EP2691609A1 - Power augmentation system with dynamics damping - Google Patents
Power augmentation system with dynamics dampingInfo
- Publication number
- EP2691609A1 EP2691609A1 EP11775858.1A EP11775858A EP2691609A1 EP 2691609 A1 EP2691609 A1 EP 2691609A1 EP 11775858 A EP11775858 A EP 11775858A EP 2691609 A1 EP2691609 A1 EP 2691609A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- augmentation system
- power augmentation
- transition piece
- tubes
- steam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003416 augmentation Effects 0.000 title claims abstract description 35
- 238000013016 damping Methods 0.000 title claims abstract description 12
- 230000007704 transition Effects 0.000 claims abstract description 39
- 238000010926 purge Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 24
- 238000002485 combustion reaction Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000010349 pulsation Effects 0.000 description 3
- 238000010793 Steam injection (oil industry) Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/023—Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C3/00—Gas-turbine plants characterised by the use of combustion products as the working fluid
- F02C3/20—Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
- F02C3/30—Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
- F02C3/305—Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C5/00—Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
- F02C5/10—Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the working fluid forming a resonating or oscillating gas column, i.e. the combustion chambers having no positively actuated valves, e.g. using Helmholtz effect
- F02C5/11—Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the working fluid forming a resonating or oscillating gas column, i.e. the combustion chambers having no positively actuated valves, e.g. using Helmholtz effect using valveless combustion chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/002—Supplying water
- F23L7/005—Evaporated water; Steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M20/00—Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
- F23M20/005—Noise absorbing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/96—Preventing, counteracting or reducing vibration or noise
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/00013—Reducing thermo-acoustic vibrations by active means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Definitions
- the present application relates generally to gas turbine engines and more particularly relates to a steam manifold positioned about a transition piece of a combustor so as to provide power augmentation and dynamics damping.
- Using a lean fuel air mixture is a known method of decreasing NOx emissions and currently is in use in multiple designs of gas turbine combustion systems.
- the lean fuel air mixture includes an amount of fuel premixed with a large amount of excess air.
- high frequency combustion instabilities may result.
- Such instabilities may be referred to as combustion dynamics. These instabilities may be caused by burning rate fluctuations and may create damaging pressure oscillations that may impact on gas turbine durability. As a result of these instabilities, damping or resonating devices may be used with the combustor.
- the present application thus provides a power augmentation system for a gas turbine engine.
- the power augmentation system may include a transition piece of a combustor and a steam manifold positioned about the transition piece.
- the transition piece may include a number of transition piece passageways therethrough and the steam manifold may include a number of manifold passageways therethrough.
- the manifold passageways may align with the transition piece passageways.
- the present application further provides a power augmentation system for a gas turbine engine.
- the power augmentation system may include a transition piece of a combustor and a steam manifold positioned about the transition piece.
- the transition piece may include a number of apertures extending therethrough and the steam manifold may include a number of tubes extending therethrough such that the apertures align with the tubes.
- the tubes may include a predetermined size based upon the frequency of the combustor.
- the present application further provides a power augmentation system for a gas turbine engine.
- the power augmentation system may include a combustor and a steam manifold positioned about the combustor.
- the combustor may include a number of apertures extending therethrough and the steam manifold may include a number of tubes extending therethrough.
- the tubes may include a predetermined size based upon the frequency of the combustor.
- Fig. 1 is a schematic view of a gas turbine engine.
- Fig. 2 is a perspective view of a steam manifold system as is described herein.
- Fig. 3 is a side cross-sectional view of the steam manifold system of Fig. 2.
- Fig. 4 is a further side cross-sectional view of the steam manifold system of
- Fig. 1 shows a schematic view of a gas turbine engine 10.
- the gas turbine engine 10 may include a compressor 20 to compress an incoming flow of air.
- the compressor 20 delivers the compressed flow of air to a combustor 30.
- the combustor 30 mixes the compressed flow of air with the compressed flow of fuel and ignites the mixture.
- the gas turbine engine 10 may include any number of combustors 30.
- the hot combustion gases are in turn delivered to a turbine 40. The hot combustion gases drive the turbine 40 so as to produce mechanical work.
- the mechanical work produced in the turbine 40 drives the compressor 20 and an external load 50 such as an electrical generator and the like.
- the gas turbine engine 10 may use natural gas, various types of syngas, and other types of fuel.
- the gas turbine engine 10 may have many other configurations and may use other types of components. Multiple gas turbine engines 10, other types of turbines, and other types of power generation equipment may be used herein together.
- Figs 2-4 show a power augmentation system with dynamics damping or a steam manifold system 100 as is described herein.
- the steam manifold system 100 may be positioned at an end 1 10 of a transition piece 120 of the combustor 30.
- the transition piece 120 directs a stream of hot exhaust gases 125 from the combustor 30 to the turbine 40 as is described above.
- the transition piece 120 may have a number of apertures 1 30 positioned about the end 1 10 thereof. Any number of the apertures 130 may be used.
- Some of the apertures 1 30 may be positioned at an angle with respect to the direction of the stream of hot exhaust gases 125 through the combustor 30. The angle may be about 30 to about 60 degrees, although any desired angle may be used herein.
- the apertures 130 may have any desired size or shape as is described in more detail below.
- the steam manifold system 100 may include a steam manifold 140 positioned about the end 1 10 of the transition piece 120 in the vicinity of the apertures 1 30.
- the steam manifold 140 may have any desired size or shape.
- the steam manifold 140 may include an internal cavity 150.
- the ( cavity 1 50 may surround the end 1 10 of the transition piece 120.
- the steam manifold 140 may have a number of tubes 160 on one end thereon.
- the tubes 160 may be in communication with the apertures 130 of the transition piece 120. Any number of the tubes 160 may be used.
- the tubes 160 also may be positioned at an angle with respect to the stream of hot exhaust gases 125. As above, the angle may be about 30 to about 60 degrees although any angle may be used.
- the tubes 160 may have any desired size or shape as is described in more detail below.
- the steam manifold 140 also may have a number of purge holes 1 70 positioned therein. Any number of the purge holes 170 may be used herein.
- the purge holes 170 may have any desired size or shape.
- the steam manifold system 100 may have a steam passage 1 80.
- the steam passage 180 may be in communication with the cavity 150 of the steam manifold 140.
- the steam passage 180 may have a valve 190 mounted thereon.
- the steam passage 180 may be mounted on an aft frame 200 of the transition piece 120. Other positions may be used herein.
- the steam passage 1 80 may provide a volume of steam 210 to the cavity 1 50 of the steam manifold 140. The quality and characteristics of the steam 210 may vary.
- the steam 210 from the steam passage 180 may pass into the cavity 150 of the steam manifold 140. Most of the volume of the steam 210 passes through the tubes 160 of the steam manifold 140, through the apertures 130 of the transition piece 120 and into the stream of hot exhaust gases 125 towards the turbine 40. A small volume of the steam 21 0 may pass through the purge holes 170 and into a compressor discharge zone, mix with compressor airflow and then pass into combustor, thus reducing NOx emission.
- valve 190 of the steam passage 1 80 may be closed. Air from the compressor discharge zone thus may pass through the purge holes 170, the cavity 1 50 the tubes 160 of the steam manifold 140, and through the apertures 130 of the transition piece 1 20.
- the steam manifold system 100 may be used on a MS6001 V combustor offered by General Electric Company of Schenectady, New York.
- the steam manifold system 100 may be installed on any type of can, annular, or can-annular type combustion system at the aft end of the transition piece 1 20 or otherwise.
- Injection of the steam 210 just upstream of the turbine 40 thus provides for enhanced power output and efficiency.
- the positioning of the steam manifold 140 about the end 1 10 of the transition piece 120 ensures that the steam 210 is injected downstream of the reaction zone of the combustor 30 and just upstream of the turbine 40.
- the injection 40 of the steam 210 thus does not impact on the reaction temperature of the combustor 30 such that CO emissions should not increase.
- the impact on flame stability also is lessened.
- the steam manifold system 100 also may act as a type of a Helmholtz resonator.
- a Helmholtz resonator provides a cavity having a sidewall with openings therethrough.
- the fluid inertia of the gasses within the pattern of the apertures 130 and the tubes 160 may be reacted by the volumetric stiffness of the closed cavity 150 so as to produce a resonance in the velocity of the flow of the steam 210 therethrough.
- the number, length, diameter, shape, position of the apertures 130, the tubes 160, and the volume of the cavity 1 50 may vary with respect to the damping frequency range.
- the design criteria may include the size of the apertures 130 and the tubes 160, the diameter of the apertures 1 30 and the tubes 160, the number of the apertures 130 and the tubes 1 60, the mass flow rate through the cavity 1 50, and the volume of the cavity 1 50.
- the dynamic pulsation spectrum of the combustor 30 may be determined from known testing methods.
- the apertures 130 and the tubes 160 are sized to allow low velocity steam to discharge into combustor 30.
- the dynamic pressure pulsations at any frequency may be dampened by the steam manifold system 100.
- the frequencies may be dampened without the use of a separate resonator. Any number of steam manifolds 140 may be used herein such that a number of different frequencies can be dampened.
- the steam manifold system 100 thus provides power augmentation to the gas turbine engine 10 with minimal impact on increasing CO emissions or flame stability.
- the steam manifold system 100 may effectively damp dynamic pulsations in the combustor 30 so as to improve operability and lessen durability risks.
- the steam manifold system 100 thus generally increases power output while also decreasing forced outages and combustion inspection intervals. As such, the steam manifold system 100 may reduce repair and operation costs.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Chemical Kinetics & Catalysis (AREA)
Abstract
The present application provides a power augmentation system with dynamics damping for a gas turbine engine. The power augmentation system may include a transition piece of a combustor and a steam manifold positioned about the transition piece. The transition piece may include a number of transition piece passageways therethrough and the steam manifold may include a number of manifold passageways therethrough. The manifold passageways may align with the transition piece passageways.
Description
POWER AUGMENTATION SYSTEM WITH DYNAMICS DAMPING
TECHNICAL FIELD
[0101] The present application relates generally to gas turbine engines and more particularly relates to a steam manifold positioned about a transition piece of a combustor so as to provide power augmentation and dynamics damping.
BACKGROUND OF THE INVENTION
[0102] Using a lean fuel air mixture is a known method of decreasing NOx emissions and currently is in use in multiple designs of gas turbine combustion systems. The lean fuel air mixture includes an amount of fuel premixed with a large amount of excess air. Although such a lean mixture reduces the amount of NOx emissions, high frequency combustion instabilities may result. Such instabilities may be referred to as combustion dynamics. These instabilities may be caused by burning rate fluctuations and may create damaging pressure oscillations that may impact on gas turbine durability. As a result of these instabilities, damping or resonating devices may be used with the combustor.
[0103] Providing additional mass flow into a gas turbine is a known method of enhancing overall gas turbine engine power output and efficiency. Steam injection is commonly used for this purpose. For instance, about a five percent (5%) steam addition to a gas turbine combined cycle system may result in about a ten percent ( 10%) output increase.
Issues may arise, however, because the steam may impact on flame stability and freeze CO oxidation in the combustor. As such, the use of steam injection may limit overall emissions and turndown capabilities of gas turbines.
[0104] There is therefore a desire for improved combustion dynamics damping as well as power augmentation systems and methods. Preferably, such systems and methods may increase overall system performance and efficiency while reducing combustion dynamics.
SUMMARY OF THE INVENTION
[0105] The present application thus provides a power augmentation system for a gas turbine engine. The power augmentation system may include a transition piece of a combustor and a steam manifold positioned about the transition piece. The transition piece may include a number of transition piece passageways therethrough and the steam manifold may include a number of manifold passageways therethrough. The manifold passageways may align with the transition piece passageways.
[0106] The present application further provides a power augmentation system for a gas turbine engine. The power augmentation system may include a transition piece of a combustor and a steam manifold positioned about the transition piece. The transition piece may include a number of apertures extending therethrough and the steam manifold may include a number of tubes extending therethrough such that the apertures align with the tubes. The tubes may include a predetermined size based upon the frequency of the combustor.
[0107] The present application further provides a power augmentation system for a gas turbine engine. The power augmentation system may include a combustor and a steam manifold positioned about the combustor. The combustor may include a number of apertures extending therethrough and the steam manifold may include a number of tubes extending therethrough. The tubes may include a predetermined size based upon the frequency of the combustor.
[0108] These and other features and improvements of the present application will become apparent to one of ordinary skill in the art upon review of the following detailed description when taken in conjunction with the several drawings and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0109] Fig. 1 is a schematic view of a gas turbine engine.
[0110] Fig. 2 is a perspective view of a steam manifold system as is described herein. [0111] Fig. 3 is a side cross-sectional view of the steam manifold system of Fig. 2. [0112] Fig. 4 is a further side cross-sectional view of the steam manifold system of
Fig. 2.
DETAILED DESCRIPTION
[0113] Referring now to the drawings, in which like numbers refer to like elements throughout the several views, Fig. 1 shows a schematic view of a gas turbine engine 10. As is known, the gas turbine engine 10 may include a compressor 20 to compress an incoming flow of air. The compressor 20 delivers the compressed flow of air to a combustor 30. The combustor 30 mixes the compressed flow of air with the compressed flow of fuel and ignites the mixture. (Although only a single combustor 30 is shown, the gas turbine engine 10 may include any number of combustors 30.) The hot combustion gases are in turn delivered to a turbine 40. The hot combustion gases drive the turbine 40 so as to produce mechanical work.
The mechanical work produced in the turbine 40 drives the compressor 20 and an external load 50 such as an electrical generator and the like. The gas turbine engine 10 may use natural gas, various types of syngas, and other types of fuel. The gas turbine engine 10 may have
many other configurations and may use other types of components. Multiple gas turbine engines 10, other types of turbines, and other types of power generation equipment may be used herein together.
[0114] Figs 2-4 show a power augmentation system with dynamics damping or a steam manifold system 100 as is described herein. The steam manifold system 100 may be positioned at an end 1 10 of a transition piece 120 of the combustor 30. The transition piece 120 directs a stream of hot exhaust gases 125 from the combustor 30 to the turbine 40 as is described above. The transition piece 120 may have a number of apertures 1 30 positioned about the end 1 10 thereof. Any number of the apertures 130 may be used. Some of the apertures 1 30 may be positioned at an angle with respect to the direction of the stream of hot exhaust gases 125 through the combustor 30. The angle may be about 30 to about 60 degrees, although any desired angle may be used herein. The apertures 130 may have any desired size or shape as is described in more detail below.
[0115] The steam manifold system 100 may include a steam manifold 140 positioned about the end 1 10 of the transition piece 120 in the vicinity of the apertures 1 30. The steam manifold 140 may have any desired size or shape. The steam manifold 140 may include an internal cavity 150. The( cavity 1 50 may surround the end 1 10 of the transition piece 120. The steam manifold 140 may have a number of tubes 160 on one end thereon. The tubes 160 may be in communication with the apertures 130 of the transition piece 120. Any number of the tubes 160 may be used. The tubes 160 also may be positioned at an angle with respect to the stream of hot exhaust gases 125. As above, the angle may be about 30 to about 60 degrees although any angle may be used. The tubes 160 may have any desired size or shape as is described in more detail below. The steam manifold 140 also may have a number of purge
holes 1 70 positioned therein. Any number of the purge holes 170 may be used herein. The purge holes 170 may have any desired size or shape.
[0116] The steam manifold system 100 may have a steam passage 1 80. The steam passage 180 may be in communication with the cavity 150 of the steam manifold 140. The steam passage 180 may have a valve 190 mounted thereon. The steam passage 180 may be mounted on an aft frame 200 of the transition piece 120. Other positions may be used herein. The steam passage 1 80 may provide a volume of steam 210 to the cavity 1 50 of the steam manifold 140. The quality and characteristics of the steam 210 may vary.
[0117] In use, the steam 210 from the steam passage 180 may pass into the cavity 150 of the steam manifold 140. Most of the volume of the steam 210 passes through the tubes 160 of the steam manifold 140, through the apertures 130 of the transition piece 120 and into the stream of hot exhaust gases 125 towards the turbine 40. A small volume of the steam 21 0 may pass through the purge holes 170 and into a compressor discharge zone, mix with compressor airflow and then pass into combustor, thus reducing NOx emission.
[0118] In a secondary mode of operation, the valve 190 of the steam passage 1 80 may be closed. Air from the compressor discharge zone thus may pass through the purge holes 170, the cavity 1 50 the tubes 160 of the steam manifold 140, and through the apertures 130 of the transition piece 1 20.
[0119] The steam manifold system 100 may be used on a MS6001 V combustor offered by General Electric Company of Schenectady, New York. The steam manifold system 100 may be installed on any type of can, annular, or can-annular type combustion system at the aft end of the transition piece 1 20 or otherwise.
[0120] Injection of the steam 210 just upstream of the turbine 40 thus provides for enhanced power output and efficiency. The positioning of the steam manifold 140 about the end 1 10 of the transition piece 120 ensures that the steam 210 is injected downstream of the reaction zone of the combustor 30 and just upstream of the turbine 40. The injection 40 of the steam 210 thus does not impact on the reaction temperature of the combustor 30 such that CO emissions should not increase. The impact on flame stability also is lessened.
[0121] The steam manifold system 100 also may act as a type of a Helmholtz resonator. A Helmholtz resonator provides a cavity having a sidewall with openings therethrough. The fluid inertia of the gasses within the pattern of the apertures 130 and the tubes 160 may be reacted by the volumetric stiffness of the closed cavity 150 so as to produce a resonance in the velocity of the flow of the steam 210 therethrough. The number, length, diameter, shape, position of the apertures 130, the tubes 160, and the volume of the cavity 1 50 may vary with respect to the damping frequency range. Specifically, the design criteria may include the size of the apertures 130 and the tubes 160, the diameter of the apertures 1 30 and the tubes 160, the number of the apertures 130 and the tubes 1 60, the mass flow rate through the cavity 1 50, and the volume of the cavity 1 50.
[0122] The dynamic pulsation spectrum of the combustor 30 may be determined from known testing methods. The apertures 130 and the tubes 160 are sized to allow low velocity steam to discharge into combustor 30. As such, the dynamic pressure pulsations at any frequency may be dampened by the steam manifold system 100. Further, the frequencies may be dampened without the use of a separate resonator. Any number of steam manifolds 140 may be used herein such that a number of different frequencies can be dampened.
[0123] The steam manifold system 100 thus provides power augmentation to the gas turbine engine 10 with minimal impact on increasing CO emissions or flame stability. Likewise, the steam manifold system 100 may effectively damp dynamic pulsations in the combustor 30 so as to improve operability and lessen durability risks. The steam manifold system 100 thus generally increases power output while also decreasing forced outages and combustion inspection intervals. As such, the steam manifold system 100 may reduce repair and operation costs.
[0124] It should be apparent that the foregoing relates only to certain embodiments of the present application and that numerous changes and modifications may be made herein by one of ordinary skill in the art without departing from the general spirit and scope of the invention as defined by the following claims and the equivalents thereof.
POWER AUGMENTATION SYSTEM WITH DYNAMICS DAMPING
gas turbine engine
compressor
combustor
turbine
external load
steam manifold system
end
transition piece
exhaust gases
apertures
steam manifold
cavity
tubes
purge holes
steam passage
valve
aft frame
steam
Claims
1. A power augmentation system with dynamics damping for a gas turbine engine, comprising:
a transition piece of a combustor;
a steam manifold positioned about the transition piece;
the transition piece comprising a plurality of transition piece passageways therethrough; and
the steam manifold comprising a plurality of manifold passageways therethrough; the plurality of manifold passageways aligning with the plurality of transition piece passageways.
2. The power augmentation system of claim 1 , wherein the plurality of transition piece passageways comprises a plurality of apertures therethrough.
3. The power augmentation system of claim 2, wherein the plurality of apertures comprises a plurality of angled apertures.
4. The power augmentation system of claim 1 , wherein the steam manifold comprises a cavity therein.
5. The power augmentation system of claim 1 , wherein the plurality of manifold passageways comprises a plurality of tubes.
6. The power augmentation system of claim 5, wherein the plurality of tubes comprises a plurality of angled tubes.
7. The power augmentation system of claim 1 , wherein the steam manifold comprises a plurality of purge holes.
8. The power augmentation system of claim 1 , wherein the transition piece comprises a frame and wherein the steam manifold comprises a steam passage positioned on the frame.
9. The power augmentation system of claim 1 , wherein the plurality of manifold passageways comprises a predetermined size based upon the frequency of the combustor.
10. A power augmentation system with dynamics damping for a gas turbine engine, comprising:
a transition piece of a combustor;
a steam manifold positioned about the transition piece;
the transition piece comprising a plurality of apertures extending therethrough;
the steam manifold comprising a plurality of tubes extending therethrough; the plurality of tubes comprising a predetermined size based upon the frequency of the combustor; and
the plurality of apertures aligning with the plurality of tubes.
1 1 . The power augmentation system of claim 10, wherein the plurality of apertures comprises a plurality of angled apertures.
12. The power augmentation system of claim 10, wherein the steam manifold comprises a cavity therein.
13. The power augmentation system of claim 10, wherein the plurality of tubes comprises a plurality of angled tubes.
14. The power augmentation system of claim 10, wherein the steam manifold comprises a plurality of purge holes.
15. The power augmentation system of claim 10, wherein the transition piece comprises a frame and wherein the steam manifold comprises a steam passage positioned on the frame.
16. A power augmentation system with dynamics damping for a gas turbine engine, comprising:
a combustor;
a steam manifold positioned about the combustor; the combustor comprising a plurality of apertures extending therethrough; the steam manifold comprising a plurality of tubes extending therethrough; and the plurality of tubes comprising a predetermined size based upon the frequency of the combustor.
1 7. The power augmentation system of claim 16, wherein the combustor comprises a transition piece and wherein the steam manifold is positioned about the transition piece.
18. The power augmentation system of claim 16, wherein the plurality of apertures align with the plurality of tubes.
19. The power augmentation system of claim 16, wherein the plurality of apertures comprises a plurality of angled apertures.
20. The power augmentation system of claim 16, wherein the plurality of tubes comprises a plurality of angled tubes.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/RU2011/000226 WO2012134325A1 (en) | 2011-03-31 | 2011-03-31 | Power augmentation system with dynamics damping |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2691609A1 true EP2691609A1 (en) | 2014-02-05 |
Family
ID=44863196
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP11775858.1A Withdrawn EP2691609A1 (en) | 2011-03-31 | 2011-03-31 | Power augmentation system with dynamics damping |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20140013754A1 (en) |
| EP (1) | EP2691609A1 (en) |
| JP (1) | JP2014509707A (en) |
| CN (1) | CN103649468A (en) |
| RU (1) | RU2013143396A (en) |
| WO (1) | WO2012134325A1 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9650955B2 (en) * | 2011-11-10 | 2017-05-16 | General Electric Company | System for purging gas fuel circuit for a gas turbine engine |
| EP2725196A1 (en) * | 2012-10-24 | 2014-04-30 | Alstom Technology Ltd | Combustor transition |
| US10378447B2 (en) | 2016-09-30 | 2019-08-13 | General Electric Company | System and method for purging fuel or coolant from turbomachine |
| US11174792B2 (en) | 2019-05-21 | 2021-11-16 | General Electric Company | System and method for high frequency acoustic dampers with baffles |
| US11156164B2 (en) | 2019-05-21 | 2021-10-26 | General Electric Company | System and method for high frequency accoustic dampers with caps |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3657884A (en) * | 1970-11-20 | 1972-04-25 | Westinghouse Electric Corp | Trans-nozzle steam injection gas turbine |
| US3747336A (en) * | 1972-03-29 | 1973-07-24 | Gen Electric | Steam injection system for a gas turbine |
| US5239816A (en) * | 1992-03-16 | 1993-08-31 | General Electric Company | Steam deflector assembly for a steam injected gas turbine engine |
| JP3110338B2 (en) * | 1997-02-12 | 2000-11-20 | 東北電力株式会社 | Combustor cooling structure with steam |
| JP3202636B2 (en) * | 1997-02-12 | 2001-08-27 | 東北電力株式会社 | Cooling wall structure of steam-cooled combustor |
| US5906093A (en) * | 1997-02-21 | 1999-05-25 | Siemens Westinghouse Power Corporation | Gas turbine combustor transition |
| JP3310900B2 (en) * | 1997-04-15 | 2002-08-05 | 三菱重工業株式会社 | Cooling structure of combustor transition piece |
| US6018950A (en) * | 1997-06-13 | 2000-02-01 | Siemens Westinghouse Power Corporation | Combustion turbine modular cooling panel |
| US6983605B1 (en) * | 2000-04-07 | 2006-01-10 | General Electric Company | Methods and apparatus for reducing gas turbine engine emissions |
| EP1146289B1 (en) * | 2000-04-13 | 2008-12-24 | Mitsubishi Heavy Industries, Ltd. | Cooling structure of combustor tail tube |
| JP2002243154A (en) * | 2001-02-16 | 2002-08-28 | Mitsubishi Heavy Ind Ltd | Gas turbine combustor and tail cylinder outlet structure thereof |
| JP2002317650A (en) * | 2001-04-24 | 2002-10-31 | Mitsubishi Heavy Ind Ltd | Gas turbine combustor |
| US6662564B2 (en) * | 2001-09-27 | 2003-12-16 | Siemens Westinghouse Power Corporation | Catalytic combustor cooling tube vibration dampening device |
| JP2003214185A (en) * | 2002-01-22 | 2003-07-30 | Mitsubishi Heavy Ind Ltd | Gas turbine combustor cooling structure and gas turbine |
| US6890148B2 (en) * | 2003-08-28 | 2005-05-10 | Siemens Westinghouse Power Corporation | Transition duct cooling system |
| JP2005076982A (en) * | 2003-08-29 | 2005-03-24 | Mitsubishi Heavy Ind Ltd | Gas turbine combustor |
| US7413053B2 (en) * | 2006-01-25 | 2008-08-19 | Siemens Power Generation, Inc. | Acoustic resonator with impingement cooling tubes |
| US8387398B2 (en) * | 2007-09-14 | 2013-03-05 | Siemens Energy, Inc. | Apparatus and method for controlling the secondary injection of fuel |
| US8567197B2 (en) * | 2008-12-31 | 2013-10-29 | General Electric Company | Acoustic damper |
| GB0907578D0 (en) * | 2009-05-05 | 2009-06-10 | Rolls Royce Plc | A damping assembly |
| US8387358B2 (en) * | 2010-01-29 | 2013-03-05 | General Electric Company | Gas turbine engine steam injection manifold |
| JP5804872B2 (en) * | 2011-09-27 | 2015-11-04 | 三菱日立パワーシステムズ株式会社 | Combustor transition piece, gas turbine equipped with the same, and transition piece manufacturing method |
-
2011
- 2011-03-31 US US14/008,219 patent/US20140013754A1/en not_active Abandoned
- 2011-03-31 EP EP11775858.1A patent/EP2691609A1/en not_active Withdrawn
- 2011-03-31 CN CN201180069734.XA patent/CN103649468A/en active Pending
- 2011-03-31 WO PCT/RU2011/000226 patent/WO2012134325A1/en not_active Ceased
- 2011-03-31 JP JP2014502504A patent/JP2014509707A/en not_active Withdrawn
- 2011-03-31 RU RU2013143396/06A patent/RU2013143396A/en not_active Application Discontinuation
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2012134325A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| US20140013754A1 (en) | 2014-01-16 |
| WO2012134325A1 (en) | 2012-10-04 |
| JP2014509707A (en) | 2014-04-21 |
| RU2013143396A (en) | 2015-05-10 |
| CN103649468A (en) | 2014-03-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN102889613B (en) | For the system that the vibration in turbomachine combustor is damped | |
| JP6240433B2 (en) | System and method for reducing combustion dynamics | |
| US8733108B2 (en) | Combustor and combustor screech mitigation methods | |
| US10094568B2 (en) | Combustor dynamics mitigation | |
| US9291104B2 (en) | Damping device and gas turbine combustor | |
| US9217373B2 (en) | Fuel nozzle for reducing modal coupling of combustion dynamics | |
| EP2660518B1 (en) | Acoustic resonator located at flow sleeve of gas turbine combustor | |
| RU2661440C2 (en) | System (options) and method for damping dynamic processes in combustion chamber | |
| US9546601B2 (en) | Clocked combustor can array | |
| US20140013754A1 (en) | Power augmentation system with dynamics damping | |
| US20140311156A1 (en) | Combustor cap for damping low frequency dynamics | |
| US9068750B2 (en) | Combustor with a pre-nozzle mixing cap assembly | |
| US20100293952A1 (en) | Resonating Swirler | |
| US9500367B2 (en) | Combustion casing manifold for high pressure air delivery to a fuel nozzle pilot system | |
| CN103717970B (en) | Combustor with bi-directional manifold for dynamics damping | |
| US11230974B2 (en) | Variable frequency Helmholtz dampers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20131031 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20151001 |