EP2647235B1 - Dynamic spectrum refarming with multiple carriers - Google Patents
Dynamic spectrum refarming with multiple carriers Download PDFInfo
- Publication number
- EP2647235B1 EP2647235B1 EP10785064.6A EP10785064A EP2647235B1 EP 2647235 B1 EP2647235 B1 EP 2647235B1 EP 10785064 A EP10785064 A EP 10785064A EP 2647235 B1 EP2647235 B1 EP 2647235B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- communication system
- carrier
- carrier aggregation
- request
- signaling message
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001228 spectrum Methods 0.000 title claims description 80
- 239000000969 carrier Substances 0.000 title claims description 23
- 238000004891 communication Methods 0.000 claims description 130
- 230000002776 aggregation Effects 0.000 claims description 71
- 238000004220 aggregation Methods 0.000 claims description 71
- 230000011664 signaling Effects 0.000 claims description 42
- 238000005516 engineering process Methods 0.000 claims description 32
- 230000004044 response Effects 0.000 claims description 25
- 230000007246 mechanism Effects 0.000 claims description 20
- 230000009849 deactivation Effects 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 10
- 230000003213 activating effect Effects 0.000 claims description 5
- 230000004931 aggregating effect Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 238000012544 monitoring process Methods 0.000 claims description 5
- 238000004590 computer program Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 3
- 230000010267 cellular communication Effects 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000007727 signaling mechanism Effects 0.000 description 2
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 1
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000007781 signaling event Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/52—Allocation or scheduling criteria for wireless resources based on load
Definitions
- the present invention relates to dynamic spectrum refarming with multiple carriers.
- the present invention relates to dynamic spectrum refarming (DSR) where two radio access technologies (RATs) share same spectrum and the spectrum shares are assigned based on cell load as illustrated in Fig. 1 .
- DSR dynamic spectrum refarming
- RATs radio access technologies
- a communication system of a radio access technology 1 (RAT1) which shares spectrum blocks with the RAT2 communication system may use all of the shared spectrum blocks (i.e. all of the bandwidth shared between the communication systems).
- the shared spectrum blocks should be assigned more and more to the RAT2 communication system.
- Dynamic adjustment of bandwidth between different RATs can be problematic even though different bandwidths are supported by the RATs.
- LTE long term evolution
- MIB master information block
- SIB system information block
- GSM Global System for Mobile communications
- IS-IF appears only at edges of the LTE spectrum as show in Fig. 2 .
- IS-IF can be still very harmful for LTE control channels which are wide band transmissions, i.e. transmitted over entire LTE bandwidth.
- LTE Release-10 also known as LTE-Advanced
- CA carrier aggregation
- CCs component carriers
- Fig. 3 The basic principle of CA in LTE is illustrated in Fig. 3 .
- LTE-Advanced carrier aggregation shown in Fig. 3 , an intra-band aggregation of carriers 1 and 2, and an inter-band aggregation of carrier 3 combined with carriers 1 and 2 are performed.
- carrier aggregation is that a network may grant resources for a UE on multiple CCs instead of just one which is the case in LTE Release-8 and -9.
- the WO 2010/091713 A1 relates to radio resource allocation between fourth-generation Evolved Universal Terrestrial Radio Access Networks (E-UTRANs) and second-generation radio access networks according to the GSM/EDGE standard (herein also referred to as GERANs), and more particularly to a mechanism which allows GERAN and LTE radio resource management to share the same spectrum allocation in both co-channels and adjacent channels.
- E-UTRANs Evolved Universal Terrestrial Radio Access Networks
- GERANs GSM/EDGE standard
- the US 2010/098012 A1 discloses transmitting uplink control information (UCI) for Long Term Evolution-Advanced (LTE-A) using carrier aggregation.
- UCI uplink control information
- LTE-A Long Term Evolution-Advanced
- Methods for UCI transmission in the uplink control channel, uplink shared channel or uplink data channel are disclosed.
- the methods include transmitting channel quality indicators (CQI), precoding matrix indicators (PMI), rank indicators (RI), hybrid automatic repeat request (HARQ) acknowledgement/non-acknowledgement (ACK/NACK), channel status reports (CQI/PMI/RI), source routing (SR) and sounding reference signals (SRS).
- CQI channel quality indicators
- PMI precoding matrix indicators
- RI rank indicators
- HARQ hybrid automatic repeat request acknowledgement/non-acknowledgement
- CQI/PMI/RI channel status reports
- SRS sounding reference signals
- the present invention aims at overcoming the problems related to dynamic change of bandwidth between communication systems of different radio access technologies sharing blocks of spectrum or bandwidth, and inter-system interference.
- the present invention aims at establishing signaling mechanisms with minimal complexity, which enable a smart interaction between the communication systems, making it possible to utilize carrier aggregation for smooth and seamless spectrum refarming in dynamic / semi-static manner.
- a bandwidth of a first communication system of a first radio access technology such as LTE can be dynamically changed without cell reset.
- backwards compatibility can be provided since carrier aggregation related changes are invisible to Release-10 UEs due to using standard carrier aggregation functionality, and legacy UEs may operate on a dedicated LTE carrier without any impact or potentially be handed over to one of shared carriers.
- Release-10 LTE carrier aggregation mechanisms allow basically for deactivation / de-configuration of some of CCs for all
- eNodeB eNodeB
- eNB eNodeB
- signaling mechanisms enabling smart interaction between a first communication system of a first radio access technology providing carrier aggregation mechanisms such as LTE and a second communication system of a second radio access technology such as GSM and TD-SCDMA (time division synchronous code division multiple access).
- first and second communication systems are not limited to LTE and GSM / TD-SCDMA.
- FIG. 4 For illustrating a simplified block diagram of various electronic devices that are suitable for use in practicing the exemplary embodiments of this invention.
- a control unit 10 of the first communication system includes processing resources 11, memory resources 12 that may store a program, and interfaces 13 which may include a suitable radio frequency transceiver coupled to one or more antennas for bidirectional wireless communications over one or more wireless links.
- the processing resources 11, memory resources 12 and interfaces 13 may be coupled by a bus 14.
- the control unit 10 may function as part of network elements providing access for user equipments to the first communication system. According to an embodiment of the invention, the control unit 10 may function as part of eNBs, 3G (third generation) NodeBs, or BTSs (base transceiver stations).
- a control unit 20 of the second communication system includes processing resources 21, memory resources 22 that may store a program, and interfaces 23 which may include a suitable radio frequency transceiver coupled to one or more antennas for bidirectional wireless communications over one or more wireless links.
- the processing resources 21, memory resources 22 and interfaces 23 may be coupled by a bus 24.
- the control unit 20 may function as part of network elements providing access for user equipments to the second communication system. According to an embodiment of the invention, the control unit 20 may function as part of BSCs (base station controllers), 3G NodeBs, or BTSs.
- BSCs base station controllers
- 3G NodeBs 3G NodeBs
- BTSs BTSs
- the interfaces 13 and 23 may be used for signaling messages between the control units 10 and 20.
- connection means any connection or coupling, either direct or indirect, between two or more elements, and may encompass the presence of one or more intermediate elements between two elements that are “connected” or “coupled” together.
- the coupling or connection between the elements can be physical, logical, or a combination thereof.
- two elements may be considered to be “connected” or “coupled” together by the use of one or more wires, cables and printed electrical connections, as well as by the use of electromagnetic energy, such as electromagnetic energy having wavelengths in the radio frequency region, the microwave region and the optical (both visible and invisible) region, as non-limiting examples.
- Programs stored by the memory resources 12, 23 are assumed to include program instructions that, when executed by the associated processing resources, enable the electronic device to operate in accordance with the exemplary embodiments of this invention, as detailed below.
- Inherent in the processing resources 11, 21 is a clock to enable synchronism among the various apparatus for transmissions and receptions within the appropriate time intervals and slots required, as the scheduling grants and the granted resources/subframes are time dependent.
- the transceivers of the interfaces 13, 23 include both transmitter and receiver, and inherent in each is a modulator/demodulator commonly known as a modem.
- the interfaces 13, 23 may also include a modem to facilitate communication over (hardwire) links.
- the exemplary embodiments of this invention may be implemented by computer software stored in the memory resources 12, 22 and executable by the processing resources 11, 21 of the control units 10, 20, or by hardware, or by a combination of software and/or firmware and hardware in any or all of the devices shown.
- the memory resources 12, 22 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory.
- the processing resources 11, 21 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on a multi-core processor architecture, as non-limiting examples.
- carrier aggregation of an LTE system is used to adjust overall LTE bandwidth for DSR purposes.
- a load of a second communication system of a second radio access technology e.g. a GSM system
- additional LTE carrier(s) that are at least partly shared with the GSM system are activated for the cell and they are aggregated by using LTE carrier aggregation.
- LTE bandwidth is down-scaled.
- additional LTE carrier(s) and the corresponding carrier aggregation are deactivated, i.e. LTE bandwidth is down-scaled.
- LTE bandwidth is down-scaled.
- it may be decided per sector on a unique primary cell, i.e. PCell or primary component carrier (PCC), per UE connected to the LTE system.
- This decision can be based on neighbor cell interference as estimated from measurement reports of the UEs connected to the LTE system.
- this decision can be based on signaling from the GSM system to the LTE system on which GSM carriers are most active.
- RRC radio resource control
- the need/possibility to disable/enable LTE carriers and carrier aggregation is communicated between the GSM system and the LTE system.
- a network node of the LTE system e.g. an eNB, provides it in a dedicated message when it configures the secondary carrier for carrier aggregation, changing of MIB or SIB contents can be applied right away in the UE.
- FIG. 5 An example solution with two 5MHz component carriers is illustrated in Fig. 5 .
- the two 5MHz component carriers are aggregated, one of which is a dedicated carrier of the first communication system (LTE in this example), and the other is an additional carrier corresponding to a spectrum block shared between the first and second communication systems.
- the load of the GSM system is high, the additional carrier and the carrier aggregation are deactivated so that the shared spectrum block can be used by the GSM system.
- the LTE carrier aggregation may be used together with HSPA multi-carrier to provide a similar dynamic spectrum refarming solution for HSPA-LTE.
- Fig. 6 illustrates an example solution of dynamic spectrum refarming with LTE carrier aggregation used together with HSPA multi-carrier.
- the LTE system comprises a dedicated spectrum block of 5MHz
- the HSPA system comprises a dedicated spectrum block of 5MHz.
- a dedicated carrier corresponding to the dedicated spectrum block of the LTE system and an additional carrier corresponding to the shared spectrum block may be aggregated and used by the LTE system.
- the additional carrier and the carrier aggregation may be deactivated so that the shared spectrum block can be used by the HSPA system.
- the first communication system e.g. an eNB of LTE
- the first communication system may be informed about a level of inter-system interference on each of carriers which may be carriers shared between the first and second communication systems.
- the inter-system interference may be controlled by utilizing at least one of the following methods:
- first a component carrier of a particular bandwidth may be deactivated and reactivated with a smaller or larger bandwidth.
- the first and second communication systems are not limited to LTE and GSM.
- the second communication system may comprise TD-SCDMA which may provide the corresponding signaling of the spectrum need.
- Fig. 7 shows a schematic block diagram illustrating signaling between first and second communication systems according to an embodiment of the present invention.
- a communication system performs load monitoring.
- the second communication system 30 adopts a radio access technology (second radio access technology), such as GSM or TD-SCDMA, for example.
- the second communication system 30 may comprise the control unit 20 shown in Fig. 4 , which may function as part of a BSC.
- the second communication system 30 determines an availability of spectrum blocks shared between the second communication system and a first communication system 40 of a first radio access technology based on the load. In step S2 the second communication system 30 sends a request in a first signaling message to the first communication system 40 which is capable of performing carrier aggregation mechanisms, the request including information on the availability of the spectrum blocks.
- the second communication system 30 may calculate a level of inter-system interference between the first and second communication systems, at least on carriers shared between the first and second communication systems, and include interference information on the inter-system interference into the request.
- the first communication system 40 receives the request and, in step S3, performs carrier aggregation mechanisms based on the information on availability of spectrum blocks shared between the first and second communication systems, which is included in the request, with respect to the spectrum blocks.
- the first communication system 40 adopts a radio access technology (first radio access technology, which is different from the second radio access technology), such as LTE, for example.
- the first communication system 40 may comprise the control unit 10 shown in Fig. 4 , which may function as part of an eNB.
- the first communication system 40 activates at least one additional carrier corresponding to the at least one spectrum block and aggregates the at least one additional carrier using the carrier aggregation mechanisms. In case the information indicates unavailability of at least one of the spectrum blocks, the first communication system 40 deactivates at least one additional carrier corresponding to the at least one spectrum block and deactivates the corresponding carrier aggregation using the carrier aggregation mechanisms.
- the first communication system 40 may deactivate a carrier of a particular bandwidth and reactivate the carrier with a larger bandwidth corresponding to the at least one spectrum block, and for deactivating the at least one additional carrier and the corresponding carrier aggregation, the first communication system 40 may deactivate a carrier of a particular bandwidth and reactivate the carrier with a smaller bandwidth corresponding to the at least one spectrum block.
- the first communication system 40 may control the inter-system interference based on the interference information included in the request received from the second communication system 30.
- the first communication system 40 may allow carrier aggregation only for user equipments of the first communication system 40 that have signal quality that is high enough to cope with the inter-system interference, and/or adjust signal quality estimates of the first communication system based on the level of inter-system interference.
- step S4 the first communication system 40 informs a UE 50 about the activation of the at least one additional carrier. That is, the first communication system 40 provides system information to access the at least one additional carrier to the UE 50 in a dedicated message when it configures the at least one additional carrier for the carrier aggregation.
- the first communication system 40 decides per sector on a unique primary carrier for the user equipment 50, and performs an intra-cell handover of the user equipment 50 to the unique primary carrier when the user equipment 50 is connected to a primary carrier different from the unique primary carrier (step S4).
- the first communication system 40 may decide the unique primary carrier based on neighbor cell interference estimated from measurement reports of user equipments connected to the first communication system, which may include the user equipment 50, and/or based on signaling from the second communication system 30 on activities of carriers of the second communication system.
- step S5 the first communication system 40 transmits a response to the request in a second signaling message to the second communication system 30, the response including an acknowledgment of an activation/deactivation of the at least one additional carrier and/or the corresponding carrier aggregation.
- the first signaling message sent in step S1 may be a virtual inter-system handover request message and the second signaling message sent in step S5 may be a virtual inter-system handover response message.
- Fig. 8 shows an example implementation of an embodiment of the invention with LTE carrier aggregation, and specifically the case where LTE carrier aggregation is activated in response to the request from the second communication system (GSM in this example), i.e. LTE bandwidth is up-scaled.
- GSM second communication system
- step C1 the GSM system, e.g. a BSC, monitors its load, and the load monitoring indicates that a spectrum block can be released.
- the GSM system sends an indication to the first communication system (LTE in this example), e.g. an eNB of an E-UTRAN (evolved universal terrestrial radio access network), of spectrum block availability.
- the eNB configures an SCell (secondary cell, secondary/additional component carrier) to UEs of the LTE system which are carrier aggregation enabled.
- LTE long-term evolution
- SCell secondary cell, secondary/additional component carrier
- the example implementation shown in Fig. 8 may be further enhanced by adding a fourth step where the LTE eNB acknowledges the activation of carrier aggregation to the BSC of the GSM system.
- Deactivation of a carrier aggregation may be implemented in a similar manner. That is, the GSM system, e.g. the BSC, monitors its load, and sends an indication to the eNB of spectrum block unavailability.
- the LTE system e.g. the eNB deactivates the carrier aggregation and sends an acknowledgement for the deactivation to the BSC.
- inter-system handover signaling may be used in order to minimize the amount of changes to the specifications. That is, the BSC sends a "virtual HO (handover) request" to the eNB, which further may include an indication of inter-system interference. The eNB sends a "virtual HO response" to acknowledge the activation/deactivation of additional carriers, and/or carrier aggregation.
- the virtual HO request and the virtual HO response refer to picky-bagged inter-system HO messages that are known by both entities (BSC and eNB) to indicate LTE carrier (or carrier aggregation) activation/deactivation instead of actual handover. Furthermore, load balancing messages or information exchange messages may be sent between the BSC and eNB in order to exchange load information.
- the communication between the BSC and eNB may be implemented through a proprietary interface between GSM BTS (base station) and LTE eNB.
- GSM BTS has to communicate with BSC via a proprietary interface.
- some communication between neighboring BSCs may be implemented.
- an apparatus of a first communication system of a first radio access technology comprises receiving means for receiving a request in a first signaling message from a second communication system of a second radio access technology, the request including information on availability of spectrum blocks shared between the first and second communication systems, and performing means for performing carrier aggregation mechanisms based on the information with respect to the spectrum blocks.
- the apparatus may further comprise activating means and aggregating means for, in case the information indicates availability of at least one of the spectrum blocks, activating at least one additional carrier corresponding to the at least one spectrum block and aggregating the at least one additional carrier using the carrier aggregation mechanisms.
- the apparatus may further comprise deactivating means for, in case the information indicates unavailability of at least one of the spectrum blocks, deactivating at least one additional carrier corresponding to the at least one spectrum block and deactivating the corresponding carrier aggregation using the carrier aggregation mechanisms.
- the apparatus may further comprise deactivating and reactivating means which, for activating and aggregating the at least one additional carrier, deactivate a carrier of a particular bandwidth and reactivate the carrier with a larger bandwidth corresponding to the at least one spectrum block.
- deactivating and reactivating means may deactivate a carrier of a particular bandwidth and reactivate the carrier with a smaller bandwidth corresponding to the at least one spectrum block.
- the apparatus may further comprise transmitting means for transmitting a response to the request in a second signaling message to the second communication system, the response including an acknowledgment of an activation/deactivation of the at least one additional carrier and/or the corresponding carrier aggregation.
- the first signaling message may be a virtual inter-system handover request message and the second signaling message may be a virtual inter-system handover response message.
- the receiving means may receive the request from a network node of the second communication system, wherein the apparatus may comprise the network node.
- the request may further include interference information on a level of inter-system interference between the first and second communication systems, at least on carriers shared between the first and second communication systems, and the apparatus may further comprise controlling means for controlling the inter-system interference based on the interference information.
- the apparatus may further comprise allowing means for allowing carrier aggregation only for user equipments of the first communication system that have signal quality that is high enough to cope with the inter-system interference, and/or adjusting means for adjusting signal quality estimates of the first communication system based on the level of inter-system interference.
- the apparatus may further comprise deciding means for deciding per sector on a unique primary carrier per user equipment, and performing means for performing an intra-cell handover of each of user equipments connected to a primary carrier different from the unique primary carrier to the unique primary carrier.
- the deciding means may decide the unique primary carrier based on neighbor cell interference estimated from measurement reports of the user equipments and/or based on signaling from the second communication system on activities of carriers of the second communication system.
- an apparatus of the second communication system of the second radio access technology such as the communication system 30 of Fig. 7 or the control unit 20 shown in Fig. 4 , for example, comprises monitoring means for monitoring a load of the apparatus, determining means for determining an availability of spectrum blocks shared between the second communication system and the first communication system of the first radio access technology based on the load, and sending means for sending a request in a first signaling message to the first communication system which is capable of performing carrier aggregation mechanisms, the request including information on the availability of the spectrum blocks.
- the apparatus may further comprise calculating means for calculating a level of inter-system interference between the first and second communication systems, at least on carriers shared between the first and second communication systems, and including means for including interference information on the inter-system interference into the request.
- the apparatus may further comprise signaling means for signaling activities of carriers of the second communication system to the first communication system.
- the apparatus may further comprise receiving means for receiving a response to the request in a second signaling message from the first communication system, the response including an acknowledgment of an activation/deactivation of at least one additional carrier and/or a corresponding carrier aggregation.
- the apparatus may further comprise limiting means for limiting a transmit power of the second communication system on at least one carrier shared between the first and second communication systems.
- a request is received in a first signaling message S2 from a second communication system 30 of a second radio access technology, the request including information on availability of spectrum blocks shared between the first and second communication systems.
- the availability of the spectrum blocks may have been determined based on a load of the second communication system 30.
- the first communication system 40 performs carrier aggregation mechanisms based on the information with respect to the spectrum blocks, and may transmit a response to the request in a second signaling message S5 to the second communication system, the response including an acknowledgment of an activation/deactivation of at least one additional carrier and/or a corresponding carrier aggregation.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Description
- The present invention relates to dynamic spectrum refarming with multiple carriers.
- In particular, the present invention relates to dynamic spectrum refarming (DSR) where two radio access technologies (RATs) share same spectrum and the spectrum shares are assigned based on cell load as illustrated in
Fig. 1 . In case the cell load of a communication system of a radio access technology 2 (RAT2) is low in a particular cell of a cellular communications system, a communication system of a radio access technology 1 (RAT1) which shares spectrum blocks with the RAT2 communication system may use all of the shared spectrum blocks (i.e. all of the bandwidth shared between the communication systems). With an increasing cell load of the RAT2 communication system, the shared spectrum blocks should be assigned more and more to the RAT2 communication system. - Main motivations for dynamic spectrum refarming are
- smooth migration to newer technologies (no need to worry when is the cross-over point to do refarming, or what is the right capacity balance),
- higher user throughputs & lower call blocking (bandwidth optimized according to instantaneous load), and
- power saving (putting to sleep excess capacity).
- Dynamic adjustment of bandwidth between different RATs can be problematic even though different bandwidths are supported by the RATs.
- An example of different RATs are GSM (global system for mobile communication) and LTE (long term evolution) systems. For example, LTE supports different bandwidths from 1.4 MHz to 20 MHz and it is possible to indicate a bandwidth change with a broadcasted master information block (MIB) and related system information block (SIB). It will however take some time before all LTE UEs (user equipments) have an opportunity to receive the new MIB and SIBs. In the worst case this takes 40s depending on a length of modification period (=modificationPeriodCoeff * defaultPagingCycle in frames). And more importantly, since the system has not been designed for dynamic spectrum adjustments it can not be guaranteed that legacy UEs would be able to follow such bandwidth adjustments, as any changes in MIB should be done via cell reset.
- Another problem arises if spectrum shares differ between neighboring cells of the cellular communications system. GSM has significantly higher power spectral density, e.g. ∼13.5dB in case of 5MHz LTE, and therefore it will cause severe inter-system interference (IS-IF) towards LTE.
- It is possible to assign the spectrum shares in such a way that IS-IF appears only at edges of the LTE spectrum as show in
Fig. 2 . However, IS-IF can be still very harmful for LTE control channels which are wide band transmissions, i.e. transmitted over entire LTE bandwidth. - LTE Release-10 (also known as LTE-Advanced) describes carrier aggregation (CA) providing a capability to aggregate together up to five LTE carriers referred to as component carriers (CCs). The basic principle of CA in LTE is illustrated in
Fig. 3 . According to the example of LTE-Advanced carrier aggregation shown inFig. 3 , an intra-band aggregation of 1 and 2, and an inter-band aggregation ofcarriers carrier 3 combined with 1 and 2 are performed.carriers - The idea of carrier aggregation is that a network may grant resources for a UE on multiple CCs instead of just one which is the case in LTE Release-8 and -9.
- The
WO 2010/091713 A1 relates to radio resource allocation between fourth-generation Evolved Universal Terrestrial Radio Access Networks (E-UTRANs) and second-generation radio access networks according to the GSM/EDGE standard (herein also referred to as GERANs), and more particularly to a mechanism which allows GERAN and LTE radio resource management to share the same spectrum allocation in both co-channels and adjacent channels. - In A. Mihovska et al.: "Multi-Operator Resource Sharing Scenario in the Context of IMT-Advanced Systems", 2009, IEEE, a framework for efficient integration of functionalities for dynamic spectrum use, e.g. spectrum aggregation, and cooperative radio resource management in the scope of IMT-Advanced candidate systems is investigated.
- The
US 2010/098012 A1 discloses transmitting uplink control information (UCI) for Long Term Evolution-Advanced (LTE-A) using carrier aggregation. Methods for UCI transmission in the uplink control channel, uplink shared channel or uplink data channel are disclosed. The methods include transmitting channel quality indicators (CQI), precoding matrix indicators (PMI), rank indicators (RI), hybrid automatic repeat request (HARQ) acknowledgement/non-acknowledgement (ACK/NACK), channel status reports (CQI/PMI/RI), source routing (SR) and sounding reference signals (SRS). In addition, methods for providing flexible configuration in signaling UCI, efficient resource utilization, and support for high volume UCI overhead in LTE-A are disclosed. - The present invention aims at overcoming the problems related to dynamic change of bandwidth between communication systems of different radio access technologies sharing blocks of spectrum or bandwidth, and inter-system interference.
- Moreover, the present invention aims at establishing signaling mechanisms with minimal complexity, which enable a smart interaction between the communication systems, making it possible to utilize carrier aggregation for smooth and seamless spectrum refarming in dynamic / semi-static manner.
- This is achieved by the apparatuses and methods as defined in the appended claims. The invention may also be implemented by a computer program product.
- According to an embodiment of the invention, a bandwidth of a first communication system of a first radio access technology such as LTE can be dynamically changed without cell reset.
- Moreover, backwards compatibility can be provided since carrier aggregation related changes are invisible to Release-10 UEs due to using standard carrier aggregation functionality, and legacy UEs may operate on a dedicated LTE carrier without any impact or potentially be handed over to one of shared carriers.
- In addition, there is a possibility to control IS-IF efficiently. There is always a "clean" LTE carrier that can be used as an escape carrier for UEs that otherwise would be suffering too much from IS-IF. It is especially worth to notice that control channels on the clean carrier do not suffer from IS-IF.
- In the following the invention will be described by way of embodiments thereof taking into account the accompanying drawings, in which:
-
Fig. 1 shows a schematic diagram illustrating an example of dynamic spectrum refarming. -
Fig. 2 shows a schematic diagram illustrating an example of inter-system interference with GSM-LTE DSR. -
Fig. 3 shows a schematic diagram illustrating an example of LTE-Advanced carrier aggregation of both intra-band and inter-band. -
Fig. 4 shows a schematic block diagram illustrating an arrangement of control units according to an embodiment of the invention. -
Fig. 5 shows a schematic diagram illustrating an example of dynamic spectrum refarming with LTE carrier aggregation according to an embodiment of the invention. -
Fig. 6 shows a schematic diagram illustrating an example of dynamic spectrum refarming with LTE carrier aggregation according to another embodiment of the invention. -
Fig. 7 shows a schematic diagram illustrating signaling between first and second communication systems according to an embodiment of the invention. -
Fig. 8 shows a schematic diagram illustrating an example implementation of LTE spectrum increase according to an embodiment of the invention. - Release-10 LTE carrier aggregation mechanisms allow basically for deactivation / de-configuration of some of CCs for all
- UEs, after which an eNodeB (eNB) can ramp down those CCs. However, there are no signaling mechanisms enabling smart interaction between a first communication system of a first radio access technology providing carrier aggregation mechanisms such as LTE and a second communication system of a second radio access technology such as GSM and TD-SCDMA (time division synchronous code division multiple access).
- In the following embodiments of the invention will be described which define a signaling framework between the first and second communication systems, which allows for smooth and seamless dynamic spectrum refarming.
- It is to be noted that the first and second communication systems are not limited to LTE and GSM / TD-SCDMA.
- As a preliminary matter before exploring details of various implementations, reference is made to
Fig. 4 for illustrating a simplified block diagram of various electronic devices that are suitable for use in practicing the exemplary embodiments of this invention. - A
control unit 10 of the first communication system includes processing resources 11, memory resources 12 that may store a program, andinterfaces 13 which may include a suitable radio frequency transceiver coupled to one or more antennas for bidirectional wireless communications over one or more wireless links. The processing resources 11, memory resources 12 andinterfaces 13 may be coupled by abus 14. - The
control unit 10 may function as part of network elements providing access for user equipments to the first communication system. According to an embodiment of the invention, thecontrol unit 10 may function as part of eNBs, 3G (third generation) NodeBs, or BTSs (base transceiver stations). Similarly, acontrol unit 20 of the second communication system includesprocessing resources 21,memory resources 22 that may store a program, andinterfaces 23 which may include a suitable radio frequency transceiver coupled to one or more antennas for bidirectional wireless communications over one or more wireless links. Theprocessing resources 21,memory resources 22 andinterfaces 23 may be coupled by abus 24. - The
control unit 20 may function as part of network elements providing access for user equipments to the second communication system. According to an embodiment of the invention, thecontrol unit 20 may function as part of BSCs (base station controllers), 3G NodeBs, or BTSs. - The
13 and 23 may be used for signaling messages between theinterfaces 10 and 20.control units - The terms "connected," "coupled," or any variant thereof, mean any connection or coupling, either direct or indirect, between two or more elements, and may encompass the presence of one or more intermediate elements between two elements that are "connected" or "coupled" together. The coupling or connection between the elements can be physical, logical, or a combination thereof. As employed herein two elements may be considered to be "connected" or "coupled" together by the use of one or more wires, cables and printed electrical connections, as well as by the use of electromagnetic energy, such as electromagnetic energy having wavelengths in the radio frequency region, the microwave region and the optical (both visible and invisible) region, as non-limiting examples.
- Programs stored by the
memory resources 12, 23 are assumed to include program instructions that, when executed by the associated processing resources, enable the electronic device to operate in accordance with the exemplary embodiments of this invention, as detailed below. Inherent in theprocessing resources 11, 21 is a clock to enable synchronism among the various apparatus for transmissions and receptions within the appropriate time intervals and slots required, as the scheduling grants and the granted resources/subframes are time dependent. The transceivers of the 13, 23 include both transmitter and receiver, and inherent in each is a modulator/demodulator commonly known as a modem. Theinterfaces 13, 23 may also include a modem to facilitate communication over (hardwire) links.interfaces - In general, the exemplary embodiments of this invention may be implemented by computer software stored in the
memory resources 12, 22 and executable by theprocessing resources 11, 21 of the 10, 20, or by hardware, or by a combination of software and/or firmware and hardware in any or all of the devices shown.control units - The
memory resources 12, 22 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory. Theprocessing resources 11, 21 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on a multi-core processor architecture, as non-limiting examples. - According to an embodiment of the invention, carrier aggregation of an LTE system (first communication system of first radio access technology) is used to adjust overall LTE bandwidth for DSR purposes. When a load of a second communication system of a second radio access technology, e.g. a GSM system, is low in a cell of a cellular communications system, additional LTE carrier(s) that are at least partly shared with the GSM system are activated for the cell and they are aggregated by using LTE carrier aggregation.
- When a load of the GSM system is high, additional LTE carrier(s) and the corresponding carrier aggregation are deactivated, i.e. LTE bandwidth is down-scaled. For this purpose, it may be decided per sector on a unique primary cell, i.e. PCell or primary component carrier (PCC), per UE connected to the LTE system. This decision can be based on neighbor cell interference as estimated from measurement reports of the UEs connected to the LTE system. Alternatively or in addition, this decision can be based on signaling from the GSM system to the LTE system on which GSM carriers are most active. Intra-cell handover of all UEs of the LTE system is performed which are RRC_CONNECTED (RRC = radio resource control) to a non-selected primary cell to have RRC_CONNECTED of all UEs on the unique primary cell.
- The need/possibility to disable/enable LTE carriers and carrier aggregation is communicated between the GSM system and the LTE system.
- As a UE of the LTE system does not need to read system information to access the additional carrier (i.e. secondary carrier) but a network node of the LTE system, e.g. an eNB, provides it in a dedicated message when it configures the secondary carrier for carrier aggregation, changing of MIB or SIB contents can be applied right away in the UE.
- An example solution with two 5MHz component carriers is illustrated in
Fig. 5 . As shown inFig. 5 , in case a load of the second communication system (GSM in this example) is low, the two 5MHz component carriers are aggregated, one of which is a dedicated carrier of the first communication system (LTE in this example), and the other is an additional carrier corresponding to a spectrum block shared between the first and second communication systems. In case the load of the GSM system is high, the additional carrier and the carrier aggregation are deactivated so that the shared spectrum block can be used by the GSM system. - As mentioned above, dynamic spectrum refarming is possible also for other technologies than GSM-LTE. For example, the LTE carrier aggregation may be used together with HSPA multi-carrier to provide a similar dynamic spectrum refarming solution for HSPA-LTE.
-
Fig. 6 illustrates an example solution of dynamic spectrum refarming with LTE carrier aggregation used together with HSPA multi-carrier. As shown inFig. 6 , the LTE system comprises a dedicated spectrum block of 5MHz, and the HSPA system comprises a dedicated spectrum block of 5MHz. There also is a spectrum block of 5MHz shared between the LTE and HSPA systems. When a cell load of the HSPA system is low, a dedicated carrier corresponding to the dedicated spectrum block of the LTE system and an additional carrier corresponding to the shared spectrum block may be aggregated and used by the LTE system. In case the cell load of the HSPA system is high, the additional carrier and the carrier aggregation may be deactivated so that the shared spectrum block can be used by the HSPA system. - According to an embodiment of the invention, the first communication system (e.g. an eNB of LTE) may be informed about a level of inter-system interference on each of carriers which may be carriers shared between the first and second communication systems.
- The inter-system interference may be controlled by utilizing at least one of the following methods:
- allow carrier aggregation only to UEs of the first communication system (e.g. LTE) that have high enough signal quality to cope with the inter-system interference,
- adjust signal quality estimates of the first communication system based on the level of inter-system interference, which leads to usage of more robust modulation and coding schemes on a shared carrier, and
- limit transmit power of the second communication system (e.g. GSM) on shared carriers, e.g. if they are known to interfere the first communication system.
- According to an embodiment of the invention, depending on the need for spectrum for GSM system use, first a component carrier of a particular bandwidth may be deactivated and reactivated with a smaller or larger bandwidth.
- Again it is noted that the first and second communication systems are not limited to LTE and GSM. The second communication system may comprise TD-SCDMA which may provide the corresponding signaling of the spectrum need.
-
Fig. 7 shows a schematic block diagram illustrating signaling between first and second communication systems according to an embodiment of the present invention. - In step S1, a communication system (second communication system 30) performs load monitoring. The
second communication system 30 adopts a radio access technology (second radio access technology), such as GSM or TD-SCDMA, for example. Thesecond communication system 30 may comprise thecontrol unit 20 shown inFig. 4 , which may function as part of a BSC. - The
second communication system 30 determines an availability of spectrum blocks shared between the second communication system and afirst communication system 40 of a first radio access technology based on the load. In step S2 thesecond communication system 30 sends a request in a first signaling message to thefirst communication system 40 which is capable of performing carrier aggregation mechanisms, the request including information on the availability of the spectrum blocks. - The
second communication system 30 may calculate a level of inter-system interference between the first and second communication systems, at least on carriers shared between the first and second communication systems, and include interference information on the inter-system interference into the request. - The
first communication system 40 receives the request and, in step S3, performs carrier aggregation mechanisms based on the information on availability of spectrum blocks shared between the first and second communication systems, which is included in the request, with respect to the spectrum blocks. Thefirst communication system 40 adopts a radio access technology (first radio access technology, which is different from the second radio access technology), such as LTE, for example. Thefirst communication system 40 may comprise thecontrol unit 10 shown inFig. 4 , which may function as part of an eNB. - In case the information indicates availability of at least one of the spectrum blocks, the
first communication system 40 activates at least one additional carrier corresponding to the at least one spectrum block and aggregates the at least one additional carrier using the carrier aggregation mechanisms. In case the information indicates unavailability of at least one of the spectrum blocks, thefirst communication system 40 deactivates at least one additional carrier corresponding to the at least one spectrum block and deactivates the corresponding carrier aggregation using the carrier aggregation mechanisms. - For activating and aggregating the at least one additional carrier, the
first communication system 40 may deactivate a carrier of a particular bandwidth and reactivate the carrier with a larger bandwidth corresponding to the at least one spectrum block, and for deactivating the at least one additional carrier and the corresponding carrier aggregation, thefirst communication system 40 may deactivate a carrier of a particular bandwidth and reactivate the carrier with a smaller bandwidth corresponding to the at least one spectrum block. - The
first communication system 40 may control the inter-system interference based on the interference information included in the request received from thesecond communication system 30. Thefirst communication system 40 may allow carrier aggregation only for user equipments of thefirst communication system 40 that have signal quality that is high enough to cope with the inter-system interference, and/or adjust signal quality estimates of the first communication system based on the level of inter-system interference. - In step S4, the
first communication system 40 informs aUE 50 about the activation of the at least one additional carrier. That is, thefirst communication system 40 provides system information to access the at least one additional carrier to theUE 50 in a dedicated message when it configures the at least one additional carrier for the carrier aggregation. - When the at least one carrier and the corresponding carrier aggregation are to be deactivated by the
first communication system 40, thefirst communication system 40 decides per sector on a unique primary carrier for theuser equipment 50, and performs an intra-cell handover of theuser equipment 50 to the unique primary carrier when theuser equipment 50 is connected to a primary carrier different from the unique primary carrier (step S4). - The
first communication system 40 may decide the unique primary carrier based on neighbor cell interference estimated from measurement reports of user equipments connected to the first communication system, which may include theuser equipment 50, and/or based on signaling from thesecond communication system 30 on activities of carriers of the second communication system. - In step S5, the
first communication system 40 transmits a response to the request in a second signaling message to thesecond communication system 30, the response including an acknowledgment of an activation/deactivation of the at least one additional carrier and/or the corresponding carrier aggregation. - The first signaling message sent in step S1 may be a virtual inter-system handover request message and the second signaling message sent in step S5 may be a virtual inter-system handover response message.
-
Fig. 8 shows an example implementation of an embodiment of the invention with LTE carrier aggregation, and specifically the case where LTE carrier aggregation is activated in response to the request from the second communication system (GSM in this example), i.e. LTE bandwidth is up-scaled. - In step C1, the GSM system, e.g. a BSC, monitors its load, and the load monitoring indicates that a spectrum block can be released. In step C2, the GSM system sends an indication to the first communication system (LTE in this example), e.g. an eNB of an E-UTRAN (evolved universal terrestrial radio access network), of spectrum block availability. In step C3, the eNB configures an SCell (secondary cell, secondary/additional component carrier) to UEs of the LTE system which are carrier aggregation enabled.
- The example implementation shown in
Fig. 8 may be further enhanced by adding a fourth step where the LTE eNB acknowledges the activation of carrier aggregation to the BSC of the GSM system. - Deactivation of a carrier aggregation may be implemented in a similar manner. That is, the GSM system, e.g. the BSC, monitors its load, and sends an indication to the eNB of spectrum block unavailability. The LTE system, e.g. the eNB deactivates the carrier aggregation and sends an acknowledgement for the deactivation to the BSC.
- In order to support multi-vendor deployments, changes to the GSM and LTE specifications are required to introduce the necessary signaling between GSM (BSC) and LTE (eNB).
- For this purpose, inter-system handover signaling may be used in order to minimize the amount of changes to the specifications. That is, the BSC sends a "virtual HO (handover) request" to the eNB, which further may include an indication of inter-system interference. The eNB sends a "virtual HO response" to acknowledge the activation/deactivation of additional carriers, and/or carrier aggregation.
- The virtual HO request and the virtual HO response refer to picky-bagged inter-system HO messages that are known by both entities (BSC and eNB) to indicate LTE carrier (or carrier aggregation) activation/deactivation instead of actual handover. Furthermore, load balancing messages or information exchange messages may be sent between the BSC and eNB in order to exchange load information.
- In case of single vendor deployment with co-located GSM and LTE base stations, the communication between the BSC and eNB may be implemented through a proprietary interface between GSM BTS (base station) and LTE eNB. In addition, GSM BTS has to communicate with BSC via a proprietary interface. Also some communication between neighboring BSCs may be implemented.
- With the present invention it is possible to implement dynamic spectrum refarming without requiring a cell reset. In addition, performance of the dynamic spectrum refarming is improved via enhanced inter-system interference control.
- According to an aspect of the invention, an apparatus of a first communication system of a first radio access technology, such as the
first communication system 40 shown inFig. 7 or thecontrol unit 10 shown inFig. 4 , for example, comprises receiving means for receiving a request in a first signaling message from a second communication system of a second radio access technology, the request including information on availability of spectrum blocks shared between the first and second communication systems, and performing means for performing carrier aggregation mechanisms based on the information with respect to the spectrum blocks. - The apparatus may further comprise activating means and aggregating means for, in case the information indicates availability of at least one of the spectrum blocks, activating at least one additional carrier corresponding to the at least one spectrum block and aggregating the at least one additional carrier using the carrier aggregation mechanisms. The apparatus may further comprise deactivating means for, in case the information indicates unavailability of at least one of the spectrum blocks, deactivating at least one additional carrier corresponding to the at least one spectrum block and deactivating the corresponding carrier aggregation using the carrier aggregation mechanisms.
- The apparatus may further comprise deactivating and reactivating means which, for activating and aggregating the at least one additional carrier, deactivate a carrier of a particular bandwidth and reactivate the carrier with a larger bandwidth corresponding to the at least one spectrum block. For deactivating the at least one additional carrier and the corresponding carrier aggregation, the deactivating and reactivating means may deactivate a carrier of a particular bandwidth and reactivate the carrier with a smaller bandwidth corresponding to the at least one spectrum block.
- The apparatus may further comprise transmitting means for transmitting a response to the request in a second signaling message to the second communication system, the response including an acknowledgment of an activation/deactivation of the at least one additional carrier and/or the corresponding carrier aggregation.
- The first signaling message may be a virtual inter-system handover request message and the second signaling message may be a virtual inter-system handover response message.
- The receiving means may receive the request from a network node of the second communication system, wherein the apparatus may comprise the network node.
- The request may further include interference information on a level of inter-system interference between the first and second communication systems, at least on carriers shared between the first and second communication systems, and the apparatus may further comprise controlling means for controlling the inter-system interference based on the interference information.
- The apparatus may further comprise allowing means for allowing carrier aggregation only for user equipments of the first communication system that have signal quality that is high enough to cope with the inter-system interference, and/or adjusting means for adjusting signal quality estimates of the first communication system based on the level of inter-system interference.
- For deactivating the at least one additional carrier and the corresponding carrier aggregation, the apparatus may further comprise deciding means for deciding per sector on a unique primary carrier per user equipment, and performing means for performing an intra-cell handover of each of user equipments connected to a primary carrier different from the unique primary carrier to the unique primary carrier.
- The deciding means may decide the unique primary carrier based on neighbor cell interference estimated from measurement reports of the user equipments and/or based on signaling from the second communication system on activities of carriers of the second communication system.
- According to an aspect of the invention, an apparatus of the second communication system of the second radio access technology, such as the
communication system 30 ofFig. 7 or thecontrol unit 20 shown inFig. 4 , for example, comprises monitoring means for monitoring a load of the apparatus, determining means for determining an availability of spectrum blocks shared between the second communication system and the first communication system of the first radio access technology based on the load, and sending means for sending a request in a first signaling message to the first communication system which is capable of performing carrier aggregation mechanisms, the request including information on the availability of the spectrum blocks. - The apparatus may further comprise calculating means for calculating a level of inter-system interference between the first and second communication systems, at least on carriers shared between the first and second communication systems, and including means for including interference information on the inter-system interference into the request.
- The apparatus may further comprise signaling means for signaling activities of carriers of the second communication system to the first communication system.
- The apparatus may further comprise receiving means for receiving a response to the request in a second signaling message from the first communication system, the response including an acknowledgment of an activation/deactivation of at least one additional carrier and/or a corresponding carrier aggregation.
- The apparatus may further comprise limiting means for limiting a transmit power of the second communication system on at least one carrier shared between the first and second communication systems.
- According to an embodiment of the invention, at a
first communication system 40 of a first radio access technology, a request is received in a first signaling message S2 from asecond communication system 30 of a second radio access technology, the request including information on availability of spectrum blocks shared between the first and second communication systems. The availability of the spectrum blocks may have been determined based on a load of thesecond communication system 30. Thefirst communication system 40 performs carrier aggregation mechanisms based on the information with respect to the spectrum blocks, and may transmit a response to the request in a second signaling message S5 to the second communication system, the response including an acknowledgment of an activation/deactivation of at least one additional carrier and/or a corresponding carrier aggregation. - It is to be understood that the above description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications and applications may occur to those skilled in the art without departing from the scope of the invention as defined by the appended claims.
Claims (12)
- An apparatus comprising:a control unit (10) of a first communication system (40) of a first radio access technology, the control unit being configured toreceive (S2) a request in a first signaling message from a second communication system of a second radio access technology, the request including information on availability of spectrum blocks shared between the first and second communication systems,characterized in thatthe control unit (10) is configured to perform (S3) carrier aggregation mechanisms based on the information with respect to the spectrum blocks, whereinin case the information indicates availability of at least one of the spectrum blocks, the control unit is configured to activate at least one additional carrier corresponding to the at least one spectrum block and aggregate the at least one additional carrier using the carrier aggregation mechanisms, and
in case the information indicates unavailability of at least one of the spectrum blocks, the control unit is configured to deactivate at least one additional carrier corresponding to the at least one spectrum block and deactivate the corresponding carrier aggregation using the carrier aggregation mechanisms, and whereinthe control unit is configured to transmit (S5) a response to the request in a second signaling message to the second communication system, the response including an acknowledgment of an activation/deactivation of the at least one additional carrier and/or the corresponding carrier aggregation, andthe first signaling message is a virtual inter-system handover request message and the second signaling message is a virtual inter-system handover response message. - The apparatus of claim 1, wherein for deactivating the at least one additional carrier and the corresponding carrier aggregation the control unit is configured to decide per sector on a unique primary carrier per user equipment, and perform an intra-cell handover of each of user equipments connected to a primary carrier different from the unique primary carrier to the unique primary carrier.
- The apparatus of claim 2, wherein the control unit is configured to decide the unique primary carrier based on neighbor cell interference estimated from measurement reports of the user equipments and/or based on signaling from the second communication system on activities of carriers of the second communication system.
- An apparatus comprising:a control unit (20) of a second communication system (30) of a second radio access technology, the control unit being configured tomonitor (S1) its load,determine an availability of spectrum blocks shared between the second communication system and a first communication system (40) of a first radio access technology based on the load, andsend (S2) a request in a first signaling message to the first communication system which is capable of performing carrier aggregation mechanisms, the request including information on the availability of the spectrum blocks,characterized in thatthe control unit (20) is configured to receive (S5) a response to the request in a second signaling message from the first communication system, the response including an acknowledgment of an activation/deactivation of at least one additional carrier and/or a corresponding carrier aggregation, whereinthe first signaling message is a virtual inter-system handover request message and the second signaling message is a virtual inter-system handover response message.
- The apparatus of claim 4, wherein the control unit is configured to limit a transmit power of the second communication system on at least one carrier shared between the first and second communication systems.
- A method comprising:receiving (S2), at a first communication system of a first radio access technology, a request in a first signaling message from a second communication system of a second radio access technology, the request including information on availability of spectrum blocks shared between the first and second communication systems,characterized by:performing (S4) carrier aggregation mechanisms based on the information with respect to the spectrum blocks,in case the information indicates availability of at least one of the spectrum blocks, activating at least one additional carrier corresponding to the at least one spectrum block and aggregating the at least one additional carrier using the carrier aggregation mechanisms; and in case the information indicates unavailability of at least one of the spectrum blocks, deactivating at least one additional carrier corresponding to the at least one spectrum block and deactivating the corresponding carrier aggregation using the carrier aggregation mechanisms, andtransmitting (S5) a response to the request in a second signaling message to the second communication system, the response including an acknowledgment of an activation/deactivation of the at least one additional carrier and/or the corresponding carrier aggregation, whereinthe first signaling message is a virtual inter-system handover request message and the second signaling message is a virtual inter-system handover response message.
- The method of claim 6, comprising:for deactivating the at least one additional carrier and the corresponding carrier aggregation, deciding per sector on a unique primary carrier per user equipment, and performing an intra-cell handover of each of user equipments connected to a primary carrier different from the unique primary carrier to the unique primary carrier.
- The method of claim 7, comprising:deciding the unique primary carrier based on neighbor cell interference estimated from measurement reports of the user equipments and/or based on signaling from the second communication system on activities of carriers of the second communication system.
- A method comprising:monitoring (S1) a load of a second communication system of a second radio access technology;determining an availability of spectrum blocks shared between the second communication system and a first communication system of a first radio access technology based on the load; andsending (S2) a request in a first signaling message to the first communication system which is capable of performing carrier aggregation mechanisms, the request including information on the availability of the spectrum blocks,characterized by:receiving (S5) a response to the request in a second signaling message from the first communication system, the response including an acknowledgment of an activation/deactivation of at least one additional carrier and/or a corresponding carrier aggregation, whereinthe first signaling message is a virtual inter-system handover request message and the second signaling message is a virtual inter-system handover response message.
- The method of claim 9, comprising:limiting a transmit power of the second communication system on at least one carrier shared between the first and second communication systems.
- A computer program product including a program for a processing device, comprising software code portions for performing the steps of any one of claims 6 to 10 when the program is run on the processing device.
- The computer program product according to claim 11, wherein the computer program product comprises a computer-readable medium on which the software code portions are stored.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/EP2010/068545 WO2012072118A1 (en) | 2010-11-30 | 2010-11-30 | Dynamic spectrum refarming with multiple carriers |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2647235A1 EP2647235A1 (en) | 2013-10-09 |
| EP2647235B1 true EP2647235B1 (en) | 2015-09-30 |
Family
ID=44080468
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP10785064.6A Active EP2647235B1 (en) | 2010-11-30 | 2010-11-30 | Dynamic spectrum refarming with multiple carriers |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US9204450B2 (en) |
| EP (1) | EP2647235B1 (en) |
| WO (1) | WO2012072118A1 (en) |
Families Citing this family (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20240037368A (en) | 2010-12-06 | 2024-03-21 | 인터디지탈 패튼 홀딩스, 인크 | Method to enable wireless operation in license exempt spectrum |
| CN102118758B (en) * | 2011-01-28 | 2015-06-03 | 中兴通讯股份有限公司 | Frequency spectrum sharing method for GSM (Global System for Mobile Communication) system and LTE (Long Term Evolution) system and systems thereof |
| US9504034B2 (en) | 2011-07-05 | 2016-11-22 | Tait Limited | Overlay of bearers in a radio communication system |
| KR20160055977A (en) * | 2011-09-29 | 2016-05-18 | 노키아 솔루션스 앤드 네트웍스 오와이 | Method and apparatus for a reconfiguration |
| US20150016365A1 (en) * | 2011-11-22 | 2015-01-15 | Nokia Solutions And Networks Oy | Carrier Aggregation Optimization |
| US10462674B2 (en) * | 2013-01-28 | 2019-10-29 | Interdigital Patent Holdings, Inc. | Methods and apparatus for spectrum coordination |
| CN104105141B (en) * | 2013-04-02 | 2020-03-17 | 索尼公司 | Radio resource management apparatus, method and system |
| EP3035726B1 (en) | 2013-08-12 | 2019-08-07 | Sony Corporation | Communication control apparatus, communication control method and radio communication system |
| WO2015022016A1 (en) * | 2013-08-13 | 2015-02-19 | Nokia Solutions And Networks Oy | Anonymization of asa/lsa repository data |
| EP3044997B1 (en) | 2013-09-10 | 2017-11-08 | Telefonaktiebolaget LM Ericsson (publ) | Method for selecting an access network based on carrier aggregation information |
| ES2532518B1 (en) * | 2013-09-27 | 2016-01-19 | Vodafone España, S.A.U. | Network element and procedure to coordinate the use of radio resources between radio access networks |
| US20150264703A1 (en) * | 2014-03-11 | 2015-09-17 | Nokia Solutions And Networks Oy | Method for Interference Management and Mitigation for LTE-M |
| EP3139554B1 (en) * | 2014-05-06 | 2019-08-07 | Huawei Technologies Co., Ltd. | Multiflow transmission method and device |
| CN105917691B (en) * | 2014-12-24 | 2019-10-22 | 华为技术有限公司 | Method and device for sharing wireless resources |
| CN105007595B (en) * | 2015-07-24 | 2019-08-02 | 辽宁邮电规划设计院有限公司 | Determine the system and method for the buffer area GSM Refarming |
| WO2017039496A1 (en) * | 2015-08-31 | 2017-03-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Network node and method for handling of downlink bandwidth in a multi-rat environment |
| CA3009728C (en) * | 2016-01-27 | 2024-01-09 | Sony Corporation | Communication control device, communication control method, program, and wireless communication device |
| US20190159146A1 (en) * | 2016-05-12 | 2019-05-23 | Telefonaktiebolaget Lm Ericsson (Publ) | Radio Access Network Node, Radio Node, And Methods Performed Therein |
| US10045219B2 (en) | 2016-10-10 | 2018-08-07 | At&T Mobility Ii Llc | Spectrum access sharing front-end processor for mobile management entities |
| CN108738024A (en) * | 2017-04-18 | 2018-11-02 | 中国移动通信有限公司研究院 | A kind of method, apparatus and network for realizing that frequency spectrum is backsetted |
| EP3619898A1 (en) | 2017-06-16 | 2020-03-11 | Huawei Technologies Co., Ltd. | Control device, network node and methods thereof |
| CN116528370A (en) | 2017-06-16 | 2023-08-01 | 华为技术有限公司 | Communication method and device |
| US12250561B2 (en) | 2021-12-22 | 2025-03-11 | T-Mobile Usa, Inc. | Visual refarming of telecommunications spectrum blocks |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040047312A1 (en) * | 2002-04-29 | 2004-03-11 | Peter Muszynski | Method and apparatus for UL interference avoidance by DL measurements and IFHO |
| US8036702B2 (en) * | 2007-05-14 | 2011-10-11 | Intel Corporation | Method and apparatus for multicarrier communication in wireless systems |
| US20090059856A1 (en) * | 2007-08-10 | 2009-03-05 | Nokia Corporation | Spectrum sharing |
| US8040815B2 (en) * | 2007-11-28 | 2011-10-18 | Motorola Solutions, Inc. | Spectrum coordination controller |
| GB0801534D0 (en) * | 2008-01-28 | 2008-03-05 | Fujitsu Lab Of Europ Ltd | Communications systems |
| KR101328790B1 (en) | 2008-10-20 | 2013-11-13 | 인터디지탈 패튼 홀딩스, 인크 | Carrier aggregation |
| WO2010091713A1 (en) * | 2009-02-10 | 2010-08-19 | Nokia Siemens Networks Oy | Radio resource allocation for geran-lte co-existence and co-location |
| US8385832B2 (en) * | 2009-03-13 | 2013-02-26 | Telefonaktiebolaget Lm Ericsson (Publ) | Inter-cell interference control in an uplink multi-carrier radio communications system |
-
2010
- 2010-11-30 WO PCT/EP2010/068545 patent/WO2012072118A1/en not_active Ceased
- 2010-11-30 US US13/990,442 patent/US9204450B2/en active Active
- 2010-11-30 EP EP10785064.6A patent/EP2647235B1/en active Active
Also Published As
| Publication number | Publication date |
|---|---|
| US9204450B2 (en) | 2015-12-01 |
| WO2012072118A1 (en) | 2012-06-07 |
| US20130294415A1 (en) | 2013-11-07 |
| EP2647235A1 (en) | 2013-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2647235B1 (en) | Dynamic spectrum refarming with multiple carriers | |
| US11159289B2 (en) | Sounding reference signals with collisions in asymmetric carrier aggregation | |
| US12127238B2 (en) | Quasi-colocation prioritization for secondary cell group change with different numerology or asynchronization | |
| JP6479963B2 (en) | User terminal, radio base station, and radio communication method | |
| US20150163794A1 (en) | Uplink control information feedback method, base station, and user equipment | |
| US11611424B2 (en) | Slot format indicator (SFI) and beam information exchange in a dynamic time division duplex (TDD) scheme with carrier aggregation across millimeter wave bands | |
| KR20170127577A (en) | Method and apparatus for enhancing cell-edge user performance and signaling radio link failure conditions via downlink cooperative component carriers | |
| US11991688B2 (en) | In-band interleaved uplink and downlink communication in full-duplex operation | |
| EP3413669A1 (en) | User terminal, wireless base station, and wireless communication method | |
| US11997052B2 (en) | Interleaved uplink-downlink transmissions in full-duplex using unlicensed resources | |
| US12395982B2 (en) | Uplink skipping and uplink control information multiplexing for wireless communication | |
| WO2018186967A1 (en) | Priority indication for communication over shared access systems | |
| US20240039671A1 (en) | Adaptive pdsch and dmrs pattern for hst deployment | |
| WO2016121916A1 (en) | User terminal, wireless base station, and wireless communication method | |
| JP2018201253A (en) | User terminal and wireless communication method | |
| KR20230154862A (en) | Contention-free RIS handover through inhibition | |
| US20220377843A1 (en) | Managing slot format based on duplex mode switching | |
| CN116235605A (en) | Associating transmission and reception points with a set of control resources | |
| US11943761B2 (en) | SRS management for adaptive TX/RX diversity | |
| US20230300820A1 (en) | Radio frequency shared path information | |
| US11627575B2 (en) | Physical layer security with component carrier switching | |
| US20230179344A1 (en) | Skip harq feedback for sps pdsch | |
| WO2022193204A1 (en) | Pathloss rs and beam determination in unified tci framework |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20130701 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOKIA SOLUTIONS AND NETWORKS OY |
|
| DAX | Request for extension of the european patent (deleted) | ||
| 17Q | First examination report despatched |
Effective date: 20140630 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602010027923 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H04W0016140000 Ipc: H04W0072040000 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: H04W 72/04 20090101AFI20150327BHEP Ipc: H04W 16/14 20090101ALI20150327BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| INTG | Intention to grant announced |
Effective date: 20150520 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 753082 Country of ref document: AT Kind code of ref document: T Effective date: 20151015 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010027923 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151231 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20150930 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 753082 Country of ref document: AT Kind code of ref document: T Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160130 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160201 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151130 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010027923 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160729 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| 26N | No opposition filed |
Effective date: 20160701 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151130 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101130 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150930 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230527 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241001 Year of fee payment: 15 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241001 Year of fee payment: 15 |