EP2636903A2 - Compresseur rotatif - Google Patents
Compresseur rotatif Download PDFInfo
- Publication number
- EP2636903A2 EP2636903A2 EP13151369.9A EP13151369A EP2636903A2 EP 2636903 A2 EP2636903 A2 EP 2636903A2 EP 13151369 A EP13151369 A EP 13151369A EP 2636903 A2 EP2636903 A2 EP 2636903A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- rotary shaft
- eccentric cam
- cylinder
- rotary
- eccentric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/005—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
- F04C29/0057—Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions for eccentric movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/60—Shafts
Definitions
- the present invention relates to a rotary compressor, and more particularly, to an eccentric cam of a rotary compressor capable of reducing a maximum load applied to a rotary shaft.
- a rotary compressor is configured to perform a function to compress a refrigerant into a high temperature and high pressure refrigerant at an air conditioner which is configured to compose a cooling cycle having a continuing process of a compression, a condensation, an expansion, and an evaporation by using a refrigerant as a medium.
- Such rotary compressor is provided with a casing having an inlet configured to intake gas, such as air and refrigerant gas, and an outlet configured to discharge compressed gas, a rotating apparatus configured to generate rotary force at an inside of the casing, and a compression apparatus having a rotary shaft, an eccentric cam, a roller, and a cylinder and configured to compress the gas by use of the rotary force of the rotating apparatus.
- gas such as air and refrigerant gas
- a rotating apparatus configured to generate rotary force at an inside of the casing
- a compression apparatus having a rotary shaft, an eccentric cam, a roller, and a cylinder and configured to compress the gas by use of the rotary force of the rotating apparatus.
- a lower portion of the rotary shaft is configured to rotate while penetrating the cylinder and disposed in a longitudinal direction.
- the eccentric cam is integrally formed in an eccentric state at the rotary shaft at an inside of the cylinder, and a roller is configured to compress the gas while disposed at an outer circumferential surface of the eccentric cam and rotating along an inner circumferential surface of the cylinder by the electric cam.
- an upper flange and a lower flange are installed at a top and a bottom of the cylinder, respectively, in order to rotatably support the rotary shaft.
- An entire length of the upper flange and the lower flange may relatively differ according to an entire length and a cost of a compressor, thus, a pressure load may occur at the rotary shaft.
- a rotary compressor includes a casing, a cylinder, a rotary shaft, a roller, and an eccentric cam.
- the cylinder may be installed at an inside the casing and configured to provide a space to compress gas.
- the rotary shaft may be disposed while passing through the cylinder.
- the roller may be configured to compress gas by rotating along an inner circumferential surface of the cylinder.
- the eccentric cam may be integrally formed with the rotary shaft and disposed at an inside the roller.
- the eccentric cam may be disposed at an eccentric position in a shaft direction on an axial line of the rotary shaft.
- the eccentric cam may be eccentrically provided in a direction toward an upper side of the shaft direction.
- the rotary compressor may include an upper flange and a lower flange provided at an upper portion and a lower portion of the cylinder, respectively, to rotatably support the rotary shaft.
- the eccentric cam may be eccentrically provided in a direction toward the upper flange.
- an eccentric cam includes a rotary shaft and an eccentric cam.
- the eccentric cam may be installed at the rotary shaft.
- the eccentric cam may be eccentrically provided in a shaft direction of the rotary shaft.
- the eccentric cam may be eccentrically provided in a direction toward an upper side of the rotary shaft.
- a rotary compressor in accordance with another aspect of the present disclosure, includes an airtight container, a cylinder, an upper flange, a lower flange, a rotary shaft, an eccentric cam and a roller.
- the cylinder may be installed at an inside the airtight container.
- the upper flange may be configured to form a compression room while coupled to an upper portion of the cylinder.
- the lower flange may be configured to form the compression room while coupled to a bottom portion of the cylinder.
- the rotary shaft may be disposed while passing through the cylinder.
- the eccentric cam may be configured to perform an eccentric rotation while integrally formed with the rotary shaft.
- the roller may be coupled to the eccentric cam and configured to compress gas by rotating along an inner circumferential surface of the cylinder.
- the eccentric cam may be disposed at an eccentric position toward the upper flange on an axial line of the rotary shaft.
- a maximum load applied to a rotary shaft of a rotary compressor may be effectively reduced.
- FIG. 1 is a cross-sectional view schematically illustrating a rotary compressor in accordance with an embodiment of the present disclosure
- FIG. 2 is an enlarged view schematically illustrating a compression unit of the rotary compressor in accordance with the embodiment of the present disclosure.
- a rotary compressor 1 includes a casing 10, which forms an external appearance of the rotary compressor 1 while forming an airtight container.
- the case 10 is provided with a refrigerant inlet 6 configured to intake gas, such as air and refrigerant gas, and a refrigerant outlet 10b configured to discharge compressed gas.
- a rotation apparatus 2 configured to generate a rotary force by a stator 2b and a rotor 2a, and a compression apparatus 20 configured to compress gas by using the rotary force of the rotation apparatus 2 through a rotary shaft 21, an eccentric cam 30, and a roller 28 are installed.
- the rotary shaft 21 has an upper portion thereof inserted at an inside the rotor 2a, and a lower portion thereof passing through the cylinder 27 so as to be disposed in a longitudinal direction, thereby rotating along with the rotation of the rotor 2a
- the eccentric cam 30 is integrally formed in an eccentric state at the rotary shaft 21 at the inside the cylinder 27.
- the roller 28 is disposed at an outer circumferential surface of the eccentric cam 30 and is configured to compress the gas while rotating along an inside surface of the cylinder 27 by the rotation of the eccentric cam 30.
- An upper flange 25 and a lower flange 26 are installed at a top and a bottom of the cylinder 27 to form a compression room 24 by sealing the cylinder 27, and are provided to rotatably support the rotary shaft 21.
- the refrigerant inlet 6 is provided at one side of the cylinder 27, connected to an accumulator 4 configured to store a liquefied refrigerant while interposing a refrigerant inlet tube 5 therebetween, so that the refrigerant introduced to the airtight container through the refrigerant inlet tube 5 is guided to the compression room 24.
- the roller 28 is configured to eccentrically rotate by the eccentric cam 30 in close contact with the upper flange 25 and the lower flange 26.
- the casing 10 is provided at a lower portion thereof with a lower portion cam 10a configured to store the oil to lubricate contact parts between the rotary shaft 21, the upper flange 25 and the lower flange 26, the eccentric cam 30 and the roller 28, and the cylinder 27.
- the rotary shaft 21 is insertedly provided with a hollow part 21a formed in a longitudinal direction from the bottom of the rotary shaft 21 to the upper portion of the upper flange 25, a plurality of oil discharging holes 22 formed in a radial direction while communicating with the hollow part 21a at several positions of the rotary shaft 21, and an oil pickup member 23 configured to supply the oil to an inner side of the cylinder 27 and the upper flange by raising the oil at the lower portion cam 10a.
- the load applied to the upper flange 25 and the lower flange 26 configured to rotatably support the rotary shaft 21 is calculated according to the following formulas.
- ⁇ F o
- ⁇ F upperjournal * L upper F Lowerjournal * L Lower
- F Lowerjournal L upper / L upper + L
- F upperjournal represents the pressure of the upper flange 25
- F Lowerjournal represents the pressure of the lower flange 26
- Fcam represents the pressure of the eccentric cam 30
- L upper represents the length of the upper flange 25
- L lower represents the length of the lower flange 26.
- the eccentric cam 30 is disposed at an eccentric position C' in the shaft direction from the center C of the axial line of the rotary shaft 21.
- the eccentric position C' of the eccentric cam 30 is desired to be disposed at a side toward of the upper flange 25.
- the maximum load received at the rotary shaft 21 is reduced as the eccentric cam 30 is provided at the eccentric position C' from the center C toward the side of the upper flange 25.
- FIG. 4 is a view schematically illustrating a simulation result indicating a load applied to a rotary shaft in case the eccentric cam is applied in accordance with the embodiment of the present disclosure
- FIG. 5 is a view schematically illustrating a simulation result indicating efficiency of the rotary compressor in case the eccentric cam is applied in accordance with the embodiment of the present disclosure.
- the loads applied to the upper flange 25 and the lower flange 26 are simulated when the central position of the eccentric cam 30 of the rotary compressor 1 is raised by about 3mm.
- the rotary shaft 21 is provided with a diameter of about 14.325 mm and a length of about 134.1mm
- the eccentric cam 30 is provided with a diameter of about 23mm and a length of about 12.8mm.
- FIG. 4 illustrates, in a case that the central position of the eccentric cam 30 is made to be eccentric by about 3mm, the load A of the lower flange 26 is reduced by about 11%.
- the entire load of the rotary shaft 21, may be reduced by applying the eccentric cam 30 of the embodiment of the present disclosure that is provided at the eccentric position C' in the shaft direction on the axial line.
- FIG. 5 shows the result of the simulation on the by-frequency efficiency of the rotary compressor 1 when the type of the rotary shaft 21 are changed into a first type rotary shaft (a) and a second type rotary shaft (b) in a state the central position of the eccentric cam 30 is made to be eccentric about 3mm.
- the rotary shafts (a') and (b') of the present disclosure having the center of the eccentric cam 30 at the eccentric position by about 3mm toward the side of the upper flange 25 shows about 1% increase in the efficiency of the compressor when compared to conventional rotary shafts (a) and (b) that set the center of the eccentric cam 30 as the center C.
- FIG. 6 is an enlarged view schematically illustrating an eccentric cam of a two-stage rotary compressor in accordance with another embodiment of the present disclosure.
- each of a first eccentric cam 30a and a second eccentric cam 30b which are integrally formed at the rotary shaft 21 of the two-stage rotary compressor is disposed at the eccentric position C' in the shaft direction on the axial line of the rotary shaft 21, thereby capable of reducing the maximum load applied to the rotary shaft 21.
- the motion and the effect of the first eccentric cam 30a and the second eccentric cam 30b eccentrically provided in the shaft direction on the axial line of the rotary shaft 21 of the two-stage rotary compressor may be implemented based on the description explained as above, and therefore, a repetitive description will be omitted.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020120004654A KR20130083998A (ko) | 2012-01-16 | 2012-01-16 | 로타리 압축기 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2636903A2 true EP2636903A2 (fr) | 2013-09-11 |
| EP2636903A3 EP2636903A3 (fr) | 2014-03-12 |
Family
ID=47561407
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP13151369.9A Withdrawn EP2636903A3 (fr) | 2012-01-16 | 2013-01-15 | Compresseur rotatif |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20130183181A1 (fr) |
| EP (1) | EP2636903A3 (fr) |
| KR (1) | KR20130083998A (fr) |
| CN (1) | CN103206376A (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024223443A1 (fr) | 2023-04-24 | 2024-10-31 | Sonceboz Motion Boncourt Sa | Équipement motorisé comportant un organe à mouvement excentrique |
| FR3148877A1 (fr) | 2023-05-16 | 2024-11-22 | Sonceboz Motion Boncourt Sa | Moteur électrique à rotation excentrique et à assemblage facilité |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6664118B2 (ja) * | 2016-02-26 | 2020-03-13 | パナソニックIpマネジメント株式会社 | 2シリンダ型密閉圧縮機 |
| CN112855535A (zh) * | 2019-11-27 | 2021-05-28 | 上海海立电器有限公司 | 压缩机气缸及包括其的压缩机 |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4288741B2 (ja) * | 1999-03-12 | 2009-07-01 | 三菱電機株式会社 | ロータリ圧縮機 |
| KR20050011543A (ko) * | 2003-07-23 | 2005-01-29 | 삼성전자주식회사 | 용량가변 회전압축기 |
| KR20050011549A (ko) * | 2003-07-23 | 2005-01-29 | 삼성전자주식회사 | 용량가변 회전압축기 |
| KR20050028159A (ko) * | 2003-09-17 | 2005-03-22 | 삼성전자주식회사 | 용량가변 회전압축기 |
| KR20050031792A (ko) * | 2003-09-30 | 2005-04-06 | 삼성전자주식회사 | 용량가변 회전압축기 |
| JP4780971B2 (ja) * | 2005-02-17 | 2011-09-28 | 三洋電機株式会社 | ロータリコンプレッサ |
| CN102472280B (zh) * | 2009-08-06 | 2014-08-20 | 大金工业株式会社 | 压缩机 |
-
2012
- 2012-01-16 KR KR1020120004654A patent/KR20130083998A/ko not_active Withdrawn
-
2013
- 2013-01-10 US US13/738,462 patent/US20130183181A1/en not_active Abandoned
- 2013-01-15 EP EP13151369.9A patent/EP2636903A3/fr not_active Withdrawn
- 2013-01-16 CN CN2013100164774A patent/CN103206376A/zh active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024223443A1 (fr) | 2023-04-24 | 2024-10-31 | Sonceboz Motion Boncourt Sa | Équipement motorisé comportant un organe à mouvement excentrique |
| FR3148877A1 (fr) | 2023-05-16 | 2024-11-22 | Sonceboz Motion Boncourt Sa | Moteur électrique à rotation excentrique et à assemblage facilité |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130183181A1 (en) | 2013-07-18 |
| CN103206376A (zh) | 2013-07-17 |
| EP2636903A3 (fr) | 2014-03-12 |
| KR20130083998A (ko) | 2013-07-24 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102273425B1 (ko) | 스크롤 압축기 | |
| EP2813706B1 (fr) | Compresseur à spirale | |
| US9145890B2 (en) | Rotary compressor with dual eccentric portion | |
| CN102220978A (zh) | 封闭式压缩机 | |
| EP3214263B1 (fr) | Compresseur hermétique à deux cylindres | |
| JP4909597B2 (ja) | 密閉型回転式圧縮機、及び冷凍サイクル装置 | |
| EP2636903A2 (fr) | Compresseur rotatif | |
| EP3258112B1 (fr) | Compresseur à volute | |
| JP2010121448A (ja) | 密閉型圧縮機 | |
| CN110214230B (zh) | 涡旋式压缩机 | |
| CN111156166B (zh) | 涡旋式真空泵 | |
| WO2018168345A1 (fr) | Compresseur rotatif | |
| JP6869378B2 (ja) | ロータリ圧縮機 | |
| CN205172942U (zh) | 旋转压缩机 | |
| WO2017002967A1 (fr) | Machine à fluide du type à spirale | |
| JP6441119B2 (ja) | 回転式圧縮機及び冷凍サイクル装置 | |
| JP6643712B2 (ja) | 2シリンダ型密閉圧縮機 | |
| KR20190128858A (ko) | 압축기 및 이에 포함되는 스러스트 플레이트를 제조하기 위한 스러스트 플레이트 제조방법 | |
| KR100556943B1 (ko) | 밀폐형 회전식 압축기의 편심피스톤장치 | |
| JP2018059515A (ja) | 回転圧縮機 | |
| CN105937493A (zh) | 旋转压缩机 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04C 29/00 20060101ALI20140206BHEP Ipc: F04C 18/356 20060101AFI20140206BHEP |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20140913 |