EP2627876B1 - Procédé et système d'utilisation d'une source d'énergie à température relativement basse - Google Patents
Procédé et système d'utilisation d'une source d'énergie à température relativement basse Download PDFInfo
- Publication number
- EP2627876B1 EP2627876B1 EP11768021.5A EP11768021A EP2627876B1 EP 2627876 B1 EP2627876 B1 EP 2627876B1 EP 11768021 A EP11768021 A EP 11768021A EP 2627876 B1 EP2627876 B1 EP 2627876B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- medium
- turbine
- pressure
- heat
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 76
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 65
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 45
- 239000001569 carbon dioxide Substances 0.000 claims description 45
- 238000001816 cooling Methods 0.000 claims description 40
- 239000007788 liquid Substances 0.000 claims description 34
- 230000006835 compression Effects 0.000 claims description 33
- 238000007906 compression Methods 0.000 claims description 33
- 239000002826 coolant Substances 0.000 claims description 31
- 230000005611 electricity Effects 0.000 claims description 25
- 238000011144 upstream manufacturing Methods 0.000 claims description 22
- 239000007789 gas Substances 0.000 claims description 19
- 230000009467 reduction Effects 0.000 claims description 10
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 8
- 239000007791 liquid phase Substances 0.000 claims description 8
- 230000003247 decreasing effect Effects 0.000 claims description 7
- 238000000605 extraction Methods 0.000 claims description 6
- 239000013505 freshwater Substances 0.000 claims description 5
- 239000003673 groundwater Substances 0.000 claims description 5
- 239000013535 sea water Substances 0.000 claims description 5
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 4
- 239000001272 nitrous oxide Substances 0.000 claims description 4
- 238000004064 recycling Methods 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 2
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 claims description 2
- 239000012071 phase Substances 0.000 description 26
- 239000012530 fluid Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 230000007704 transition Effects 0.000 description 10
- 239000000126 substance Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 5
- 239000006096 absorbing agent Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010587 phase diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005086 pumping Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- LVGUZGTVOIAKKC-UHFFFAOYSA-N 1,1,1,2-tetrafluoroethane Chemical compound FCC(F)(F)F LVGUZGTVOIAKKC-UHFFFAOYSA-N 0.000 description 1
- 238000010795 Steam Flooding Methods 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
- F01K25/103—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
Definitions
- the present disclosure relates to energy extraction, e.g. from a low-temperature energy source such as exhaust gas or water.
- the invention relates to a closed heat engine system containing a medium, which in a first part of the system is in a sub-critical phase and in a second part of the system is in a supercritical phase, and where the system comprises a turbine to which the medium is supplied in its super-critical phase.
- Substances change phases according to the prevailing temperature and pressure.
- a familiar example is water, which at a pressure of 1 bar is a solid (i.e. ice) at a temperature below 0°C, a liquid at temperatures between 0 and 100 ° C, and a gas (vapor) when temperature is over 100 ° C.
- Heating a substance in a given phase requires a certain amount of energy per degree of temperature increase, while considerably more energy is required to bring the substance from one phase to another even though temperature does not increase.
- An illustrative example is water.
- a temperature increase of 1 K (Kelvin) in ice requires 2.05 J/g.
- Phase transition from ice to water requires 334 J/g.
- a temperature increase of 1 K in water requires 4.18 J/g.
- the phase transition from water to steam requires 2257 J/g.
- Temperature increase of 1 K in the steam requires 2.08 J/g at 100 ° C.
- Phase transition is dependent on ambient temperature and pressure and is characteristic for each substance. This is presented visually in a (P, T) phase diagram well known within the art.
- Each substance is also characterized by its critical temperature and critical pressure, the so-called critical point. When both pressure and temperature are greater than their respective critical value, the substance enters a condition known as a super-critical fluid. Phase transition between liquid and gas ceases and there is no related phase transition energy. In this state, the substance has both liquid and gas characteristics. It behaves like a gas as it will fill a container homogeneously, while it weighs only slightly less than its own weight in liquid phase.
- the super-critical point for water is for a pressure of 22.064 MPa (218 atm, 221 Bar) and a temperature of 304 °C.
- the critical point for CO 2 is a pressure of 7.380 MPa (72.8 atm, 73.8 Bar) and a temperature of 31.04 °C.
- the temperature differential should be as big as possible; both to avoid drops of water to condense inside the delicate and high-speed rotating steam turbine, and to build as much thermo-dynamic energy into the steam as possible.
- the trend on e.g. concentrated solar power energy plants is to increase the steam temperature, and a temperature of 400-500 °C is often used. But also lower temperature systems using steam temperatures as low as 200-300 °C requires a heat source having a higher temperature to operate.
- the temperature is so low compared to the water fed into the boiler that it cannot be efficiently used to heat the inlet water. And it cannot be utilized to build temperature into the steam.
- a traditional heat pump energy is obtained from a heat source at a rather low temperature.
- the heat pump evaporator is connected to the heat source, and under the pressure and temperature conditions prevailing in the evaporator, the medium in the heat pump has a boiling temperature that is lower than the temperature of the heat source.
- the medium is supplied with energy in the evaporator.
- the evaporator is thus the heat pump energy collector and it is located upstream of the heat pump compressor.
- the compressor increases temperature and pressure in the medium vapor phase.
- the medium is cooled and goes from gas to liquid phase. There, the condensation heat is released to a heat sink in connection with the condenser.
- a heat pump heats consumption water or water in water-borne heating systems by harnessing energy in air, soil or water.
- the energy efficiency (or coefficient of performance) of a heat pump which often is a factor of 3-4, depends on the temperature difference between the heat source and the heat sink.
- the same principle is applied in air-conditioning systems, cooling and freezing systems.
- CO 2 is brought to subcritical phase before the heat absorber by means of a reducing valve as described in WO90/07683 , or a so-called expander as described in U.S. 6,877,340 and U.S. 7,674,097 .
- the expander In the expander the volume is increased from the inlet to the outlet. The medium volume increases and the pressure decreases. CO 2 is thus brought to a subcritical phase before reaching the heat absorber.
- U.S. Patent 6,877,340 and U.S. 7,674,097 teach how an expander can be utilized to reduce energy consumption in the heat pump by partly driving the compressor by means of a shaft driven by the expander, or by driving an auxiliary compressor thanks to the expander.
- U.S. 6,877,340 also teaches that the expander can drive a generator to produce electrical energy.
- Energy in solid wastes can be exploited by incineration to produce steam that can be used for industrial purposes, or to produce electricity in the same way as in a thermal power plant. Energy can also be used to heat water to be distributed in district heating networks. As is known from shipping, energy from exhaust gases can also be used to heat water.
- WO 95/02115 discloses a system wherein carbon dioxide is pressurized to supercritical pressure by a pump and preheated with exhaust gases and internal heat exchanges. After this, the carbon dioxide is further heated in a boiler and expanded in a turbine to a lower pressure than the supercritical pressure. After expansion, the carbon dioxide is heat-exchanged internally. After this, the gaseous carbon dioxide enters the condenser where it is condensed to liquid and pressurized by the pump to supercritical pressure.
- US3875749 discloses a geothermal super-critical cycle power plant using carbon dioxide as a heat-transfer medium.
- the object of the plant is to make use of heat in deeply located caverns and the plant comprises a super-critical closed-system heat-transfer and heat utilization means including a high-pressure turbine, a high-pressure heat exchanger, a high-pressure condenser means, a high-pressure pump, suitable for super-critical pressure, a down and up-flow well and a subterranean space in communication with the well.
- thermodynamic power cycle (The supercritical thermodynamic power cycle), Advances in energy conversion engineering, 17 August 1967, pages 37-44 ) describes a thermodynamic power cycle, which operates entirely above the critical pressure of the working fluid. The cycle is regenerative and the compression is performed in the liquid phase.
- EP2136035 discloses a method that involves providing a generator, which is attached to a steam turbine. Electrical power of the generator is supplied by a frequency converter in a load power supply at a speed below a preset operating speed of the steam turbine. The supply of power is taken place by the frequency converter during steam-sided bridging of a high-pressure stage of the steam turbine and during warm-up process of the steam turbine. Steam for the steam turbine is generated by exhaust gas of a gas turbine.
- the inventors have realized that it is important to be able to control/balance the pressure in various positions in/segments of the system in order to efficiently convert the heat from a medium of relatively low-temperature. That is, the pressure control should be achieved without substantial energy losses.
- US3971211 discloses a system in which CO 2 is pressurized, heated with energy from an external source, expanded over two turbines in series, cooled and returned for pressurization.
- the CO 2 is pressurized by means of a pump that is driven by the first turbine.
- degree of compression in the pump is determined by the amount of heat supplied upstream the turbine and the degree of cooling downstream the turbine. Consequently, the means of controlling the system of US3971211 are limited. Further, it will many times be impractical, if not impossible, to control the degree of heating and cooling, respectively in an industrial setting.
- To run the system of US3971211 it is probably necessary to install several valves controlling the flow and pressure of the medium, e.g. upstream the respective turbines. Such valves would waste energy and thus decrease the efficiency of the system.
- the present disclosure provides a heat engine system for extracting energy from an external heat source, according to claim 13.
- the pump is not driven by a turbine arranged in the system as in US3971211 .
- the pump is driven by an external motor and the degree of compression in the pump may be controlled independently of the work generated by a turbine in the system.
- the motor of the present disclosure is typically a variable frequency drive motor capable of driving the pump at a desired speed. Thus, no energy-wasting valves are needed to control the flow to the step where the medium is heated by the external heat source.
- the load in turbine and thereby the pressure drop over the turbine is controlled by an electricity generator connected to the turbine, typically (but not necessarily) via a turbine shaft.
- the load may thus be controlled to obtain a pressure balance in the system that matches the heating capacity in the heating step and the cooling capacity on the cooling step.
- the medium is pumped upstream the heating step and the flow of the medium is restricted downstream the heating step such that an overpressure is obtained in the heating step.
- an energy wasting valve is arranged downstream the heating system to restrict the flow.
- the turbine and generator arrangement is instead adapted to variably restrict the flow and thereby control the pressure in the heating step without wasting energy.
- variable load in the turbine is that the frequency of the electricity generated will not always match the desired output frequency. Therefore, a frequency converter is connected to the electricity generator. In contrast, traditional turbines are set to a fixed frequency that matches the desired output frequency.
- a principal difference between most prior art disclosures and the present disclosure is that an expansion of the medium is used to generate the work producing electricity in the prior art, while the present disclosure relies on a pressure reduction of the medium with minimal expansion to generate work and electricity.
- the uncontrolled expansion in the prior art disclosures normally results in a temperature of the medium after the turbine that is so low that its energy cannot be recovered.
- the medium from the turbine of the present disclosure may for example be used for heating the pressurized medium from the pump (internal heating) or a medium of a district heating system (external heating).
- the system of the present disclosure may be liken to a hydraulic system wherein the expansion of the medium during the heating is controlled and utilized by the turbine, which has an hydraulic capacity that corresponds to volume of the medium after the expansion, and the pump has an hydraulic capacity that corresponds volume of the medium before the expansion.
- step a) the medium is thus maintained in the liquid phase, and subsequently, in step b), it is transformed to a supercritical fluid by heating it above the critical point.
- the compression of step a) is thus performed to such an extent that the medium can become supercritical during the heating of step b).
- step c) the pressure drop, which is controlled by the applied load, is recovered as electrical energy.
- step c) is normally performed by a turbine connected to an electricity generator, which is capable of controlling the load applied in the turbine.
- step e) the volume is decreased.
- step e) In order to prevent or at least minimize a transition of the medium to the gas phase, it is advantageous to perform step e) as soon as possible after the pressure reduction and energy extraction of step c).
- one or more heat exchangers for performing step e) may therefore be directly connected to an outlet of a turbine performing step c).
- the compression of step a) is preferably performed using a pump driven by motor capable of controlling the degree of compression of the liquid medium.
- the pump may thus have a frequency-controlled electric drive.
- the medium is compressed in several, such as two, three or four, stages.
- the medium may be heated between two compression stages. Accordingly, the heating of the medium may also be performed in several stages with intermediate compressions of the medium. All such embodiments are encompassed by the present disclosure as long as it is a heating and not a compression that finally causes the transition of the medium to the supercritical state.
- the pressure reduction is performed in several, such as two, three or four stages.
- the medium may be cooled between two pressure reduction stages, e.g. to prevent a transition of the medium to the gas phase.
- the step of reducing the pressure and volume of the medium may be performed in several, such as two, three or four, stages with intermediate pressure reductions of the medium.
- the method may further comprise sensing the pressure between steps a) and c) and controlling the load of step c) and/or the degree of compression of step a) at least partly depending on the sensed pressure.
- steps a) and c) in this context refers to downstream step a), but upstream step c).
- the method may further comprise sensing the pressure between steps c) and a) and controlling the load of step c) and/or the degree of compression of step a) at least partly depending on the sensed pressure.
- steps c) and a) in this context refers to downstream step c), but upstream step a).
- step c) and/or the degree of compression of step a) is/are controlled depending on both the pressure sensed between steps a) and c) and the pressure sensed between steps c) and a).
- the sensed pressure(s) are compared to (a) reference value(s) and the load and/or degree of compression is controlled according to the result of the comparison. For example, if the pressure of the medium in a position downstream of the turbine is below a first reference pressure, such as the critical pressure of the medium, the turbine may be controlled to increase the pressure on its downstream side to at least the first reference pressure. One reason for stopping the pressure from falling below the critical pressure is to avoid a transition of the medium to the gas phase. Likewise, if the pressure of the medium in a position downstream of the turbine is above a second reference pressure, the turbine may be controlled to decrease the pressure on its downstream side to a pressure below the second reference value by increasing the load, which results in that more electricity may be generated.
- a first reference pressure such as the critical pressure of the medium
- the compression in the pump and the load in the turbine may be controlled to reach a target pressure for the position upstream of the turbine and the position downstream of the turbine, respectively.
- the target pressures may depend on the amount of external heating and/or cooling capacity available.
- a sensed pressure between steps a) and c) may be compared to a first target pressure and the compression and/or load may adjusted to reduce the difference between the sensed pressure and the first target pressure.
- the sensed pressure between steps c) and a) may be compared to a second target pressure and the compression and/or load may adjusted to reduce the difference between the sensed pressure and the second target pressure.
- volumetric flow rate of the medium may be measured with (a) flow meter(s) between steps a) and b), between steps b) and c), between steps c) and e) and/or between steps e) and a).
- temperature of the medium may be measured with (a) temperature sensor(s) between steps a) and b), between steps b) and c), between steps c) and e) and/or between steps e) and a).
- the measured volumetric flow rate and/or temperature value(s) may also, e.g. after comparisons with reference values, be used for controlling the system, e.g.
- step e the degree of compression of the medium in step a), the load in step c), the flow rate/supply of an external heating medium (from the external heat source) to the heating of step b) and/or the flow rate/supply of a external cooling medium to the cooling of step e).
- the temperature of the external energy source is less than 150°C, such as less than 100, 90, 80, 70, 60, 50, 40 or 30°C.
- heat recovered from step e) may be used for heating the compressed liquid. This may be accomplished in a direct and/or indirect manner. That is, heat from the medium from step c) may be transferred to the compressed liquid from step a) in a heat exchanger and/or a cooling medium circuit may be employed.
- step e) comprises heating the cooling medium to obtain a heated cooling medium
- step b) comprises heating the compressed liquid medium using the heated cooling medium to obtain a cooled cooling medium which is recycled to step e). Consequently, the heat exchanger and/or the cooling medium circuit is/are part of both the heating of step b) and the cooling of step e).
- step e) The use of heat recovered during the step e) for the heating of step b) increases the efficiency of the method.
- the cooling medium circuit may involve heat pumping in a conventional manner. Consequently, the heated cooling medium from step e) may be compressed before it is used for heating the compressed liquid medium in step b) and the cooled cooling medium from step b) may be expanded before it is recycled to step e). If heat pumping is employed in the cooling medium circuit, the internally recovered energy may be supplied to the heating step as a high-temperature medium, which increases the efficiency of at least some of the embodiments of the inventive method.
- step b heat from one or more of the following sources may thus be supplied:
- the compressed medium from step a) may first be heated with internal heat and then with the external heat. If both direct and indirect internal heating is performed, the compressed medium from step a) may be heated with the direct internal heat before it is heated with the indirect internal heat.
- An example of such a set-up is shown in figure 3 .
- step e) may comprise the heating of a medium (e.g. water) for a district heating system.
- a medium e.g. water
- Exhaust gases and industrial cooling medium are examples of external heat sources that may be employed in step b), in particular if the method is performed close to an industrial site or plant. Electricity produced by the method of the present disclosure may in such case be supplied back to the site or plant.
- Other examples of external heat sources are a medium (e.g. water) heated by a solar collector and geothermal heat sources.
- Yet other examples are ground water, sea water and fresh water.
- the external heat source of the inventive method may also be a medium heated by a heat pump utilizing any of the above-mentioned heat sources. This alternative may be particularly interesting if the available heat source is ground water, sea water or fresh water, since such heat sources may be available in large quantities but normally has a relatively low temperature.
- Ground heat is another example of such a low-temperature heat source.
- the external heat source may also, in some embodiments, be a high-temperature heat source, such as an open flame.
- the open flame may be provided by combustion of a suitable fuel, such as coke, petroleum, waste or organic material.
- the external heat source may be an incineration process.
- the external heat source may be a radiation source.
- the temperature of the external heat source is at least 5 °C higher, such as at least 10 °C higher, than the critical point for the medium at the prevailing pressure when the heat from the external heat source is supplied. Consequently, the temperature of the external heat source is sufficient for transforming the compressed medium to the supercritical phase. This is however not a requirement; the temperature of the external heat source may actually be below the critical point in question if internally generated heat of a higher temperature (e.g. after heat pumping, see above) is supplied after the external heat.
- Various mediums may be used in the inventive method.
- preferred mediums are carbon dioxide (CO 2 ), ethylene (C 2 H 4 ), diborane (B 2 H 6 ), ethane (C 2 H 6 ) and nitrous oxide (N 2 O).
- CO 2 carbon dioxide
- ethylene C 2 H 4
- B 2 H 6 diborane
- ethane C 2 H 6
- N 2 O nitrous oxide
- Carbon dioxide is particularly preferred as it is abundant and has a relatively low toxicity.
- the temperature of the critical point of the CO 2 is 31 °C allowing heat sources having a relatively low temperature, such as 35-125 °C or 45-100 °C, to be employed.
- the pressure reduction during step c) may for example be controlled so as to balance the pressure in the method. This may be achieved by controlling the load of a turbine employed for step c) (see below).
- the method comprises one or more further step(s) of increasing or decreasing the pressure for balancing purposes. Consequently, it is not a requirement that the pressure increase of step a) equals the pressure decrease of step c).
- the pressure may for example be increased by 30-110 bar during step a). Accordingly, the pressure drop during step c) may for example be 30-110 bar.
- the inventor has found that some compression ranges are particularly beneficial from a thermal efficiency standpoint for some temperatures of the external heat source when the medium is carbon dioxide.
- the pressure of the liquid medium is increased by:
- step c) a pressure difference is maintained.
- a device capable of doing so such as a positive displacement turbine or a reversed centrifugal pump, is employed for step c).
- any device which has got a substantially leakage free barrier between the inlet and the outlet, and which can be controlled by a variable load, can be used to control the pressure drop to a predetermined level during step c).
- the barrier can be implemented by design, or it can be created as an operational state, at which a barrier is formed.
- An example of the latter is the reversed centrifugal pump, which utilizes the inertia of the medium to build up barriers between the stator and the rotor, and thus between the inlet and the outlet.
- the medium of the present disclosure is preferably not allowed to expand extensively in the turbine.
- the density of the medium is thus not decreased or decreased by less than 40 %, such as less than 30 %, such as less than 25 %, during step c).
- the temperature of the medium is preferably not decreased in step c) to below a temperature which is 10 °C higher than that of the compressed medium from step a),
- step a) increases the pressure of the liquid carbon dioxide above the pressure of the critical point (the temperature is however still too low for the carbon dioxide to transform to the supercritical state); step b) increases the temperature of the carbon dioxide above temperature of the critical point such that it transforms to a supercritical fluid (and expands); and steps c) and e) reduces the pressure and temperature (and volume) such that the carbon dioxide is obtained as a liquid again.
- the medium is always in the supercritical state.
- the alternative configuration thus comprises the steps of: a') compressing the supercritical medium using an external power source to obtain a compressed liquid medium; b) heating and expanding the compressed supercritical medium from step a') using heat at least partly derived from the external heat source; c') reducing the pressure of the heated supercritical medium from step b') by applying a variable load to generate electric power of a frequency; d') converting the frequency of step c') to a desired output frequency; e') reducing the temperature and volume of the supercritical medium from step c') and recycling it to step a'), wherein the degree of compression in step a') is controlled independently of the load applied in step c').
- a heat engine system for extracting energy from an external heat source comprising:
- the pump/compressor is adapted for compressing liquids.
- the skilled person is capable of selecting an appropriate device for the compression.
- the heating arrangement may comprise one or more heat exchangers.
- it may comprise at least one heat exchanger for transferring heat from the medium from the turbine to the medium from the pump, at least one heat exchanger for transferring heat from a heated cooling medium to the medium from the compressor and/or at least one heat exchanger for transferring heat from the external heat source to the medium from the compressor.
- the heat exchangers may be arranged in any order. It is however preferred that the heat exchanger connected to the heat source of the lowest temperature is arranged first (furthest upstream) and the heat exchanger connected to the heat source of the highest temperature is arranged last (furthest downstream).
- the cooling arrangement normally comprises one or more heat exchangers.
- a heat exchanger may in some embodiments be shared by the heating arrangement and the cooling arrangement.
- the cross-sectional area of the channels of the heat exchangers connected to the outlet of the turbine may be equal to or smaller than the cross-sectional area of the outlet of the turbine in order to prevent expansion (and transfer to the gas phase) of the medium.
- the heat engine system may further comprise a pressure sensor arranged for sensing a pressure of the medium at a position upstream of the turbine and a control device arranged to receive the sensed pressure from the pressure sensor and control the load of the turbine and/or the degree of compression of the medium in the pump at least partly depending on the sensed pressure.
- a position upstream of the turbine in this context refers to a position upstream of the turbine, but downstream of the pump, such that the pressure in the heating arrangement can be determined.
- the heat engine system may also further comprise a pressure sensor arranged for sensing a pressure of the medium at a position downstream of the turbine and a control device arranged to receive the sensed pressure from the pressure sensor and control the load of the turbine and/or the degree of compression of the medium in the pump at least partly depending on the sensed pressure.
- a position downstream of the turbine in this context refers to a position downstream of the turbine, but upstream of the pump.
- the position may for example be between the turbine and the cooling arrangement or between the cooling arrangement and the pump.
- the control device receiving the sensed pressure from the position upstream of the turbine is preferably, but not necessarily, the same as the control device receiving the sensed pressure form the position downstream of the turbine.
- a common control device enables a more accurate and efficient control of the pressures in the whole system and thus provides for higher over-all efficiency in the energy extraction.
- the control device(s) is/are normally operatively connected to the pressure sensor(s) and the electricity generator (to control the load) and/or the external motor (to control the degree of compression), preferably via signal lines.
- the heat engine system may also further comprise one or more flow meters and/or one or more temperature sensors.
- a meter or sensor may be arranged to measure the volumetric flow rate or temperature of the medium in one or more of the following positions: between the pump outlet and the heating arrangement inlet; within the heating arrangement; between the heating arrangement outlet and the turbine inlet; between the turbine outlet and the cooling arrangement inlet; within the cooling arrangement; and between the cooling arrangement outlet and the pump inlet.
- the flow meter(s) and/or temperature sensor(s) may be operatively connected to the control device discussed above or to one or more other control device(s).
- the control device(s) may thus be arranged to receive the measured volumetric flow rate(s) and/or temperature(s) and control the load of the turbine and/or the degree of compression of the medium in the pump at least partly depending on the measured volumetric flow rate(s) and/or temperature(s).
- control device(s) may also be arranged to control the supply of a cooling medium to the cooling arrangement and/or the supply of a heating medium to the heating arrangement in response to the input data discussed above. Accordingly, the control device(s) may be operatively connected to first valve arranged on a cooling medium supply line connected to the cooling arrangement and/or a second valve arranged on a heating medium supply line connected to the heating arrangement.
- control of the system may be even more refined, which allows for an even more efficient energy extraction.
- a turbine capable of generating mechanical work while maintaining the pressure difference between the upstream and the downstream side of it
- a volumetric turbine such as a positive displacement turbine.
- the torque may be higher than in many other types of turbines and the speed of the turbine may be about equal to the volumetric flow rate of the medium.
- a reversed centrifugal pump which utilizes the inertia of the medium to build up a pressure behind it.
- the turbine is connected to an electricity generator, for example through a shaft of the turbine.
- the area of the outlet of the turbine may be less than 1.5 times the area of the inlet of the turbine. In some embodiments, the outlet area is less than 1.3 times, such as less than 1.1 times, the inlet area.
- the load (and thus the energy output) of the turbine is controllable. Consequently, the pressure drop of the turbine may be controlled by controlling the load, and the pressure in the different segments of the system may be balanced.
- the system further comprises at least one pressure control device of known type, such as at least one pressure reduction valve, arranged upstream and/or downstream of the turbine. The purpose of such a device is also to balance the pressure in the system.
- the skilled person understands that the use of such a device may imply a loss in efficiency.
- the heat exchanger arrangement may in some embodiments comprise a heat exchanger connected to the pump outlet and the turbine outlet such that heat can be transferred from the medium from the turbine to the compressed medium from the pump.
- the cooling arrangement may comprise a heat exchanger connected to a cooling medium circuit.
- the cooling medium circuit may also be connected to the heat exchanging arrangement such that the cooling medium can be used for cooling in the cooling arrangement and heating in the heating arrangement.
- the cooling circuit may further comprise a cooling medium compressor and a cooling medium expansion device, wherein the cooling medium compressor is arranged downstream the cooling arrangement and upstream the heating arrangement in the cooling circuit and the cooling medium expansion device is arranged downstream the heat exchanging device and upstream the cooling arrangement in the cooling circuit.
- reference number 1 refers to a heat engine system where a medium in a closed-loop and fluid-tight circuit 2 undergoes a transcritical cycle.
- the closed-loop and fluid tight circuit 2 is provided with a pump or compressor 22, a turbine 24, a pipe 26 which is in fluid connection with the compressor outlet 222 and the turbine inlet 244, and a pipe 28 that is in fluid connection with the turbine outlet 242 and pump inlet 224.
- the medium flows through circuit 2 in a direction indicated by arrows on the drawings.
- part of the pipe 26 downstream of the pump 22 outlet 222 is provided with a heat exchanger 3.
- the heat exchanger 3 may have a first side in fluid contact with the circuit 2 and a second side arranged to contain a second medium, which may be different from the medium in the closed circuit 2, in heat-exchanging indirect contact with the medium in the circuit 2.
- Heat exchanger 3 can be e.g. a counter-current plate heat exchanger of known type, and will not be discussed further. Heat exchanger 3 can be supplied with energy from an energy source 39 through the second medium.
- the energy source 39 may comprise, without being limited to, a boiler for fossil fuels, exhaust gas, cooling water from industry, cooling water from thermal power plants, hot water from a solar collector, a geothermal source, groundwater, seawater, fresh water from a lake or a river.
- the energy source 39 may be warmer than the medium in circuit 2.
- the energy source 39 may include a medium that is colder than the medium in circuit 2, but which by means of a heat pump of known type (not shown), supplies heat to the medium in the closed circuit 2.
- the flow direction of the second medium is indicated by arrows.
- the pipe 28 is provided with a second heat exchanger 4 having a first side in fluid contact with the circuit 2.
- the heat exchanger 4 has a second side arranged to contain a third medium, which may be different from the medium in circuit 2 and the second medium in heat exchanger 3, in heat-exchanging indirect contact with the medium in circuit 2.
- Heat exchanger 4 can be e.g. a countercurrent heat exchanger plate of known type, and will not be discussed further.
- Heat exchanger 4 can deliver energy to an energy sink 49 through the third medium.
- the energy sink 49 may comprise, without being limited to, groundwater, seawater, fresh water lake or river or a heat engine that supplies energy to a district heating system.
- the flow direction of the third medium is indicated by arrows.
- a second embodiment is shown in Figure 2 .
- the same items as in the embodiment of figure 1 are specified with the same reference numbers and are not discussed further.
- the pipe 26 is provided with a third heat exchanger 5.
- the heat exchanger 5 has a first side in fluid contact with the pipe 26 and a second side in fluid contact with pipe 28.
- the heat exchanger 5 can be e.g. a countercurrent heat exchanger plate of known type, and will not be discussed further.
- a third embodiment is shown in Figure 3 .
- the same items as in the embodiments from figure 1 and 2 are specified with the same reference numbers and are not discussed further.
- the pipe 26 is provided with a fourth heat exchanger 6.
- Heat exchanger 6 has a first side in fluid contact with the pipe 26 and a second side in fluid contact with the second heat exchanger 4.
- Heat exchanger 6 can be e.g. a countercurrent heat exchanger plate of known type, and will not be discussed further.
- the second heat exchanger 4 is thus the evaporator 74 of the heat pump 7 and the fourth heat exchanger 6 is thus the condenser 76 of the heat pump 7.
- the heat pump is further provided with a compressor 72 and a reducing valve 78.
- the heat pump 7 may be provided with an expander 78'.
- the heat pump 7 is a closed-loop and fluid tight circuit where the heat pump 7 components are in fluid contact with closed pipes 71.
- the medium in the heat pump 7 may be any suitable medium known in the field, including CO 2 .
- the heat pump 7 may be of a type shown in the publications WO90/07683 , U.S. 6,877,340 and U.S. 7,674,097 .
- a fourth embodiment is shown in Figure 5 .
- the same items as in the embodiment of figure 1 are specified with the same reference numbers and are not discussed further.
- the pump 22 is driven by an electrical motor 32.
- the motor 32 is capable of controlling the/frequency/speed of the pump and thus the degree of compression of the medium in the pump.
- the turbine 2 is connected to a electricity generator 34 via the shaft 35 of the turbine 24 such that the electricity generator 34 may control the load applied in the turbine.
- the electricity generator 34 is connected to a frequency converter (not shown).
- a pressure sensor 500 is arranged in the pipe 26 at a position between the outlet 222 of the pump 22 and the inlet 244 of the turbine 24 and another pressure sensor 502 is arranged in the pipe 28 at a position between the outlet of the cooling arrangement 25 and the inlet 224 of the pump 22.
- Signal lines 501, 503 connects the respective pressure sensors 500, 502 to a control device/computer 504 adapted to receive the sensed pressures.
- the control device/computer 504 is connected to the electricity generator 34 and the motor 32 of the pump 22 via signal lines 505, 506.
- the control device/computer 504 is adapted to process the sensed pressures (i.e. pressure values) and send control signals to the electricity generator 34 and motor 34, respectively, which control signals are functions of the sensed pressures and optionally other parameters.
- the processing may for example comprise comparing the pressure values to reference or target values.
- the pump or compressor 22 is designed to be able to bring the pressure in the medium in circuit 2 to a pressure above the supercritical limit.
- Such pumps 22 are known in the art and will not be discussed further.
- the turbine 24 can be a differential pressure turbine. Examples of a suitable turbine are described in the applicant's own publication NO20092085 . Differential pressure turbines are liquid tight in that fluid cannot leak through the turbine housing. The only fluid passing the house is the volume trapped and transported in the compartment between the vanes when the impellers are rotating. The amount of fluid that flows through the turbine housing depends on the impeller(s) rotation speed. By slowing the impeller(s), by applying load to the shaft, the amount of fluid that flows through the turbine housing and the fluid pressure downstream of the impeller can be controlled. Consequently, the pressure can be controlled by controlling the flow of fluid through the turbine. A reverse centrifugal pump or a piston pump of known type are examples that can also be used for this purpose.
- the medium used in the heat engine system is CO 2 .
- the example assumes that the heat engine system is dimensioned for a medium capacity of 100 kg/s.
- the example further assumes that the medium at the pump inlet 224 has a temperature of 0° C and a pressure of 3.5 MPa (corresponding to 35 bar). Under these conditions, the CO 2 is in sub-critical phase.
- Pump 22 increases pressure in the medium to 8.0 MPa. 100 kg CO 2 at 0 °C and 3.5 MPa results in a volume of 0.1078 m 3 .
- the pressure differential is 4.5 MPa.
- the pressure in the pipe 26 is maintained at 8.0 MPa as the mass of CO 2 that flows through the turbine 24 per unit of time is the same as the mass that flows through the pump 22 per unit of time.
- a work of 25813 kJ/s, or 25,830 kW is supplied.
- the temperature of the medium increases from 1.488 °C to 60 °C and the medium transforms to the supercritical state under these conditions.
- the enthalpy is 458.1 kJ/kg.
- the specific volume is 5.219 dm 3 /kg and the medium is in the supercritical state.
- the turbine 24 is designed to have a capacity of 0.5219 m 3 /s supercritical fluid at a temperature of 60 °C and a pressure of 8.0 MPa.
- the turbine 24 drives a generator (not shown) producing electrical energy in a known manner.
- the turbine 24 reduces pressure in the medium from 8.0 MPa to 3.5 MPa.
- the turbine 24 can be of a known type, as long as it is designed to perform a controlled pressure reduction between the turbine inlet 244 and the turbine outlet 242, where the first pressure is higher than the second one.
- the example assumes that the turbine 24 is followed immediately by the cooling arrangement 25 provided with the second heat exchanger 4, and the cooling arrangement 25 is designed to be able to bring the temperature and pressure of the CO 2 medium to 0 °C and 3.5 MPa, respectively.
- the cooling arrangement 25 or the heat exchanger 4 23,483 kW are removed from the medium. The medium is returned to pump 22 in this state.
- the relationship between the energy supplied in the form of heat exchanger 3 and the energy harvested in the turbine 24 provides a net theoretical effect of 7.2%.
- Example 2 assumes the same conditions as in Example 1.
- the pipe 26 routes the medium from the outlet 222 of the pump 22, to the cooling arrangement 25 and through a third heat exchanger 5 which is arranged immediately downstream of the outlet 242 of the turbine 24.
- the medium will in a third heat exchanger 5 be heated to 40 ° C.
- the pressure is 8.0 MPa. Under these conditions, the medium has an enthalpy of 402.9 kJ/kg and a specific volume of 3.599 dm 3 /kg.
- the medium is in supercritical state.
- the medium is routed trough the pipe 26 to the heat exchanger 3 where it receives 5523 kW. The medium is thereby heated to 60 ° C. Then, it flows into the inlet 244 of the turbine 24 in supercritical state at 8.0 MPa and 60 ° C.
- the medium Downstream of the turbine 24 outlet 242, the medium flows through the third heat exchanger 5 and transfers energy to countercurrent medium as described above. Downstream of the heat exchanger 5, the medium flows through the heat exchanger 4 and then to the cooling arrangement 25.
- Heat exchanger 4 is designed to bring CO 2 to 0 ° C and 3.5 MPa. In the heat exchanger, 43166.7 kW are removed from the medium.
- the relationship between the energy supplied in the form of heat energy recorder 3 and the energy harvested in the turbine 24 provides a theoretical net effect of 34.1%.
- Scenario 3 assumes the same conditions as in example 1 and 2.
- heat exchanger 4 represents the evaporator 74 of the heat pump 7, as shown in Figure 3 .
- Example 3 we assume that the heat pump 7 efficiency is 50%. Thereby heat pump 7 transfers 1583 kW from the evaporator 74 and to the fourth heat exchanger 6. In the heat exchanger 3 downstream of the heat exchanger 6, 3940 kW is supplied to the medium.
- the relationship between the energy supplied in the form of heat supplied to heat exchanger 3 and the energy harvested in turbine 24 provides a net theoretical effect of 47.4%.
- a system comprising pipes having an inner diameter of 100 mm is described.
- the cross-section area is 78.5 cm 2 and one meter of the pipe contains 7.85 liters of medium. If 7.85 liters per second is pumped, the velocity of the medium will be 1 m/s.
- the density of the medium will be 0.95 kg/l if the temperature is 4 °C. Thus, the volume will be 5235 l, resulting in a velocity of 6.67 m/s. If the medium is then heated to 100 °C, the density will be 0.189 kg/l resulting in a speed of 33.76 m/s.
- the inlet and the outlet of the turbine have the same cross-section area.
- the medium is not allowed to expand to the same degree as in an expander or an expansion turbine.
- the work will be 14.31 kJ/kg and the temperature, density and velocity of the medium will be 74.5 °C, 0.150 kg/l and 42.5 m/s, respectively, after the turbine.
- Heat is transferred from the medium from the turbine outlet to the medium from the pump, preferably in a counter-flow heat exchanger, such that the temperature of the medium is reduced directly downstream the turbine.
- the pressure may be reduced to 73 bar and a temperature of 49.4 °C, at which point the density of medium is the same as at 100 bar and 100 °C.
- the “internal cooling” of the medium from the turbine is followed by “external cooling” such that the temperature of the medium is reduced below the critical temperature, i.e. below 31 °C.
- the turbine will be controlled such that the medium reaches a target pressure (e.g. 73 bar) downstream of it, but the efficiency of the cooling of the medium will determine at which speed the turbine may run to maintain the target pressure provided that enough external energy is available for further heating the pressurized medium from the "internal" heat exchange.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Claims (15)
- Procédé d'extraction d'énergie d'une source de chaleur externe, comprenant les étapes de :a) comprimer un fluide dans une phase liquide en utilisant une source d'alimentation externe pour obtenir un fluide liquide comprimé ;b) chauffer du fluide liquide comprimé de l'étape a) en utilisant de chaleur au moins partiellement dérivé de la source de chaleur externe pour dilater le fluide et pour obtenir lequel dans l'état super critique,c) réduire la pression du fluide chauffé de l'étape b) afin de générer l'énergie électrique d'une fréquence en utilisant une turbine reliée à un générateur d'électricité ;d) convertir la fréquence de l'étape c) à une fréquence de sortie souhaitée ; ande) réduire la température et volume du fluide de l'étape c) afin d'obtenir le fluide dans la phase liquide pour la recyclage à l'étape a),caractérisé en ce que la pression dans le fluide chauffé de l'étape b) est réduite à une mesure contrôlée par l'application d'une charge variable, le générateur est capable de contrôler la charge appliquée dans la turbine et la mesure de compression dans l'étape a) est contrôlée indépendamment de la charge appliquée dans l'étape c).
- Procédé selon la revendication 1, de plus comprenant détecter de la pression entre les étapes a) et c) et la contrôle de la charge de l'étape c) et/ou la mesure de compression de l'étape a) au moins partiellement dépendant à la pression détectée.
- Procédé selon la revendication 1 ou 2, de plus comprenant détecter de la pression entre les étapes c) et a) et contrôler la charge de l'étape c) et/ou la mesure de compression de l'étape a) au moins partiellement dépendant à la pression détectée.
- Procédé selon l'une des revendications précédentes, dans lequel chaleur de l'étape e) est transféré au fluide liquide comprimé de l'étape a) dans un échangeur de chaleur.
- Procédé selon l'une des revendications précédentes, dans lequel l'étape e) comprend le chauffage de un fluide de refroidissement pour obtenir un fluide de refroidissement chauffé et l'étape b) comprend le chauffage du fluide liquide comprimé en utilisant le fluide de refroidissement chauffé pour obtenir un fluide de refroidissement refroidi qui est recyclé à l'étape e).
- Procédé selon la revendication 5, dans lequel le fluide de refroidissement de l'étape e) est comprimé avant de l'utiliser pour chauffer le fluide liquide comprimé dans l'étape b) et le fluide de refroidissement refroidi de l'étape b) est dilaté avant son recyclage à l'étape e).
- Procédé selon la revendication 5 ou 6, dans lequel l'étape b) comprend :b1) transférer le chaleur du fluide de l'étape c) à la liquide comprimé de l'étape a) dans un échangeur de chaleur ;b2) chauffer en utilisant de chaleur du fluide de refroidissement chauffé ; etb3) chauffer en utilisant de chaleur de la source de chaleur externe.
- Procédé selon l'une des revendications précédentes, dans lequel la source de chaleur externe est choisi parmi des gaz d'échappement, de fluide de refroidissement industriel, de fluide chauffé d'un capteur solaire, des sources de chaleur géothermique, d'eaux souterraines, d'eau de mer et d'eau douce.
- Procédé selon l'une des revendications précédentes, dans lequel la température de la source de chaleur externe est inférieure à 100°C.
- Procédé selon l'une des revendications précédentes, dans lequel le fluide est choisi parmi gaz carbonique (CO2), éthylène (C2H4), diborane (B2H6), éthane (C2H6) et l'oxyde nitreux (N2O).
- Procédé selon l'une des revendications précédentes, dans lequel la réduction de la pression pendant l'étape c) est contrôlée afin d'équilibrer la pression dans le procédé d'extraction d'énergie.
- Procédé selon l'une des revendications précédentes, dans lequel la densité du fluide n'est pas diminué ou diminué de moins de 40%, de telle sorte que moins de 30%, de telle sorte que moins de 25% pendant l'étape c).
- Système de moteur thermique pour l'extraction d'énergie d'une source de chaleur externe, comprenant :une pompe pour comprimer un fluide liquide pour obtenir un fluide liquide comprimé, ladite pompe comprenant une entrée, une sortie et un moteur externe capable de contrôler la mesure de compression du fluide liquide dans la pompe ;un dispositif de chauffage relié à la source de chaleur externe pour chauffer et dilater le fluide liquide comprimé pour obtenir le fluide dans l'état super critique, ledit dispositif de chauffage comprenant une entrée reliée à la sortie de la pompe et une sortie ;une turbine pour générer de travail mécanique du fluide du dispositif de chauffage, ladite turbine comprenant une entrée reliée à la sortie du dispositif de chauffage et une sortie ;une génératrice électrique reliée à la turbine ;un convertisseur de fréquence relié à la génératrice électrique ; etun dispositif de refroidissement pour réduire la température de et le volume du fluide, ledit dispositif de refroidissement comprenant une entrée reliée à la sortie de la turbine et une sortie reliée à l'entrée de la pompe ;caractérisé en ce que la génératrice électrique est capable de contrôler la charge de la turbine de telle sorte que la pression en amont de la turbine peut être contrôlée et la compression dans la pompe est contrôlable indépendamment de la charge de la turbine.
- Le système de moteur thermique selon la revendication 13, dans lequel la turbine est volumétrique ou une pompe centrifuge inversée.
- Le système de moteur thermique selon les revendications 13-14, dans lequel la surface de la sortie de la turbine est inférieure à 1.5 fois la surface de l'entrée de la turbine.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| NO20101428 | 2010-10-14 | ||
| PCT/EP2011/067908 WO2012049259A1 (fr) | 2010-10-14 | 2011-10-13 | Procédé et système d'utilisation d'une source d'énergie à température relativement basse |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2627876A1 EP2627876A1 (fr) | 2013-08-21 |
| EP2627876B1 true EP2627876B1 (fr) | 2015-03-11 |
Family
ID=43944048
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP11768021.5A Not-in-force EP2627876B1 (fr) | 2010-10-14 | 2011-10-13 | Procédé et système d'utilisation d'une source d'énergie à température relativement basse |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20140007577A1 (fr) |
| EP (1) | EP2627876B1 (fr) |
| CA (1) | CA2812883A1 (fr) |
| DK (1) | DK2627876T3 (fr) |
| WO (1) | WO2012049259A1 (fr) |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102012210803A1 (de) * | 2012-06-26 | 2014-01-02 | Energy Intelligence Lab Gmbh | Vorrichtung zum Erzeugen elektrischer Energie mittels eines ORC-Kreislaufs |
| US9316121B2 (en) | 2012-09-26 | 2016-04-19 | Supercritical Technologies, Inc. | Systems and methods for part load control of electrical power generating systems |
| DE102012217929A1 (de) | 2012-10-01 | 2014-04-03 | Siemens Aktiengesellschaft | Kraft-Wärme-Kraftwerk und Verfahren zum Betrieb eines Kraft-Wärme-Kraftwerks |
| WO2014081329A1 (fr) * | 2012-11-20 | 2014-05-30 | Siemens Aktiengesellschaft | Procédé de création d'énergie électrique |
| FR3004220B1 (fr) * | 2013-04-04 | 2015-05-29 | Kevin Rohart | Machine monobloc pour la production d'electricite, chauffage-froid |
| ES2841131T3 (es) | 2013-09-25 | 2021-07-07 | Siemens Energy Global Gmbh & Co Kg | Disposición y método para la utilización de calor residual |
| DE102014014032A1 (de) * | 2014-09-26 | 2016-03-31 | Martin Maul | Vorrichtung zur Energieerzeugung, insbesondere ORC-Anlage |
| SI25059A (sl) * | 2015-09-11 | 2017-03-31 | Univerza V Mariboru | Metoda in naprava za izrabo nizkotemperaturnih virov plinskih kotlov z visokotemperaturno toplotno črpalko po konceptu voda/voda |
| DE102016204405A1 (de) | 2016-03-17 | 2017-09-21 | Martin Maul | Vorrichtung zur Energieerzeugung, insbesondere ORC-Anlage |
| CN105971678B (zh) * | 2016-05-10 | 2018-09-28 | 石家庄新华能源环保科技股份有限公司 | 一种利用超临界二氧化碳供能的系统 |
| NO348829B1 (en) * | 2022-06-24 | 2025-06-16 | Olav Medhus | System for production of renewable energy |
| WO2025087533A1 (fr) | 2023-10-26 | 2025-05-01 | Allto Energy As | Procédé de gestion d'énergie et système de gestion d'énergie |
Family Cites Families (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3875749A (en) * | 1972-11-17 | 1975-04-08 | Petru Baciu | Geothermal power plant with high efficiency |
| US4445180A (en) * | 1973-11-06 | 1984-04-24 | Westinghouse Electric Corp. | Plant unit master control for fossil fired boiler implemented with a digital computer |
| US3971211A (en) | 1974-04-02 | 1976-07-27 | Mcdonnell Douglas Corporation | Thermodynamic cycles with supercritical CO2 cycle topping |
| US4871295A (en) * | 1983-04-19 | 1989-10-03 | Ormat Turbines (1965) Ltd. | Modular rankine cycle vapor turbine |
| US4576005A (en) * | 1985-01-07 | 1986-03-18 | Force Louis W | Wellhead gas treatment and co-generation method and system |
| NO890076D0 (no) | 1989-01-09 | 1989-01-09 | Sinvent As | Luftkondisjonering. |
| JPH06261454A (ja) * | 1993-03-09 | 1994-09-16 | Hitachi Ltd | 発電設備の始動装置 |
| FI101413B (fi) * | 1993-07-05 | 1998-06-15 | Ari Veli Olavi Loeytty | Jätelämmön hyödyntämismenetelmä esim. voimalaitoksissa |
| CN1254243C (zh) | 2001-05-11 | 2006-05-03 | 殷载淳 | 包含白屈菜碱或其衍生物的药物组合物 |
| JP2004137979A (ja) | 2002-10-18 | 2004-05-13 | Matsushita Electric Ind Co Ltd | 膨張機 |
| US6964168B1 (en) * | 2003-07-09 | 2005-11-15 | Tas Ltd. | Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same |
| US7036315B2 (en) * | 2003-12-19 | 2006-05-02 | United Technologies Corporation | Apparatus and method for detecting low charge of working fluid in a waste heat recovery system |
| JP4517684B2 (ja) | 2004-03-10 | 2010-08-04 | ダイキン工業株式会社 | ロータリ式膨張機 |
| JP2007146766A (ja) * | 2005-11-29 | 2007-06-14 | Noboru Shoda | 熱サイクル装置及び複合熱サイクル発電装置 |
| NO325981B1 (no) | 2006-07-03 | 2008-08-25 | Energreen As | Apparat og framgangsmate for regulering av energipotensialet i en fluidstreng som befinner seg i et ror |
| DE102006035272B4 (de) * | 2006-07-31 | 2008-04-10 | Technikum Corporation, EVH GmbH | Verfahren und Vorrichtung zur Nutzung von Niedertemperaturwärme zur Stromerzeugung |
| EP2194320A1 (fr) * | 2008-06-12 | 2010-06-09 | Siemens Aktiengesellschaft | Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique |
| NO330209B1 (no) | 2009-05-28 | 2011-03-07 | Energreen As | Apparat og fremgangsmate for a omdanne en andel av spesifikk energi i et fluid i gassfase til mekanisk arbeid |
-
2011
- 2011-10-13 US US13/878,774 patent/US20140007577A1/en not_active Abandoned
- 2011-10-13 DK DK11768021.5T patent/DK2627876T3/en active
- 2011-10-13 CA CA2812883A patent/CA2812883A1/fr not_active Abandoned
- 2011-10-13 WO PCT/EP2011/067908 patent/WO2012049259A1/fr not_active Ceased
- 2011-10-13 EP EP11768021.5A patent/EP2627876B1/fr not_active Not-in-force
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012049259A1 (fr) | 2012-04-19 |
| US20140007577A1 (en) | 2014-01-09 |
| EP2627876A1 (fr) | 2013-08-21 |
| DK2627876T3 (en) | 2015-06-15 |
| CA2812883A1 (fr) | 2012-04-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2627876B1 (fr) | Procédé et système d'utilisation d'une source d'énergie à température relativement basse | |
| KR102738623B1 (ko) | 에너지 저장 플랜트 및 공정 | |
| WO2022166381A1 (fr) | Dispositif et procédé de stockage d'énergie basés sur un changement de phase gaz-liquide de co2 pour compléter de l'énergie externe | |
| WO2022166384A1 (fr) | Appareil de stockage d'énergie à changement de phase gaz-liquide à base de dioxyde de carbone, pouvant convertir l'énergie thermique en énergie mécanique | |
| WO2022166392A1 (fr) | Appareil et procédé de stockage d'énergie à compression à plusieurs étages basé sur le changement de phase gaz-liquide du dioxyde de carbone | |
| US20240084972A1 (en) | Co2 gas-liquid phase transition-based multistage compression energy storage apparatus for converting thermal energy into mechanical energy | |
| EP3935266B1 (fr) | Système de récupération de chaleur perdue à cycle en cascade à refroidissement intermédiaire | |
| US20090266075A1 (en) | Process and device for using of low temperature heat for the production of electrical energy | |
| Meng et al. | Performance evaluation of a solar transcritical carbon dioxide Rankine cycle integrated with compressed air energy storage | |
| WO2016079485A1 (fr) | Système de récupération de chaleur résiduelle combiné à un stockage d'énergie à air comprimé | |
| Zhang et al. | Experimental study of the organic rankine cycle under different heat and cooling conditions | |
| CN109026243A (zh) | 能量转换系统 | |
| EP3011203B1 (fr) | Système de conversion d'énergie à entraînement direct pour turbines éoliennes compatibles ayant un stockage d'énergie | |
| CN111727541A (zh) | 压缩空气储存发电装置 | |
| WO2008022407A1 (fr) | Système et procédé pour produire du travail | |
| CN113036932B (zh) | 一种co2跨临界热力循环储电系统和方法 | |
| Li et al. | Thermo-economic analysis and optimization of a cascade transcritical carbon dioxide cycle driven by the waste heat of gas turbine and cold energy of liquefied natural gas | |
| CN120062847B (zh) | 耦合海洋温差的海上恒压压缩二氧化碳储能系统及方法 | |
| CN117703553B (zh) | 一种基于闲置油气井储气的耦合地热能压缩空气储能系统 | |
| CN112303960A (zh) | 冷力发动机 | |
| CN106662370A (zh) | 多级热机 | |
| US12486790B2 (en) | Intermediate pressure supercritical CO2 power cycle | |
| WO2024165832A1 (fr) | Éolienne à stockage d'énergie intégré utilisant des échangeurs de chaleur rotatifs pour recevoir un lacet de nacelle | |
| HK40060376B (zh) | 能量存储设备以及方法 | |
| OA20837A (en) | Energy storage plant process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20130506 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: F01K 25/10 20060101AFI20140919BHEP Ipc: F01K 13/02 20060101ALI20140919BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| INTG | Intention to grant announced |
Effective date: 20141030 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 715485 Country of ref document: AT Kind code of ref document: T Effective date: 20150415 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011014648 Country of ref document: DE Effective date: 20150423 |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20150611 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20150311 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 715485 Country of ref document: AT Kind code of ref document: T Effective date: 20150311 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150612 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150713 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150711 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011014648 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
| 26N | No opposition filed |
Effective date: 20151214 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160121 Year of fee payment: 5 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160125 Year of fee payment: 5 Ref country code: NO Payment date: 20160202 Year of fee payment: 5 Ref country code: DK Payment date: 20160122 Year of fee payment: 5 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151013 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160201 Year of fee payment: 5 Ref country code: GB Payment date: 20160127 Year of fee payment: 5 Ref country code: SE Payment date: 20160121 Year of fee payment: 5 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151013 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011014648 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20161031 |
|
| REG | Reference to a national code |
Ref country code: NO Ref legal event code: MMEP |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111013 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20161101 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20161013 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170630 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161013 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161102 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170503 Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161101 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161014 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 |