[go: up one dir, main page]

EP2436793A1 - Poudre métallique - Google Patents

Poudre métallique Download PDF

Info

Publication number
EP2436793A1
EP2436793A1 EP11193910A EP11193910A EP2436793A1 EP 2436793 A1 EP2436793 A1 EP 2436793A1 EP 11193910 A EP11193910 A EP 11193910A EP 11193910 A EP11193910 A EP 11193910A EP 2436793 A1 EP2436793 A1 EP 2436793A1
Authority
EP
European Patent Office
Prior art keywords
binder
molybdenum
alloy
alloyed
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11193910A
Other languages
German (de)
English (en)
Inventor
Benno Gries
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102008052559A external-priority patent/DE102008052559A1/de
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Publication of EP2436793A1 publication Critical patent/EP2436793A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements

Definitions

  • the present invention relates to the use of molybdenum-containing binder alloy powders for the production of tungsten carbide-based sintered cemented carbides.
  • Cemented carbide is a sintered composite of hardeners, such as carbides, and a continuous binder alloy.
  • Sintered cemented carbides are used in a wide variety of ways and are used to process virtually all known materials such as wood, metal, stone and composite materials such as glass / epoxy resin, chipboard, concrete or asphalt / concrete. Due to machining, forming and friction processes locally limited temperatures up to 1000 ° C. In other cases, forming operations of metallic workpieces are performed at high temperatures, such as forging, wire drawing or rolling.
  • the cemented carbide tool may be subject to oxidation, corrosion and diffusive as well as adhesive wear, while being subject to high mechanical stress, which may lead to deformation of the cemented carbide tool.
  • adhesive wear is understood to mean the phenomenon that occurs when two bodies touch each other and at least briefly enter into a welded and firm connection, which is released again by an external force, the material of one body adhering to the other body
  • diffusive wear is understood to mean the phenomenon that occurs when two materials are in contact with one another and a component diffuses from one material into the other material, so that a crater is formed in the first material.
  • WO 2007/057533 (Eurotungstene Poudres) describes alloy powder based on FeCoCu with 15 to 35% Cu and 1.9 to 8.5% Mo for the production of diamond tools.
  • the FSSS value is typically 3 ⁇ m. These powders are not suitable for use in the field of hard metals because of the high FSSS value, measured according to the granulometric method of Fisher or according to the standard ISO 10070, and because of the content of Cu of more than 500 ppm.
  • the molybdenum is added as a water-soluble ammonium salt to the oxide before it is reduced with hydrogen to the metal powder.
  • EP 1 492 897 B1 (Umicore) describes alloy powder based on FeCoNiMoWCuSn for the production of diamond tools, the sum of the contents of Cu and Sn being in the range of 5 to 45%.
  • both elements are detrimental to hard metals, since Cu is sweated out during sintering, and Sn leads to pore formation. These alloy powders are therefore not suitable for the production of hard metals.
  • EP 0 865 511 B9 (Umicore) describes alloy powder based on FeCoNi with a maximum FSSS value of 8 ⁇ m, which can contain up to 15% Mo, but which is at least partially present as an oxide. These powders also contain between 10 and 80% Fe, up to 40% Co and up to 60% Ni, and are used to make diamond tools. In addition, similar powders, but with Co and Ni are ever described up to 30%. Not suitable because of the content of copper for alloy powder after WO 98/49 361 (Umicore) EP 1 042 523 B1 (Eurotungstene Poudres) and KR 062 925 ,
  • EP 1 043 411 B1 describes carbide-Co (W, Mo) composite powder wherein the binder alloy is prepared by pyrolysis of organic precursor compounds. The onset of alloying of cobalt with Mo and / or W avoids the appearance of porosity, as occurs with the addition of metals.
  • the method described is disadvantageous in comparison with the use of alloyed powders according to the invention, since the carbon content of the composite powder changes during the pyrolysis of the organic precursor compounds (carbon precipitation or removal by methane formation), so that the carbon content must be analyzed and adjusted again prior to sintering , It also remains unclear in which form Mo or W are present after sintering, since neither comparative experiments nor information on the alloy state of Mo and W before sintering nor values for magnetic saturation.
  • the described method produces a fixed formulation with regard to the content and the composition of the carbide and binder alloy phase and is therefore too inflexible in practice since an uncomplicated and rapid change of the formulation is cumbersome depending on the application of the cemented carbide to be produced.
  • FeCoMo-based alloy powders having an FSSS value ⁇ 8 ⁇ m and a specific surface area of greater than 0.5 m 2 / g have become known ( DE 10 2006 057 004 A1 ), which for the production of carbon-free high-speed steels over a serve powder metallurgical process.
  • These may optionally contain up to 10% or 25% Ni, but most preferably do not contain nickel beyond the level of unavoidable impurities. They preferably consist of 20 to 90% Fe, up to 65% Co and 3 to 60% Mo. Since pure FeCo alloys without alloying Ni are not suitable for hard metals because of their brittleness and poor corrosion and oxidation resistance, these alloy powders no solution to the problem suggested.
  • the preferred range is high Mo contents, and use for producing liquid phase sintered carbonaceous hard metals having a hard phase as a hard carrier such as carbides is not described.
  • the metal cobalt when used as the sole binding metal, in particular for tungsten carbide, brings with it a health hazard. It is therefore an object of the present invention to find an additional alloying element and its provision for the production of sintered cemented carbide materials, which allows the use of FeNi and FeCoNi binders instead of Co at high working temperatures of 400 to 800 ° C, without that the disadvantages such as binder lakes, the lack of interpretability of the magnetic saturation or an unknown portion of the element in question in the binder phase occur, wherein the element in question leads to an increase in the hot hardness in the range 400 to 800 ° C.
  • the content of the element in question should be as low as possible and distributed as much as possible to improve its effectiveness.
  • the molybdenum is completely in metallic form.
  • the binder alloy powder used contains at least 10 wt .-% nickel, based on the total binder alloy.
  • the binder alloy powder used contains at most 20% by weight, in particular at most 10% by weight, of tungsten, based on the total binder alloy. At least one component of the binder alloy is present as a powdered alloy of at least one metal with molybdenum, and each of the remaining components of the binder alloy are present as elements or alloys, each containing no molybdenum, i. a powder mixture is used comprising at least one alloyed or pre-alloyed molybdenum-containing alloy powder on the one hand with at least one alloyed or pre-alloyed alloy powder or element powder on the other hand, the latter containing molybdenum only in the region of unavoidable impurities.
  • the molybdenum-containing binder alloy powder is used according to the invention for the production of sintered hard metals, wherein the sintering takes place in the form of a liquid phase sintering.
  • the molybdenum-containing binder alloy powder according to the invention may contain up to 30 percent by weight of organic additives.
  • This object is achieved by using an iron, cobalt or nickel-containing binder metal powder, which iron in an amount of 0.1 to 65 wt .-%, cobalt in an amount of 0.1 to 99.9 wt .-% and nickel in an amount of 0.1 to 99.9 wt .-% comprises.
  • the binder alloy powder used also contains 0.1 to 10 wt .-% of molybdenum, based on the total binder metal powder, in alloyed form.
  • the binder alloy powder used contains 0.10 wt .-% to 3 wt .-% molybdenum, more preferably 0.5 wt .-% to 2 wt .-% molybdenum, most preferably 0.5 wt .-% bis 1.7 wt .-% molybdenum, each based on the total binding metal powder.
  • the binder alloy powder used has an FSSS value measured with the "Fisher Sub Siever Sizer" device according to the ASTM B330 standard of 0.5 to 3 ⁇ m, and preferably of in the range of 0.8 to 2 ⁇ m, in particular 1 up to 2 ⁇ m.
  • the elements Mn and Cr are each contained in contents of less than 1%.
  • the binding alloy powder used contains the molybdenum completely in non-oxidic form or completely in alloyed metallic form.
  • the binder alloy powder used contains at least 20 wt .-% nickel, based on the total binder alloy.
  • the binder alloy powder used preferably contains at most 20% by weight of tungsten, preferably at most 10% by weight of tungsten, based on the total binder alloy.
  • the preferred alloy powder is substantially free of tungsten, and has a tungsten content of less than 1 percent by weight.
  • At least one constituent of the binder alloy is used as a powdery alloy of at least one metal with molybdenum, and the respective remaining constituents of the binder alloy are used as elements or alloys respectively containing no molybdenum.
  • the sintering of the binder alloy powder takes place together with the hard materials as liquid phase sintering.
  • the hard metals produced by the process of the invention require for their intended use of sufficient stability with respect to the plastic deformability and the temperature-dependent creep behavior.
  • the creep of a material such as plastic deformation, is a major failure mechanism of a material and must be avoided at all costs.
  • Deformation mechanisms are subject to the well-known time laws of load-dependent creep, where the creep rate depends not only on the load but also strongly on the temperature. In addition, the prevailing creep mechanism changes - activated by the temperature. With hard metals it is known that at temperatures up to about 800 ° C, the creep rate is determined mainly by deformation of the metallic binder phase, above about 800 ° C, the binder phase is so soft that it is virtually meaningless for the creep resistance, i.
  • the load-bearing capacity of the hard material phase becomes decisive.
  • This load-bearing capacity depends on the particle shape and size distribution of the hard material phase as well as on the proportion of heat-resistant, cubic carbides. Therefore, all cemented carbide materials used for cutting steels contain, in addition to WC, shares of cubic carbides such as TiC, TaC, NbC, VC, ZrC or mixed carbides such as TaNbC, WTiC or WVC.
  • the hardness of a material is indirectly a measure of its plastic deformability.
  • the central consideration is that in the emergence of the hardness impression plastic deformation processes predominate, so that the size of the hardness impression at sufficiently high load and load duration is a measure of the plastic deformability of the material at a given pressure load.
  • liquid-phase sintering in the binder phase dissolves both tungsten, carbon, and small amounts of metals which form cubic carbides, such as V, Ta, Ti, and Nb.
  • Cr if Cr carbide is used as a so-called “grain growth brake", that is, as a grain growth inhibiting agent, for the growth of the WC entering during sintering.
  • liquid phase sintering sintering at temperatures so high that the binder alloy at least partially melts.
  • the liquid phase during sintering of hard metals is a consequence of the sintering temperatures, which are generally between 1100 ° C and 1550 ° C.
  • the molten phase - essentially the binder metal such as cobalt, or the binder metal alloy or alloys used or used - is in equilibrium with the hard materials, the principle of solubility product applies. This means that the less carbon is dissolved in the melt, the more tungsten is contained in the melt, and vice versa.
  • W: C 1
  • the tungsten: carbon ratio in the melt reaches a critically low size, carbon-deficient carbides precipitate on cooling, such as Co 3 W 3 C, the so-called eta phases ( ⁇ -phases). These ⁇ -phases are very hard, but also very brittle and are therefore rated in hard metals as a quality defect.
  • chromium carbide liberates metallic chromium as the first carbide, which is found in the binder alloy surprisingly, however, molybdenum is already the next unstable carbide, even before tungsten. Therefore, there is the theoretical possibility of alloying a cemented carbide binder with larger contents of molybdenum without the formation of eta phases ( ⁇ phases) due to a lack of carbon in the binder phase.
  • the above series of metal carbides is also a measure of the affinity of the metal for carbon. For example, titanium competes with Cr 3 C 2 for the carbon, so that chromium is preferably present as metal and titanium as carbide.
  • Tungsten carbide must be present as a hardness carrier in the material; Therefore, all carbides that are in the above row to the left of tungsten carbide, ie less stable than tungsten carbide with respect to the release of the metal from the corresponding carbide, are suitable for increasing the hot hardness since they can transition to the metallic binder phase without it to the formation of carbon deficient carbides, the so-called. ⁇ -phases comes.
  • the content of chromium or tungsten is very important for the high-temperature properties of the binder alloy, since these elements lead to an increase in the heat resistance and thus to an increase in the deformation resistance. Therefore, carbide grades to be used as tools (inserts), for example for turning steels, are so sintered with respect to the carbon budget that the tungsten content in the binder alloy, which generally comprises cobalt, becomes maximum without causing formation comes from eta-phases ( ⁇ -phases). Even with tools for drilling or milling metal processing, which contain Cr carbide, the carbon content is adjusted so that as much as possible Cr is contained in the binder alloy. Since the magnetic saturation of the cobalt steadily decreases with increasing Cr and W content, a non-destructive examination of the alloy state via the measurement of the magnetic saturation is very easily possible, which measurement method represents the industrial standard.
  • chromium because of its anti-ferromagnetic character, makes it difficult to determine the carbon content in the cemented carbide, and thus the chromium and tungsten content, because the uniqueness of the relationship between magnetic saturation on the one hand and chromium and tungsten content on the other hand is lost. Consequently, the absence of ⁇ -phases can not be excluded only due to the measurement of the magnetic saturation.
  • cobalt substitutes which may be based on FeCoNi or FeNi based alloy powders. Their suitability has been proven for wearing parts and woodworking or stone working tools, but not for applications involving high temperatures. A major reason for this is the lower hot hardness of the hard metals compared to cobalt with Fe (Co) Ni binder in the temperature range between 400 ° C and 800 ° C.
  • the hot hardness of the binder alloy can be increased by precipitation or alloying of other metals.
  • alloying elements those metals are suitable which do not form stable carbides, that is to say those carbides which are not more stable than tungsten carbide, and which therefore have the prerequisites for a significant solubility in the binder alloy. If, for example, the binder were to be alloyed with Ta, this would (depending on the carbon content of the cemented carbide) be practically completely present as eta phase or TaC after sintering and thus not represent a highly heat-resistant binder alloy of a high-quality hardmetal, because eta phases are in carbide because of their Brittleness not desirable because they reduce the strength.
  • the solubility of tungsten in the binder alloy is limited by the solubility product of tungsten carbide in the binder alloy.
  • two cases are to be distinguished with respect to the tungsten content: a) when the carbon content decreases and cobalt is used as the binder metal, up to 20 wt% tungsten dissolves in the cobalt binder; b) if the carbon content decreases and a FeCoNi-binder alloy is used, dissolves much less tungsten, namely only up to about 5 wt .-%, in the FeCoNi-binder alloy. Consequently, the solubility of tungsten in FeCoNi and FeNi alloys is even lower than in pure cobalt, which is one of the reasons for the low hot hardness of FeCoNi bonded hard metals.
  • Manganese has a comparatively very high vapor pressure, therefore it comes to the sintering of manganese-containing hard metals concentration gradients and precipitation of self-igniting Mn-metal condensates.
  • concentration of Mn in sintered parts is therefore not precisely adjustable, and presumably nearer the surface than in the core of the workpiece.
  • rhenium, osmium and ruthenium are only limited available and extremely rare, but are in principle suitable.
  • rhenium is used in high temperature alloys for aircraft turbines to suppress high temperature creep of components.
  • Ruthenium and rhenium are already being used on a small scale in special cobalt-based carbide grades.
  • Chromium is also suitable and has high solubility in FeNi and FeCoNi alloys, but has the disadvantage of making it difficult to interpret the magnetic saturation due to its anti-ferromagnetic character. This is disadvantageous because carbide grades for metal cutting are as close as possible to the limit for the formation of eta phases, but without having appreciable proportions thereof.
  • Mo is therefore the preferred element of choice to increase the hot hardness, especially of ferrous binder in sintered hard metals.
  • L. Prakash found that only a few percent molybdenum is sufficient to achieve a significant effect in the hot hardness of Fe-containing hard metals ( Dissertation Leo J. Prakash, University of Düsseldorf 1979, Faculty of Mechanical Engineering, KfK 2984 ). However, it remains unclear what proportion of the Mo is actually in the binder, since Mo 2 C was used.
  • binder alloy When using Mo carbide only a maximum of about 50% are effective in the binder alloy; therefore, instead of Mo 2 C elemental Mo metal powder is used. Even with the use of very finely dispersed Mo metal powder, however, it comes after sintering to areas that consist exclusively of binder alloy phase, and contain no hard material. This behavior is due to the fact that agglomerates of the Mo metal powder are poorly comminuted due to the high modulus of elasticity of molybdenum in the mixed grinding, and that the resulting transformed agglomerates dissolve in the molten binding alloy during liquid-phase sintering, which in turn by the resolution of the molybdenum. Particles formed in the molten binder filled pores. It comes to the formation of the so-called "binder lakes”, which term refers to a specific range of the binder alloy, which is greater in terms of the dimension than the particle diameter of the hard material phase, but without containing tungsten carbide or hard particles.
  • iron, cobalt or nickel-containing binder metal powders are used for the production of sintered hard metal materials, which iron in an amount of 0.1 to 65 wt .-%, cobalt in an amount of 0.1 to 99.9 wt .-% and nickel in an amount of 0.1 to 99.9 wt%.
  • the percentages are by weight and generally refer to the binder alloy powder unless otherwise specified.
  • the binder alloy powder used contains 0.1 to 10 wt .-% of molybdenum, based on the total binder metal powder, in alloyed form.
  • the binder metal powder used contains 0.10 wt .-% to 3 wt .-% molybdenum, particularly preferably 0.5 wt .-% to 2 wt .-% molybdenum, most preferably 0.5 wt .-% bis 1.5% by weight of molybdenum, in each case based on the total binder metal powder.
  • One too high molybdenum content leads to excessive solidification of the binder powder, so that the pressing forces in the production of the cemented carbide and the resulting sintering shrinkage are too high, too low content leads to an insufficient increase in the hot hardness.
  • Preferred hard materials are carbides, in particular tungsten carbide, WC.
  • Preferred binders are alloys of iron, cobalt and nickel, in particular the combinations iron and nickel, iron and cobalt, cobalt and nickel, and iron, cobalt and nickel. Likewise, cobalt alone can be used as a binder.
  • the binder metal powders alloyed with molybdenum are distinguished by good distribution behavior in the case of mixed grinding with carbides for the production of hard metal powders.
  • the FSSS values (measured with the "Fisher Sub Siever Sizer" according to the ASTM B330 standard) are therefore in the range of 0.5 to 3 ⁇ m, preferably in the range of 1.0 to 2 ⁇ m. Even finer powders are self-igniting; Coarser powders no longer have a sufficient distribution behavior and lead again to so-called "binder lakes”.
  • the size distribution of the agglomerates is in the range of 0.5 to 10 microns with the same reason.
  • the specific surface area is preferably between 2.5 and 0.5 m 2 / g for the same reasons.
  • the oxygen content is preferably below 1.5%.
  • Preferred contents for cobalt in the binder alloy are up to 60% by weight.
  • the preferred content of nickel in the binder alloy is in the range of 10 to 80 wt%, or 20 to 60 wt%, or 30 to 75 wt%.
  • organic additives include waxes, agents for passivation and inhibition, corrosion protection, pressing aids.
  • paraffin wax and polyethylene glycols come into consideration.
  • the additives may be contained in an amount of 30% by weight, based on the sum of binder alloy powder and additive.
  • the Mo-containing binder powder may contain Fe, Ni and Co. Since the sinterability and the hot hardness decrease with increasing Fe content, the iron content is less than 65%, preferably less than 60%. The remainder to 100% is Mo and Co and / or Ni.
  • such alloys are selected in the FeCoNi system as binder alloys which are stably austenitic in the sintered cemented carbide, such as FeCoNi 30/40/30 or 40/20/40 or 20/60/20 or 25/25/50, but also FeNi 50/50 or 30/70 or 20/80, or CoNi in Councils 50/50, 70/30 or 30/70.
  • element powders such as Co or Ni, alloyed with up to 10% Mo, which thus become alloy powders.
  • the molybdenum-containing alloy powders are preferably prepared by the following process ( DE 10 2006 057 004 A1 ): a MoO 2 which was crushed to reduce the agglomerate size distribution serves as a molybdenum source.
  • This MoO 2 is added to an oxalic acid suspension as described EP 1 079 950 B1 is used for the preparation of FeNi or FeCoNi mixed oxalates, which are subsequently oxidatively annealed, and reduced with hydrogen to alloy powders.
  • the resulting alloy powders are completely reduced after reduction with hydrogen, ie it is no longer detectable by X-ray diffraction MoO 2 .
  • agglomerate size may also be reduced in agglomerate size by deagglomeration in order to improve the distribution in the mixed grinding with the carbides.
  • the agglomerates consist of primary particles which are agglomerated together. Agglomerate size and distribution can be determined by laser diffraction and sedimentation.
  • MoO 2 it is also possible to use other fine-grain Mo compounds which do not dissolve in oxalic acid, for example sulfides or carbides. These are oxidized in the calcination of the precipitated oxalate in air to oxides. During the calcination, molybdenum oxides such as MoO 3 are formed , which very quickly form mixed oxides with the Fe (Co) Ni mixed oxide due to their high vapor pressure and thereby show good transport properties, so that in the subsequent reduction with hydrogen forms a FeCoNi alloy powder with a small part of Mo is homogeneously alloyed.
  • MoO 3 molybdenum oxides
  • Fe (Co) Ni mixed oxide due to their high vapor pressure and thereby show good transport properties, so that in the subsequent reduction with hydrogen forms a FeCoNi alloy powder with a small part of Mo is homogeneously alloyed.
  • MoO 2 is used, which should be as pure as possible phase, and should contain Mo or MoO 3 or Mo 4 O 11 only in traces.
  • MoO 2 is used because, in contrast to MoO 3, it is neither soluble in acids nor in alkali, and therefore remains completely in the alloy metal powder after the entire process.
  • MoO 3 would dissolve in the alkali used to precipitate the Fe (Co) Ni content or in complexing organic acids; elemental Mo would be too coarse and would not fully oxidize to MoO 3 in the subsequent calcination and thus would not alloy sufficiently upon reduction with hydrogen.
  • a fine MoO 2 having a high surface area completely oxidizes to MoO 3 (which has a high vapor pressure) upon calcination of the Fe (Co) Ni oxalate in air and forms molybdate and mixed oxides with these metal oxides through the gas phase, thereby providing a very uniform Distribution of the molybdenum is achieved, which is maintained in the subsequent reduction with hydrogen.
  • powders according to the invention which contain alloyed Mo for the production of sintered parts by means of solid phase sintering, as in the diamond tool industry, but not for the cemented carbide industry with intermediate formation of a molten phase during sintering.
  • powders whose FSSS value is in the range from 0.5 to 3 ⁇ m are particularly suitable because the distribution during mixed grinding is better. In this case, if possible, they contain no further, oxidic metals.
  • the alloy powders described in the above paragraph are then suitable for hard metal fabrication when providing for carbide sintering be taken that the released predominantly in the form of carbon monoxide oxygen can escape from the sintered.
  • These powders are suitable for use in accordance with the invention if they have the preferred physical properties according to the invention, but the elements Mn, Cr, V, Al and Ti described are present in at least partially oxidic form only insofar as it is from the viewpoint of microstructural defects (pores and binder lakes). of the carbide is allowed.
  • the Mo alloyed FeCoNi or FeNi based powders may additionally be alloyed with up to 20% tungsten, for example to shift the onset of sintering shrinkage to higher temperatures or to provoke the formation of precipitates which reinforce the binder phase, however only possible with very coarse tungsten carbides.
  • the alloy powders used can occupy a wide range in the composition space FeCoNi.
  • binder alloy systems which, after sintering, have proportions of martensitic phase and therefore have a high hardness and wear resistance at room temperature.
  • Examples are FeNi 90/10, 82/18, 85/15, FeCoNi 72/10/18, 70/15/15 and 65/25/10.
  • the abovementioned alloys are distinguished by very low thermal hardness in the sintered hard metal.
  • austenitic binder alloys after sintering which are characterized by a lower intrinsic hardness, but by high fatigue strength and limited plastic deformation capability.
  • Examples are FeNi 80/20, 75/25, FeCoNi 60/20/20, 40/20/40, 25/25/50, 30/40/30, 20/60/20.
  • the hot hardness of carbides between 400 and 600 ° C is inferior to that of pure Co as a binder, unless alloyed with Mo or other alloying elements.
  • the particularly preferred objective of the use according to the invention is the production of hard metals with better hot hardness, it is also well suited for the production of hard metals with other objectives, such as cemented carbide with molybdenum-containing corrosion-resistant binder alloy systems, which are produced today using elemental or carbidic molybdenum , such as in EP 0 028 620 B2 or chisel inserts for drill bits, as in US 5,305,840 described.
  • the binder alloy present after the sintering of the cemented carbide can also be obtained by using a plurality of different alloying powders and optionally elementary powders, as in US Pat WO 2008/034903 can be used, wherein at least one of these powders is alloyed with molybdenum.
  • the advantages of such a procedure lie in the compressibility and the control of the sintering shrinkage.
  • the hard metal part present after sintering and possibly the grinding or electro-eroding finish has a defined tool geometry. This may most preferably be elongated (for example, ground out of a sintered round bar), but more preferably also plate-shaped for turning or milling of materials such as metals, bricks and composite materials.
  • the cemented carbide tools may preferably have one or more coatings from the classes of nitrides, borides, oxides or superhard layers (e.g., diamond, cubic boron nitride). These can be applied by PVD or CVD methods or their combinations or variations and still be changed after application in their residual stress state.
  • carbide parts may also be in a preferred manner but also carbide parts further and arbitrary geometry and application, such as forging tools, forming tools, countersinks, components, knives, peeling plates, rollers, stamping tools, pentagonal drill bits for soldering, mining chisel, milling tools for milling processing of concrete and asphalt , Mechanical seals and any other geometry and application.
  • Example 2 (Comparative Example, WC-Co, not according to the invention)
  • Example 2 Analogously to Example 1, a WC-Co was prepared with the same volume fraction as in Example 1 to binder phase. Since Co has a higher density than the FeCoNi 40/20/40, the weight fraction of the cobalt was 8 wt .-%, based on the total carbide. After pressing and sintering at 1420 ° C for 45 min in vacuo resulted in a perfect hard metal with a magnetic saturation of 133 G.cm 3 / g, corresponding to 82% of the theoretical magnetic saturation. The room temperature hardness (HV30 1597 kg / mm 2 ) and the hot hardness were determined and determined in Fig. 1 entered.
  • HV30 1597 kg / mm 2 The room temperature hardness (HV30 1597 kg / mm 2 ) and the hot hardness were determined and determined in Fig. 1 entered.
  • Co is superior to the FeCoNi binder from 350 to 800 ° C, above which the carbide skeleton determines the hot hardness.
  • the K 1 C value (fracture toughness, determined from the crack lengths at the corners of the hardness impressions, calculated according to the formula of Shetty) of the cemented carbide at room temperature was 10.1 MPa ⁇ m 1/2 .
  • the cobalt binder at room temperature in addition has a better hardness / K 1 C ratio than the binder of Example 1 ..
  • Example 1 was repeated, but in a first batch 1 wt .-%, in a second 3 wt .-% Mo metal powder was added. (These contents are based on the Mo content of the binder alloy phase).
  • the deagglomerated molybdenum metal powder had the following properties: FSSS value 1.09, O content: 0.36 wt%.
  • the grain distribution is determined by the following parameters: D 50 3.2 ⁇ m, D 90 6.4 ⁇ m.
  • the carbon content was chosen so that according to the experience of Example 1 in sintered carbide neither eta-phases nor
  • Example 1 was repeated using the methods described in DE 10 2006 057 004 A1 1.5 wt.% Mo alloyed FeCoNi binder alloy prepared. The powder was then deagglomerated. The analyzed properties of this powder were: Fe 38.23 wt%, Co 19.96 wt%, Ni 39.10 wt%, Mo 1.55 wt%, O 0.8565 wt%. %, FSSS value: 1.21, specific surface area 2.17 m 2 / g, D 50 3.46 ⁇ m, D 9o 5.84 ⁇ m. X-ray diffraction did not detect MoO 2 at its characteristic diffraction angles, even with long-term exposure.
  • 37.5 g of this powder with 462.5 g of WC were used to produce a cemented carbide.
  • the cemented carbide mixture had a carbon content of 5.92% by weight, which was adjusted by adding 1.14 g of carbon black.
  • the compacts were sintered in both an open and a closed crucible. This variation has an effect on the carbon content of the cemented carbide after sintering.
  • the properties of the cemented carbide sintered at 1420 ° C were as follows: sintering Open pot Closed pot Hardness (HV30) 1661 1626 Magnetic saturation (G ⁇ cm 3 / g) 128.8 134.2 Porosity (ISO 4505) A02 to A04, ⁇ B02, C00 A02, ⁇ B02, C00 Rupture toughness (MPa ⁇ m 1/2 ) 13.6 7.9 structure Small binder lakes Small binder lakes
  • the cemented carbide from the open sintering is located at the low-carbon end of the two-phase region, since it is characterized by a very low magnetic saturation compared to Example 1.
  • eta phases were not detectable. Due to the maximum possible concentration of Mo in the binder, an enormous hardening of the binder alloy is achieved, which is expressed by a simultaneous increase in hardness and fracture toughness.
  • the cemented carbide from the closed sintering is also in the 2-phase region in terms of carbon content, but contains more carbon, which is indicated by the high magnetic saturation.
  • More pellets were prepared and sintered at 1420 ° C in a vacuum, but was carried out towards the end of the sintering at the end temperature, an application of argon at 40 bar pressure. It was cooled under pressure. There were hard metal pieces with a hardness of 1643 HV30 obtained, a crack resistance of 8.2 MPa ⁇ m 1/2 and a magnetic saturation of 123 G ⁇ cm 3 / g. At the hard metal pieces on another hardness testing machine both the room temperature and the hot hardness were determined as a function of the temperature. The evaluation of the determination of the room temperature and hot hardness shows the FIG.
  • Example 2 represented by squares, for comparison, the curves of Examples 2 and 3 is plotted: the decrease in the hot hardness at 600 ° C compared to a cobalt-bonded carbide is significantly reduced for the hard metals of Example 4 over those of Example 2.
  • the hot hardness is now above that of the cemented carbide prepared from the non-Mo alloyed binder alloy powders (Example 3). (Due to the other hardness testing machine, there is a discrepancy in the room temperature hardness).
  • the principle of improving the properties of hard metals by alloyed molybdenum in the binder is applicable not only to the binder described FeCoNi 40/20/40, but also to pure cobalt as well as pure Ni as a carbide binder on CoNi and FeNi alloys as well as others FeCoNi alloys.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
EP11193910A 2008-10-20 2009-10-02 Poudre métallique Withdrawn EP2436793A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008052104 2008-10-20
DE102008052559A DE102008052559A1 (de) 2008-10-21 2008-10-21 Metallpulver
EP09783704.1A EP2337874B1 (fr) 2008-10-20 2009-10-02 Poudre métallique

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP09783704.1A Division-Into EP2337874B1 (fr) 2008-10-20 2009-10-02 Poudre métallique
EP09783704.1 Division 2009-10-02

Publications (1)

Publication Number Publication Date
EP2436793A1 true EP2436793A1 (fr) 2012-04-04

Family

ID=41327342

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11193910A Withdrawn EP2436793A1 (fr) 2008-10-20 2009-10-02 Poudre métallique
EP09783704.1A Not-in-force EP2337874B1 (fr) 2008-10-20 2009-10-02 Poudre métallique

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09783704.1A Not-in-force EP2337874B1 (fr) 2008-10-20 2009-10-02 Poudre métallique

Country Status (9)

Country Link
US (1) US20110286877A1 (fr)
EP (2) EP2436793A1 (fr)
JP (1) JP2012505971A (fr)
KR (1) KR20110079901A (fr)
CN (1) CN102187005A (fr)
IL (1) IL211913A0 (fr)
TW (1) TW201026858A (fr)
WO (1) WO2010046224A2 (fr)
ZA (1) ZA201102839B (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465467B (en) * 2008-11-24 2013-03-06 Smith International A cutting element having an ultra hard material cutting layer and a method of manufacturing a cutting element having an ultra hard material cutting layer
EP2527480B1 (fr) * 2011-05-27 2017-05-03 H.C. Starck GmbH Liant NiFe ayant une application universelle
CA2861581C (fr) 2011-12-30 2021-05-04 Scoperta, Inc. Compositions de revetement
CN102776429A (zh) * 2012-07-18 2012-11-14 株洲新科硬质合金有限公司 一种新粘结相超细硬质合金
DE102014105481B4 (de) * 2013-05-16 2015-01-22 Kennametal India Limited Verfahren zum Mahlen von Carbid und Anwendungen davon
US9802387B2 (en) 2013-11-26 2017-10-31 Scoperta, Inc. Corrosion resistant hardfacing alloy
US10173290B2 (en) 2014-06-09 2019-01-08 Scoperta, Inc. Crack resistant hardfacing alloys
CN105695837B (zh) * 2014-11-26 2018-01-26 自贡硬质合金有限责任公司 一种WC‑Ni细晶硬质合金的制备方法
JP7002169B2 (ja) 2014-12-16 2022-01-20 エリコン メテコ(ユーエス)インコーポレイテッド 靱性及び耐摩耗性を有する多重硬質相含有鉄合金
US9725794B2 (en) 2014-12-17 2017-08-08 Kennametal Inc. Cemented carbide articles and applications thereof
CN105787144B (zh) * 2014-12-26 2019-02-05 北京有色金属研究总院 一种弹性铜合金的材料设计方法
CA2997367C (fr) 2015-09-04 2023-10-03 Scoperta, Inc. Alliages resistant a l'usure sans chrome et a faible teneur en chrome
CA2996175C (fr) 2015-09-08 2022-04-05 Scoperta, Inc. Alliages de formage non magnetiques a forte teneur en carbure destines a la fabrication de poudre
WO2017083419A1 (fr) 2015-11-10 2017-05-18 Scoperta, Inc. Matières de projection à l'arc à deux fils à oxydation contrôlée
EP3433393B1 (fr) 2016-03-22 2021-10-13 Oerlikon Metco (US) Inc. Revêtement issu de la projection thermique entièrement lisible
DE102016011096B3 (de) * 2016-09-15 2018-02-15 H. C. Starck Tungsten GmbH Neuartiges Wolframcarbidpulver und dessen Herstellung
JP7116495B2 (ja) * 2017-03-14 2022-08-10 ヴァンベーエヌ コンポネンツ アクチエボラグ 高炭素コバルト系合金
EP3398703B1 (fr) * 2017-05-05 2020-05-27 Hyperion Materials & Technologies (Sweden) AB Corps comprenant une partie en cermet et son procédé de fabrication
US20210164081A1 (en) 2018-03-29 2021-06-03 Oerlikon Metco (Us) Inc. Reduced carbides ferrous alloys
CN113195759B (zh) 2018-10-26 2023-09-19 欧瑞康美科(美国)公司 耐腐蚀和耐磨镍基合金
WO2020198302A1 (fr) 2019-03-28 2020-10-01 Oerlikon Metco (Us) Inc. Alliages à base de fer pour projection à chaud destinés au revêtement d'alésages de moteur
DE102019110950A1 (de) 2019-04-29 2020-10-29 Kennametal Inc. Hartmetallzusammensetzungen und deren Anwendungen
AU2020269275B2 (en) 2019-05-03 2025-05-22 Oerlikon Metco (Us) Inc. Powder feedstock for wear resistant bulk welding configured to optimize manufacturability
JP7108049B2 (ja) * 2019-07-03 2022-07-27 日本特殊陶業株式会社 包丁及び刀身
CN113652594B (zh) * 2021-08-02 2022-11-22 自贡硬质合金有限责任公司 一种难熔金属基合金及其制备方法
CN114226714B (zh) * 2021-12-17 2023-07-21 武汉苏泊尔炊具有限公司 粉末冶金材料及其制备方法和其应用
DE102022122318A1 (de) 2022-09-02 2024-03-07 Betek Gmbh & Co. Kg Sinterkarbid-Material
JP7782778B1 (ja) 2024-09-26 2025-12-09 住友電工ハードメタル株式会社 超硬合金および切削工具

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846126A (en) * 1973-01-15 1974-11-05 Cabot Corp Powder metallurgy production of high performance alloys
EP0028620B1 (fr) 1979-05-17 1984-08-29 Sandvik Aktiebolag Carbure fritte
JPH049441A (ja) * 1990-04-27 1992-01-14 Kobe Steel Ltd 耐食性に優れた耐摩耗合金
US5305840A (en) 1992-09-14 1994-04-26 Smith International, Inc. Rock bit with cobalt alloy cemented tungsten carbide inserts
KR19980062925A (ko) 1996-12-30 1998-10-07 김영귀 자동차의 연료 파이프 보호구조
WO1998049361A1 (fr) 1997-04-29 1998-11-05 N.V. Union Miniere S.A. Poudre pre-alliee a base de cuivre, et utilisation de cette poudre dans la fabrication d'outils en diamant
EP0865511B1 (fr) 1995-12-08 1999-08-18 n.v. Union Miniere s.a. Poudre pre-alliee et son utilisation pour la fabrication d'outils diamantes
WO1999059755A1 (fr) * 1998-05-20 1999-11-25 H.C. Starck Gmbh & Co. Kg Poudres de metal et d'alliage pour le frittage, a utiliser dans la metallurgie des poudres, leur procede de production et leur utilisation
JP2003277861A (ja) * 2002-03-27 2003-10-02 Mitsubishi Heavy Ind Ltd ゴム混練機用ロータ
EP1492897B1 (fr) 2002-03-29 2005-07-20 Umicore Poudres de liaison prealliees
EP1042523B1 (fr) 1998-10-16 2006-06-28 Eurotungstene Poudres S.A. POUDRE METALLIQUE PREALLIEE MICRONIQUE A BASE DE METAUX DE TRANSITION 3d
JP2006328496A (ja) * 2005-05-27 2006-12-07 Tocalo Co Ltd 耐食性に優れる炭化物サーメット溶射皮膜被覆部材およびその製造方法
WO2007057533A1 (fr) 2005-11-09 2007-05-24 Eurotungstene Poudres Poudre polymetallique et piece frittee fabriquee a partir de cette poudre
WO2008034903A1 (fr) 2006-09-22 2008-03-27 H.C. Starck Gmbh Poudre métallique
DE102006057004A1 (de) 2006-12-02 2008-06-05 H.C. Starck Gmbh Metallpulver
EP1043411B1 (fr) 1999-04-06 2008-07-09 Sandvik Intellectual Property AB Procédé de préparation d'un matériau composite métallique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601387B2 (ja) * 1981-08-17 1985-01-14 三菱マテリアル株式会社 高強度および高耐酸化性を有する炭化タングステン基超硬合金
JPS60255952A (ja) * 1984-05-29 1985-12-17 Sumitomo Electric Ind Ltd 温、熱間鍛造用超硬合金
US5922978A (en) * 1998-03-27 1999-07-13 Omg Americas, Inc. Method of preparing pressable powders of a transition metal carbide, iron group metal or mixtures thereof
US8323372B1 (en) * 2000-01-31 2012-12-04 Smith International, Inc. Low coefficient of thermal expansion cermet compositions
SE522571C2 (sv) * 2001-02-08 2004-02-17 Sandvik Ab Tätningsringar av hårdmetall för dricksvattenstillämpningar

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846126A (en) * 1973-01-15 1974-11-05 Cabot Corp Powder metallurgy production of high performance alloys
EP0028620B1 (fr) 1979-05-17 1984-08-29 Sandvik Aktiebolag Carbure fritte
JPH049441A (ja) * 1990-04-27 1992-01-14 Kobe Steel Ltd 耐食性に優れた耐摩耗合金
US5305840A (en) 1992-09-14 1994-04-26 Smith International, Inc. Rock bit with cobalt alloy cemented tungsten carbide inserts
EP0865511B1 (fr) 1995-12-08 1999-08-18 n.v. Union Miniere s.a. Poudre pre-alliee et son utilisation pour la fabrication d'outils diamantes
KR19980062925A (ko) 1996-12-30 1998-10-07 김영귀 자동차의 연료 파이프 보호구조
WO1998049361A1 (fr) 1997-04-29 1998-11-05 N.V. Union Miniere S.A. Poudre pre-alliee a base de cuivre, et utilisation de cette poudre dans la fabrication d'outils en diamant
EP1079950B1 (fr) 1998-05-20 2003-08-13 H.C. Starck GmbH Poudres de metal et d'alliage pour le frittage, a utiliser dans la metallurgie des poudres, leur procede de production et leur utilisation
WO1999059755A1 (fr) * 1998-05-20 1999-11-25 H.C. Starck Gmbh & Co. Kg Poudres de metal et d'alliage pour le frittage, a utiliser dans la metallurgie des poudres, leur procede de production et leur utilisation
EP1042523B1 (fr) 1998-10-16 2006-06-28 Eurotungstene Poudres S.A. POUDRE METALLIQUE PREALLIEE MICRONIQUE A BASE DE METAUX DE TRANSITION 3d
EP1043411B1 (fr) 1999-04-06 2008-07-09 Sandvik Intellectual Property AB Procédé de préparation d'un matériau composite métallique
JP2003277861A (ja) * 2002-03-27 2003-10-02 Mitsubishi Heavy Ind Ltd ゴム混練機用ロータ
EP1492897B1 (fr) 2002-03-29 2005-07-20 Umicore Poudres de liaison prealliees
JP2006328496A (ja) * 2005-05-27 2006-12-07 Tocalo Co Ltd 耐食性に優れる炭化物サーメット溶射皮膜被覆部材およびその製造方法
WO2007057533A1 (fr) 2005-11-09 2007-05-24 Eurotungstene Poudres Poudre polymetallique et piece frittee fabriquee a partir de cette poudre
WO2008034903A1 (fr) 2006-09-22 2008-03-27 H.C. Starck Gmbh Poudre métallique
DE102006057004A1 (de) 2006-12-02 2008-06-05 H.C. Starck Gmbh Metallpulver
WO2008065136A2 (fr) * 2006-12-02 2008-06-05 H.C. Starck Gmbh Poudre métallique

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEO J. PRAKASH, DISSERTATION, 1979
TRANS. AMER. INST. MIN. MET. ENG., vol. 162, 1945, pages 84

Also Published As

Publication number Publication date
JP2012505971A (ja) 2012-03-08
TW201026858A (en) 2010-07-16
CN102187005A (zh) 2011-09-14
WO2010046224A2 (fr) 2010-04-29
WO2010046224A3 (fr) 2010-10-14
KR20110079901A (ko) 2011-07-11
US20110286877A1 (en) 2011-11-24
EP2337874A2 (fr) 2011-06-29
EP2337874B1 (fr) 2015-08-26
ZA201102839B (en) 2012-06-27
IL211913A0 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
EP2337874B1 (fr) Poudre métallique
EP2527480B1 (fr) Liant NiFe ayant une application universelle
EP2499268B1 (fr) Carbure metallique et procede pour sa production
DE602004012521T2 (de) Sinterkarbideinsatz und Method zu dessen Herstellung.
DE112006000769C5 (de) Hartmetall und Schneidwerkzeug
DE69231381T2 (de) Verfahren zur herstellung zementierter karbidartikel
EP2066821B1 (fr) Poudre métallique
DE60129040T2 (de) Beschichteter schneidwerkzeugeinsatz mit bindemittelphase auf eisen-nickel-basis
DE69227503T2 (de) Hartlegierung und deren herstellung
DE10356470B4 (de) Zirkonium und Niob enthaltender Hartmetallkörper und Verfahren zu seiner Herstellung und seine Verwendung
DE10135790A1 (de) Feinkörniges Sinterhartmetall, Verfahren zu seiner Herstellung und Verwendung
DE2407410B2 (de) Karbidhartmetall mit ausscheidungshärtbarer metallischer Matrix
DE2429075A1 (de) Karbonitridlegierungen fuer schneidwerkzeuge und verschleissteile
AT5837U1 (de) Hartmetallbauteil mit gradiertem aufbau
DE1783134B2 (de) Verfahren zur pulvermetallurgischen Herstellung von Hartlegierungen. Ausscheidung aus: 1533275 Annu Latrobe Steel Co., Latrobe, Pa. (V.StA.)
DE69105477T2 (de) Verfahren zur Herstellung einer feinkörnigen Titaniumbasiscarbonitridlegierung.
EP2195473A1 (fr) Outil
DE112012000533B4 (de) Hartmetallartikel und Verfahren zu dessen Herstellung
DE2060605C3 (de) Pulvermetallurgisch durch Sintern hergestellte, ausscheidungshärtbare, korrosions- und hochwarmfeste Nickel-Chrom-Legierung
DE2302317A1 (de) Werkzeuglegierungszusammensetzungen und verfahren zu ihrer herstellung
DE602004008166T2 (de) Verfahren zur Herstellung eines feinkörnigen Hartmetalles
DE69028598T2 (de) Schneideinsatz aus gesintertem Hartmetall
DE69304284T2 (de) Verfahren zur Herstellung einer gesinterten Karbonitridenlegierung mit verbesserter Zähigkeit
DE60001515T2 (de) Ti(C,N) - (Ti,Ta,W) (C,N) - Co - Legierung für Zähigkeit - erfordernde Schneidwerzeug Anwendungen
DE102008048967A1 (de) Hartmetallkörper und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2337874

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17P Request for examination filed

Effective date: 20121004

17Q First examination report despatched

Effective date: 20130315

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140501