, thethrottle valve 26, the 32 and 34, thefuel injection valves ignition plug 36, and actuators such as theVVT 42 and the like are connected to an output side of theECU 70. - Then, the
ECU 70 drives the respective actuators on the basis of operation information on the engine detected by the sensor system, and performs operation control. Concretely, theECU 70 detects an engine rotational speed and a crank angle on the basis of an output of thecrank angle sensor 60, and detects an intake air amount through the use of theair flow sensor 62. Besides, theECU 70 calculates an engine load on the basis of the engine rotational speed and the intake air amount, calculates a fuel injection amount on the basis of the intake air amount, the engine load and the like, and determines a fuel injection timing and an ignition timing on the basis of the crank angle. At this time, the fuel injection amount is corrected on the basis of an engine coolant temperature, a concentration of alcohol in fuel, an operation amount of the accelerator pedal, and the like. Then, theECU 70 drives the 32 and 34 as soon as the fuel injection timing arrives, and drives thefuel injection valves ignition plug 36 as soon as the ignition timing arrives. Thus, the mixture is burned in thecombustion chamber 14 of each cylinder, so that the engine can be operated. Besides, theECU 70 carries out various kinds of fuel cutoff including known fuel cutoff during deceleration. In fuel cutoff during deceleration, when the engine decelerates with thethrottle valve 26 closed, fuel injection is stopped to make improvements in exhaust emission properties and fuel economy. - In this embodiment of the invention, alcohol fuel is used as fuel of the
engine 10. However, since alcohol components in fuel exhibit high hydrophilicity and high oleophilicity, they are likely to adhere to the intake port and a wall surface in the cylinder to be mixed with lubricating oil. That is, in the case where alcohol fuel is used, the amount of fuel that leaks out from the interior of the cylinder into thecrankcase 18 to be mixed with lubricating oil (an oil dilution amount) tends to increase. In particular, in the case where the engine is operated in a low-temperature range equal to or lower than boiling points of alcohol components (during startup or the like) while the concentration of high-concentration alcohol is used, a gasification failure of fuel is caused, and the amount of fuel adherent to the wall surface or the oil dilution amount remarkably increases. It should be noted herein thatFIG. 3 is a characteristic diagram showing distillation properties (changes in the ratio of distillation with respect to the temperature) of alcohol components in fuel. In this drawing, "E0", "E85", and "E100" exemplify cases where the concentration of alcohol (the concentration of ethanol) in fuel is 0%, 85%, and 100% respectively. As shown inFIG. 3 , alcohol fuel has distillation properties that increase in uniformity as the concentration of alcohol in fuel rises, and is unlikely to gasify even at low temperatures. - On the other hand, if the process of warm-up of the engine proceeds and the temperature of lubricating oil reaches the vicinity of a boiling point of alcohol components, the fuel that has been mixed with lubricating oil has the properties of suddenly gasifying to become evaporative fuel. For this reason, in the case where the
PCV mechanism 50 operates and fuel cutoff is executed with thecatalyst 30 activated, the blow-by gas introduced into the intake system reaches the catalyst without burning in the cylinder, and reacts with oxygen on the catalyst. In this case, there occurs a phenomenon (catalyst OT) in which the temperature of the catalyst rises due to reaction heat and exceeds a heat resistance upper value, and a deterioration in the catalyst may be caused. Then, due to a deterioration in the function of the catalyst, a deterioration in the exhaust emission properties and abnormal exhaust noise are likely to be caused. In order to avoid these phenomena, a configuration that employs an electromagnetically driven PCV valve that is held closed during fuel cutoff to prevent blow-by gas from being supplied to the intake port is also conceivable. However, in the case where the electromagnetically driven PCV valve is adopted, an increase in the cost of the engine is incurred. - Thus, in this embodiment of the invention, when fuel cutoff is executed with the PCV mechanism in operation, FC throttle control is performed to set an opening degree of the throttle valve 26 (a throttle opening degree) during fuel cutoff to a predetermined opening degree on the basis of an oil dilution amount (an integrated oil dilution amount). Incidentally, in the aforementioned control, a processing of estimating the oil dilution amount is performed according to a known method. More specifically, the
ECU 70 leans in advance relationships between parameters, for example, a lubricating oil temperature, an engine load, a fuel injection amount and the like and an oil dilution amount, and calculates an oil dilution amount in each combustion cycle on the basis of this learned result. Then, by integrating this calculated value, theECU 70 can estimate an oil dilution amount (an integrated oil dilution amount) at an arbitrary time point. - Besides, FC throttle control is performed if conditions (1) to (3) shown below are all fulfilled.
- (1) The engine temperature is equal to or higher than a predetermined temperature. Concretely, an engine coolant temperature ethw is equal to or higher than a predetermined temperature T1, or a lubricating oil temperature etho is equal to or higher than a predetermined temperature T2.
- (2) The integrated oil dilution amount effeldil is equal to or larger than a predetermined dilution amount criterial value.
- (3) There is a request to execute fuel cutoff.
- On the aforementioned condition (1), the predetermined temperatures T1 and T2 are each set as a temperature at which, for example, the evaporation amount of fuel that evaporates from lubricating oil suddenly increases (a temperature corresponding to the vicinity of boiling points of the aforementioned alcohol components). That is, in a state where the condition (1) is fulfilled, the amount of blow-by gas in the
crankcase 18 increases and hence thePCV mechanism 50 needs to be continuously operated, but a relatively large amount of blow-by gas is introduced into the intake system if thePCV mechanism 50 is simply operated. Besides, on the aforementioned condition (2), the dilution amount criterial value is set as a minimum value of the integrated oil dilution amount effeldil that allows a large amount of blow-by gas to be generated, for example, when the condition (1) is fulfilled. That is, if the condition (2) is not fulfilled, the amount of fuel as a source of generation of blow-by gas in lubricating oil is not large, so that there is no need to perform FC throttle control. Furthermore, on the aforementioned condition (3), the request to execute fuel cutoff corresponds to a request to execute various kinds of fuel cutoff including fuel cutoff during deceleration, and a determination on the request is made on the basis of an operation state of the engine. If there is a request to execute fuel cutoff, fuel injection is stopped, and fuel cutoff is executed. - Next, a method of setting the throttle opening degree during fuel cutoff in FC throttle control will be described with reference to
FIG. 4. FIG. 4 is a characteristic diagram showing a relationship among the integrated oil dilution amount effeldil, the throttle opening degree, and the intake negative pressure in FC throttle control. Incidentally, the relationship between the integrated oil dilution amount and the throttle opening degree, which is depicted in this drawing, is stored in advance in theECU 70 as a data map or the like. In FC throttle control, as shown inFIG. 4 , the throttle opening degree during fuel cutoff is increased as the integrated oil dilution amount effeldil increases. That is, on the premise that the temperature condition and the like are constant, the amount of blow-by gas generated in thecrankcase 18 increases as the integrated oil dilution amount effeldil increases. Therefore, in FC throttle control, as the integrated oil dilution amount effeldil increases, the throttle opening degree during fuel cutoff is increased, and the intake negative pressure is reduced. - Thus, in a system that is equipped with the negative pressure-
type PCV mechanism 50, even in the case where a large amount of blow-by gas is generated, the throttle opening degree during fuel cutoff is adjusted in accordance with the generation amount of blow-by gas, so that the intake negative pressure can be appropriately reduced. Then, the amount of blow-by gas that is sucked out from thecrankcase 18 due to the intake negative pressure to be introduced into the intake system can be held small. As a result, even if the electromagnetically driven PCV valve is not adopted, the amount of blow-by gas reaching thecatalyst 30 during fuel cutoff is held small, so that the occurrence of catalyst OT or the like can be prevented. Accordingly, it is possible to maintain good exhaust emission properties and avoid abnormal exhaust noise and the like, while restraining the cost of thePCV mechanism 50 from rising. Incidentally, it is also appropriate to adopt a configuration in which the throttle opening degree during fuel cutoff is changed in accordance with the engine coolant temperature and the lubricating oil temperature as well as the integrated oil dilution amount effeldil. That is, the generation amount of blow-by gas is considered to increase as these temperatures rise. Therefore, it is also appropriate to adopt a configuration in which the throttle opening degree during fuel cutoff is increased as the generated engine coolant temperature or the lubricating oil temperature rises. - According to FC throttle control, the operation and effect as described above are obtained. However, for example, while fuel cutoff during deceleration is executed, the pump loss decreases due to a fall in intake negative pressure, so that a driver may sense a fall in deceleration feeling (a fall in driveability). Thus, it is also appropriate to adopt a configuration in which FC intake valve control, which will be described later, is performed in conjunction with FC throttle control during the performance thereof.
FIG. 5 is a characteristic diagram showing a concrete example of FC intake valve control. - In FC intake valve control, as shown in
FIG. 5 , a valve-opening timing (IVO) of theintake valve 38 is retarded (made later) by theVVT 42 as the integrated oil dilution amount effeldil increases, during fuel cutoff. That is, this control means that the IVO is retarded as the throttle opening degree during fuel cutoff increases, namely, as the intake negative pressure falls. It should be noted herein thatFIG. 6 is an illustration diagram showing a valve timing and the like of FC intake valve control. In this drawing,FIG. 6(a) shows a normal intake stroke at the time when FC intake valve control is not performed, andFIG. 6(b) shows an intake stroke in the case where FC intake valve control is performed. - In FC intake valve control, as shown in
FIG. 6(b) , theintake valve 38 is closed in the initial stages of an intake stroke by retarding the IVO, so that a negative pressure can be generated in the cylinder. Thus, when fuel cutoff during deceleration is executed, it is possible to create a feeling of deceleration through the use of a negative pressure in the cylinder and improve driveability, even in a state where the throttle opening degree has been increased. Incidentally, it is also appropriate to adopt a configuration in which the IVO during fuel cutoff is changed in accordance with the engine coolant temperature and the lubricating oil temperature as well as the integrated oil dilution amount effeldil. That is, it is also appropriate to adopt a configuration in which the IVO during fuel cutoff is retarded as the generated engine coolant temperature and the lubricating oil temperature rise in a manner corresponding to the throttle opening degree that increases as these temperatures rise. - Next, a concrete processing for realizing the first embodiment of the invention will be described with reference to
FIG. 7. FIG. 7 is a flowchart showing the control performed by the ECU in the first embodiment of the invention. A routine shown in this drawing is repeatedly executed during operation of the engine. In the routine shown inFIG. 7 , first of all instep 100, an engine temperature (the engine coolant temperature ethw or the lubricating oil temperature etho) is acquired. Instep 102, it is determined whether or not the engine temperature acquired instep 100 is equal to or higher than a predetermined temperature. That is, instep 102, it is determined whether or not the engine coolant temperature ethw is equal to or higher than the predetermined temperature T1 in the case where the engine coolant temperature ethw is used as the engine temperature, and it is determined whether or not the lubricating oil temperature etho is equal to or higher than the predetermined temperature T2 in the case where the lubricating oil temperature etho is used. - If the determination of
step 102 is fulfilled, an estimated value of the integrated oil dilution amount effeldil estimated according to the foregoing known method is acquired instep 104. Then instep 106, it is determined whether or not the integrated oil dilution amount effeldil is equal to or larger than a predetermined dilution amount criterial value. It should be noted herein that if the determination is not fulfilled in one of 102 and 104, there is no need to perform FC throttle control, so that the control is immediately ended. On the other hand, if the determinations are fulfilled in bothsteps 102 and 104, an FC execution request flag F that reflects the presence or absence of a request to execute fuel cutoff is acquired insteps step 108. It should be noted herein that the FC execution request flag F is set to "1" if there is a request to execute fuel cutoff, and is set to "0" if there is no request to execute fuel cutoff, and that the FC execution request flag F is set on the basis of an operation state of the engine or the like through another routine (not shown). - Subsequently in
step 110, it is determined whether or not the FC execution request flag F is "1". If this determination is fulfilled, catalyst OT prevention control is performed instep 112. It should be noted herein that catalyst OT prevention control represents the foregoing FC throttle control or the control as a combination of the foregoing FC intake valve control with this FC throttle control. On the other hand, if the determination ofstep 110 is not fulfilled, there is no need to perform catalyst OT prevention control. Therefore, a transition to step 116 is made to perform normal control (conventional control) without performing catalyst OT prevention control. - Subsequently in
step 114, an acquired value of the integrated oil dilution amount effeldil is updated, and it is determined whether or not this value is equal to or smaller than an end criterial value. The end criterial value corresponds to a small value of the integrated oil dilution amount that has decreased to such an extent that there is no need to continue catalyst OT prevention control any longer. If the determination ofstep 114 is fulfilled, the oil dilution amount has sufficiently decreased. It is therefore determined that there is no need to continue catalyst OT prevention control, and catalyst OT prevention control is stopped to make a transition to step 116. Besides, if the determination ofstep 114 is not fulfilled, the oil dilution amount has not sufficiently decreased. Therefore, a return to step 110 is made, and catalyst OT prevention control is continued until the determination ofstep 114 is fulfilled. - Incidentally, in the foregoing first embodiment of the invention,
step 104 inFIG. 7 represents a concrete example of oil dilution amount estimation means inclaim 1, and step 112 inFIG. 7 represents a concrete example of fuel cutoff throttle control means and fuel cutoff intake valve control means inclaims 1 through 3. - Besides, in the foregoing first embodiment of the invention, there is adopted a configuration in which the throttle opening degree during fuel cutoff is increased as the integrated oil dilution amount effeldil increases in FC throttle control. However, the invention requires nothing more than setting the throttle opening degree during fuel cutoff on the basis of the oil dilution amount, and it is not indispensable to increase the throttle opening degree during fuel cutoff in accordance with the oil dilution amount. That is, in the invention, it is also appropriate to hold the throttle opening degree during fuel cutoff constant as the oil dilution amount changes, for example, in part of a control range. Besides, if necessary, it is also appropriate to adopt a configuration in which the throttle opening degree during fuel cutoff is increased as the oil dilution amount decreases.
- Besides, in the foregoing first embodiment of the invention, the case where the concentration of alcohol in fuel is detected by the
alcohol concentration sensor 68 has been exemplified. However, the invention is not limited to this case. It is also appropriate to adopt a configuration in which the concentration of alcohol in fuel is estimated on the basis of an output of an exhaust gas sensor (an air-fuel ratio sensor) that detects an exhaust gas air-fuel ratio. -
- 10 ENGINE (INTERNAL COMBUSTION ENGINE)
- 12 PISTON
- 14 COMBUSTION CHAMBER
- 16 CRANKSHAFT
- 18 CRANKCASE
- 20 INTAKE PASSAGE
- 22 EXHAUST PASSAGE
- 24 AIR CLEANER
- 26 THROTTLE VALVE
- 28 SURGE TANK
- 30 CATALYST
- 32, 34 FUEL INJECTION VALVE
- 36 IGNITION PLUG
- 38 INTAKE VALVE
- 40 EXHAUST VALVE
- 42 VARIABLE VALVE MECHANISM (VVT)
- 50 PCV MECHANISM
- 52 GAS INTRODUCTION PASSAGE
- 54 PCV VALVE
- 56 FRESH AIR INTRODUCTION PASSAGE
- 60 CRANK ANGLE SENSOR
- 62 AIR FLOW SENSOR
- 64 COOLANT TEMPERATURE SENSOR
- 66 OIL TEMPERATURE SENSOR
- 68 ALCOHOL CONCENTRATION SENSOR
- 70 ECU
Claims (3)
- A control apparatus for an internal combustion engine, characterized by comprising:a throttle valve that is provided in an intake passage of the internal combustion engine to adjust an amount of intake air that is sucked into a cylinder via the intake passage;a fuel injection valve that injects alcohol fuel into the intake passage and/or the cylinder;a PCV mechanism that introduces, into the intake passage, evaporative fuel that has evaporated from lubricating oil in a crankcase of the internal combustion engine;oil dilution amount estimation means for estimating an oil dilution amount as an amount of fuel that has been mixed with the lubricating oil in the crankcase; andfuel cutoff throttle control means for setting an opening degree of the throttle valve during fuel cutoff on a basis of the oil dilution amount when fuel cutoff is executed with the PCV mechanism in operation.
- The control apparatus for the internal combustion engine according to claim 1, wherein
the fuel cutoff throttle control means is configured to increase the opening degree of the throttle valve during fuel cutoff as the oil dilution amount increases. - The control apparatus for the internal combustion engine according to claim 1 or 2, further comprising:a variable valve mechanism that can change valve-opening properties of an intake valve; andfuel cutoff intake valve control means for retarding a valve-opening timing of the intake valve through a use of the variable valve mechanism as the oil dilution amount increases during fuel cutoff.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2011/075317 WO2013065149A1 (en) | 2011-11-02 | 2011-11-02 | Control device for internal-combustion engine |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP2775127A1 true EP2775127A1 (en) | 2014-09-10 |
| EP2775127A4 EP2775127A4 (en) | 2015-12-30 |
| EP2775127B1 EP2775127B1 (en) | 2017-06-28 |
Family
ID=48191542
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP11874993.6A Not-in-force EP2775127B1 (en) | 2011-11-02 | 2011-11-02 | Control device for internal-combustion engine |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US9506412B2 (en) |
| EP (1) | EP2775127B1 (en) |
| JP (1) | JP5660228B2 (en) |
| BR (1) | BR112014010408A2 (en) |
| WO (1) | WO2013065149A1 (en) |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5847597B2 (en) * | 2012-01-18 | 2016-01-27 | 本田技研工業株式会社 | Oil temperature sensor mounting structure for internal combustion engines |
| DE102012221507B3 (en) * | 2012-10-15 | 2013-11-21 | Continental Automotive Gmbh | Method for determination of composition of fuel in engine oil in housing of e.g. Flex fuel engine of motor car, involves determining mass flow portions of mass flows of fuel components based on entry parameter and portions of fuel component |
| JP5987764B2 (en) * | 2013-04-15 | 2016-09-07 | マツダ株式会社 | Control device for spark ignition engine |
| JP6154357B2 (en) * | 2014-06-27 | 2017-06-28 | トヨタ自動車株式会社 | Oil pump control device |
| JP6375935B2 (en) * | 2014-12-19 | 2018-08-22 | トヨタ自動車株式会社 | Oil dilution rate calculation device for internal combustion engine |
| JP6217724B2 (en) * | 2015-09-24 | 2017-10-25 | トヨタ自動車株式会社 | Control device for internal combustion engine |
| JP6544366B2 (en) * | 2017-02-14 | 2019-07-17 | トヨタ自動車株式会社 | Fuel injection amount control device |
| JP6966910B2 (en) * | 2017-09-27 | 2021-11-17 | 株式会社Subaru | Engine control unit |
| CN108533411B (en) * | 2018-03-26 | 2020-08-21 | 安徽江淮汽车集团股份有限公司 | Variable valve timing control method and system |
| JP7145018B2 (en) * | 2018-09-18 | 2022-09-30 | 日立Astemo株式会社 | Fuel injection control device for internal combustion engine |
| JP7176448B2 (en) * | 2019-03-18 | 2022-11-22 | トヨタ自動車株式会社 | vehicle controller |
| JP2020169604A (en) * | 2019-04-03 | 2020-10-15 | トヨタ自動車株式会社 | Control device of internal combustion engine |
| US11220983B2 (en) * | 2019-04-22 | 2022-01-11 | Zhejiang CFMOTO Power Co., Ltd. | Air intake system for off road vehicle |
| JP7235649B2 (en) * | 2019-12-20 | 2023-03-08 | 株式会社クボタ | ventilated engine |
| JP7726185B2 (en) * | 2022-11-02 | 2025-08-20 | トヨタ自動車株式会社 | vehicle |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5402763A (en) * | 1990-11-27 | 1995-04-04 | Fuji Jukogyo Kabushiki Kaisha | Method of controlling an engine for a flexible fuel vehicle |
| JP4196441B2 (en) | 1998-09-09 | 2008-12-17 | トヨタ自動車株式会社 | Valve characteristic control device for internal combustion engine |
| EP1586752B1 (en) | 2004-04-14 | 2008-07-16 | Ford Global Technologies, LLC, A subsidary of Ford Motor Company | Method for controlling the lubricating oil dilution of an internal combustion engine and device for monitoring and reducing this oil dilution |
| JP4506417B2 (en) * | 2004-11-04 | 2010-07-21 | 日産自動車株式会社 | Blow-by gas processing device for internal combustion engine |
| JP2007016710A (en) | 2005-07-08 | 2007-01-25 | Hitachi Ltd | Valve control system for internal combustion engine |
| JP4525562B2 (en) | 2005-11-14 | 2010-08-18 | トヨタ自動車株式会社 | Control device for internal combustion engine |
| JP4665777B2 (en) | 2006-01-25 | 2011-04-06 | 日産自動車株式会社 | Internal combustion engine |
| JP2007285239A (en) | 2006-04-19 | 2007-11-01 | Toyota Motor Corp | Control device for internal combustion engine |
| JP5024880B2 (en) | 2007-12-04 | 2012-09-12 | トヨタ自動車株式会社 | Control device for internal combustion engine |
| JP4466746B2 (en) * | 2008-02-21 | 2010-05-26 | トヨタ自動車株式会社 | Abnormality diagnosis device for blow-by gas reduction device |
| JP4858471B2 (en) * | 2008-03-18 | 2012-01-18 | トヨタ自動車株式会社 | Vehicle control apparatus and control method |
| JP4466754B2 (en) * | 2008-03-18 | 2010-05-26 | トヨタ自動車株式会社 | Electronically controlled blow-by gas reduction device for internal combustion engines |
| JP4745372B2 (en) * | 2008-06-18 | 2011-08-10 | 三菱電機株式会社 | Start control device for internal combustion engine |
| US8141545B2 (en) * | 2008-08-08 | 2012-03-27 | Honda Motor Co., Ltd. | System and method for crankcase gas air to fuel ratio correction |
| JP2010163895A (en) | 2009-01-13 | 2010-07-29 | Toyota Motor Corp | Intake control device for internal combustion engine |
| JP4793453B2 (en) * | 2009-02-04 | 2011-10-12 | トヨタ自動車株式会社 | Control device for internal combustion engine |
| JP2010180774A (en) * | 2009-02-05 | 2010-08-19 | Nippon Soken Inc | Control device of internal combustion engine |
| WO2010119524A1 (en) * | 2009-04-15 | 2010-10-21 | トヨタ自動車株式会社 | Controller of internal combustion engine with variable valve mechanism |
| JP5549267B2 (en) * | 2010-02-19 | 2014-07-16 | トヨタ自動車株式会社 | Control device for internal combustion engine |
| US20130013171A1 (en) * | 2011-07-08 | 2013-01-10 | Fuel Concepts Of America, Inc. | Automotive fuel system |
| US8401764B2 (en) * | 2012-01-18 | 2013-03-19 | Ford Global Technologies, Llc | Fuel identification based on crankshaft acceleration |
| US10570844B2 (en) * | 2012-01-18 | 2020-02-25 | Ford Global Technologies, Llc | Air/fuel imbalance monitor |
| US8838363B2 (en) * | 2012-01-24 | 2014-09-16 | Ford Global Technologies, Llc | Method for injecting fuel |
-
2011
- 2011-11-02 BR BR112014010408A patent/BR112014010408A2/en not_active Application Discontinuation
- 2011-11-02 WO PCT/JP2011/075317 patent/WO2013065149A1/en not_active Ceased
- 2011-11-02 US US14/355,045 patent/US9506412B2/en not_active Expired - Fee Related
- 2011-11-02 JP JP2013541542A patent/JP5660228B2/en not_active Expired - Fee Related
- 2011-11-02 EP EP11874993.6A patent/EP2775127B1/en not_active Not-in-force
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2013065149A1 (en) | 2015-04-02 |
| BR112014010408A2 (en) | 2017-04-25 |
| US9506412B2 (en) | 2016-11-29 |
| WO2013065149A1 (en) | 2013-05-10 |
| EP2775127B1 (en) | 2017-06-28 |
| JP5660228B2 (en) | 2015-01-28 |
| US20140303875A1 (en) | 2014-10-09 |
| EP2775127A4 (en) | 2015-12-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2775127B1 (en) | Control device for internal-combustion engine | |
| US9988994B2 (en) | Systems and methods for EGR control | |
| US8141533B2 (en) | Control apparatus and method for internal combustion engine | |
| US9382824B2 (en) | Failure detection device for blow-by gas recirculation apparatus of engine | |
| CN100590309C (en) | Internal combustion engine starting system and method | |
| CN103608573B (en) | Engine control device | |
| CN104100384B (en) | Reduce enrichment caused by being constrained by minimum pulse width | |
| US20110247593A1 (en) | Control apparatus for internal combustion engine | |
| JP2010180774A (en) | Control device of internal combustion engine | |
| JP2015036523A (en) | Failure detecting device for exhaust circulation device of engine | |
| US20200217262A1 (en) | Engine system | |
| US20120234272A1 (en) | Variable Valve Control Apparatus for Internal Combustion Engine | |
| JP2009235946A (en) | Control device of internal combustion engine | |
| JP6534864B2 (en) | Engine control device | |
| US9121377B2 (en) | Control device and control method for internal combustion engine | |
| JP2009133245A (en) | Control device for internal combustion engine | |
| JP5104487B2 (en) | Multi-cylinder internal combustion engine | |
| US9188032B2 (en) | Blowby gas handling assembly for internal combustion engine | |
| JP2019132196A (en) | Controller of internal combustion engine | |
| JP2008286149A (en) | Control device for internal combustion engine | |
| JP2005016396A (en) | Catalyst warm-up system for internal combustion engines | |
| JP2006329003A (en) | Secondary air supply device for internal combustion engine | |
| JP2011226349A (en) | Internal combustion engine | |
| JP7655256B2 (en) | Fuel Supply Processing Device | |
| JP2010236434A (en) | Intake air amount control device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20140430 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20151130 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F02D 45/00 20060101AFI20151124BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20170119 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 905072 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011039230 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 602011039230 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170928 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170929 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170628 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 905072 Country of ref document: AT Kind code of ref document: T Effective date: 20170628 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170928 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171028 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011039230 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20180329 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20171102 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171102 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180731 Ref country code: BE Ref legal event code: MM Effective date: 20171130 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171102 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171102 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171102 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111102 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170628 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210929 Year of fee payment: 11 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011039230 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230601 |