EP2760984A1 - Procédé et composition pour le nettoyage de surfaces dures - Google Patents
Procédé et composition pour le nettoyage de surfaces duresInfo
- Publication number
- EP2760984A1 EP2760984A1 EP12756756.8A EP12756756A EP2760984A1 EP 2760984 A1 EP2760984 A1 EP 2760984A1 EP 12756756 A EP12756756 A EP 12756756A EP 2760984 A1 EP2760984 A1 EP 2760984A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- quaternary silane
- hard surface
- anionic surfactant
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 172
- 238000004140 cleaning Methods 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 title claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 79
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 63
- 229910000077 silane Inorganic materials 0.000 claims abstract description 63
- 239000003945 anionic surfactant Substances 0.000 claims abstract description 36
- 239000003446 ligand Substances 0.000 claims abstract description 32
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 10
- 230000008569 process Effects 0.000 claims abstract description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 30
- 239000002243 precursor Substances 0.000 claims description 30
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 24
- 239000002689 soil Substances 0.000 claims description 19
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 claims description 17
- -1 alkyl sulphate Chemical compound 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 10
- 229920003023 plastic Polymers 0.000 claims description 10
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 9
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 7
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 7
- 229940095070 tetrapropyl orthosilicate Drugs 0.000 claims description 7
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 claims description 7
- RGFDUEXNZLUZGH-YIYPIFLZSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxy-n-(3-triethoxysilylpropyl)hexanamide Chemical compound CCO[Si](OCC)(OCC)CCCNC(=O)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO RGFDUEXNZLUZGH-YIYPIFLZSA-N 0.000 claims description 6
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 229910052736 halogen Chemical group 0.000 claims description 6
- 150000002367 halogens Chemical group 0.000 claims description 6
- 150000001335 aliphatic alkanes Chemical group 0.000 claims description 5
- 150000004996 alkyl benzenes Chemical class 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000004711 α-olefin Substances 0.000 claims description 5
- QTDIEDOANJISNP-UHFFFAOYSA-N 2-dodecoxyethyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOCCOS(O)(=O)=O QTDIEDOANJISNP-UHFFFAOYSA-N 0.000 claims description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- 239000011541 reaction mixture Substances 0.000 claims description 4
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 229920002125 Sokalan® Polymers 0.000 claims description 3
- 125000005599 alkyl carboxylate group Chemical group 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 230000003301 hydrolyzing effect Effects 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000004584 polyacrylic acid Substances 0.000 claims description 3
- 239000004575 stone Substances 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 125000002843 carboxylic acid group Chemical group 0.000 claims description 2
- 125000004103 aminoalkyl group Chemical group 0.000 claims 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims 2
- 239000000037 vitreous enamel Substances 0.000 claims 1
- 230000005923 long-lasting effect Effects 0.000 abstract description 5
- 238000009472 formulation Methods 0.000 description 48
- 230000000694 effects Effects 0.000 description 34
- 239000004094 surface-active agent Substances 0.000 description 13
- 230000003287 optical effect Effects 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000007921 spray Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 238000003892 spreading Methods 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000007605 air drying Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- PVNIQBQSYATKKL-UHFFFAOYSA-N tripalmitin Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCC PVNIQBQSYATKKL-UHFFFAOYSA-N 0.000 description 2
- OFIOREQWSTWCEC-OOJXKGFFSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxy-n-(3-trihydroxysilylpropyl)hexanamide Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(=O)NCCC[Si](O)(O)O OFIOREQWSTWCEC-OOJXKGFFSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005189 alkyl hydroxy group Chemical group 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229940085942 formulation r Drugs 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- ROWWCTUMLAVVQB-UHFFFAOYSA-N triethoxysilylmethanamine Chemical compound CCO[Si](CN)(OCC)OCC ROWWCTUMLAVVQB-UHFFFAOYSA-N 0.000 description 1
- XSIGLRIVXRKQRA-UHFFFAOYSA-N triethoxysilylmethanethiol Chemical compound CCO[Si](CS)(OCC)OCC XSIGLRIVXRKQRA-UHFFFAOYSA-N 0.000 description 1
- ARKBFSWVHXKMSD-UHFFFAOYSA-N trimethoxysilylmethanamine Chemical compound CO[Si](CN)(OC)OC ARKBFSWVHXKMSD-UHFFFAOYSA-N 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 229940117972 triolein Drugs 0.000 description 1
- 229960001947 tripalmitin Drugs 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/08—Silicates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/162—Organic compounds containing Si
Definitions
- the present invention relates to a method and a composition for cleaning hard surfaces, to obtain a protective layer for robust water sheeting effect and/or a long lasting effect for cleaning. Moreover, the invention relates to a process for making the hard surface cleaning composition.
- Forming a water sheeting layer during cleaning and after cleaning may deliver such benefits.
- the hard surface will dry easily due to the water spreading area being larger upon sheeting. Also drying will be more uniform such that unappealing water mark will not be formed onto the hard surfaces, giving the consumer an appealing appearance, even when the hardness of water is high. The end cleaning result will be better.
- the soil particulates will be distributed uniformly on the hard surface instead of aggregated within the water marks, due to the uniform water film. Therefore, another benefit is that the hard surface has visually cleaner appearance. Thus the period between cleaning can be prolonged, and so save effort and time for consumers.
- the robustness of the water spreading layer is not always good. Often after rinsing, the layer may deteriorate and the water sheeting effect disappears.
- the present invention is directed to a method and composition for cleaning a hard surface and process for making the composition. More particularly, the invention involves methods using compositions comprising quaternary hydrolyzed silane, and anionic surfactant, to treat hard surface. The treated hard surface surprisingly has good water sheeting effect and long lasting effect for cleaning.
- Hard surface for the purposes of the present invention means any surface comprising a hard material such as glass, glazed ceramics, metal, stone, plastics, lacquer, wood, or combination thereof. Typically, the hard surface is in a household including window, kitchen, bathroom, toilet, furniture, floor, or the like. Hvdrophilic
- Hydrophilic for the purposes of the present invention is used to describe a molecule or portion of a molecule that is attracted to, and tends to be dissolved by water, or a surface that has a contact angle of water less than 90 0 at 25 °C.
- Oligomer for the purposes of the present invention means a molecule that consists of several monomer units, for example, from 2 to 100, more preferably, from 2 to 60 monomer units.
- Hydrolyzation for the purposes of the present invention refers to a reaction with water.
- “Hydrolyzable” herein means the compound may react with water.
- “Hydrolyzed” means the compound is the reaction product of another compound with water.
- the present invention provides a method for cleaning a hard surface comprising:
- composition comprising:
- hydrophilic ligand is selected from -OH, -SH, -NH 2 , or group having a molar ratio of C: Q less than 3:1 , wherein Q is selected from O, S, N, or combination thereof.
- the present invention provides a hard surface cleaning composition comprising:
- the hydrophilic ligand is selected from -OH, -SH, -NH 2 , group having a molar ratio of C: Q less than 3:1 , wherein Q is selected from O, S, N, or combination thereof.
- the present invention provides a process for the preparation of a hard surface cleaning composition comprising the steps of:
- hydrophilic ligand is selected from -OH, -SH, -NH 2 , group having a molar ratio of C: Q less than 3:1 , wherein Q is selected from O, S, N, or combination thereof.
- Figure 1 is an optical image of mirror plate after deposition of particulate soils and then cleaning by a formulation according to the invention (a) and a comparative formulation (b);
- Figure 2 is an optical image of mirror plate, with left half treated by a formulation according to the invention and right half treated by a comparative formulation, placed at outdoors balcony for two weeks during the raining season;
- Figure 3 is an optical image of mirror plate, with left half treated by a formulation according to the invention and right half treated by a comparative formulation, placed at outdoors balcony for two months;
- Figure 4 is an optical image of water droplet on plastic coated panel, with only right half treated by a formulation according to the invention.
- Figure 5 is an optical image of water droplet on steel, with only right half treated by a formulation according to the invention.
- the hydrolyzed quaternary silane in this invention is a silane with four ligands wherein three ligands are hydroxy ligands and other ligand is hydrophilic group.
- the hydrophilic group may be selected from -OH, -SH, -NH 2 .
- the hydrophilic group comprises group having a molar ratio of C:Q less than 3:1 , preferably from 1 :2 to 2:1 , wherein Q is selected from O, S, N, or combination thereof. Too high ratio of C:Q will destroy the hydrophilicity of the group.
- silanol of the hydrolyzed quaternary silane condensate together to form oligomers.
- this condensation should not lead to excessive polymerization, otherwise, the silane may not be well dispersed and may even precipitate.
- the hydrolyzed quaternary silane may be hydrolyzed from quaternary silane precursor having a formula; (R 1 )sSi - R 2 .
- R 1 represents the hydrolysable ligands which could be hydrolyzed to be hydroxyl group.
- R 1 may be selected from alkoxy, halogen, or the like.
- the requirement for R 2 is to be hydrophilic itself if it is not hydrolysable, or could become hydrophilic group after hydrolysis if it is hydrolysable.
- R 2 comprises hydroxy, alkoxy, alkylhydroxy, alkylamine, alkyloic acid, or its ether, ester or amide.
- R 2 comprises halogen
- the quaternary silane precursor employed in this invention preferably comprises tetraethyl orthosilicate (TEOS), tetramethyl orthosilicate (TMOS), tetrapropyl orthosilicate (TPOS), tetrabutyl orthosilicate (TBOS), aminomethyltriethoxysilane, aminomethyltrimethoxysilane, sulfanylmethyltriethoxysilane, N-(3-triethoxysilylpropyl)gluconamide (GLU-S),
- the quaternary silane precursor comprises TEOS, TMOS, TPOS, TBOS, N-(3- triethoxysilylpropyl)gluconamide, tetrachlorosilane, or a mixture thereof.
- the quaternary silane precursor is selected from TEOS, TBOS, N-(3- triethoxysilylpropyl)gluconamide or a mixture thereof.
- the quaternary silane precursors suitable for use in this invention include TEOS from Shanghai Chemical Reagent Co. Ltd (China); TBOS from Sigma-Aldrich (Germany); and/or GLU-S) from Gelest Inc. (USA).
- the amount of the hydrolyzed quaternary silane and/or its oligomer, employed in the hard surface cleaning formulation will be from 0.001 to 10% by weight of the composition, more preferably from 0.01 to 4%, and most preferably from 0.05 to 2%.
- a hydrolyzed quaternary silane with surfactant it is unexpectedly found that different types of surfactant behave differently.
- cationic nor non-ionic surfactant is as compatible with the hydrolyzed quaternary silane as anionic surfactant. It is surprisingly found that the combination of anionic surfactant and the hydrolyzed quaternary silane provides not only a stable formulation but also a better water sheeting effect to the hard surface.
- the surfactant suitable for this invention at least comprises anionic surfactant.
- the anionic surfactant preferably comprises alkyl benzene sulphonate, secondary alkane sulphonate, primary alkyl sulphate, alkyl ether sulphate, alpha olefin sulphonate, alkyl carboxylates, or a mixture thereof.
- anionic surfactants are salts of
- Alkyl benzene sulphonate such as those in which the alkyl group contains of 6 to 20 carbon atoms, typically 10 to 20 carbon atoms;
- the preferred anionic surfactants are the alkali metal (such as sodium and potassium) and/or alkaline earth metal (such as calcium and magnesium) salt of alkyl ether sulphate having 10 to 20 carbon atoms and 1 to 5 ethoxy groups, and/or alkyl benzene sulphonate wherein the alkyl contains 10 to 14 carbon atoms. More preferably, the anionic surfactants comprise sodium lauryl ether sulphate, linear alkyl benzene sulphonate sodium, mixtures thereof, or the like.
- the hard surface cleaning composition comprises anionic surfactant in an amount of 0.01 to 50 % by weight, preferably 0.01 to 10% by weight. More preferably, the hard surface cleaning composition comprises anionic surfactant in an amount of 0.01 to 3.9% by weight, and most preferably, from 0.05 to 2% by weight.
- surfactant may be present. But preferably at least 50% by total weight of surfactant is anionic surfactant, more preferably, at least 75% by weight, most preferably from 80 to 100%.
- the weight ratio of hydrolyzed quaternary silane, and/or its oligomer to anionic surfactant is preferably in the range of 20:1 to 1 :20. More preferably, the weight ratio of silane: surfactant is in the range of the 10:1 to 1 :5. In the most preferred embodiment, the weight ratio of silane: surfactant is in the range of 4:1 to 1 :2.
- the hard surface cleaning composition preferably comprises water in the range of 0.01 to 99.9 % by weight of the composition, more preferably 5% to 99% by weight. Even more preferably, the hard surface cleaning composition comprises water in an amount of 25 to 95% by weight.
- the composition may further comprise a component to improve water sheeting effect and/or increase the robustness of water sheeting effect.
- Such component may comprise a component having a carboxylic acid group.
- the component may be polymer and/or organic compound.
- Exemplary acids include, without limitation, acrylic acid, citric acid, polyacrylic acid, glycolic acid, lactic acid, acetic acid, gluconic acid.
- the component comprises acrylic acid, citric acid, polyacrylic acid, or a mixture thereof.
- the preferred amount is in the range of 0.1 % to 10% by weight of the composition.
- composition may also comprise colourants, whiteners, optical brightness, soil suspending agents, detersive enzymes, bleaching agent, gel-control agents, freeze-thaw stabilisers, bactericides, abrasives, preservatives, and/or perfumes.
- any general way for cleaning a hard surface is acceptable.
- the way for treating a hard surface by the composition is spraying the composition onto the hard surface, or wiping the hard surface by wipe impregnated with the composition, or dripping the composition onto the hard surface, or combination thereof.
- the way for treating a hard surface is spraying the composition onto a hard surface, and/or wiping a hard surface by wipe impregnated with the composition.
- the spraying is employed for treating a hard surface, there is no limitation how the composition is sprayed.
- a spraying bottle for hard surface cleaning product is favourable.
- wipe including woven or nonwoven cloth, natural or synthetic sponges or spongy sheets, "squeegee” materials, paper towel, or the like is suitable.
- the wipe may be impregnated dry, or more preferably in wet form.
- the composition exerts it effect by depositing hydrolyzed quaternary silane and/or its oligomer, and anionic surfactant onto a hard surface, forming a layer attached to the hard surface.
- the layer could enhance water spreading behaviour. Water will be easily spread along the hard surface, resulting in a better visual appearance.
- the method for cleaning hard surface may optionally further comprises the steps of allowing soil and/or stains to deposit. Thus, the soil or stains will be easily removed when the hard surface is subsequently cleaned according to the method of this invention.
- hydrolyzed quaternary silane and/or its oligomer and anionic surfactant are also preferably applied to the hard surface during the subsequent cleaning.
- treating of a hard surface with the composition may be followed by a rinsing step, preferably with water.
- a preferred method for cleaning a hard surface comprises the steps in sequence of:
- composition according to the invention (i) treating a hard surface with composition according to the invention
- the present invention may also deliver other benefits such as long last cleaning, less effort for cleaning, less surface corrosion, less noise during cleaning, and/or scratch resistance. Further aspects of the present invention comprise methods for obtaining one or more these other benefits in a hard surface cleaning operation and/or use the composition in the methods in the manufacture of products for delivering any one more such benefits mentioned in this invention.
- the soils and stains of present invention may comprise all kinds of soils and stains generally encountered in the household, either of organic or inorganic origin, whether visible or invisible to the naked eye, including soiling solid debris and/or with bacteria or other pathogens.
- the method and compositions according to the invention may be used to treat surface susceptible to fatty or greasy soil and stains.
- the hard surface of present invention generally refers to any surface in household including the window, kitchen, bathroom, toilet, furniture, floor, or the like or any surface in car, ship, and airplane including windows, mirrors, sinks, basins, toilet bowls, baths/shower trays, wall tiles, floor tiles, cooker tops, oven interiors, cookware, washing machine drums, cooker hoods, extractor fans.
- These surfaces may be made of glass, glazed ceramics, metal, stone, plastics, lacquer, wood, or combination thereof.
- the method and composition according to the invention is used to treat the hard surface of window, kitchen, bathroom, and toilet.
- the method and composition in this invention is used to treat glass.
- the process for the preparation of a hard surface cleaning composition comprises the steps of:
- hydrophilic ligand is selected from -OH, -SH, -NH 2 , or group having a molar ratio of C: Q less than 3:1 , wherein Q is selected from O, S, N, or combination thereof.
- reaction mixture comprising water and from 0.001 to 10 wt. % quaternary silane precursor
- sequence of mixing water and quaternary silane precursor there is no limitation in respects to the sequence of mixing water and quaternary silane precursor. Either water is added into quaternary silane precursor, or quaternary silane precursor is added into water. Generally, stirring is used for making water and quaternary silane precursor well mixed.
- the hydrolyzation of quaternary silane precursor could be carried out when the mixture is either acidic or alkali.
- the mixture is preferably acidic. More preferably, the pH value of the mixture is in the range of 2 to 7. The lower the pH of the mixture is, the faster the hydrolyzation of quaternary silane precursor will be conducted when the mixture is acid.
- the acid used to tune the pH of the mixture for example, hydrochloric acid, sulphuric acid, or citric acid. It is noted that another requirement for the hydrolyzation of quaternary silane precursor is that the quaternary silane precursor has an amount of less than 10% by weight of the mixture, preferably, less than 4% by weight of the mixture.
- a hydrolyzed quaternary silane having three hydroxy ligands and one hydrophilic ligand, and/or its oligomer is provided.
- the hydrophilic ligand is selected from -OH, -SH, -NH 2 , group having a molar ratio of C: Q less than 3:1 , wherein Q is selected from O, S, N, or combination thereof.
- the amount of anionic surfactant is from 0.01 to 3.9% by weight of the composition.
- any other necessary or optional components may be combined with the mixture.
- the composition could be packed in any form of conventional hard surface cleaning product.
- the preferred packaging is spray applicators. Pump dispersers (weather spray or non-spray pumps) and pouring applications (bottles etc) are also possible. It is also possible to impregnate a wipe with the composition.
- test surfaces in the examples included standard mirror (glass), plastic coated panel, or steel. These surfaces were cleaned prior to the use by commercial hard surface cleaner.
- the artificial soil used in the examples has the formulation: 0.51 wt. % of tripalmitin, 0.26 wt. % of glyceryl trioleate, 0.1 wt. % of paraffin, 0.05 wt. % of palmitic acid, 3.6 wt. % of kaolin, 0.02 wt. % of carbon black and 95.48 wt. % of ethanol.
- the chemicals involved in the examples include:
- TEOS Tetraethyl orthosilicate
- TOS Teteabutyl orthosilicate
- GLU-S N-(3-triethoxysilylpropyl)gluconamide
- CAC Cetyltrimethylammonium chloride
- Hydrochloric acid (HCI, 36 wt%) from Shanghai Chemical Reagent Co. Ltd (China);
- Deionized water is produced by Milli-Q system (Millipore, USA). Preparation of the formulation
- composition containing quaternary silane precursor TEOS, TBOS, GLU-S or mixtures thereof
- surfactant SLES, CTAB, or AEO7
- water water
- the quaternary silane precursor, surfactant, and deionized water were mixed under stirring of 400 rpm by stirrer (IKA, RT 15 power, Germany) at ambient condition.
- HCI was added to the mixture to adjust the pH of the mixture to 3.
- the quaternary silane precursor will be hydrolyzed under such condition. The hydrolysis speed will depend on the acidity of the mixture. Higher the acidity is, faster the hydrolyzation is.
- composition After stirring for another three hours, the composition was ready for treating a hard surface.
- composition containing only quaternary silane precursor and water was prepared, all the steps were same except that no surfactant was mixed.
- composition of surfactant and water were prepared, only the weighing and mixing steps were needed.
- the composition was packaged into conventional container for household care product including spray applicator and bottle for further use. Test
- compositions are used for cleaning a hard surface.
- One ordinary way to cleaning a hard surface is spray and wipe or drip and wipe. Firstly, 0.1 to 0.2 g of the composition is sprayed by a spray applicator or placed by a pipette onto a hard surface (mirror/glass, steel, plastic coated panel). Subsequently, the hard surface is wiped by wipe from J-Cloth (UK) for one minute. Then, the hard surface is air dried for 10 minutes.
- the hydrophilicity of hard surface after treating by each composition was measured by using a water drop test. This test is used to measure how well the water spreads on the hard surface after treating by each composition. First, a mirror plate (with area of 7 cm by 7 cm) is cleaned in acetone ultrasonically and a paper towel. Next, the mirror is cleaned by the composition according to the hard surface cleaning method. Then, one 50 ⁇ _ water droplet at room temperature was placed and allowed spread on the mirror. After five minutes, the diameter of the water droplet was measured. Because of the possible unevenness and inhomogeneity, the shape of the spread water droplets was not always round, will be approximately elliptic. The length of long axis and short axis of the elliptic water droplet will be measured.
- the "diameter" of such water droplet is calculated to be the square root of product of the lengths of short axis and long axis. The measurement was conducted at least three times to calculate the average diameter and its standard deviation. The higher value of the water droplet diameter means better water sheeting effect.
- This method is designed to test the robustness of the protective layer.
- a mirror plate was cleaned by a composition according to the hard surface cleaning method. Then, the hydrophilicity test was conducted on the mirror plate. After air drying for 1 hour, the mirror plate was flushed by tap water for 10 seconds. The hydrophilicity test was conducted again after air drying for 1 hour. The difference of results for these two hydrophilicity test demonstrate the robustness of protective layer. The smaller the difference is, the better the robustness is. Immediate cleaning test
- the cleaning test is used to measure how the composition will influence the subsequent cleaning steps.
- a mirror plate (with area of 42 cm by 15 cm) was cleaned by ordinary household product in market.
- the artificial soil (6.8 g) is sprayed onto the mirror plate and aged overnight for 12 to 20 hours.
- 4 g of composition is placed on the onto the mirror plate by spraying or dripping, followed by a cleaning process by mop for 1 minutes.
- the residue is measured by optical image.
- a mirror plate (48 cm by 33 cm) was cleaned according to the hard surface cleaning method, left half by the composition according to the invention, right half is cleaned by a comparative cleaning comprising a commercial polymeric agent (PolyQuart Ampho 149, from Cognis, Germany) claimed to assistant hard surface cleaning.
- the mirror plate was placed almost vertically on a balcony with a tilt angle of about 85 0 to the horizontal surface. After a certain period of time, optical image was recorded to compare the hydrophilicity and cleanness.
- hydrolyzed TEOS means the product of hydrolyzation of TEOS.
- the content of hydrolyzed TEOS is calculated by dividing the weight concentration of TEOS by molecular weight of TEOS and multiplying the molecular weight of tetrahydroxysilane.
- This example demonstrates the increase of durability of hydrophilicity by combination of hydrolyzed quaternary silane with anionic surfactant.
- Formulation E and F in Table 2 were prepared (according to section of Preparation of the composition). These formulations were used to conduct hydrophilicity test and robustness test of hydrophilicity (according to the method in section of Test). The result is shown in Table 2.
- Example 3 This example demonstrates the water sheeting effects of formulations with different weight ratio of hydrolyzed quaternary silane with anionic surfactant.
- the formulations impart better water sheeting effect to the mirror plates when the weight ratio of hydrolyzed TEOS to SLES is in the range of 9:1 to 1 :13.
- the best water sheeting effect in Table 3 is achieved when the weight ratio of hydrolyzed TEOS to SLES is 3:5.
- This example demonstrates the water sheeting effects of formulations prepared from various quaternary silane precursors including GLU-S and TBOS, or their combination with TEOS, and SLES.
- hydrolyzed GLU-S means the product of hydrolyzation of GLU-S.
- the content of hydrolyzed GLU-S is calculated by dividing the weight
- hydrolyzed TEOS means the product of hydrolyzation of TBOS.
- the content of hydrolyzed TBOS is calculated by dividing the weight concentration of TEOS by molecular weight of TBOS and multiplying the molecular weight of tetrahydroxysilane.
- Formulation R and S indicates the combination of GLU-S, TEOS, and SLES also results in the excellent water sheeting effect. Similar effects can be achieved by combining TBOS and SLES (see formulation T). These results demonstrate both GLU-S and TBOS can combine with SLES to cooperatively induce water sheeting effect.
- This example demonstrates the immediate cleaning performance of the formulation L (see Table 3) by comparing it with a polymer-based hard surface formulation.
- Figure 3 show the cleaning effect for longer time. Clearly apparent is that the right half of the mirror plate is covered by a layer of white dust which results in decreased
- Formulation L was used to treat steel and plastic coated panel (according to the cleaning method in the section of Test). On each plate, only the right half was treated by formulation L.
- Figure 4 shows the result on plastic coated panel. As can be seen, the diameter of water droplet on the right half is much bigger than that of the left one, indicating much better water sheeting effect of right half than left half.
- Figure 5 is the result on the steel surface. It is also demonstrated that the water sheeting becomes better after treatment by formulation L.
- formulation L is suitable to be employed to a range of hard surfaces including steel and plastic coated panel.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2011001655 | 2011-09-30 | ||
| PCT/EP2012/067918 WO2013045277A1 (fr) | 2011-09-30 | 2012-09-13 | Procédé et composition pour le nettoyage de surfaces dures |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2760984A1 true EP2760984A1 (fr) | 2014-08-06 |
| EP2760984B1 EP2760984B1 (fr) | 2015-08-26 |
Family
ID=46829790
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP12756756.8A Not-in-force EP2760984B1 (fr) | 2011-09-30 | 2012-09-13 | Procédé et composition pour le nettoyage de surfaces dures |
Country Status (4)
| Country | Link |
|---|---|
| EP (1) | EP2760984B1 (fr) |
| HU (1) | HUE026232T2 (fr) |
| WO (1) | WO2013045277A1 (fr) |
| ZA (1) | ZA201401733B (fr) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| BR112015004609A2 (pt) * | 2012-08-31 | 2017-07-04 | 3M Innovative Properties Co | composições aquosas multifuncionais líquidas, e métodos de remoção de um constituinte indesejado de uma superfície silicosa e de limpeza e proteção de uma superfície silicosa. |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4549979A (en) * | 1984-03-27 | 1985-10-29 | Dow Corning Corporation | Detergent composition with siliconate-silicate copolymer |
| JPH07331178A (ja) * | 1994-06-14 | 1995-12-19 | Toray Ind Inc | コーティング用組成物およびその製造方法 |
| US6926745B2 (en) | 2002-05-17 | 2005-08-09 | The Clorox Company | Hydroscopic polymer gel films for easier cleaning |
| DE10258831A1 (de) | 2002-12-17 | 2004-07-08 | Henkel Kgaa | Reinigungsmittel für harte Oberflächen |
| DE102007051093A1 (de) * | 2007-10-24 | 2009-04-30 | Henkel Ag & Co. Kgaa | Wasch- oder Reinigungsmittelcompounds und deren Herstellung |
| EA017931B1 (ru) | 2008-04-04 | 2013-04-30 | Юнилевер Н.В. | Применение цитрата в качестве средства для очистки твердых поверхностей |
-
2012
- 2012-09-13 EP EP12756756.8A patent/EP2760984B1/fr not_active Not-in-force
- 2012-09-13 HU HUE12756756A patent/HUE026232T2/en unknown
- 2012-09-13 WO PCT/EP2012/067918 patent/WO2013045277A1/fr not_active Ceased
-
2014
- 2014-03-10 ZA ZA2014/01733A patent/ZA201401733B/en unknown
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2013045277A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| HUE026232T2 (en) | 2016-06-28 |
| ZA201401733B (en) | 2016-01-27 |
| WO2013045277A1 (fr) | 2013-04-04 |
| EP2760984B1 (fr) | 2015-08-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101475773B (zh) | 液体清洁和多功能涂料组合物及清洁表面并提供涂层的方法 | |
| CA2522444C (fr) | Composition de nettoyage et d'enduit multifonctionnel contenant un compose organosilane quaternaire et procedes d'utilisation | |
| CA2523276C (fr) | Une composition de revetement liquide multi-usage pour nettoyage, exempte d'agent tensio-actif, contenant des particules solides, non reactives, abrasives et un organosilane quaternaire, et methodes pour l'utiliser | |
| CN1636048A (zh) | 硬表面清洁组合物 | |
| US20020026881A1 (en) | Physiologically acceptable and non-corrosive silicone compositions, methods of making and using them to render surfaces water and soil repellent | |
| JP2010529287A (ja) | 親水化剤を有する硬質表面清浄組成物、硬質表面を清浄する方法 | |
| EP1702011A1 (fr) | Procede de traitement de surfaces | |
| CN103998592A (zh) | 清洁硬表面的方法和组合物 | |
| EP2032680A1 (fr) | Préparation nettoyante | |
| EP2760984B1 (fr) | Procédé et composition pour le nettoyage de surfaces dures | |
| AU2011341728A1 (en) | Multipurpose cleaner composition | |
| WO2013064358A1 (fr) | Produit de nettoyage pour le verre | |
| EP3728542B1 (fr) | Composition de nettoyage permettant d'obtenir un caractère hydrofuge durable sur des surfaces | |
| WO2016020141A1 (fr) | Composition de traitement de surface dure | |
| WO2016102389A1 (fr) | Polymères pour nettoyant à effet de modification de surface | |
| WO2016020107A1 (fr) | Composition de traitement de surface dure | |
| JPWO2001018167A1 (ja) | 漂白剤組成物 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20140224 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| INTG | Intention to grant announced |
Effective date: 20150515 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 745203 Country of ref document: AT Kind code of ref document: T Effective date: 20150915 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012010064 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 745203 Country of ref document: AT Kind code of ref document: T Effective date: 20150826 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151126 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150826 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151228 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151226 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012010064 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E026232 Country of ref document: HU |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150913 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150930 |
|
| 26N | No opposition filed |
Effective date: 20160530 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20160920 Year of fee payment: 5 Ref country code: DE Payment date: 20160921 Year of fee payment: 5 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160921 Year of fee payment: 5 Ref country code: HU Payment date: 20160915 Year of fee payment: 5 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160923 Year of fee payment: 5 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150913 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602012010064 Country of ref document: DE |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170913 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20180531 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180404 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170913 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170914 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171002 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170913 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150826 |