EP2624789B1 - Prosthesis for cervical and lumbar spine - Google Patents
Prosthesis for cervical and lumbar spine Download PDFInfo
- Publication number
- EP2624789B1 EP2624789B1 EP10760725.1A EP10760725A EP2624789B1 EP 2624789 B1 EP2624789 B1 EP 2624789B1 EP 10760725 A EP10760725 A EP 10760725A EP 2624789 B1 EP2624789 B1 EP 2624789B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- inlay
- protuberance
- recess
- intervertebral disc
- side surfaces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4405—Joints for the spine, e.g. vertebrae, spinal discs for apophyseal or facet joints, i.e. between adjacent spinous or transverse processes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/302—Three-dimensional shapes toroidal, e.g. rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30224—Three-dimensional shapes cylindrical
- A61F2002/30225—Flat cylinders, i.e. discs
- A61F2002/30227—Flat cylinders, i.e. discs arched, domed or vaulted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
- A61F2002/30199—Three-dimensional shapes
- A61F2002/30242—Three-dimensional shapes spherical
- A61F2002/30245—Partial spheres
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30383—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
- A61F2002/30387—Dovetail connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30383—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
- A61F2002/3039—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove with possibility of relative movement of the rib within the groove
- A61F2002/30392—Rotation
- A61F2002/30393—Rotation with additional means for limiting said rotation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30383—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
- A61F2002/3039—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove with possibility of relative movement of the rib within the groove
- A61F2002/30398—Sliding
- A61F2002/304—Sliding with additional means for limiting said sliding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30428—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by inserting a protrusion into a slot
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30563—Special structural features of bone or joint prostheses not otherwise provided for having elastic means or damping means, different from springs, e.g. including an elastomeric core or shock absorbers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
- A61F2002/30614—Sets comprising both primary and revision endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30604—Special structural features of bone or joint prostheses not otherwise provided for modular
- A61F2002/30616—Sets comprising a plurality of prosthetic parts of different sizes or orientations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
- A61F2002/3065—Details of the ball-shaped head
- A61F2002/30652—Special cut-outs, e.g. flat or grooved cut-outs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
- A61F2002/30654—Details of the concave socket
- A61F2002/30655—Non-spherical concave inner surface
- A61F2002/30657—Non-spherical concave inner surface made of different partially-spherical concave portions
- A61F2002/30658—Non-spherical concave inner surface made of different partially-spherical concave portions having a central conforming area surrounded by a peripheral annular non-conforming area
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
- A61F2002/30663—Ball-and-socket joints multiaxial, e.g. biaxial; multipolar, e.g. bipolar or having an intermediate shell articulating between the ball and the socket
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30621—Features concerning the anatomical functioning or articulation of the prosthetic joint
- A61F2002/30649—Ball-and-socket joints
- A61F2002/30665—Dual arrangement of two adjacent ball-and-socket joints
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30667—Features concerning an interaction with the environment or a particular use of the prosthesis
- A61F2002/3069—Revision endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30772—Apertures or holes, e.g. of circular cross section
- A61F2002/30777—Oblong apertures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30772—Apertures or holes, e.g. of circular cross section
- A61F2002/30777—Oblong apertures
- A61F2002/30779—Oblong apertures arcuate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30795—Blind bores, e.g. of circular cross-section
- A61F2002/308—Blind bores, e.g. of circular cross-section oblong
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30795—Blind bores, e.g. of circular cross-section
- A61F2002/30805—Recesses of comparatively large area with respect to their low depth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30841—Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30841—Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
- A61F2002/30845—Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes with cutting edges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30879—Ribs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30884—Fins or wings, e.g. longitudinal wings for preventing rotation within the bone cavity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30891—Plurality of protrusions
- A61F2002/30896—Plurality of protrusions perpendicular with respect to each other
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30878—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
- A61F2002/30899—Protrusions pierced with apertures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/442—Intervertebral or spinal discs, e.g. resilient
- A61F2/4425—Intervertebral or spinal discs, e.g. resilient made of articulated components
- A61F2002/443—Intervertebral or spinal discs, e.g. resilient made of articulated components having two transversal endplates and at least one intermediate component
Definitions
- the present invention relates to an intervertebral disc prosthesis for the total replacement of an intervertebral disc of the cervical and lumbar spine.
- prostheses There are different classifications of cervical and lumbar total disc prostheses, according to the number of articulation partners, and according to biomechanical considerations and direct function-related conditions within the cervical as well as the lumbar intervertebral space. At present, prostheses with two, one or no articulation surface(s) are used. Depending on the number of functional components and the material, the prostheses have biomechanically a fixed or mobile centre of rotation. Whereas prostheses with two sliding surfaces having a mobile centre of rotation are more physiologically designed, prostheses with only two functional related partners and one sliding surface are able to better stabilize the spine in multi-segmental implantations.
- the artificial discs can be implanted via a ventral, ventro-lateral, lateral or dorsal approach. Depending on the approach the artificial discs are constructed with different shape, size and means for instruments. Different sizes of disc prostheses base on the size of the prosthetic plates, different heights on the height of the prosthetic components, and different angles of lordosis on the angles of prosthetic components.
- the trapezium natural disc shape is primarily responsible for the lordosis of the lumbar and cervical spine, further the vertebral bodies contribute to a minor extent to the lordosis. During prosthetic replacement of an intervertebral discs the lordosis should be maintained or reconstructed.
- a hyperlordotic angle of the operated spinal segment because in the longer run a painful facet joint degeneration can be expected, is to avoid.
- a hyperlordotic disc space is a pre-condition for reduced segmental range of motion as well. In that case the target prevention of the adjacent motion segment against disc degeneration can not be fulfilled.
- the common material for sliding disc implants is metal in combination with polyethylene or metal-to-metal.
- partly new materials for total discs are used including for coating of the disc implants to achieve the opportunity for MRI diagnostics as well as better sliding properties of the implants, to avoid any revision surgery.
- a healthy intervertebral disc allows in its interaction with other elements of a functional spinal unit limited motion at different ranges of motion in extension and flexion as well as in lateral bending to the right and left and in axial rotation. Motion to the front and back is combined with rotational motion, and side motion is combined with other motion directions; it is a matter of so called “coupled motion”.
- the motion amplitudes of healthy intervertebral discs are different, with respect to extension (bending back) and flexion (bending forward) as well as to the lateral bending to the right and left and axial rotational motion. Although of common basic characteristics, there are differences between the motion amplitudes of the cervical and lumbar spine as well.
- shock absorption is needed within the spine to save tissue or specific anatomical structures; the facet joints are usually not horizontally loaded.
- the main function of shock absorption seems to enable a motion within the disc space because the natural disc does not have typical joint partners like ball and socket.
- Some disc prostheses include shock absorption to its function, but again without to simulate the segmental physiological range of motion. Postoperatively kyphotic intervertebral disc spaces with dangerous potential for facet joint hyper-mobility and facet joint degeneration and disease can be observed. So the original aim of a function retaining disc replacement to achieve a painless or pain free stabilization of the spinal motion segment by implantation of the disc prosthesis is not yet fulfilled in the long run.
- the prosthesis according to DE 35 29 761 C2 shows a construction which differs relative to other available types of prostheses which are build like a ball and socket joint and as a result move around a defined localized centre or rotation.
- Document WO 02/089701 A2 discloses an intervertebral disk prosthesis arranged within the intervertebral space.
- the disclosed prosthesis is stabilised by providing a translation or rotations stop to its nucleus or including an angular correction between its plates in contact with vertebra or a combination of these characteristics. Parts external to the nucleus and using contact surfaces perpendicular to their contact directions obtain the disclosed stop. Such a stop allows a better stability together with an enforcement of such an angular correction, induced by an angle between load bearing surfaces of the nucleus.
- artificial disk prosthesis comprising superior and inferior and plates and a nucleus position between articular surfaces of the end plates.
- the end plates may have planar bone engagement surfaces with a plurality of self-cutting teeth.
- the articular surfaces of the end plates may be planar or include a flat end portion.
- the nucleus includes superior and inferior articular surfaces, which may comprise flat end portions such that when the articular surfaces of the nucleus and the end plates are placed in a preferred orientation, the flat end and/or planar portions are aligned.
- a prosthesis according to this document may provide flection/extension, anterior/posterior translation, lateral banding, and/or axial rotation degrees of freedom.
- One embodiment comprises a prosthesis with the first joint providing flexion/extension and anterior/posterior translation, and a second joint providing lateral bending and axial rotation.
- Document US 2007/0233262A1 discloses an endoprosthesis including a first articulating member formed with a generally concave articulating surface, a second articulating member formed with a generally convex articulating surface which articulates with the concave articulating surface, the first and second articulating member each having a generally planar attachment surface for attachment to spine structure, and limiting members formed in each of the convex and concave articulating surfaces that made with each other and limit the amount of relative movement between the convex and concave articulating surfaces.
- an intervertebral disc prosthesis for the cervical and lumbar spine that enables physiological motion of high quality and physiological quantity.
- the three-dimensional range of motion within the intervertebral space should mimic the coupled motion of a natural disc, including the physiological translation in the sagittal and frontal view.
- a disc prosthesis is sometimes needed which does not allow motion to all directions postoperatively.
- a disc prosthesis for implantation via a lateral approach is needed as well.
- the present disclosure provides an intervertebral disc prosthesis for the total replacement of an intervertebral disc within the cervical or lumbar spine, comprising at least one sliding partner adapted to firmly assemble with its outer surface with an upper vertebral body and a further adjacent sliding partner adapted to firmly assemble with its outer surface with a lower vertebral body, and the adjacent sliding partners articulate via articulation surfaces on their facing inner sides, comprising an articulation area with a convexity on one sliding partner and a concavity on the other sliding partner, wherein a first of the adjacent sliding partners has a recess with a bottom surface and four side surfaces, wherein the recess is positioned within the convexity or concavity of the first sliding partner, and a second of the adjacent sliding partners, which articulates with the first sliding partner has a protuberance with four side surfaces and a tip surface, wherein the protuberance is arranged within the concavity or convexity of the second sliding partner, and an inlay comprises a cut
- At least one articulation surface can be partly or completely surrounded by an edge to maximize the motion limiting contact area at final range of motion to each direction in the sagittal and frontal axis.
- the edge surrounding at least one articulation surface shall be made of a flexible material enabling soft limitation at a final range of motion to each direction in the sagittal and frontal axis.
- the shape of the recess, of the outer and inner perimeter of the inlay and of the protuberance shall be rectangular, round, cylindrical, pyramidal, conical including a truncated pyramid and conus, or a combination of the afore mentioned shapes.
- the shape of the side surfaces of the recess, the shape of the side surfaces comprising the outer and inner perimeter of the inlay and the shape of the side surfaces of the protuberance shall be plane, curved, angled or round or a combination thereof.
- Convexity and corresponding concavity can have a spherical, cylindrical, torus-like, helical and/or conical shape or a combination thereof, and convexity and corresponding concavity can have identical or different radii of curvature.
- size and shape of the recess and of the outer perimeter of the inlay can be constructed in such a manner that rotation of adjacent sliding partners around either the sagittal or frontal axis is possible. Size and shape of the recess and of the outer and inner perimeter of the inlay can also be constructed in such a manner that additionally a limited rotation around the longitudinal axis is possible.
- size and shape of the inner perimeter of the inlay and of the protuberance can be constructed in such a manner that rotation of adjacent sliding partners around either the sagittal or frontal axis is possible. Size and shape of the inner perimeter of the inlay and of the protuberance can also be constructed in such a manner that additionally a limited rotation around the longitudinal axis is possible.
- the shape of the recess and the outer perimeter of the inlay and/or the shape of the inner perimeter of the inlay and the protuberance may allow unlimited rotation around the longitudinal axis.
- Two opposing side surfaces of the protuberance can be in a form-fitting manner in contact with two opposing side surfacess of the inner perimeter of the inlay and/or two opposing side surfaces of the outer perimeter of the inlay can be in a form-fitting manner in contact with two opposing side surfaces of the recess.
- the tip surface of the protuberance may be concave- or convex-shaped with a radius of curvature corresponding to the concave or convex curvature of the bottom surface of the recess of the first of the adjacent sliding partners, enabling the articulation of tip and bottom surface.
- the tip surface of the protuberance may also be articulating with a surface of a hole arranged below the bottom surface of the recess, and the tip surface of the protuberance may have a radius of curvature corresponding to the facing radius of curvature of the bottom surface of the hole.
- each sliding partner and/or the inlay comprise the same or different material or are coated with the same or different material.
- Each sliding partner and/or the inlay may be constructed in one piece or firmly, but reversibly assembled of at least two pieces.
- the inlay and/or at least one of the sliding partners or a part of it can be made of a flexible material to damp an intervertebral shock or applied load.
- the upper and/or lower sliding partner may have on their outer surfaces for assembly with a vertebral body at least one cross-shaped anchor, optionally in combination with anchoring teeth.
- cross-shaped anchor and/or the outer surfaces of the upper and lower sliding partner for assembly with a vertebral body can be means or have means for an instrument to hold the prosthesis during implantation and explantation.
- a middle sliding partner with an upper and lower articulation surface is arranged between the inner sides of the upper and lower sliding partner, with the upper articulation surface of the middle sliding partner articulating with the articulation surface of the facing inner side of the upper sliding partner and the lower articulation surface of the middle sliding partner articulating with the articulation surface of the facing inner side of the lower sliding partner, resulting in an upper and a lower articulation area, wherein an inlay is arranged within upper and/ or lower articulation area and an articulation area with inlay is constructed as specified above.
- the articulation areas above and below the middle sliding partner may be constructed equally or different.
- the prosthesis provided by the invention is intended for primary total disc replacement enabling coupled physiological motion within the disc space between adjacent vertebrae via a ventral, ventro-lateral or lateral approach.
- the prosthesis is also intended for revision surgeries after former function retaining disc implantations, by insertion of a complete new disc prosthesis or by replacement or exchange of the inlay, if needed without for example lateral bending to the right and/or left postoperatively or with exclusion of any postoperative motion.
- the inlay of a prosthesis according to the present disclosure is protected against luxation due to its position within a recess of one of the adjacent sliding partners.
- An additional protuberance going through the inlay is protecting against luxation of the adjacent sliding partners.
- a prosthesis according to the invention comprises basically at least three parts or components, namely two sliding partners and one inlay.
- the arrangement of a middle sliding partner between the upper an lower sliding partner results in a prosthesis with four or five parts, namely three sliding partners and one or two inlays, depending on the arrangement of an inlay within the upper and/or the lower articulation area.
- an "articulation area” comprises facing articulation surfaces of adjacent sliding partners, which come into contact or articulate with each other.
- an articulation area comprises at least two articulation surfaces of adjacent sliding partners.
- the parts of the prosthesis articulate via their convex and concave surfaces, comprising the convex and concave parts of the sliding partners, the upper and lower side of the inlay as well as the tip surface of the protuberance and the bottom surface of the recess or the surface of a hole below the bottom surface.
- the term articulation surface is synonymous with the term sliding surface.
- the side surfaces of the recess, the side surfaces of the outer and inner perimeter of the inlay and the side surfaces of the protuberance do not articulate within the meaning of the present disclosure, although they are movable and get in contact or may slide onto each other. These surfaces and the spaces between them are used to determine the range of motion of the prosthesis in order to allow or prevent rotation around either the sagittal, frontal or longitudinal axis. So for example rotation around the frontal axis namely lateral bending to right and left can be excluded, when at same time rotation around the sagittal axis as extension and flexion movement and around the longitudinal axis as axial rotation movement is still allowed in a physiological range of motion.
- a prosthesis allowing unlimited rotation around the longitudinal axis is also within the scope of the disclosure.
- the shape of the side surface of at least the recess and of the outer perimeter of the inlay, or of the inner perimeter of the inlay and of the protuberance has to be circular, wherein all adjacent side surfaces can have a circular shape as well.
- Two-dimensional surface contacts refer to at least two surfaces that come in contact as they have corresponding shapes so that not only punctual or linear contacts take place. This means that a surface does not have to be plane, but shall also have a curved form or a combination of plane and curved as long as a two-dimensional contact of the surfaces will be achieved at rotation around the respective axis, including at maximum possible rotation.
- the three spatial axes shall be defined as “sagittal rotational axis” for the extension and flexion function within the disc space, going from the front to the back through the body or vice versa.
- the rotation around the sagittal axis is in the dorsal and ventral (dorso-ventral) direction.
- the bending function to the right and left side of the disc space is performed around the "frontal rotational axis" going from the right to the left of the body or vice versa.
- the "longitudinal axis" is for the right/left axial rotation, meaning the rotation around the vertical axis running in cranio-caudal direction of the body. This rotation is also designated as "axial rotation”.
- a “sagittal section” or a “sagittal view” describes a view from lateral, because the cutting plane runs vertically from the front to the back or vice versa.
- frontal is synonymous with “ventral” and “anterior” and the term “back” with “dorsal” and “posterior”.
- a “frontal section” or the “frontal view” is a vertical section from the right lateral side to the left lateral side of a body or vice versa
- lateral stands for sidewise and latero-lateral means from one side to the other side, from the right to the left or vice versa.
- Sagittal and frontal sections are vertical sections as they both run in a vertical plane from cranial to caudal of the body and disc space or vice versa, but rotated at 90 degrees to each other.
- a view in the "transversal plane” or a “transversal section” shows a top-view onto the prosthesis and the cutting plane of the endplate of a vertebral body is a horizontal section.
- Both, a cutting plane or a rotation axis can be located or shifted centrally, right or left laterally, dorsally, ventrally, caudally or cranially. Additional cutting planes and rotation axes can be angled to each other and do not necessarily have to be perpendicular to each other.
- corresponding with respect to articulating sliding surfaces or side surfaces designates not only congruent convexities and concavities or other facing sliding surfaces, but also convex and concave or otherwise shaped surfaces with tolerances between each other, thus designating articulation and other sliding surfaces, which are not completely congruent.
- the chosen materials and shapes can cause such "deviations” or tolerances regarding the articulation or other facing and sliding surfaces of corresponding articulating and sliding components on the one hand.
- articulating and other facing and sliding surfaces are not totally congruent, for instance in order to define directly the maximum possible or a limited rotation or motion of the articulating sliding partners and other parts of the prosthesis or to allow abrasion to be transported out of the articulating surfaces and side surfaces. Such tolerances may also be useful to transport body fluids or other material through the surfaces.
- the prosthesis according to the present invention provides the possibility to define - in the meaning of allowing or preventing - the rotation around each axis by the interaction of the side surfaces of the recess with the surfaces of the outer perimeter of the inlay and/or the surfaces of the inner perimeter of the inlay with the side surfaces of the protuberance. Both interactions can be used to define the rotation around the sagittal, frontal and longitudinal axis, but for a limitation of rotation around the longitudinal axis, the use of the interaction between the side surfaces of the recess and the side surfaces of the outer perimeter of the inlay is more suitable.
- the shape or design of the mentioned parts of the prosthesis according to the disclosure has only to be adapted to the physiological conditions with respect to one of a dorso-ventral, latero-lateral or right/left and craniocaudal rotational direction, under consideration of a combined or simultaneous translation in the horizontal plane or section.
- An edge indicates an area located between the outer rim of the respective sliding partner and the articulation area.
- An edge surrounds the articulation area, namely convexity and concavity, completely or partly.
- the edges of the respective sliding partners run horizontally and/or at an incline and have a plane or curved surface. It is essential for the shape of the surfaces of the edges, that during terminal inclination of the sliding partners towards each other a gap-closure across a maximum possible area between the edges of the sliding partners is achieved. In case that the edges do not have a plane surface, they shall have in any case to be designed in such a way that during gap-closure, a maximum maximal? possible two-dimensional contact arises between them.
- An edge does otherwise not necessarily directly begin next to the articulation surface of a sliding partner. It is also within the scope of the present disclosure that there is a transition area or even a gap between articulation surface and surrounding edge.
- edges surrounding at least two facing articulation surfaces shall also not be understood as articulation within the meaning of the present disclosure.
- Such contacts although they might comprise sliding and result in a limitation of the range of motion of the particular sliding partners along at least one of the three axes, do not contribute or take place within an articulation area according to the disclosure.
- a spherical ball-and-socket joint has no limitation regarding the vertical or axial rotation with respect to the two parts of the joint, but such a joint provides good premises for an optimal uptake of pressure during a gap closure of two-dimensional facing surfaces of two adjacent sliding partners.
- the present disclosure provides a design for a ball-and-socket joint without an unlimited rotation around the vertical resp. longitudinal axis.
- the arrangement of an inlay into a recess of the convexity or concavity between two sliding partners permits the limitation of axial, but also of sagittal and frontal rotation.
- the design of the disclosed prosthesis makes use of the advantages of a spherical ball-and socket shaped articulation area, but is not restricted to such a shape of the convexity and concavity.
- Another advantage of a prosthesis according to the disclosure is, that the inlay is protected against luxation due to its position within a recess of convexity or concavity, respectively.
- a protuberance is not necessarily a hemisphere but can be derived from a hemisphere by vertically cutting it at two opposing sides or by stretching a hemisphere along one axis.
- a prosthesis according to the disclosure enables a coupled motion around at least two of the above defined axes, wherein the degree of motion shall be adapted to the average physiological range of motion within the corresponding segment of the cervical or lumbar spine.
- the shape of the corresponding limiting elements of the prosthesis shall especially take the facet joints and their degree of maximum range of motion into account, in order to prevent non-natural abrasion, degeneration and disease of the facet joints.
- edges which surround the articulation area play an important role.
- the limitation of extension, flexion and lateral bending to the right and left may also be limited by surface contacts of edges of adjacent sliding partners, even in combination with the shape of the corresponding components of the articulation area, namely the shape and size of the convexity, the concavity, the inlay and the protuberance.
- the edges may comprise soft or flexible material to fulfil such a function.
- a further non-limiting advantage of an intervertebral disc prosthesis, as per the disclosure, is that, in certain embodiments, in addition to its approximated angles of motion, which come close to the natural degrees of motion, the rotation is limited by contact areas of the side surfaces of the recess and the outer perimeter of the inlay and/or of the side surfaces of the inner perimeter of the inlay and the side surfaces of the protuberance.
- the present invention provides an intervertebral disc prosthesis that can be adapted on segmental pre-conditions by choosing a sliding partner with an appropriate recess, an appropriate inlay and a fitting protuberance of the corresponding sliding partner from a set of existing parts or components.
- the articulating and/or side surfaces of the sliding partners may be firmly but reversible fixed to the sliding partners.
- at least the upper and lower sliding partner can stay in place, but the inlay can be changed for further motion retaining or limiting function or if needed for fusion of the spinal segment.
- new parts may be implanted for allowing motion to dorsal and ventral direction as well as craniocaudal axial rotation, but for allowing no lateral bending to avoid an angled disc space in the frontal view.
- the prosthesis according to the invention allows also to prevent any motion or rotation of the three parts to each other, by choosing only form-fitting components, so that there is no space between recess and inlay and the cut-out of the inlay is in a form-fitting contact with all four side surfaces of the protuberance. Such a blocking of any motion can be easily achieved by simply exchanging the inlay.
- a prosthesis according to the disclosure is suitable for the equalisation of a lordosis of the cervical or lumbar spine. In case there is an angle of the outer sides of the upper and/or lower sliding partner in a frontal view, a prosthesis according the disclosure is suitable for equalisation of a scoliotic spinal lumbar or cervical segement.
- the centre of rotation can be shifted dorsally for up to 3 mm in order to adapt the centre of rotation to the physiological situation or to compensate a dysfunction within the respective intervertebral space.
- Figure 1 shows different views of a three-component intervertebral disc prosthesis for the cervical spine.
- Fig. 1a illustrates an exploded perspective view of the prosthesis
- Fig. 1b an exploded side view
- Fig. 1c shows the prosthesis in an assembled status.
- Figs. 1d and 1e show sagittal and frontal section views as indicated by the corresponding section lines in Fig. 1c .
- the prosthesis comprises three distinct parts or components: an upper sliding partner 1, a lower sliding partner 2 and an inlay 3 located in a recess 7 of the lower sliding partner 2.
- the two section views show how the three components of the prosthesis are assembled.
- the upper sliding partner 1 has a protuberance 4 with its basis or origin in the concavity 5 of the inner side of the upper sliding partner 1 (see also Figs. 2h and 2j ).
- the protuberance 4 fits into the cut-out of the inlay 6. Both, the inlay 3 and the protuberance 4 are located in the recess 7 that is positioned within the convexity 8 of the inner side of the lower sliding partner 2.
- the sagittal section view in Fig. 1d shows that small gaps 9, 10 are situated between the side surfaces of the protuberance 4 and the corresponding facing side surfaces of the inlay 3. Furthermore, the concavity 5 of the upper sliding partner 1, the upper 11 and lower 12 sides of the inlay 3, the tip of the protuberance 13, the convexity 8 of the lower sliding partner 2 and the bottom 14 of the recess 7 all have curved surfaces. Thus, there is the possibility of a limited rotational movement around the frontal axis between the upper and the lower sliding partner 1, 2, corresponding to extension and flexion of the spinal unit where the prosthesis is implanted. Furthermore, the sagittal section view in Fig.
- FIG. 1d shows that the outer sides of the upper and lower sliding partners 1, 2 are slightly angled, providing an equalisation of the lordosis of the disc space. Anteriorly, the prosthesis is slightly higher than posteriorly. Moreover, Fig. 1d shows that the centre of rotation for extension and flexion is placed posteriorly, towards the physiological centre of rotation of the functional spinal unit.
- FIG. 1e shows a similar assembly.
- gaps 15, 16 are located between the side surfaces of the outer perimeter of the inlay 3 and the respective facing side surfaces 17 of the recess 7.
- the aforementioned rotational movements are limited by the embodiment of the prosthesis. Obviously, the different rotational movements are stopped as soon as a) the protuberance 4 and the inlay 3 get in touch with each other, b) the inlay 3 gets in contact with the side surfaces 17 of the recess 7, or c) the edge 18 of the upper sliding partner 1 and the edge 19 of the lower sliding partner 2 contact each other.
- Fig. 2 depicts different top, perspective and bottom views of the prosthesis in different states of assembly as well as different views of the inlay 3.
- the prosthesis is disassembled step by step.
- Fig. 2a shows a top view of the entire prosthesis
- Fig. 2b shows the inlay 3 and the lower sliding partner 2
- Fig. 2c shows the lower sliding partner 2 alone.
- Figs. 2d, 2e and 2f show the same states of assembly in different perspective views.
- Fig. 2g shows a bottom view of the inlay 3 and the upper sliding partner 1
- Fig. 2h shows the upper sliding partner 1 alone.
- Figs. 2i and 2j show the same configurations in two perspective views.
- Figs. 2k - 2o show perspective, top, front, bottom and side views of the inlay 3.
- the upper side 11 of the inlay 3, the convexity 8 of the inner side of the lower sliding partner 2 and the concavity 5 of the inner side of the upper sliding partner 1 have the same radius of curvature.
- all three aforementioned surfaces lie on the same sphere S 2 as indicated by the dotted circles in Figs. 1d and 1e .
- the lower side 12 of the inlay 3, the bottom 14 of the recess 7 and the tip of the protuberance 13 have the same radius of curvature. All three surfaces are located on the same sphere S 1 as indicated by the dotted circles in Figs. 1d and 1e.
- S 1 has a smaller radius than S 2 , but both spheres have the same centre point.
- Figs. 2k-o especially Fig. 21 , show that all four side surfaces of the outer perimeter of the inlay are slightly angled. There is an angle 20 in the posterior side surface of the outer perimeter, an angle 21 in the anterior side surface of the outer perimeter, an angle 22 in the right side surface of the outer perimeter, and an angle 23 in the left side surface of the outer perimeter. As will be explained below, these angles provide a small amount of clearance that is needed for allowing a combined axial rotation of the inlay 3 and the upper sliding partner 1 around the longitudinal axis.
- Figs. 3a-d show the prosthesis with maximum extension. It is clearly visible that a further extension is prevented because several surfaces get in contact with each other: the back side of the protuberance 4 contacts the corresponding surface of the cut-out of the inlay 6 (thus closing the posterior gap 10 and widening the anterior gap 9), and the edges 18 and 19 of the upper and lower sliding partners 1, 2 get in contact with each other.
- Figs. 4a-d show the prosthesis with maximum flexion. Again, further flexion is prevented by the fact that a side surface of the protuberance 4 gets in touch with the corresponding surface of the inner perimeter the inlay 3 (thus closing the anterior gap 9 and widening the posterior gap 10), and the edges 18 and 19 of the upper and lower sliding partners 1, 2 touch each other.
- Figs. 5a-d show the prosthesis in the state of maximum right lateral bending. Further bending is inhibited as the right side surface the perimeter of the inlay touches the right side of the recess (thus closing the right lateral gap 15 and widening the left lateral gap 16) and as the edges 18 and 19 of the upper and lower sliding partners 1, 2 touch each other.
- Figs. 6a-e show the prosthesis in the state of maximum right axial or longitudinal rotation. Further axial rotation is inhibited by the fact that the posterior side of the perimeter of the inlay 3 touches the posterior side of the recess 7 and the anterior side of the perimeter of the inlay 3 touches the anterior side of the recess 7 (compare Figs. 6b, c, and e ). During axial rotation, both the upper sliding partner 1 and the inlay 3 rotate around the longitudinal axis. Like the centre of rotation for extension and flexion, the centre of axial rotation is also placed dorsally, closer to its physiological location (compare Fig. 6e ).
- Fig. 7 shows (in two dimensions) schematically the basic construction of the prosthesis.
- the outer part 24 that corresponds to the lower sliding partner 2.
- the outer part 24 comprises (within an opening that corresponds to the recess 7) a middle part 25 that corresponds to the inlay 3.
- the middle part 25 finally comprises an inner part 26 that corresponds to the protuberance 4.
- the anterior and posterior gaps 9 and 10 and the lateral gaps 15 and 16 correspond to the gaps shown in the preceding figures. If the outer part 24 is fixed in space, both the middle 25 and the inner part 26 can only translate within certain limits.
- An upward translation of the inner part 26 corresponds to an extension of the prosthesis, and a downward translation to a flexion.
- Fig. 8 shows the same principle of construction as Fig. 7 . However, all parts have been rotated by 90°. Now, lateral translations of the inner part 26 would correspond to lateral bending, and upward and downward translations of the inner part 26 and the middle part 25 together would correspond to extension and flexion.
- Fig. 9 finally shows an exact two-dimensional scheme of the prosthesis that has been described before.
- the middle part 25 has angled side surfaces, allowing a limited axial rotation of the middle part 25 within the outer part 24.
- the four angles 20 - 23 correspond to the angles of the inlay 3 shown in Fig. 21 .
- the middle 25 and inner part 26 can only rotate together, as there is no room for the inner part 26 to rotate separately.
- the middle part 25 can only translate horizontally within the outer part 24, and the inner part 26 can only translate vertically within the middle part 25.
- the amounts of horizontal and vertical translation as well as axial rotation of the inner 26 and middle part 25 can all be defined and limited independently.
- Fig. 9 show various possibilities of combined translations and rotations of the inner 26 and middle part 25. As can be seen, upwards and downwards translations are independent of lateral translations, and both types of translation are independent of axial rotations.
- Fig. 10 shows another scheme that allows the amounts of possible translations and rotations to be defined independently.
- the inner part 26 which can both translate and rotate within the middle part 25.
- Fig. 11 shows yet another similar possibility. This time, both the inner 26 and the middle part 25 are allowed to rotate.
- Fig. 12 shows a prosthesis which does no longer limit the axial rotation around the longitudinal axis.
- the protuberance which was roughly shaped like the frustum of a pyramid before, is now shaped like the frustum of a cone 27.
- the cut-out 28 in the inlay has been adapted for acceptance of the new shape of the protuberance 27.
- Fig. 13 a similar construction is depicted.
- the outer perimeter of the conical inlay 29 is shaped like the frustum of a cone, and the shape of the recess 30 in the lower sliding partner 2 has been adapted accordingly. As before, this construction does not limit the axial rotation.
- Fig. 14 shows a prosthesis that is very similar to the prosthesis shown in Figs. 1-6 .
- the major difference is that the length of the protuberance has been maximized in Fig. 14 .
- the tip of the extended protuberance 31 now lies within a separate recess, a hole, 32 in the original recess 7, increasing the total vertical overlap of the upper and lower sliding partner 1, 2 for even more safty of the prosthesis against luxation.
- Fig. 15 shows a prosthesis, where the places of the protuberance 4 and the recess 7 have been exchanged.
- the recess 33 is placed into the concavity 5 of the upper sliding partner 1, and the protuberance 34 is part of the convexity 8 of the lower sliding partner 2.
- the functions of the recess 33, the protuberance 34 and the inlay 3 remain the same and this prosthesis is also based on the construction scheme shown in Fig. 9 et sqq.
- Fig. 16 shows a prosthesis for the lumbar spine comprising five parts: an upper 35 and a lower 36 sliding partner each having a protuberance 4, two identical inlays 3 and a single middle sliding partner 37 having two identical recesses 7, one on its upper and one on its lower side. If this prosthesis would be split in half by a horizontal plane lying in the centre of the middle sliding partner 37, one would essentially get two identical prostheses that would look very similar to the prostheses shown in Figs. 1-6 .
- the upper and lower sliding partner 35 and 36 correspond to the inner side of the upper sliding partner 1 of the previous prosthesis
- the upper and lower surfaces of the middle sliding partner 37 correspond to the inner side of the lower sliding partner 2 of the previous prosthesis.
- edge 38 of the middle sliding partner 37 that has the shape of a dovetail (as can be seen in the two section views), i.e. its vertical thickness increases continuously in the direction of the periphery.
- the edges of the upper and lower sliding partners 35 and 36 are formed accordingly, i.e. their thicknesses decrease in the direction of the periphery.
- Figs. 17-20 show different means of providing a good fixation between sliding partners and adjacent vertebrae.
- a cross-like process is shown.
- Both the latero-lateral 39 and antero-posterior arm 40 of the cross are shaped like arcs, i.e. they are higher in their middles than at their ends, according to the often concave endplates of the vertebral bodies.
- the latero-lateral cross arm 39 is slightly higher than the anteroposterior arm 40, to have a step by step cutting through the bone of the vertebral endplates for making fixation easier and safer. It is more important to avoid an antero-posterior luxation of the prosthesis compared to a latero-lateral dislocation of the prosthesis, so that the cross arm from the right to the left is slightly higher.
- Fig. 18 shows a similar construction.
- the latero lateral arm 39 is still slightly higher than the antero posterior arm 40. Additionally, there are now two holes 41 in the laterolateral arm 39 for the acceptance of instruments during implantation of the prosthesis. Said means for the acceptance of instruments facilitate also explanation and an exact positioning of a sliding partner.
- Fig. 19 shows a means of fixation comprising a cross-like process and four spikes 42.
- Fig. 20 shows the outer face of a sliding partner having six spikes 42, with the two spikes 42 in the centre being slightly longer than the spikes 42 in the periphery to compensate the concave shape of the endplate of a vertebral body.
- Fig. 21 shows the octagonal shapes of two prosthesis endplates.
- the smaller shape 43 is intended for use in cervical implants, and the larger shape 44 for use in lumbar implants.
- the four relevant anatomical directions are indicated in the figure.
- the shapes of the prosthesis endplates are designed to both yield a large contact area between prosthesis endplates and adjacent vertebrae endplates and to be geometrically simple. Partial plane sides facilitate fixation of instruments for implantation via anterior, antero-lateral (lumbar spine only) and lateral (lumbar spine only) approach.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Description
- The present invention relates to an intervertebral disc prosthesis for the total replacement of an intervertebral disc of the cervical and lumbar spine.
- The idea of function-retaining artificial replacements for intervertebral discs is younger than replacements of artificial joints of extremities, but nonetheless more than 50 years old [Büttner-Janz, Hochschuler, McAfee (Eds.): The Artificial Disc. Springer Verlag, Berlin, Heidelberg, New York 2003]. It is a response to biomechanical considerations, unsatisfactory results of fusion surgeries of the cervical and lumbar spine, disorders adjacent to fused motion spinal segments, and the development of new materials with better sliding properties and greater longevity.
- By means of function-retaining disc implants it is possible to avoid fusion surgery, i.e. to maintain, to restore or to improve the mobility within the intervertebral disc space. In an in-vitro experiment it is possible to achieve a normalization of the biomechanical properties of the spinal motion segment to a large extent through the implantation of an artificial intervertebral disc
- Presently, many intervertebral function retaining disc implants are clinically used. Total disc replacement on the lumbar spine started with the CHARITÉ Artificial Disc, later followed by the PRODISC, the MAVERICK, the FLEXICORE, the MOBIDISC, the KINEFLEX; the ACTIV L, the XL-TDR, the DYNARDI, the PHYSIO-L, the INMOTION, the M6L, the FREEDOM and further disc prostheses. On the cervical spine many function retaining disc implants are known as well, as for example the BRYAN, the PRESTIGE, the PRODISC-C, the KINEFLEX C, the MOBIC, the ACTIV C, the DISCOCERV, the DISCOVER, the PCM, the CERVICORE, the M6C, the GALILEO, the GRANVIA, the NUNEC, and the BAGUERA C.
- There are different classifications of cervical and lumbar total disc prostheses, according to the number of articulation partners, and according to biomechanical considerations and direct function-related conditions within the cervical as well as the lumbar intervertebral space. At present, prostheses with two, one or no articulation surface(s) are used. Depending on the number of functional components and the material, the prostheses have biomechanically a fixed or mobile centre of rotation. Whereas prostheses with two sliding surfaces having a mobile centre of rotation are more physiologically designed, prostheses with only two functional related partners and one sliding surface are able to better stabilize the spine in multi-segmental implantations.
- The artificial discs can be implanted via a ventral, ventro-lateral, lateral or dorsal approach. Depending on the approach the artificial discs are constructed with different shape, size and means for instruments. Different sizes of disc prostheses base on the size of the prosthetic plates, different heights on the height of the prosthetic components, and different angles of lordosis on the angles of prosthetic components. The trapezium natural disc shape is primarily responsible for the lordosis of the lumbar and cervical spine, further the vertebral bodies contribute to a minor extent to the lordosis. During prosthetic replacement of an intervertebral discs the lordosis should be maintained or reconstructed. A hyperlordotic angle of the operated spinal segment, because in the longer run a painful facet joint degeneration can be expected, is to avoid. A hyperlordotic disc space is a pre-condition for reduced segmental range of motion as well. In that case the target prevention of the adjacent motion segment against disc degeneration can not be fulfilled.
- The common material for sliding disc implants is metal in combination with polyethylene or metal-to-metal. In the meantime partly new materials for total discs are used including for coating of the disc implants to achieve the opportunity for MRI diagnostics as well as better sliding properties of the implants, to avoid any revision surgery.
- A healthy intervertebral disc allows in its interaction with other elements of a functional spinal unit limited motion at different ranges of motion in extension and flexion as well as in lateral bending to the right and left and in axial rotation. Motion to the front and back is combined with rotational motion, and side motion is combined with other motion directions; it is a matter of so called "coupled motion". The motion amplitudes of healthy intervertebral discs are different, with respect to extension (bending back) and flexion (bending forward) as well as to the lateral bending to the right and left and axial rotational motion. Although of common basic characteristics, there are differences between the motion amplitudes of the cervical and lumbar spine as well.
- All prostheses for total disc replacements which are currently clinically used do not cover completely the natural function of a cervical or lumbar motion segment, including the natural range of motion. In the long-term experience facet joint degeneration and facet joint disease at the same level of disc implantation and/or in the neighbourhood may occur as a result of prosthetic disc hyper-mobility and connected dysfunction of the facet joints. Abrasion of the facet joints (arthritis, spondylarthritis) may occur, with a formation of osteophytes. As a result the irritation of neural structures is possible as well as directly caused pain in the facet joints.
- There is so far no evidence that shock absorption is needed within the spine to save tissue or specific anatomical structures; the facet joints are usually not horizontally loaded. The main function of shock absorption seems to enable a motion within the disc space because the natural disc does not have typical joint partners like ball and socket. By having the shock absorption of the disc the intervertebral angle can be changed without reducing significantly the disc height at same time.
- Some disc prostheses include shock absorption to its function, but again without to simulate the segmental physiological range of motion. Postoperatively kyphotic intervertebral disc spaces with dangerous potential for facet joint hyper-mobility and facet joint degeneration and disease can be observed. So the original aim of a function retaining disc replacement to achieve a painless or pain free stabilization of the spinal motion segment by implantation of the disc prosthesis is not yet fulfilled in the long run.
- The longest experience exists with the Charité prosthesis, which is the subject matter of
andDE 35 29 761 C2US 5,401,269 specifications. This prosthesis was developed in 1982 by Dr. Schellnack and Dr. Büttner-Janz at the Charité University Hospital in Berlin and was later on named SB Charité prosthesis. In 1984 the first surgery took place. The intervertebral disc prosthesis was further developed into model III and has been implanted worldwide (DE 35 29 761 C2 ,US 5,401,269 ) since 1987; it is replaced by the INMOTION, with same functional principle of a three-part metal to polyethylene prosthesis, with two identical spherical articulation surfaces and a mobile centre of rotation. - Due to a simultaneous translation movement of adjacent vertebrae, the centre of rotation changes its position constantly in case of inconstant centre of rotation. The prosthesis according to
DE 35 29 761 C2 shows a construction which differs relative to other available types of prostheses which are build like a ball and socket joint and as a result move around a defined localized centre or rotation. By virtue of the three-part assembly of the prosthesis according to , with two metallic endplates and the interpositioned freely mobile polyethylene sliding core, the course of motion of a healthy intervertebral disc of the human spine is mimicked as far as possible, however without the exact motion amplitudes in the specific motion directions.DE 35 29 761 C2 - Document
discloses an intervertebral disk prosthesis arranged within the intervertebral space. The disclosed prosthesis is stabilised by providing a translation or rotations stop to its nucleus or including an angular correction between its plates in contact with vertebra or a combination of these characteristics. Parts external to the nucleus and using contact surfaces perpendicular to their contact directions obtain the disclosed stop. Such a stop allows a better stability together with an enforcement of such an angular correction, induced by an angle between load bearing surfaces of the nucleus.WO 02/089701 A2 - In document
WO 2009/055796A1 artificial disk prosthesis is disclosed comprising superior and inferior and plates and a nucleus position between articular surfaces of the end plates. The end plates may have planar bone engagement surfaces with a plurality of self-cutting teeth. The articular surfaces of the end plates may be planar or include a flat end portion. The nucleus includes superior and inferior articular surfaces, which may comprise flat end portions such that when the articular surfaces of the nucleus and the end plates are placed in a preferred orientation, the flat end and/or planar portions are aligned. A prosthesis according to this document may provide flection/extension, anterior/posterior translation, lateral banding, and/or axial rotation degrees of freedom. One embodiment comprises a prosthesis with the first joint providing flexion/extension and anterior/posterior translation, and a second joint providing lateral bending and axial rotation. - Document
US 2007/0233262A1 discloses an endoprosthesis including a first articulating member formed with a generally concave articulating surface, a second articulating member formed with a generally convex articulating surface which articulates with the concave articulating surface, the first and second articulating member each having a generally planar attachment surface for attachment to spine structure, and limiting members formed in each of the convex and concave articulating surfaces that made with each other and limit the amount of relative movement between the convex and concave articulating surfaces. - There is a need for an intervertebral disc prosthesis for the cervical and lumbar spine that enables physiological motion of high quality and physiological quantity. The three-dimensional range of motion within the intervertebral space should mimic the coupled motion of a natural disc, including the physiological translation in the sagittal and frontal view. In case of special anatomical and/or biomechanical local conditions or in case of revision surgery, a disc prosthesis is sometimes needed which does not allow motion to all directions postoperatively. A disc prosthesis for implantation via a lateral approach is needed as well.
- In case of any problem after total disc replacement, finally a fusion surgery is often carried out, sometimes including removal of the disc prosthesis. Especially in disc prostheses with big anchoring means for fixation on the vertebral body the removal of the implanted and ingrown disc prosthesis leads to the need of bone removal at same time to make the explantation of the disc prosthesis possible. Depending on that issue, a combined usable total disc prosthesis is needed for preservation of motion and if needed for fusion surgery according the surgeon's decision pre- or intraoperatively, to exchange a prosthetic component without removal of the fixed prosthetic plates for having no intervertebral motion postoperatively.
- There are only a very few prosthesis with luxation-protected components known, as for example the FLEXICORE. Having a prosthesis which also includes physiological translation and which avoids any luxation of components at e.g. a whiplash after accidents via its desing or construction, would be a big new advantage of total disc replacement, allowing more sportive activities or even surgeries on pilots.
- The present disclosure provides an intervertebral disc prosthesis for the total replacement of an intervertebral disc within the cervical or lumbar spine, comprising at least one sliding partner adapted to firmly assemble with its outer surface with an upper vertebral body and a further adjacent sliding partner adapted to firmly assemble with its outer surface with a lower vertebral body, and the adjacent sliding partners articulate via articulation surfaces on their facing inner sides, comprising an articulation area with a convexity on one sliding partner and a concavity on the other sliding partner, wherein a first of the adjacent sliding partners has a recess with a bottom surface and four side surfaces, wherein the recess is positioned within the convexity or concavity of the first sliding partner, and a second of the adjacent sliding partners, which articulates with the first sliding partner has a protuberance with four side surfaces and a tip surface, wherein the protuberance is arranged within the concavity or convexity of the second sliding partner, and an inlay comprises a cut-out for acceptance of the protuberance, wherein the inlay is positioned within the recess of the first of the adjacent sliding partners, and the inlay has an upper convex or concave articulation surface surrounding the cut-out, having an identical radius of curvature with the convex or concave articulation surface of the first of adjacent sliding partners, and a lower concave or convex articulation surface surrounding the cut-out, having an identical radius of curvature with the concave or convex articulation surface of the bottom of the recess of the first of adjacent sliding partners, and four outer side surfaces comprising an outer perimeter of the inlay facing the four side surfaces of the recess of the first of the adjacent sliding partners, and four inner side surfaces comprising an inner perimeter of the inlay facing the four side surfaces of the protuberance of the second of the adjacent sliding partners, wherein a range of motion between the first and second of the adjacent sliding partners in relation to each other around a sagittal, frontal and longitudinal axis is defined by the radius of curvature of the convexity and concavity, the size and shape of the recess, of the inlay, of the cut-out and of the protuberance, and the size of the space between the side surfaces of the recess and the outer perimeter of the inlay and/or between the inner perimeter of the inlay and the side surfaces of the protuberance.
- At least one articulation surface can be partly or completely surrounded by an edge to maximize the motion limiting contact area at final range of motion to each direction in the sagittal and frontal axis.
- The edge surrounding at least one articulation surface shall be made of a flexible material enabling soft limitation at a final range of motion to each direction in the sagittal and frontal axis.
- The shape of the recess, of the outer and inner perimeter of the inlay and of the protuberance shall be rectangular, round, cylindrical, pyramidal, conical including a truncated pyramid and conus, or a combination of the afore mentioned shapes. The shape of the side surfaces of the recess, the shape of the side surfaces comprising the outer and inner perimeter of the inlay and the shape of the side surfaces of the protuberance shall be plane, curved, angled or round or a combination thereof.
- Convexity and corresponding concavity can have a spherical, cylindrical, torus-like, helical and/or conical shape or a combination thereof, and convexity and corresponding concavity can have identical or different radii of curvature.
- It is further intended that size and shape of the recess and of the outer perimeter of the inlay can be constructed in such a manner that rotation of adjacent sliding partners around either the sagittal or frontal axis is possible. Size and shape of the recess and of the outer and inner perimeter of the inlay can also be constructed in such a manner that additionally a limited rotation around the longitudinal axis is possible.
- In a further embodiment of the present disclosure, size and shape of the inner perimeter of the inlay and of the protuberance can be constructed in such a manner that rotation of adjacent sliding partners around either the sagittal or frontal axis is possible. Size and shape of the inner perimeter of the inlay and of the protuberance can also be constructed in such a manner that additionally a limited rotation around the longitudinal axis is possible.
- It is further intended that the shape of the recess and the outer perimeter of the inlay and/or the shape of the inner perimeter of the inlay and the protuberance may allow unlimited rotation around the longitudinal axis.
- Two opposing side surfaces of the protuberance can be in a form-fitting manner in contact with two opposing side surfacess of the inner perimeter of the inlay and/or two opposing side surfaces of the outer perimeter of the inlay can be in a form-fitting manner in contact with two opposing side surfaces of the recess.
- The tip surface of the protuberance may be concave- or convex-shaped with a radius of curvature corresponding to the concave or convex curvature of the bottom surface of the recess of the first of the adjacent sliding partners, enabling the articulation of tip and bottom surface.
- The tip surface of the protuberance may also be articulating with a surface of a hole arranged below the bottom surface of the recess, and the tip surface of the protuberance may have a radius of curvature corresponding to the facing radius of curvature of the bottom surface of the hole.
- It is intended that each sliding partner and/or the inlay comprise the same or different material or are coated with the same or different material.
- Each sliding partner and/or the inlay may be constructed in one piece or firmly, but reversibly assembled of at least two pieces.
- In a further embodiment of the present disclosure, the inlay and/or at least one of the sliding partners or a part of it can be made of a flexible material to damp an intervertebral shock or applied load.
- The upper and/or lower sliding partner may have on their outer surfaces for assembly with a vertebral body at least one cross-shaped anchor, optionally in combination with anchoring teeth.
- It is further intended that the cross-shaped anchor and/or the outer surfaces of the upper and lower sliding partner for assembly with a vertebral body can be means or have means for an instrument to hold the prosthesis during implantation and explantation.
- In a further embodiment of the present disclosure a middle sliding partner with an upper and lower articulation surface is arranged between the inner sides of the upper and lower sliding partner, with the upper articulation surface of the middle sliding partner articulating with the articulation surface of the facing inner side of the upper sliding partner and the lower articulation surface of the middle sliding partner articulating with the articulation surface of the facing inner side of the lower sliding partner, resulting in an upper and a lower articulation area, wherein an inlay is arranged within upper and/ or lower articulation area and an articulation area with inlay is constructed as specified above. The articulation areas above and below the middle sliding partner may be constructed equally or different.
- The prosthesis provided by the invention is intended for primary total disc replacement enabling coupled physiological motion within the disc space between adjacent vertebrae via a ventral, ventro-lateral or lateral approach. The prosthesis is also intended for revision surgeries after former function retaining disc implantations, by insertion of a complete new disc prosthesis or by replacement or exchange of the inlay, if needed without for example lateral bending to the right and/or left postoperatively or with exclusion of any postoperative motion.
- The inlay of a prosthesis according to the present disclosure is protected against luxation due to its position within a recess of one of the adjacent sliding partners. An additional protuberance going through the inlay is protecting against luxation of the adjacent sliding partners.
- A prosthesis according to the invention comprises basically at least three parts or components, namely two sliding partners and one inlay. The arrangement of a middle sliding partner between the upper an lower sliding partner results in a prosthesis with four or five parts, namely three sliding partners and one or two inlays, depending on the arrangement of an inlay within the upper and/or the lower articulation area.
- With respect to the description and depiction of the presented invention an "articulation area" comprises facing articulation surfaces of adjacent sliding partners, which come into contact or articulate with each other. Thus, an articulation area comprises at least two articulation surfaces of adjacent sliding partners. Within the meaning of the present disclosure the parts of the prosthesis articulate via their convex and concave surfaces, comprising the convex and concave parts of the sliding partners, the upper and lower side of the inlay as well as the tip surface of the protuberance and the bottom surface of the recess or the surface of a hole below the bottom surface.. The term articulation surface is synonymous with the term sliding surface.
- The side surfaces of the recess, the side surfaces of the outer and inner perimeter of the inlay and the side surfaces of the protuberance do not articulate within the meaning of the present disclosure, although they are movable and get in contact or may slide onto each other. These surfaces and the spaces between them are used to determine the range of motion of the prosthesis in order to allow or prevent rotation around either the sagittal, frontal or longitudinal axis. So for example rotation around the frontal axis namely lateral bending to right and left can be excluded, when at same time rotation around the sagittal axis as extension and flexion movement and around the longitudinal axis as axial rotation movement is still allowed in a physiological range of motion. A prosthesis allowing unlimited rotation around the longitudinal axis is also within the scope of the disclosure. In order to achieve no limitation of motion around the longitudinal axis, the shape of the side surface of at least the recess and of the outer perimeter of the inlay, or of the inner perimeter of the inlay and of the protuberance has to be circular, wherein all adjacent side surfaces can have a circular shape as well.
- Two-dimensional surface contacts refer to at least two surfaces that come in contact as they have corresponding shapes so that not only punctual or linear contacts take place. This means that a surface does not have to be plane, but shall also have a curved form or a combination of plane and curved as long as a two-dimensional contact of the surfaces will be achieved at rotation around the respective axis, including at maximum possible rotation.
- The three spatial axes shall be defined as "sagittal rotational axis" for the extension and flexion function within the disc space, going from the front to the back through the body or vice versa. The rotation around the sagittal axis is in the dorsal and ventral (dorso-ventral) direction. The bending function to the right and left side of the disc space is performed around the "frontal rotational axis" going from the right to the left of the body or vice versa. The "longitudinal axis" is for the right/left axial rotation, meaning the rotation around the vertical axis running in cranio-caudal direction of the body. This rotation is also designated as "axial rotation".
- With respect to the present invention the three cutting planes shall be defined by the following terms: A "sagittal section" or a "sagittal view" describes a view from lateral, because the cutting plane runs vertically from the front to the back or vice versa.
- The term "frontal" is synonymous with "ventral" and "anterior" and the term "back" with "dorsal" and "posterior". A "frontal section" or the "frontal view" is a vertical section from the right lateral side to the left lateral side of a body or vice versa
- The term "lateral" stands for sidewise and latero-lateral means from one side to the other side, from the right to the left or vice versa.. Sagittal and frontal sections are vertical sections as they both run in a vertical plane from cranial to caudal of the body and disc space or vice versa, but rotated at 90 degrees to each other. A view in the "transversal plane" or a "transversal section" shows a top-view onto the prosthesis and the cutting plane of the endplate of a vertebral body is a horizontal section.
- Both, a cutting plane or a rotation axis can be located or shifted centrally, right or left laterally, dorsally, ventrally, caudally or cranially. Additional cutting planes and rotation axes can be angled to each other and do not necessarily have to be perpendicular to each other.
- The term "corresponding", with respect to articulating sliding surfaces or side surfaces designates not only congruent convexities and concavities or other facing sliding surfaces, but also convex and concave or otherwise shaped surfaces with tolerances between each other, thus designating articulation and other sliding surfaces, which are not completely congruent. The chosen materials and shapes can cause such "deviations" or tolerances regarding the articulation or other facing and sliding surfaces of corresponding articulating and sliding components on the one hand. On the other hand it may also be intended that articulating and other facing and sliding surfaces are not totally congruent, for instance in order to define directly the maximum possible or a limited rotation or motion of the articulating sliding partners and other parts of the prosthesis or to allow abrasion to be transported out of the articulating surfaces and side surfaces. Such tolerances may also be useful to transport body fluids or other material through the surfaces.
- Since the number of the three axes of rotation corresponds to the minimal number of the three articulation directions, the prosthesis according to the present invention provides the possibility to define - in the meaning of allowing or preventing - the rotation around each axis by the interaction of the side surfaces of the recess with the surfaces of the outer perimeter of the inlay and/or the surfaces of the inner perimeter of the inlay with the side surfaces of the protuberance. Both interactions can be used to define the rotation around the sagittal, frontal and longitudinal axis, but for a limitation of rotation around the longitudinal axis, the use of the interaction between the side surfaces of the recess and the side surfaces of the outer perimeter of the inlay is more suitable. Thus, the shape or design of the mentioned parts of the prosthesis according to the disclosure has only to be adapted to the physiological conditions with respect to one of a dorso-ventral, latero-lateral or right/left and craniocaudal rotational direction, under consideration of a combined or simultaneous translation in the horizontal plane or section.
- An edge, as per the invention, indicates an area located between the outer rim of the respective sliding partner and the articulation area. An edge surrounds the articulation area, namely convexity and concavity, completely or partly. The edges of the respective sliding partners run horizontally and/or at an incline and have a plane or curved surface. It is essential for the shape of the surfaces of the edges, that during terminal inclination of the sliding partners towards each other a gap-closure across a maximum possible area between the edges of the sliding partners is achieved. In case that the edges do not have a plane surface, they shall have in any case to be designed in such a way that during gap-closure, a maximum maximal? possible two-dimensional contact arises between them.
- An edge does otherwise not necessarily directly begin next to the articulation surface of a sliding partner. It is also within the scope of the present disclosure that there is a transition area or even a gap between articulation surface and surrounding edge.
- The contact of edges surrounding at least two facing articulation surfaces shall also not be understood as articulation within the meaning of the present disclosure. Such contacts, although they might comprise sliding and result in a limitation of the range of motion of the particular sliding partners along at least one of the three axes, do not contribute or take place within an articulation area according to the disclosure.
- A spherical ball-and-socket joint has no limitation regarding the vertical or axial rotation with respect to the two parts of the joint, but such a joint provides good premises for an optimal uptake of pressure during a gap closure of two-dimensional facing surfaces of two adjacent sliding partners. The present disclosure provides a design for a ball-and-socket joint without an unlimited rotation around the vertical resp. longitudinal axis. The arrangement of an inlay into a recess of the convexity or concavity between two sliding partners permits the limitation of axial, but also of sagittal and frontal rotation.
- The design of the disclosed prosthesis makes use of the advantages of a spherical ball-and socket shaped articulation area, but is not restricted to such a shape of the convexity and concavity. Another advantage of a prosthesis according to the disclosure is, that the inlay is protected against luxation due to its position within a recess of convexity or concavity, respectively. It has to be noted that a protuberance is not necessarily a hemisphere but can be derived from a hemisphere by vertically cutting it at two opposing sides or by stretching a hemisphere along one axis.
- A prosthesis according to the disclosure enables a coupled motion around at least two of the above defined axes, wherein the degree of motion shall be adapted to the average physiological range of motion within the corresponding segment of the cervical or lumbar spine. The shape of the corresponding limiting elements of the prosthesis shall especially take the facet joints and their degree of maximum range of motion into account, in order to prevent non-natural abrasion, degeneration and disease of the facet joints.
- In order to achieve the already mentioned and intended two-dimensional surface contacts, the edges which surround the articulation area play an important role. The limitation of extension, flexion and lateral bending to the right and left may also be limited by surface contacts of edges of adjacent sliding partners, even in combination with the shape of the corresponding components of the articulation area, namely the shape and size of the convexity, the concavity, the inlay and the protuberance. It is also intended that the edges may comprise soft or flexible material to fulfil such a function.
- A further non-limiting advantage of an intervertebral disc prosthesis, as per the disclosure, is that, in certain embodiments, in addition to its approximated angles of motion, which come close to the natural degrees of motion, the rotation is limited by contact areas of the side surfaces of the recess and the outer perimeter of the inlay and/or of the the side surfaces of the inner perimeter of the inlay and the side surfaces of the protuberance.
- The present invention provides an intervertebral disc prosthesis that can be adapted on segmental pre-conditions by choosing a sliding partner with an appropriate recess, an appropriate inlay and a fitting protuberance of the corresponding sliding partner from a set of existing parts or components.
- It is further intended that the articulating and/or side surfaces of the sliding partners may be firmly but reversible fixed to the sliding partners. In case of revision surgery at least the upper and lower sliding partner can stay in place, but the inlay can be changed for further motion retaining or limiting function or if needed for fusion of the spinal segment. If the revision surgery is carried out via a lateral or ventro-lateral approach new parts may be implanted for allowing motion to dorsal and ventral direction as well as craniocaudal axial rotation, but for allowing no lateral bending to avoid an angled disc space in the frontal view.
- The prosthesis according to the invention allows also to prevent any motion or rotation of the three parts to each other, by choosing only form-fitting components, so that there is no space between recess and inlay and the cut-out of the inlay is in a form-fitting contact with all four side surfaces of the protuberance. Such a blocking of any motion can be easily achieved by simply exchanging the inlay.
- In case that the outer sides of the upper and/or lower sliding partner are angled in a lateral view, a prosthesis according to the disclosure is suitable for the equalisation of a lordosis of the cervical or lumbar spine. In case there is an angle of the outer sides of the upper and/or lower sliding partner in a frontal view, a prosthesis according the disclosure is suitable for equalisation of a scoliotic spinal lumbar or cervical segement.
- It is also intended that the centre of rotation can be shifted dorsally for up to 3 mm in order to adapt the centre of rotation to the physiological situation or to compensate a dysfunction within the respective intervertebral space.
- The invention will be described by figures without being limited to the shown embodiments, the figures show:
- Fig. 1
- Different views of a three-component cervical prosthesis
- Fig. 2
- Different top views, perspective and bottom views of a prosthesis
- Fig. 3
- Prosthesis with maximum extension
- Fig. 4
- Prosthesis with maximum flexion
- Fig. 5
- Prosthesis with maximum bending to the right side
- Fig. 6
- Prosthesis with maximum axial rotation to the right side
- Fig. 7, 8, 9, 10, 11
- Two-dimensional top view schemes of the side surfaces of the recess, the outer and inner perimeter of the inlay and the protuberance, including the different spaces in between depending on the direction of motion
- Fig. 12, 13
- Prostheses without axial rotational limitation between the side surface of the inner perimeter of the inlay and of the protuberance, and between the side surface of the recess and the outer perimeter of the inlay
- Fig. 14
- Prosthesis with extended protuberance
- Fig. 15
- Prosthesis with exchange of the position of recess and protuberance
- Fig. 16
- Five-component prosthesis with additional middle sliding partner for lumbar spine
- Fig. 17 - 20
- Means of fixation of upper and lower sliding partner with the vertebral body
- Fig. 21
- Octagonal shape of endplates for cervical and lumbar spine
-
Figure 1 shows different views of a three-component intervertebral disc prosthesis for the cervical spine.Fig. 1a illustrates an exploded perspective view of the prosthesis,Fig. 1b an exploded side view, andFig. 1c shows the prosthesis in an assembled status.Figs. 1d and 1e show sagittal and frontal section views as indicated by the corresponding section lines inFig. 1c . The prosthesis comprises three distinct parts or components: an upper slidingpartner 1, a lower slidingpartner 2 and aninlay 3 located in arecess 7 of the lower slidingpartner 2. The two section views show how the three components of the prosthesis are assembled. The upper slidingpartner 1 has aprotuberance 4 with its basis or origin in theconcavity 5 of the inner side of the upper sliding partner 1 (see alsoFigs. 2h and 2j ). Theprotuberance 4 fits into the cut-out of theinlay 6. Both, theinlay 3 and theprotuberance 4 are located in therecess 7 that is positioned within theconvexity 8 of the inner side of the lower slidingpartner 2. - The sagittal section view in
Fig. 1d shows that 9, 10 are situated between the side surfaces of thesmall gaps protuberance 4 and the corresponding facing side surfaces of theinlay 3. Furthermore, theconcavity 5 of the upper slidingpartner 1, the upper 11 and lower 12 sides of theinlay 3, the tip of theprotuberance 13, theconvexity 8 of the lower slidingpartner 2 and the bottom 14 of therecess 7 all have curved surfaces. Thus, there is the possibility of a limited rotational movement around the frontal axis between the upper and the lower sliding 1, 2, corresponding to extension and flexion of the spinal unit where the prosthesis is implanted. Furthermore, the sagittal section view inpartner Fig. 1d shows that the outer sides of the upper and lower sliding 1, 2 are slightly angled, providing an equalisation of the lordosis of the disc space. Anteriorly, the prosthesis is slightly higher than posteriorly. Moreover,partners Fig. 1d shows that the centre of rotation for extension and flexion is placed posteriorly, towards the physiological centre of rotation of the functional spinal unit. - The frontal section view in
Fig. 1e shows a similar assembly. In this embodiment, however, 15, 16 are located between the side surfaces of the outer perimeter of thegaps inlay 3 and the respective facing side surfaces 17 of therecess 7. Thus, there is also the possibility of a limited rotational movement around the sagittal axis between the upper and the lower sliding 1, 2, corresponding to lateral bending of the spinal unit where the prosthesis is implanted.partner - The aforementioned rotational movements are limited by the embodiment of the prosthesis. Obviously, the different rotational movements are stopped as soon as a) the
protuberance 4 and theinlay 3 get in touch with each other, b) theinlay 3 gets in contact with the side surfaces 17 of therecess 7, or c) theedge 18 of the upper slidingpartner 1 and theedge 19 of the lower slidingpartner 2 contact each other. -
Fig. 2 depicts different top, perspective and bottom views of the prosthesis in different states of assembly as well as different views of theinlay 3. InFigs. 2a, 2b and 2c the prosthesis is disassembled step by step.Fig. 2a shows a top view of the entire prosthesis,Fig. 2b shows theinlay 3 and the lower slidingpartner 2 andFig. 2c shows the lower slidingpartner 2 alone.Figs. 2d, 2e and 2f show the same states of assembly in different perspective views.Fig. 2g shows a bottom view of theinlay 3 and the upper slidingpartner 1, andFig. 2h shows the upper slidingpartner 1 alone.Figs. 2i and 2j show the same configurations in two perspective views.Figs. 2k - 2o show perspective, top, front, bottom and side views of theinlay 3. - As can be seen in
Figs. 2b, c, e, f, g-j as well as in 1d and 1e, theupper side 11 of theinlay 3, theconvexity 8 of the inner side of the lower slidingpartner 2 and theconcavity 5 of the inner side of the upper slidingpartner 1 have the same radius of curvature. In fact, all three aforementioned surfaces lie on the same sphere S2 as indicated by the dotted circles inFigs. 1d and1e . Similarly, thelower side 12 of theinlay 3, the bottom 14 of therecess 7 and the tip of theprotuberance 13 have the same radius of curvature. All three surfaces are located on the same sphere S1 as indicated by the dotted circles inFigs. 1d and 1e. Obviously, S1 has a smaller radius than S2, but both spheres have the same centre point. -
Figs. 2k-o , especiallyFig. 21 , show that all four side surfaces of the outer perimeter of the inlay are slightly angled. There is anangle 20 in the posterior side surface of the outer perimeter, anangle 21 in the anterior side surface of the outer perimeter, anangle 22 in the right side surface of the outer perimeter, and anangle 23 in the left side surface of the outer perimeter. As will be explained below, these angles provide a small amount of clearance that is needed for allowing a combined axial rotation of theinlay 3 and the upper slidingpartner 1 around the longitudinal axis. -
Figs. 3a-d show the prosthesis with maximum extension. It is clearly visible that a further extension is prevented because several surfaces get in contact with each other: the back side of theprotuberance 4 contacts the corresponding surface of the cut-out of the inlay 6 (thus closing theposterior gap 10 and widening the anterior gap 9), and the 18 and 19 of the upper and lower slidingedges 1, 2 get in contact with each other.partners -
Figs. 4a-d show the prosthesis with maximum flexion. Again, further flexion is prevented by the fact that a side surface of theprotuberance 4 gets in touch with the corresponding surface of the inner perimeter the inlay 3 (thus closing theanterior gap 9 and widening the posterior gap 10), and the 18 and 19 of the upper and lower slidingedges 1, 2 touch each other.partners -
Figs. 5a-d show the prosthesis in the state of maximum right lateral bending. Further bending is inhibited as the right side surface the perimeter of the inlay touches the right side of the recess (thus closing the rightlateral gap 15 and widening the left lateral gap 16) and as the 18 and 19 of the upper and lower slidingedges 1, 2 touch each other.partners - In summary, during extension and flexion, the upper sliding
partner 1 rotates around both theinlay 3 and the lower sliding partner 2 (compareFigs. 3d and4d ). In contrast, during right and left lateral bending, both the upper slidingpartner 1 and theinlay 3 rotate around the lower sliding partner 2 (compareFig. 5d ). -
Figs. 6a-e show the prosthesis in the state of maximum right axial or longitudinal rotation. Further axial rotation is inhibited by the fact that the posterior side of the perimeter of theinlay 3 touches the posterior side of therecess 7 and the anterior side of the perimeter of theinlay 3 touches the anterior side of the recess 7 (compareFigs. 6b, c, and e ). During axial rotation, both the upper slidingpartner 1 and theinlay 3 rotate around the longitudinal axis. Like the centre of rotation for extension and flexion, the centre of axial rotation is also placed dorsally, closer to its physiological location (compareFig. 6e ). -
Fig. 7 shows (in two dimensions) schematically the basic construction of the prosthesis. There is anouter part 24 that corresponds to the lower slidingpartner 2. Theouter part 24 comprises (within an opening that corresponds to the recess 7) a middle part 25 that corresponds to theinlay 3. The middle part 25 finally comprises aninner part 26 that corresponds to theprotuberance 4. The anterior and 9 and 10 and theposterior gaps 15 and 16 correspond to the gaps shown in the preceding figures. If thelateral gaps outer part 24 is fixed in space, both the middle 25 and theinner part 26 can only translate within certain limits. An upward translation of theinner part 26 corresponds to an extension of the prosthesis, and a downward translation to a flexion. Lateral translations of both the middle 25 and the inner 26 part correspond to right and left lateral bending of the prosthesis. As can be seen inFigs. 7a - i all combinations of the different translations are possible. However, in contrast to the prosthesis that was described before, no axial rotations are possible. -
Fig. 8 shows the same principle of construction asFig. 7 . However, all parts have been rotated by 90°. Now, lateral translations of theinner part 26 would correspond to lateral bending, and upward and downward translations of theinner part 26 and the middle part 25 together would correspond to extension and flexion. -
Fig. 9 finally shows an exact two-dimensional scheme of the prosthesis that has been described before. Now, the middle part 25 has angled side surfaces, allowing a limited axial rotation of the middle part 25 within theouter part 24. The four angles 20 - 23 correspond to the angles of theinlay 3 shown inFig. 21 . Obviously, the middle 25 andinner part 26 can only rotate together, as there is no room for theinner part 26 to rotate separately. Furthermore, the middle part 25 can only translate horizontally within theouter part 24, and theinner part 26 can only translate vertically within the middle part 25. As a result, the amounts of horizontal and vertical translation as well as axial rotation of the inner 26 and middle part 25 can all be defined and limited independently. Thus, the amounts of extension, flexion, lateral bending and axial rotation allowed by the prosthesis can also be defined and limited independently. The eight bottommost pictures ofFig. 9 show various possibilities of combined translations and rotations of the inner 26 and middle part 25. As can be seen, upwards and downwards translations are independent of lateral translations, and both types of translation are independent of axial rotations. -
Fig. 10 shows another scheme that allows the amounts of possible translations and rotations to be defined independently. Here however, it is theinner part 26 which can both translate and rotate within the middle part 25. -
Fig. 11 shows yet another similar possibility. This time, both the inner 26 and the middle part 25 are allowed to rotate. -
Fig. 12 shows a prosthesis which does no longer limit the axial rotation around the longitudinal axis. In this prosthesis, the protuberance, which was roughly shaped like the frustum of a pyramid before, is now shaped like the frustum of acone 27. Furthermore, the cut-out 28 in the inlay has been adapted for acceptance of the new shape of theprotuberance 27. - In
Fig. 13 , a similar construction is depicted. Here, the outer perimeter of theconical inlay 29 is shaped like the frustum of a cone, and the shape of therecess 30 in the lower slidingpartner 2 has been adapted accordingly. As before, this construction does not limit the axial rotation. -
Fig. 14 shows a prosthesis that is very similar to the prosthesis shown inFigs. 1-6 . The major difference is that the length of the protuberance has been maximized inFig. 14 . The tip of theextended protuberance 31 now lies within a separate recess, a hole, 32 in theoriginal recess 7, increasing the total vertical overlap of the upper and lower sliding 1, 2 for even more safty of the prosthesis against luxation.partner -
Fig. 15 shows a prosthesis, where the places of theprotuberance 4 and therecess 7 have been exchanged. Here, therecess 33 is placed into theconcavity 5 of the upper slidingpartner 1, and theprotuberance 34 is part of theconvexity 8 of the lower slidingpartner 2. However, the functions of therecess 33, theprotuberance 34 and theinlay 3 remain the same and this prosthesis is also based on the construction scheme shown inFig. 9 et sqq. -
Fig. 16 shows a prosthesis for the lumbar spine comprising five parts: an upper 35 and a lower 36 sliding partner each having aprotuberance 4, twoidentical inlays 3 and a singlemiddle sliding partner 37 having twoidentical recesses 7, one on its upper and one on its lower side. If this prosthesis would be split in half by a horizontal plane lying in the centre of themiddle sliding partner 37, one would essentially get two identical prostheses that would look very similar to the prostheses shown inFigs. 1-6 . Thus, the upper and lower sliding 35 and 36 correspond to the inner side of the upper slidingpartner partner 1 of the previous prosthesis, and the upper and lower surfaces of themiddle sliding partner 37 correspond to the inner side of the lower slidingpartner 2 of the previous prosthesis. A notable difference in this prosthesis is the form of theedge 38 of themiddle sliding partner 37 that has the shape of a dovetail (as can be seen in the two section views), i.e. its vertical thickness increases continuously in the direction of the periphery. The edges of the upper and lower sliding 35 and 36 are formed accordingly, i.e. their thicknesses decrease in the direction of the periphery.partners -
Figs. 17-20 show different means of providing a good fixation between sliding partners and adjacent vertebrae. InFig. 17 , a cross-like process is shown. Both the latero-lateral 39 and antero-posterior arm 40 of the cross are shaped like arcs, i.e. they are higher in their middles than at their ends, according to the often concave endplates of the vertebral bodies. The latero-lateral cross arm 39 is slightly higher than theanteroposterior arm 40, to have a step by step cutting through the bone of the vertebral endplates for making fixation easier and safer. It is more important to avoid an antero-posterior luxation of the prosthesis compared to a latero-lateral dislocation of the prosthesis, so that the cross arm from the right to the left is slightly higher. -
Fig. 18 shows a similar construction. The laterolateral arm 39 is still slightly higher than theantero posterior arm 40. Additionally, there are now twoholes 41 in thelaterolateral arm 39 for the acceptance of instruments during implantation of the prosthesis. Said means for the acceptance of instruments facilitate also explanation and an exact positioning of a sliding partner. -
Fig. 19 shows a means of fixation comprising a cross-like process and fourspikes 42. Finally,Fig. 20 shows the outer face of a sliding partner having sixspikes 42, with the twospikes 42 in the centre being slightly longer than thespikes 42 in the periphery to compensate the concave shape of the endplate of a vertebral body. -
Fig. 21 shows the octagonal shapes of two prosthesis endplates. Thesmaller shape 43 is intended for use in cervical implants, and thelarger shape 44 for use in lumbar implants. The four relevant anatomical directions are indicated in the figure. The shapes of the prosthesis endplates are designed to both yield a large contact area between prosthesis endplates and adjacent vertebrae endplates and to be geometrically simple. Partial plane sides facilitate fixation of instruments for implantation via anterior, antero-lateral (lumbar spine only) and lateral (lumbar spine only) approach. -
- 1
- upper sliding partner
- 2
- lower sliding partner
- 3
- inlay
- 4
- protuberance
- 5
- concavity
- 6
- cut-out of the inlay
- 7
- recess
- 8
- convexity
- 9
- anterior gap
- 10
- posterior gap
- 11
- upper side of the inlay
- 12
- lower side of the inlay
- 13
- tip of the protuberance
- 14
- bottom of the recess
- 15
- right lateral gap
- 16
- left lateral gap
- 17
- side surfaces of the recess
- 18
- edge of the upper sliding partner
- 19
- edge of the lower sliding partner
- 20
- angled posterior side surface of the outer perimeter of the inlay
- 21
- angled anterior side surface of the outer perimeter of the inlay
- 22
- angled right side surface of the outer perimeter of the inlay
- 23
- angled left side surface of the outer perimeter of the inlay
- 24
- outer part (corresponds to lower sliding partner with recess)
- 25
- middle part (corresponds to inlay)
- 26
- inner part (corresponds to protuberance)
- 27
- conical protuberance
- 28
- cut-out of the inlay, adapted for conical protuberance
- 29
- conical inlay
- 30
- recess, adapted for conical inlay
- 31
- extended protuberance
- 32
- hole in the bottom surface of the recess for acceptance of the tip of the extended protuberance
- 33
- recess in concavity
- 34
- protuberance in convexity
- 35
- upper sliding partner of 5-part prosthesis
- 36
- lower sliding partner of 5-part prosthesis
- 37
- middle sliding partner of 5-part prosthesis
- 38
- edge of middle sliding partner of 5-part prosthesis
- 39
- latero-lateral cross arm
- 40
- antero-posterior cross arm
- 41
- hole in latero-lateral cross arm
- 42
- spike
- 43
- endplate of cervical prosthesis
- 44
- endplate of lumbar prosthesis
Claims (21)
- Intervertebral disc prosthesis for the total replacement of an intervertebral disc within the cervical or lumbar spine, comprising at least one upper sliding partner (1) adapted to firmly assemble with its outer surface with an upper vertebral body and a further adjacent lower sliding partner (2) adapted to firmly assemble with its outer surface with a lower vertebral body, and the adjacent upper and lower sliding partners (1,2) articulate via articulation surfaces on their facing inner sides, comprising an articulation area with a convexity (8) on one sliding partner and a concavity (5) on the other sliding partner, whereina. a first of the adjacent upper and lower sliding partners (1,2) has a recess (7) with a bottom surface and four side surfaces, wherein the recess (7) is positioned within the convexity (8) or concavity (5) of the first sliding partner, andb. a second of the adjacent upper and lower sliding partners (1,2), which articulates with the first sliding partner has a protuberance (4) with four side surfaces and a tip surface, wherein the protuberance (4) is arranged within the concavity (5) or convexity (8) of the second sliding partner, andc. an inlay (3) comprises a cut-out (6) for acceptance of the protuberance (4), wherein the inlay (3) is positioned within the recess (7) of the first of the adjacent upper and lower sliding partners (1,2), andd. the inlay (3) hasi. an upper convex or concave articulation surface surrounding the cut-out (6), having an identical radius of curvature with the convex or concave articulation surface of the first of the adjacent upper and lower sliding partners (1,2), andii. a lower concave or convex articulation surface surrounding the cut-out (6), having an identical radius of curvature with the concave or convex articulation surface of the bottom of the recess (7) of the first of the adjacent upper and lower sliding partners (1,2), andiii. four outer side surfaces comprising an outer perimeter of the inlay (3) facing the four side surfaces of the recess (7) of the first of the adjacent upper sliding partners, andiv. four inner side surfaces comprising an inner perimeter of the inlay (3) facing the four side surfaces of the protuberance (4) of the second of the adjacent sliding partners, whereine. a range of motion between the first and second of the adjacent upper and lower sliding partners (1,2) in relation to each other around a sagittal, frontal and longitudinal axis is defined byi. the radius of curvature of the convexity (8) and concavity (5),ii. the size and shape of the recess (7), of the inlay (3) including its cut-out (6) and of the protuberance (4), andiii. the size of the space between the side surfaces of the recess (7) and the outer perimeter of the inlay (3) and/or between the inner perimeter of the inlay (3) and the side surfaces of the protuberance (4).
- Intervertebral disc prosthesis according to claim 1, wherein at least one articulation surface is partly or completely surrounded by an edge (18, 19) to maximize the motion limiting contact area at a final range of motion to each direction in the sagittal and frontal axis.
- Intervertebral disc prosthesis according to claim 1 or 2, wherein the edge (18, 19) surrounding at least one articulation surface is made of a flexible material enabling soft limitation at the final range of motion to each direction in the sagittal and frontal axis.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the shape of the recess (7), of the outer and inner perimeter of the inlay (3) and of the protuberance (4) is rectangular, round, cylindrical, pyramidal, conical including a truncated pyramid and conus, or a combination of the afore mentioned shapes.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the shape of the side surfaces of the recess (7), the shape of the side surfaces comprising the outer and inner perimeter of the inlay (3) and the shape of the side surfaces of the protuberance (4) is plane, curved, angled or round or a combination thereof.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein convexity (8) and corresponding concavity (5) have a spherical, cylindrical, torus-like, helical and/or conical shape or a combination thereof, and convexity (8) and corresponding concavity (5) have identical or different radii of curvature.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein size and shape of the recess (7) and of the outer perimeter of the inlay (3) are constructed in such a manner that rotation of adjacent sliding partners around either the sagittal or frontal axis is possible.
- Intervertebral disc prosthesis according to claim 7, wherein size and shape of the recess (7) and of the outer perimeter of the inlay (3) are constructed in such a manner that additionally a limited rotation around the longitudinal axis is possible.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein size and shape of the inner perimeter of the inlay (3) and of the protuberance (4) are constructed in such a manner that rotation of adjacent sliding partners around either the sagittal or frontal axis is possible.
- Intervertebral disc prosthesis according to claim 9, wherein size and shape of the inner perimeter of the inlay (3) and of the protuberance (4) are constructed in such a manner that additionally a limited rotation around the longitudinal axis is possible.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the shape of the recess (7) and the outer perimeter of the inlay (3) and/or the shape of the inner perimeter of the inlay (3) and the protuberance (4) allows unlimited rotation around the longitudinal axis.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein two opposing side surfaces of the protuberance (4) are in a form-fitting manner in contact with two opposing side surfaces of the inner perimeter of the inlay (3) and/or two opposing side surfaces of the outer perimeter of the inlay (3) are in a form-fitting manner in contact with two opposing side surfaces of the recess (7).
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the tip surface of the protuberance (4) is concave- or convex-shaped with a radius of curvature corresponding to the concave or convex curvature of the bottom surface of the recess (7) of the first of the adjacent sliding partners, enabling the articulation of tip and bottom surface.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the tip surface of the protuberance (4) is articulating with a surface of a hole arranged below the bottom surface of the recess (7), and the tip surface of the protuberance (4) has a radius of curvature corresponding to the facing radius of curvature of the surface of the hole.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein each sliding partner (1, 2) and/or the inlay (3) comprise the same or different material or are coated with the same or different material.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein each sliding partner (1, 2) and/or the inlay (3) is constructed in one piece or is firmly, but reversibly assembled of at least two pieces.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the inlay (3) and/or at least one of the sliding partners (1, 2) or a part of it are made of a flexible material to damp an intervertebral shock or applied load.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the upper and/or lower sliding partner (1, 2) have on their outer surfaces for assembly with a vertebral body at least one cross-shaped anchor, optionally in combination with anchoring teeth.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein the cross-shaped anchor and/or the outer surfaces of the upper and/or lower sliding partner (1, 2) for assembly with a vertebral body are means or have means for an instrument to hold the prosthesis during implantation and explantation.
- Intervertebral disc prosthesis according to any of the preceding claims, wherein a middle sliding partner (37) with an upper and lower articulation surface is arranged between the inner sides of the upper and lower sliding partner (1, 2), with the upper articulation surface of the middle sliding partner (37) articulating with the articulation surface of the facing inner side of the upper sliding partner (1) and the lower articulation surface of the middle sliding partner (37) articulating with the articulation surface of the facing inner side of the lower sliding partner (2), resulting in an upper and a lower articulation area, wherein an inlay (3) is arranged within upper and/or lower articulation area and an articulation area with inlay (3) is constructed as specified according to any of the preceding claims.
- Intervertebral disc prophesies according to claim 19, wherein the articulation areas above and below the middle sliding partner (37) are constructed equally or different.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/EP2010/064914 WO2012045340A1 (en) | 2010-10-06 | 2010-10-06 | Prosthesis for cervical and lumbar spine |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2624789A1 EP2624789A1 (en) | 2013-08-14 |
| EP2624789B1 true EP2624789B1 (en) | 2015-08-19 |
Family
ID=43571294
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP10760725.1A Active EP2624789B1 (en) | 2010-10-06 | 2010-10-06 | Prosthesis for cervical and lumbar spine |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US9265617B2 (en) |
| EP (1) | EP2624789B1 (en) |
| CN (1) | CN103228233B (en) |
| BR (1) | BR112013007257B1 (en) |
| ES (1) | ES2549486T3 (en) |
| WO (1) | WO2012045340A1 (en) |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9101485B2 (en) * | 2011-01-04 | 2015-08-11 | DePuy Synthes Products, Inc. | Intervertebral implant with multiple radii |
| US9579204B2 (en) * | 2015-07-10 | 2017-02-28 | Oxford Mestar Limited | Surgical implants |
| DE102016124877B4 (en) | 2016-12-19 | 2019-02-07 | Ngmedical Gmbh | Intervertebral disc prosthesis and method for producing a disc prosthesis |
| WO2024259422A1 (en) | 2023-06-16 | 2024-12-19 | Greenwood Medical L.L.C. | Motion preserving system and apparatus |
Family Cites Families (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0176728B1 (en) | 1984-09-04 | 1989-07-26 | Humboldt-Universität zu Berlin | Intervertebral-disc prosthesis |
| DE4208116C2 (en) | 1992-03-13 | 1995-08-03 | Link Waldemar Gmbh Co | Intervertebral disc prosthesis |
| US5899941A (en) * | 1997-12-09 | 1999-05-04 | Chubu Bearing Kabushiki Kaisha | Artificial intervertebral disk |
| US6989032B2 (en) * | 2001-07-16 | 2006-01-24 | Spinecore, Inc. | Artificial intervertebral disc |
| FR2824261B1 (en) * | 2001-05-04 | 2004-05-28 | Ldr Medical | INTERVERTEBRAL DISC PROSTHESIS AND IMPLEMENTATION METHOD AND TOOLS |
| US20040133278A1 (en) * | 2002-10-31 | 2004-07-08 | Marino James F. | Spinal disc implant |
| JP2006504492A (en) * | 2002-10-31 | 2006-02-09 | スパイナル・コンセプツ・インコーポレーテッド | Movable disc implant |
| US7235103B2 (en) * | 2004-01-13 | 2007-06-26 | Rivin Evgeny I | Artificial intervertebral disc |
| US20060041314A1 (en) * | 2004-08-20 | 2006-02-23 | Thierry Millard | Artificial disc prosthesis |
| CA2596224A1 (en) * | 2004-09-08 | 2006-04-27 | Synthes Gmbh | Universal intervertebral disc prosthesis |
| US20070233262A1 (en) * | 2006-03-31 | 2007-10-04 | Uri Arnin | Articulating spinal prosthesis |
| US8043379B2 (en) * | 2006-04-21 | 2011-10-25 | Depuy Spine, Inc. | Disc prosthesis having remote flexion/extension center of rotation |
| US20080058940A1 (en) * | 2006-08-22 | 2008-03-06 | Shing Sheng Wu | Artificial intervertebral disc |
| FR2909859B1 (en) * | 2006-12-13 | 2011-02-11 | Lionel Francois Simon | JOINT PROSTHESIS OF INTERVERTEBRAL DISC |
| US9358121B2 (en) * | 2007-03-10 | 2016-06-07 | Spinesmith Partners, L.P. | Artificial disc with unique articulating geometry and associated methods |
| US8864832B2 (en) * | 2007-06-20 | 2014-10-21 | Hh Spinal Llc | Posterior total joint replacement |
| MX2009013292A (en) * | 2007-06-12 | 2010-01-25 | Kinetic Spine Technologies Inc | Artificial intervertebral disc. |
| US8057547B2 (en) * | 2007-06-12 | 2011-11-15 | Kinetic Spine Technologies Inc. | Articulating intervertebral disc prosthesis |
| EP2211785B1 (en) * | 2007-10-25 | 2016-01-27 | Synergy Disc Replacement, Inc. | Systems for vertebral disc replacement |
| WO2009125242A1 (en) * | 2008-04-08 | 2009-10-15 | Vexim | Apparatus for restoration of the spine and methods of use thereof |
| US9101485B2 (en) * | 2011-01-04 | 2015-08-11 | DePuy Synthes Products, Inc. | Intervertebral implant with multiple radii |
-
2010
- 2010-10-06 WO PCT/EP2010/064914 patent/WO2012045340A1/en not_active Ceased
- 2010-10-06 US US13/876,013 patent/US9265617B2/en not_active Expired - Fee Related
- 2010-10-06 ES ES10760725.1T patent/ES2549486T3/en active Active
- 2010-10-06 BR BR112013007257-1A patent/BR112013007257B1/en not_active IP Right Cessation
- 2010-10-06 CN CN201080069463.3A patent/CN103228233B/en not_active Expired - Fee Related
- 2010-10-06 EP EP10760725.1A patent/EP2624789B1/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| ES2549486T3 (en) | 2015-10-28 |
| US20130184828A1 (en) | 2013-07-18 |
| WO2012045340A1 (en) | 2012-04-12 |
| EP2624789A1 (en) | 2013-08-14 |
| US9265617B2 (en) | 2016-02-23 |
| BR112013007257B1 (en) | 2021-05-18 |
| BR112013007257A2 (en) | 2020-04-28 |
| CN103228233B (en) | 2015-11-25 |
| CN103228233A (en) | 2013-07-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN101056598B (en) | Intervertebral disc endoprosthesis with a motion-adaptive edge for the lumbar and cervical spine | |
| EP1773256B1 (en) | Artificial spinal disc | |
| AU2005297477B2 (en) | Intervertebral disc endoprosthesis having cylindrical articulation surfaces that are curved in a transversally arched manner for the lumbar vertebral column and cervical vertebral column | |
| CA2518068C (en) | Cervical disc replacement | |
| US8403989B2 (en) | Physologically movable intervertebral disc prosthesis for the lumbar and cervical spine | |
| US20120109315A1 (en) | Total disc replacement device | |
| AU2005206118A1 (en) | Mobile bearing spinal device and method | |
| EP2624789B1 (en) | Prosthesis for cervical and lumbar spine | |
| EP3169280B1 (en) | Intervertebral disc implant for restoring function to a damaged functional spinal unit | |
| GB2471133A (en) | Intervertebral disc prosthesis with modular construction |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20130506 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| INTG | Intention to grant announced |
Effective date: 20150106 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| INTG | Intention to grant announced |
Effective date: 20150701 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 743246 Country of ref document: AT Kind code of ref document: T Effective date: 20150915 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010026838 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: 24IP LAW GROUP, CH |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2549486 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151028 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151119 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151120 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151221 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151219 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010026838 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151006 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| 26N | No opposition filed |
Effective date: 20160520 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 743246 Country of ref document: AT Kind code of ref document: T Effective date: 20150819 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20171103 Year of fee payment: 8 Ref country code: AT Payment date: 20171018 Year of fee payment: 8 Ref country code: NL Payment date: 20171023 Year of fee payment: 8 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150819 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20181101 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 743246 Country of ref document: AT Kind code of ref document: T Effective date: 20181006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181101 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181006 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20191129 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181007 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602010026838 Country of ref document: DE Representative=s name: FORTMANN TEGETHOFF PATENT- UND RECHTSANWAELTE , DE Ref country code: DE Ref legal event code: R082 Ref document number: 602010026838 Country of ref document: DE Representative=s name: FORTMANN TEGETHOFF PATENT- UND RECHTSANWAELTE, DE |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20221020 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20221031 Year of fee payment: 13 Ref country code: GB Payment date: 20221024 Year of fee payment: 13 Ref country code: DE Payment date: 20221020 Year of fee payment: 13 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20221027 Year of fee payment: 13 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010026838 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231006 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240501 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231006 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231006 |