EP2653590A2 - Electro-recovery of gold and silver from leaching solutions by means of simultaneous cathodic and anodic deposition - Google Patents
Electro-recovery of gold and silver from leaching solutions by means of simultaneous cathodic and anodic deposition Download PDFInfo
- Publication number
- EP2653590A2 EP2653590A2 EP11813915.3A EP11813915A EP2653590A2 EP 2653590 A2 EP2653590 A2 EP 2653590A2 EP 11813915 A EP11813915 A EP 11813915A EP 2653590 A2 EP2653590 A2 EP 2653590A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- silver
- gold
- thiosulfate
- leaching
- recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910052709 silver Inorganic materials 0.000 title claims abstract description 38
- 239000004332 silver Substances 0.000 title claims abstract description 38
- 239000010931 gold Substances 0.000 title claims abstract description 20
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 19
- 229910052737 gold Inorganic materials 0.000 title claims abstract description 19
- 238000002386 leaching Methods 0.000 title claims description 20
- 238000011084 recovery Methods 0.000 title claims description 5
- 230000008021 deposition Effects 0.000 title 1
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 18
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 6
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 claims abstract 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 6
- 239000003446 ligand Substances 0.000 claims description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 2
- 229910000366 copper(II) sulfate Inorganic materials 0.000 claims description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 2
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 8
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 6
- 239000011707 mineral Substances 0.000 abstract description 6
- 238000011282 treatment Methods 0.000 abstract description 4
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 238000005065 mining Methods 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract 1
- 238000004070 electrodeposition Methods 0.000 description 16
- DHCDFWKWKRSZHF-UHFFFAOYSA-L thiosulfate(2-) Chemical compound [O-]S([S-])(=O)=O DHCDFWKWKRSZHF-UHFFFAOYSA-L 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- -1 silver metals Chemical class 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 3
- 238000009854 hydrometallurgy Methods 0.000 description 3
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 150000002739 metals Chemical group 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- GJLUFTKZCBBYMV-UHFFFAOYSA-N carbamimidoylsulfanyl carbamimidothioate Chemical compound NC(=N)SSC(N)=N GJLUFTKZCBBYMV-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- OYNOOANKSLJSCV-UHFFFAOYSA-N silver;thiourea Chemical compound [Ag].NC(N)=S OYNOOANKSLJSCV-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/20—Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/22—Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
- C25C7/08—Separating of deposited metals from the cathode
Definitions
- the present invention is related to the mining industry for treatment of minerals and materials which contain gold and silver. Specifically, it is related to a process to recover gold and silver, from leaching solutions with a simultaneous anodic and cathodic electrodeposition process, after which the poor solution is recycled back to the leaching stage.
- both complexing agents can oxidize at potentials near the reduction potential of silver ( Figures 1 and 2 ).
- the diagrams of both ligands with gold are similar. This originates the formation of a narrow potential region where Ag(I) and Au(I) ions are soluble and because of this, both the leaching as well as the electroseparation conditions should be controlled with precision. This could imply a great disadvantage with respect to other systems and has motivated the use of membrane reactors, in order to avoid contact of these solutions with the anode.
- One objective of the present invention is to provide a method to separate gold and silver from thiosulfate or thiourea solutions by simultaneous anodic and cathodic electrodeposition, increasing in this manner the velocity of the process. Another is to accomplish this with a minimum affectation of the solution composition, so that it may be recirculated back to the leaching stage. Yet another is to promote efficient energy use.
- the present invention is intended to solve the problem of gold ans silver separation from thiosulfate and thiourea leaching solutions, providing an improvement over the traditional electro-chemical reactors now in use.
- This improvement is characterizes by a novel process to simultaneously deposit metals in on the anode and cathode in a one compartment reactor, using a commercial copper sheet as the anode and a titanium sheet as the cathode.
- the electrodeposition is performed in a recirculation scheme, illustrated in Figure 4 , in which the solution is charged to the reservoir (320) from which it is pumped (330) to the electrochemical reactor (310) and then returned by gravity to the reservoir.
- the first stage is gold and silver leaching from the mineral or concentrate, using a thiosulfate solution, in this case, whose composition is presented in Table 1.
- the pH was adjusted to 10.0 with NH 4 OH.
- Table 1 Composition of the leaching solution
- the solutions were prepared with reagent grade chemicals using deionized water (1x10 10 M ⁇ cm -1 ). 500 mL of this solution was placed in contact with 3.75 g of a flotation concentrate, with a particle size less than 10 ⁇ m, containing 21 kg/ton of silver. After six hours in continuous agitation, the solution was separated from the solid by filtration and placed in a reactor such as that represented in Figures 4 and 5 .
- Figure 6 shows a graphic representation of the silver concentration with respect to the leaching time. A maximum value was attained in 120 minutes, after which time the concentration remained relatively constant.
- the solution was recycled back to the leaching stage, where it was contacted with fresh unleached concentrate, under the same conditions as described previously. The entire procedure was repeated until three full cycles were completed.
- Figure 8 shows a graphic representation of the leaching results for all three cycles; an increase in the leaching velocity and the maximum silver concentration may be observed in the second and third leach, relative to the first, possibly due to the stabilization of the equilibria between the thiosulfate and the Cu(II) and Cu(I) ions.
- the second and third electrolyses show similar tendencies to that of the first (solid line), only differentiable by the initial value, which depends on the previous leaching stage. In all three cases, the values reached below 10 mg/L in approximately 4 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
- The present invention is related to the mining industry for treatment of minerals and materials which contain gold and silver. Specifically, it is related to a process to recover gold and silver, from leaching solutions with a simultaneous anodic and cathodic electrodeposition process, after which the poor solution is recycled back to the leaching stage.
- The recovery of gold and silver from their minerals has been performed by various methods; among the most employed are pyrometallurgical treatments, in which upon the addition of a considerable amount of energy, part of the mineral is oxidized, in this manner liberating the precious metals. This great amount of energy is the principal inconvenience of the process, which in the end reflects on the operation costs.
- On the other hand, the hydrometallurgical methods are characterized for their high selectivity and relatively low reagent and energy costs. Gold and silver has been obtained by one such method for over 100 years, using cyanide and oxygen as a complexing agent and an oxidant, respectively. Despite the high efficiency of this system, the treatment of complex minerals, as well as environmental restrictions, has encouraged research on other leaching systems that could compete with cyanide, without its disadvantages.
- Thiosulfate, in the presence of copper, and the combination of thiourea with formamidine disulfide (Poisot-Diaz, M.E., González, I. and Lapidus, G.T. (2008), " Effect of Copper, Iron and Zinc Ions on the Selective Electrodeposition of Dorée from Acidic thiourea Solutions", Hydrometallurgy 2008, Eds. C.A. Young, P.R. Taylor, C.G. Anderson y Y. Choi, Society for Mining, Metal-lurgy and Exploration, Inc. (SME), Littleton, Colorado, U.S.A., ISBN: 978-0-87335-266-6, pp. 843-848 and Alonso-Gómez, A.R. and Lapidus, G.T. (2008), "Pretreatment for Refractory Gold and Silver Minerals before Leaching with Ammoniacal Copper Thiosulfate", Hydrometallurgy 2008, Eds. C.A. Young, P.R. Taylor, C.G. Anderson y Y. Choi, Society for Mining, Metallurgy and Exploration, Inc. (SME), Littleton, Colorado, U.S.A., ISBN: 978-0-87335-266-6, pp. 817-822.) are two chemical systems that leach gold and silver from minerals for which cyanidation has proved to be inefficient. In this same manner, it was shown possible to recover gold and silver metals in both systems using direct electrodeposition (A. Alonso. G.T. Lapidus and I. González, A strategy to determine the potential interval for selective silver electrodeposition from ammoniacal thiosulfate solutions Hydrometallurgy, Volume 85, Issues 2-4, March 2007, Pages 144-153); However, this recovery was accomplished in geometrically complex reactors (F.C. Walsh, C. Ponce de Leon and C.T. Low, The rotating cylinder electrode (RCE) an its application to the electrodeposition of metals, Australian Journal of Chemistry, 58, (4), 246-262 and A. Alonso, G.T. Lapidus and I. González, Selective silver electroseparation from ammoniacal thiosulfate solutions using a rotating cylinder electrode reactor (RCE), Hydrometallurgy, Volume 92, Issues 3-4, June 2008, Pages 115-123), with an energy consumption that renders un attractive from an economic and financial standpoint.
- At this point, it is important to mention a characteristic of the thiourea and thiosulfate systems: both complexing agents can oxidize at potentials near the reduction potential of silver (
Figures 1 and 2 ). The diagrams of both ligands with gold are similar. This originates the formation of a narrow potential region where Ag(I) and Au(I) ions are soluble and because of this, both the leaching as well as the electroseparation conditions should be controlled with precision. This could imply a great disadvantage with respect to other systems and has motivated the use of membrane reactors, in order to avoid contact of these solutions with the anode. - One objective of the present invention is to provide a method to separate gold and silver from thiosulfate or thiourea solutions by simultaneous anodic and cathodic electrodeposition, increasing in this manner the velocity of the process. Another is to accomplish this with a minimum affectation of the solution composition, so that it may be recirculated back to the leaching stage. Yet another is to promote efficient energy use.
- Other objectives and advantages that apply the principles and are derived from the present invention may be apparent from the study of the following description and diagrams that are included here for illustrative and not limitative purposes.
- The present invention is intended to solve the problem of gold ans silver separation from thiosulfate and thiourea leaching solutions, providing an improvement over the traditional electro-chemical reactors now in use. This improvement is characterizes by a novel process to simultaneously deposit metals in on the anode and cathode in a one compartment reactor, using a commercial copper sheet as the anode and a titanium sheet as the cathode.
- The conditions which permit this technique to operate were chosen from the analysis of
Figure 1 , where a region of the soluble complex Ag(S2O3)2 3- is observed within the metallic silver stability zone. When the potential is decreased below -110 mV, the Ag(I) species is reduced to Ag0, in a typical electrolytic process. However, the most interesting aspect of this diagram is when the potential is less negative than -50 mV, where part of the thiosulfate oxidizes, destabilizing the soluble complex and forming metallic silver. The present invention takes advantage of this phenomenon and has not been previously reported for this or other ligands. - The application of the simultaneous anodic-cathodic electrodeposition of gold and silver allows more efficient use of the electrical energy in electrochemical reactors of simple geometry without a membrane; additionally, the separation process occurs in less time than that required in conventional electrochemical reactors.
- In order to better understand the characteristics of the invention, the following description is accompanied by diagrams and figures, which form an integral part of the same and are meant to be illustrative but not limitative and are described in the following section.
-
-
Figure 1 is a Pourbaix-type diagram in which the predominance zones for the soluble species Ag(S2O3)2 3- (thiosulfate-silver complex) and metallic silver Ag0 are shown. -
Figure 2 is a Pourbaix-type diagram in which the predominance zones for the soluble species AgTu3 + (thiourea-silver complex) and metallic silver Ag0 are shown. -
Figure 3 shows a leaching-electrodeposition scheme for obtaining gold and silver which utilizes the present invention. -
Figure 4 is a diagram showing a recirculation system which includes the electrochemical reactor. -
Figure 5 is a schematic diagram of the electrochemical cell in which the simultaneous anodic and cathodic deposits are achieved. -
Figure 6 is a graphic representation of the change in silver concentration with leaching time. -
Figure 7 is a graphic representation of the change in silver concentration with electrolysis time where there is simultaneous anodic and cathodic electrodeposition. -
Figure 8 is a graph that compares the change in silver concentration for 1, 2 and 3 with the same solution.leaches -
Figure 9 shows the comparison of the silver concentration during 1, 2 and 3 with the same solution.electrolysis - The simultaneous electrodeposition process, referred to in the present invention, is illustrated in
Figure 3 . - A thiosulfate or thiourea solution, rich in gold and silver ions, originating from the leaching stage (100) and after having been filtered (200), is introduced into the electrochemical reactor (300).
- Once the electrodeposition has finalized, the cathode (312,
Figure 5 ) and the anode (313,Figure 5 ) are removed from the reactor and mechanically abraded to remove the gold and silver metals. The solution is then recirculated back to the leaching stage (301). - The electrodeposition is performed in a recirculation scheme, illustrated in
Figure 4 , in which the solution is charged to the reservoir (320) from which it is pumped (330) to the electrochemical reactor (310) and then returned by gravity to the reservoir. - To better understand the invention, one of the many experiments is detailed as an example, which employs a system such as that schematized in
Figures 3 to 5 . A 60 cm2 (exposed geometrical area) titanium plate was used as the cathode and a copper plate with the same exposed area was the anode. - As shown in
Figure 3 , the first stage is gold and silver leaching from the mineral or concentrate, using a thiosulfate solution, in this case, whose composition is presented in Table 1. The pH was adjusted to 10.0 with NH4OH.Table 1. Composition of the leaching solution Component Composition (mol/L) (NH4)2S2O3 0.2 CuSO4 0.05 EDTA 0.025 (NH4)2HPO4 0.1 - The solutions were prepared with reagent grade chemicals using deionized water (1x1010 MΩcm-1). 500 mL of this solution was placed in contact with 3.75 g of a flotation concentrate, with a particle size less than 10 µm, containing 21 kg/ton of silver. After six hours in continuous agitation, the solution was separated from the solid by filtration and placed in a reactor such as that represented in
Figures 4 and5 . - During the electrodeposition, a flow of 1.1 L/min was used with a cell voltage of 100 mV; with this voltage, the potential at the cathode was -260 mV versus the normal hydrogen electrode (NHE), which is adequate to obtain a selective silver deposit on this electrode
-
Figure 6 shows a graphic representation of the silver concentration with respect to the leaching time. A maximum value was attained in 120 minutes, after which time the concentration remained relatively constant. - The change in silver concentration during the electrolysis is shown in
Figure 7 . Within the first 15 minutes a sharp descent is observed, which then gradually decreases to values below 10 mg/L. The current registered throughout the experiment was 0.01 A, which together with the cell voltage translates to 0.004 W-h. Considering that the deposited mass of silver was 0.065 g, the energy consumption was 0.062 W-h per g of deposited silver. - After finalizing the electrodeposition, the solution was recycled back to the leaching stage, where it was contacted with fresh unleached concentrate, under the same conditions as described previously. The entire procedure was repeated until three full cycles were completed.
-
Figure 8 shows a graphic representation of the leaching results for all three cycles; an increase in the leaching velocity and the maximum silver concentration may be observed in the second and third leach, relative to the first, possibly due to the stabilization of the equilibria between the thiosulfate and the Cu(II) and Cu(I) ions. - On the other hand, the second and third electrolyses (the dashed and dotted lines of
Figure 9 ) show similar tendencies to that of the first (solid line), only differentiable by the initial value, which depends on the previous leaching stage. In all three cases, the values reached below 10 mg/L in approximately 4 hours. - These results clearly show that the thiosulfate solution can be recirculated after the electrodeposition stage, back to the leaching stage, at least three times without reconditioning or make-up. Additionally, during the three electrolyses, the current maintained a constant value of 0.01 A, conserving the same energy expenditure as the first cycle. Anode consumption was negligible after three electrodeposition cycles.
- Finally, it is important to mention that X-ray diffraction analysis of both the anodic and the cathodic deposits showed that they consisted exclusively of metallic silver
- Having described the invention, being considered a novelty and, because of this is demanded as property the content of the following claim.
Claims (2)
- Electrolysis for the gold and silver recovery from thiosulfate or thiourea leaching solutions characterized by accomplishing metallic deposits simultaneously on the anode and cathode surfaces, by operating in the potential zones that permit silver or gold reduction at the cathode and ligand oxidation at the anode.
- Electrolysis for the gold and silver recovery from thiosulfate or thiourea leaching solutions characterized by the solution having the following additive composition:
Component Composition (mol/L) (NH4)2S2O3 0.2 CuSO4 0.05 EDTA 0.025 (NH4)2HPO4 0.1
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MX2010013717A MX2010013717A (en) | 2010-12-13 | 2010-12-13 | Electro-recovery of gold and silver from leaching solutions by means of simultaneous cathodic and anodic deposition. |
| PCT/MX2011/000151 WO2012081952A2 (en) | 2010-12-13 | 2011-12-09 | Electro-recovery of gold and silver from leaching solutions by means of simultaneous cathodic and anodic deposition |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2653590A2 true EP2653590A2 (en) | 2013-10-23 |
Family
ID=45558362
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP11813915.3A Withdrawn EP2653590A2 (en) | 2010-12-13 | 2011-12-09 | Electro-recovery of gold and silver from leaching solutions by means of simultaneous cathodic and anodic deposition |
Country Status (12)
| Country | Link |
|---|---|
| US (1) | US20140076735A1 (en) |
| EP (1) | EP2653590A2 (en) |
| JP (1) | JP2014505788A (en) |
| CN (1) | CN103380234A (en) |
| AU (1) | AU2011341844A1 (en) |
| BR (1) | BR112013014874A2 (en) |
| CA (1) | CA2821421A1 (en) |
| CO (1) | CO6801793A2 (en) |
| MX (1) | MX2010013717A (en) |
| PE (1) | PE20140494A1 (en) |
| RU (1) | RU2013132451A (en) |
| WO (1) | WO2012081952A2 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016018409A1 (en) * | 2014-07-31 | 2016-02-04 | Hewlett-Packard Development Company, L.P. | Process image according to mat characteristic |
| WO2018104803A1 (en) * | 2016-12-08 | 2018-06-14 | Metoxs Pte, Ltd. | Recovery of gold and silver from precious metals-containing solids |
| US10807085B2 (en) * | 2017-11-17 | 2020-10-20 | University Of Massachusetts | Silver recovery as Ag0nanoparticles from ion-exchange regenerant solution |
| CN113621995B (en) * | 2021-07-16 | 2023-12-26 | 武汉理工大学 | Method for recycling noble metals in thiosulfate leaching solution based on electrochemical combined catalysis technology |
| CN113652554B (en) * | 2021-07-16 | 2022-12-27 | 武汉理工大学 | Method for recovering noble metal in solution based on capacitive deionization technology |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010002235A2 (en) * | 2008-07-02 | 2010-01-07 | Universidad Autónoma Metropolitana | Filter-press-type electrochemical reactor for recovering gold (au) and silver (ag) values in powder form |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3616332A (en) * | 1969-12-17 | 1971-10-26 | Texas Instruments Inc | Process for recovering silver from scrap materials and electrolyte composition for use therein |
| US4280884A (en) * | 1980-04-07 | 1981-07-28 | Demco, Inc. | Method and apparatus for recovery of silver employing an electrolytic cell having improved solution movement |
| CN85103707B (en) * | 1985-05-13 | 1987-05-06 | 华东化工学院 | Technological process for comprehensively extracting gold, silver and copper from gold ore |
| GB8927964D0 (en) * | 1989-12-11 | 1990-02-14 | Kodak Ltd | Method and apparatus for recovering silver from a photographic fixing solution |
| JP3816241B2 (en) * | 1998-07-14 | 2006-08-30 | 株式会社大和化成研究所 | Aqueous solution for reducing and precipitating metals |
| JP2001192878A (en) * | 2000-01-11 | 2001-07-17 | Yuken Industry Co Ltd | Precious metal recovery method from metal composition |
| US8025859B2 (en) * | 2007-05-18 | 2011-09-27 | Cesl Limited | Process for gold and silver recovery from a sulphide concentrate |
| MX2008003602A (en) * | 2008-03-14 | 2009-02-25 | Univ Autonoma Metropolitana | Process for the lixiviation and recovery of silver and gold with copper ammonia thiosulfate solutions. |
-
2010
- 2010-12-13 MX MX2010013717A patent/MX2010013717A/en active IP Right Grant
-
2011
- 2011-12-09 CN CN2011800674437A patent/CN103380234A/en active Pending
- 2011-12-09 PE PE2013001408A patent/PE20140494A1/en not_active Application Discontinuation
- 2011-12-09 CA CA2821421A patent/CA2821421A1/en not_active Abandoned
- 2011-12-09 JP JP2013544412A patent/JP2014505788A/en active Pending
- 2011-12-09 US US13/993,247 patent/US20140076735A1/en not_active Abandoned
- 2011-12-09 WO PCT/MX2011/000151 patent/WO2012081952A2/en not_active Ceased
- 2011-12-09 RU RU2013132451/02A patent/RU2013132451A/en not_active Application Discontinuation
- 2011-12-09 BR BR112013014874A patent/BR112013014874A2/en not_active IP Right Cessation
- 2011-12-09 AU AU2011341844A patent/AU2011341844A1/en not_active Abandoned
- 2011-12-09 EP EP11813915.3A patent/EP2653590A2/en not_active Withdrawn
-
2013
- 2013-07-10 CO CO13164020A patent/CO6801793A2/en not_active Application Discontinuation
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010002235A2 (en) * | 2008-07-02 | 2010-01-07 | Universidad Autónoma Metropolitana | Filter-press-type electrochemical reactor for recovering gold (au) and silver (ag) values in powder form |
| EP2439315A2 (en) * | 2008-07-02 | 2012-04-11 | Universidad Autónoma Metropolitana | Filter-press-type electrochemical reactor for recovering gold (au) and silver (ag) values in powder form |
Non-Patent Citations (1)
| Title |
|---|
| See also references of WO2012081952A2 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2012081952A3 (en) | 2012-12-06 |
| JP2014505788A (en) | 2014-03-06 |
| CN103380234A (en) | 2013-10-30 |
| AU2011341844A1 (en) | 2013-08-01 |
| PE20140494A1 (en) | 2014-04-30 |
| WO2012081952A4 (en) | 2013-01-24 |
| CO6801793A2 (en) | 2013-11-29 |
| AU2011341844A2 (en) | 2013-10-17 |
| RU2013132451A (en) | 2015-01-20 |
| WO2012081952A2 (en) | 2012-06-21 |
| US20140076735A1 (en) | 2014-03-20 |
| CA2821421A1 (en) | 2012-06-21 |
| MX2010013717A (en) | 2012-06-13 |
| BR112013014874A2 (en) | 2016-10-18 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Lu et al. | Electrolytic manganese metal production from manganese carbonate precipitate | |
| US9683277B2 (en) | Process for preparing a ferric nitrate reagent from copper raffinate solution and use of such reagent in the leaching and/or curing of copper substances | |
| MX2010013510A (en) | Electrorecovery of gold and silver from thiosulfate solutions. | |
| EP2653590A2 (en) | Electro-recovery of gold and silver from leaching solutions by means of simultaneous cathodic and anodic deposition | |
| Spitzer et al. | Selective electrochemical recovery of gold and silver from cyanide aqueous effluents using titanium and vitreous carbon cathodes | |
| CN201501929U (en) | A device for on-line extraction of copper and reuse of etching solution for circuit board etching solution in chloride system | |
| US5667557A (en) | Hydrometallurgical extraction and recovery of copper, gold, and silver via cyanidation and electrowinning | |
| US10934192B2 (en) | Method of recovering copper from a dilute metal containing solution | |
| Gamboa et al. | Fundamental considerations on the mechanisms of silver cementation onto zinc particles in the Merril–Crowe process | |
| Alonso et al. | Selective silver electroseparation from ammoniacal thiosulfate leaching solutions using a rotating cylinder electrode reactor (RCE) | |
| Boyanov et al. | Removal of copper and cadmium from hydrometallurgical leach solutions by fluidised bed electrolysis | |
| RU2516304C2 (en) | ELECTROCHEMICAL REACTOR OF FILTER PRESS TYPE FOR EXTRACTION OF GOLD (Au) AND SILVER (Ag) IN FORM OF POWDER | |
| Huh et al. | The fluidized bed electrowinning of silver | |
| CN1284869C (en) | A method for leaching valuable metals from oceanic polymetallic nodules | |
| MXPA03006955A (en) | Silver and gold leaching and recovery process with electro-oxidised thiourea solutions. | |
| US20100012502A1 (en) | Process for recovery of metal-containing values from minerals and ores | |
| JP4501726B2 (en) | Electrowinning of iron from acidic chloride aqueous solution | |
| KR20090047677A (en) | Electrolytic collection method of precious metals and apparatus | |
| RU2258768C1 (en) | Method of extraction of gold and silver from polymetallic raw material | |
| Bieszczad et al. | Electrowinning of copper and lead from ammonium acetate solutions | |
| JP4701943B2 (en) | Electrowinning of iron from acidic chloride aqueous solution | |
| Li et al. | Improved electrochemical recovery of metallic powder from acidic chloride-citrate electrolyte | |
| Duchao et al. | Electrorefining of a gold-bearing antimony alloy in alkaline xylitol solution | |
| RU2640212C2 (en) | Method of removing noble metals from solutions | |
| CN1073634C (en) | Membrane powersupplyless electrolysis process |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20130710 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SERVICIOS ADMINISTRATIVOS PENOLES SA DE CV Owner name: UNIVERSIDAD AUTONOMA METROPOLITANA |
|
| DAX | Request for extension of the european patent (deleted) | ||
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| INTG | Intention to grant announced |
Effective date: 20140925 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20150206 |