EP2426724A1 - Procédé de production de cellules photovoltaïques - Google Patents
Procédé de production de cellules photovoltaïques Download PDFInfo
- Publication number
- EP2426724A1 EP2426724A1 EP10175311A EP10175311A EP2426724A1 EP 2426724 A1 EP2426724 A1 EP 2426724A1 EP 10175311 A EP10175311 A EP 10175311A EP 10175311 A EP10175311 A EP 10175311A EP 2426724 A1 EP2426724 A1 EP 2426724A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulating layer
- semiconductor
- process according
- implantation
- implanted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000008569 process Effects 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 9
- 239000004065 semiconductor Substances 0.000 claims abstract description 45
- 238000002513 implantation Methods 0.000 claims abstract description 42
- 239000002096 quantum dot Substances 0.000 claims abstract description 35
- 150000002500 ions Chemical class 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 239000010703 silicon Substances 0.000 claims abstract description 13
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 7
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000151 deposition Methods 0.000 claims abstract description 6
- 238000001556 precipitation Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 230000001939 inductive effect Effects 0.000 claims abstract description 4
- 239000002019 doping agent Substances 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 14
- 238000007669 thermal treatment Methods 0.000 claims description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims description 4
- 150000004767 nitrides Chemical group 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 32
- 239000010410 layer Substances 0.000 description 29
- 238000000137 annealing Methods 0.000 description 19
- 239000000377 silicon dioxide Substances 0.000 description 15
- 229910052681 coesite Inorganic materials 0.000 description 13
- 229910052906 cristobalite Inorganic materials 0.000 description 13
- 229910052682 stishovite Inorganic materials 0.000 description 13
- 229910052905 tridymite Inorganic materials 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 238000005424 photoluminescence Methods 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000004581 coalescence Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 239000004411 aluminium Substances 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000000572 ellipsometry Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000000103 photoluminescence spectrum Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000012358 sourcing Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/128—Annealing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/162—Non-monocrystalline materials, e.g. semiconductor particles embedded in insulating materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention is related to a process for producing photovoltaic cells.
- Si-QDs silicon quantum dots
- VLS vapor-liquid-solid process
- HWCVD hot-wire chemical vapor deposition
- Silicon nanocrystals in the form of a powder were developed and incorporated in liquid silica by chemical way and subsequently used in photovoltaic cells as described in " Silicon nanocrystals as light converter for solar cells", Thin Solid Films, 451-452 (2004) 384 by V. Svrcek et Al.
- Ion implantation is a known process for doping surface layers of semiconductors to produce p-n junction.
- the fluence, the implantation energy and the subsequent thermal treatment are adjusted to obtain very small doping concentration.
- the fluence is then typically less than 10 16 at./cm 2 to avoid precipitation of the dopant and maintain acceptable carrier mobility and lifetime.
- the present invention aims to provide a process for the production of photovoltaic cells that does not present the drawbacks of prior art.
- the present invention also aims to provide photovoltaic cells produced by the process.
- the present invention is related to a process for the manufacturing of process for the manufacturing of a photovoltaic cell comprising the steps of:
- the process of the invention comprises one or a suitable combination of the following features:
- Fig. 1 Represents schematically of an example of process according to the invention with front and back conducting contacts.
- Fig. 3 Represents the effect of the annealing time on Si depth profiles extracted from RBS measurements of sample implanted with a Si multiple energy implantations of 20, 35, 80 keV to fluences of 2.1 x 10 16 , 4.2 x 10 16 and 1.4 x 10 17 Si + /cm 2 .
- Si depth profile becomes more uniform after 1 hour annealing time.
- Fig. 4 illustrates the effect of the annealing time at 1100 °C on the PL-spectra for different implanted fluences: (a) 6 x 10 16 Si/cm 2 , (b) 1 x 10 17 Si/cm 2 , (c) 1.4 x 10 17 Si/cm 2 , (d) 2 x 10 17 Si/cm 2 . All samples were passivated.
- Fig. 5 illustrates the effect of implanted fluence on the PL-spectra recorded in unpassivated samples for a fixed annealing time at 60 min.
- Fig. 6 represents TEM images of Si QDs in 240 nm SiO 2 .
- Fig. 7 represents an example of a photovoltaic cell produced according to the invention, having a continuous layer transparent front contact (TCO: transparent conducting oxide, such as Indium Tin Oxide or the like).
- TCO transparent conducting oxide, such as Indium Tin Oxide or the like.
- Fig. 8 represents an example of a photovoltaic cell produced according to the method of the invention, having both conducting contacts located on the rear side, with vias.
- Fig. 9 represents a cross section of an example of a photovoltaic cell produced according to the invention with back contacts only and without vias.
- Fig. 10 represents a 3D view of a photovoltaic cell according to the invention showing interdigitated back contacts.
- the present invention is related to a process for producing photovoltaic cells using quantum dots in their active areas. Such kind of QDs permits to improve the average efficiency of photovoltaic devices. More particularly, the present invention aims to provide a simplified process for producing photovoltaic cells oxide layers containing semiconductors QDs while maintaining a good control of QDs size, distribution and density.
- the present invention also provides QDs production without contaminating the substrate with potential impurities and thus reduces oxide layer contamination.
- the diffusion of the doping agent toward the substrate is also avoided.
- the first step of the process of the invention is to provide a semiconductor substrate comprising an insulating layer on its top surface.
- the semiconductor is preferably selected from the group consisting of silicon and germanium.
- the insulating layer is obtained by chemically treating the surface of the semiconductor with oxidizing, carburizing or nitridizing species.
- oxidizing, carburizing or nitridizing species In case of a silicon substrate, this produces silicon dioxide, silicon carbide or silicon nitride insulating layer.
- said insulating layer can be obtained by chemical vapour deposition, or any alternative deposition method known in the art.
- semiconductor ions are implanted in the insulating layer, resulting in an excess of the atomic concentration of the semiconductor in comparison with the stoechiometric composition of the insulating layer.
- the maximum excess concentration of said semiconductor is comprised between 20 and 36%, preferably about 28%.
- the implanted semiconductor ion is preferably selected from the group consisting of silicon and germanium.
- the energy profile of the ions during the implantation comprises several energies, leading to a rectangular implantation profile (plateau profile).
- plateau profile This is usually obtained by using several quasi monoenergetic ion beams (Gaussian profile). For that reason such kind of plateau profile are usually called "multiple implantations".
- the main advantage of such multiple implantations is to obtain Si-QDS distributed from the extreme surface of the insulating layer to the insulating layer/semiconductor interface thereby improving cells efficiency.
- Plateau energy profile can be obtained by any other method known in the art.
- the obtained implanted insulator is then thermally treated at a sufficient temperature sufficient to induce nucleation and growth of the semiconductor atoms in excess to stoechiometric composition, thereby producing QDs.
- the thermal treatment temperature is selected in order to control QDs density (number of nucleus) and size: larger temperature induces lower number of nucleus and increases growth of the nucleus, giving rise to lower number of larger QDs.
- the thermal treatment is performed at a temperature above 1000°C, more preferably about 1100°C.
- the thermal treatment is preferably performed in an inert atmosphere such as nitrogen.
- the QDs can then be doped by any suitable dopant by an additional implantation step.
- the dopant can be either of p-type in case of n-type substrate or n-type in case of p-type substrate, generating a p-n or n-p junction for collecting the charge carrier generated by incoming light.
- p-type dopant is boron.
- n-type dopant is Phosphorous.
- a second thermal treatment can advantageously be performed after implantation of the dopant to obtain the final junction structure, with dopant at substitution sites, and relaxing defects induced by the implantation process.
- Front and back contacts may then be deposited on front and back surface of the substrate.
- Front contact can be either opaque electrode covering partially the produced photovoltaic cell as represented in Fig. 1 , or transparent conducting electrodes, such as those produced by ITO material as represented in Fig. 7 .
- Back contact can be opaque electrode, preferably aluminium.
- all contacts may be located on the back side of the cell as represented in Fig. 8 .
- This kind of design advantageously reduces the shadowing of the cell by the contacts, thereby improving the conversion efficiency of the photovoltaic cell.
- the current arising from the front layer may be collected in this case by any known methods, for example through vias, such as described in patent application US 2004/261839 or according to the so called emitter wrap-through technology, such as described in in document WO 2009/077103 .
- back conducting contacts are deposited on alternating P+ doped area and N+ doped area, without vias, as represented in Fig. 9 .
- excitons produced in the QD's diffuses through the substrate and the charge carriers are then separated and collected by the electrical fields induced by the PN junctions on the back side.
- Said conducting contacts on the rear side may advantageously form at least two interdigitated grid electrodes as represented in fig. 10 .
- the photovoltaic cell of the present invention can be included in a larger stack of cells, the back contact of the photovoltaic cell of the invention being the top electrode of the subsequent cell in the stack.
- All SiO 2 /Si samples were produced by thermal oxidation, at high temperature ( ⁇ 1100°C under oxygen flow), of a Si (100) wafer.
- the gas flow was about ⁇ 1 L/min.
- the thickness and stoichiometry of all oxides were determined by both (RBS) and ellipsometry techniques. Both techniques prove the high quality of the oxide in terms of stoichiometry and purity.
- the results obtained by ellipsometry show that the variation of refractive index of the oxide layers is very close to the theoritical SiO 2 curves. From this it can be concluded that these layers are perfectly stoichiometric.
- a series of thin oxide layers were thermally synthesised and characterized with the above conditions and their thickness were between 100 and 300 nm.
- One of the main problems was that during the oxidation, the oxide was grown onto both top and bottom surfaces of the wafer.
- development process was used, namely, coating surface A (top) with a photoresist, then submerging the sample in a HF (5%) bath to remove the oxide from the back surface and finally the use of an organic solvent to remove the polymer from the surface A.
- the wafers were then annealed at 1100°C under nitrogen flow for 15, 30, and 60 min. Special care was taken to avoid oxidation of the samples inside the furnace.
- SiO 2 implanted coupons of 1 x 1 cm 2 were specially cut for cell fabrication, they were doped by 26 keV B + ions with a fluence of 1.5 x 10 15 B + /cm 2 and heated at 800°C.
- a comb electrode on top side was deposited by evaporation through a mask whereas back contact was achieved by the deposition of an Al layer.
- the thickness of the Al contacts was 800 nm.
- One of the advantages of ion implantation is that Boron implantation (for doping) is performed after annealing (QD's precipitation annealing), thus ensuring that there is no diffusion of the doping element into the interface.
- Transmission electron microscopy images were performed using a 200 KV FEG (Field Emission Gun).
- the photoluminescence (PL) measurements were carried out using a USB2000 Ocean Optics spectrograph and a 1 mW nm laser diode.
- the samples were passivated in hydrogen by annealing at 500 °C for 60 min in an atmosphere of 5% H 2 + 95% N 2 .
- Measurements of the PL were taken at room temperature using an argon laser (Ar + ) at 405 nm, with a nominal power of 15mW.
- the range of detection of the spectrograph covers wavelengths from 530 to 1100 nm.
- I-V characteristics for illuminated cells were measured by an AM1.5G terrestrial photovoltaic lamp.
- the spectrum of AM1.5G photovoltaic simulator lamp is considered to be similar to the Belgian sunlight.
- I-V measurements under illumination were performed with a Keithley 2400 source-meter which allows sourcing and measuring voltage from ⁇ 5 ⁇ V (sourcing) and ⁇ 1 ⁇ V (measuring) to ⁇ 200V DC and current from ⁇ 10pA to ⁇ 1A.
- the measurements were performed in a dark room which was shielded from most of external electromagnetic waves.
- Figure 2 (a) shows RBS spectra recorded on the 240 nm SiO 2 /Si sample implanted with 70 keV Si ions with fluence of 2 ⁇ 10 17 Si/cm -2 .
- a Gaussian-shape peak arises from ions backscattered from surface of the SiO 2 and the falls in the SiO 2 /Si interface reveals exactly the Gaussian distribution of the 70 keV Si ions into the 240 nm silicon oxide layer.
- the range of the implanted ions is about 100 nm with typically FWHM of 100 nm.
- Theoretical calculations have expected a sputtering of about 40 nm, resulting in the oxide layer being completely covered by the implanted ions.
- Figure 2 (b) shows depth profiles extracted from the RBS spectra.
- the depth profile of the implanted sample (as-implanted) shows a maximal excess concentration of 28 at.%.
- a comparison of results obtained from annealed samples reveals that the Si depth distribution is not significantly modified for annealing times less than 30 minutes, but the contribution from the matrix is increased (12 to 28 %). This indicates that small Si-nc are progressively formed.
- Fig. 2 (b) shows that for 60 minutes annealing, the depth distribution narrows, whilst the maximum concentration increases as the Si ions diffuse to the interface.
- All implanted, heated and passivated samples exhibit photoluminescence emission with PL peaks at ⁇ 800 nm and 890 nm.
- the 800 nm peak is observed for samples implanted with fluences of 6 x 10 16 Si/cm 2 and 1 x 10 17 Si/cm 2 ( Fig. 3 (a) and (b) ).
- Figure 5 shows TEM images of Si-nc between 2 and 4 nm with cases of few coalescences probably arising from high Si concentration (28 %) and/or drastic annealing conditions.
- the increase in concentration observing above in depth profiles exctracted from RBS measurements ( Figure 2 (b) ) could explain this behaviour.
- Table 1 shows the photovoltaic properties of the illuminated Si QDs p-n devices made from non-implanted, implanted with two different doses (lines); and non-annealed, annealed, annealed and doped samples. Only PV cells fabricated by implantation annealing and doping (for n-p junction) yield a high electrical responses.
- V oc 0,003 mV
- Isc the thickness of the silicon oxide
- Table 2 shows the photovoltaic properties of the illuminated Si QDs n-p devices made from samples implanted with a Si multiple energy implantations of 20, 35, 80 keV to fluences of 2.1 x 10 16 , 4.2 x 10 16 and 1.4 x 10 17 Si+/cm2.
- Table 2 Comparison of I-V parameters for two different cells: a cell with 17 aluminum fingers (first line) and a cell with 5 aluminum. All samples used for cells fabrication have been annealed, doped with phosphorous and illuminated under AM1.5G. Here the value of V oc (mV) is 15 higher than in the case of single implantation device (see table 1).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Manufacturing & Machinery (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10175311A EP2426724A1 (fr) | 2010-09-03 | 2010-09-03 | Procédé de production de cellules photovoltaïques |
| CN2011800426403A CN103081131A (zh) | 2010-09-03 | 2011-09-05 | 用于生产光伏电池的方法 |
| US13/820,232 US20130273684A1 (en) | 2010-09-03 | 2011-09-05 | Process for the production of photovoltaic cells |
| EP11752224.3A EP2612368A1 (fr) | 2010-09-03 | 2011-09-05 | Procédé de production de cellules photovoltaïques |
| PH1/2013/500338A PH12013500338A1 (en) | 2010-09-03 | 2011-09-05 | Process for the production of photovoltaic cells |
| PCT/EP2011/065255 WO2012028738A1 (fr) | 2010-09-03 | 2011-09-05 | Procédé de production de cellules photovoltaïques |
| JP2013526498A JP2013536993A (ja) | 2010-09-03 | 2011-09-05 | 太陽電池を生産するための方法 |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10175311A EP2426724A1 (fr) | 2010-09-03 | 2010-09-03 | Procédé de production de cellules photovoltaïques |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2426724A1 true EP2426724A1 (fr) | 2012-03-07 |
Family
ID=44359436
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP10175311A Withdrawn EP2426724A1 (fr) | 2010-09-03 | 2010-09-03 | Procédé de production de cellules photovoltaïques |
| EP11752224.3A Withdrawn EP2612368A1 (fr) | 2010-09-03 | 2011-09-05 | Procédé de production de cellules photovoltaïques |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP11752224.3A Withdrawn EP2612368A1 (fr) | 2010-09-03 | 2011-09-05 | Procédé de production de cellules photovoltaïques |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20130273684A1 (fr) |
| EP (2) | EP2426724A1 (fr) |
| JP (1) | JP2013536993A (fr) |
| CN (1) | CN103081131A (fr) |
| PH (1) | PH12013500338A1 (fr) |
| WO (1) | WO2012028738A1 (fr) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104377114B (zh) * | 2013-08-13 | 2017-04-05 | 国家纳米科学中心 | 一种锗量子点的生长方法、锗量子点复合材料及其应用 |
| US11594459B2 (en) * | 2021-02-11 | 2023-02-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Passivation layer for a semiconductor device and method for manufacturing the same |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040261839A1 (en) | 2003-06-26 | 2004-12-30 | Gee James M | Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias |
| US20070272995A1 (en) * | 2006-05-23 | 2007-11-29 | Ya-Chin King | Photosensitive device |
| WO2009077103A1 (fr) | 2007-12-14 | 2009-06-25 | FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V. | Photopile à couche mince et son procédé de fabrication |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101388324B (zh) * | 2008-10-14 | 2010-06-09 | 厦门大学 | 一种锗量子点的制备方法 |
| WO2010110888A1 (fr) * | 2009-03-23 | 2010-09-30 | The Board Of Trustees Of The Leland Stanford Junior University | Pile solaire de confinement quantique fabriquée par dépôt de couche atomique |
| US20110139248A1 (en) * | 2009-12-11 | 2011-06-16 | Honeywell International Inc. | Quantum dot solar cells and methods for manufacturing solar cells |
| US20110263108A1 (en) * | 2010-04-27 | 2011-10-27 | Technische Universitat Berlin | Method of fabricating semiconductor quantum dots |
-
2010
- 2010-09-03 EP EP10175311A patent/EP2426724A1/fr not_active Withdrawn
-
2011
- 2011-09-05 WO PCT/EP2011/065255 patent/WO2012028738A1/fr not_active Ceased
- 2011-09-05 CN CN2011800426403A patent/CN103081131A/zh active Pending
- 2011-09-05 PH PH1/2013/500338A patent/PH12013500338A1/en unknown
- 2011-09-05 US US13/820,232 patent/US20130273684A1/en not_active Abandoned
- 2011-09-05 EP EP11752224.3A patent/EP2612368A1/fr not_active Withdrawn
- 2011-09-05 JP JP2013526498A patent/JP2013536993A/ja active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040261839A1 (en) | 2003-06-26 | 2004-12-30 | Gee James M | Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias |
| US20070272995A1 (en) * | 2006-05-23 | 2007-11-29 | Ya-Chin King | Photosensitive device |
| WO2009077103A1 (fr) | 2007-12-14 | 2009-06-25 | FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER FÖRDERUNG DER ANGEWANDTEN FORSCHUNG e.V. | Photopile à couche mince et son procédé de fabrication |
Non-Patent Citations (8)
| Title |
|---|
| ANONYMOUS: "Quantum Dot", 18 January 2010 (2010-01-18), XP002658073, Retrieved from the Internet <URL:http://en.wikipedia.org/wiki/Quantum_dot> [retrieved on 20110829] * |
| DEMARCHE J ET AL: "Depth-profiling of implanted <28>Si by (alpha,alpha) and (alpha,p0) reactions", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B:BEAM INTERACTIONS WITH MATERIALS AND ATOMS, ELSEVIER, AMSTERDAM, NL, vol. 268, no. 11-12, 1 June 2010 (2010-06-01), pages 2107 - 2110, XP027046409, ISSN: 0168-583X, [retrieved on 20100225] * |
| LIHAO HAN ET AL: "Silicon quantum dots in an oxide matrix for third generation photovoltaic solar cells", 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 20-25 JUNE 2010, HONOLULU, HI, USA, IEEE, PISCATAWAY, NJ, USA, 20 June 2010 (2010-06-20), pages 3338 - 3342, XP031786520, ISBN: 978-1-4244-5890-5 * |
| LIN C-J ET AL: "Defect-Enhanced Visible Electroluminescence of Multi-Energy Silicon-Implanted Silicon Dioxide Film", IEEE JOURNAL OF QUANTUM ELECTRONICS, IEEE SERVICE CENTER, PISCATAWAY, NJ, USA, vol. 41, no. 3, 1 March 2005 (2005-03-01), pages 441 - 447, XP011127322, ISSN: 0018-9197, DOI: 10.1109/JQE.2004.842314 * |
| NOZIK A J: "Multiple exciton generation in semiconductor quantum dots and novel molecules: Applications to third generation solar photon conversion:", APPLICATIONS OF FERROELECTRICS, 2008. ISAF 2008. 17TH IEEE INTERNATIONAL SYMPOSIUM ON THE, IEEE, PISCATAWAY, NJ, USA, 23 February 2008 (2008-02-23), pages 1 - 2, XP031868949, ISBN: 978-1-4244-2744-4, DOI: 10.1109/ISAF.2008.4693953 * |
| PARK S ET AL: "n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 93, no. 6-7, 1 June 2009 (2009-06-01), pages 684 - 690, XP026093486, ISSN: 0927-0248, DOI: 10.1016/J.SOLMAT.2008.09.032 * |
| TETELBAUM D I ET AL: "The enhancement of luminescence in ion implanted Si quantum dots in SiO2 matrix by means of dose alignment and doping; The enhancement of luminescence in Si quantum dots in SiO2", NANOTECHNOLOGY, IOP, BRISTOL, GB, vol. 11, no. 4, 1 December 2000 (2000-12-01), pages 295 - 297, XP020066718, ISSN: 0957-4484, DOI: 10.1088/0957-4484/11/4/320 * |
| V. SVRCEK: "Silicon nanocrystals as light converter for solar cells", THIN SOLID FILMS, vol. 384, 2004, pages 451 - 452 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN103081131A (zh) | 2013-05-01 |
| WO2012028738A1 (fr) | 2012-03-08 |
| PH12013500338A1 (en) | 2013-03-25 |
| EP2612368A1 (fr) | 2013-07-10 |
| JP2013536993A (ja) | 2013-09-26 |
| US20130273684A1 (en) | 2013-10-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yang et al. | A band-gap-graded CZTSSe solar cell with 12.3% efficiency | |
| Wu | High-efficiency polycrystalline CdTe thin-film solar cells | |
| Kumar et al. | Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects | |
| US8436445B2 (en) | Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices | |
| EP3387679A2 (fr) | Dispositifs photovoltaïques et procédé de fabrication | |
| Pan et al. | Structural, optical and electrical characterization of gadolinium and indium doped cadmium oxide/p-silicon heterojunctions for solar cell applications | |
| Ren et al. | CZTSSe solar cell with an efficiency of 10.19% based on absorbers with homogeneous composition and structure using a novel two-step annealing process | |
| Chun et al. | Wet chemical etched CdTe thin film solar cells | |
| Mack et al. | Properties of mixed phase silicon-oxide-based passivating contacts for silicon solar cells | |
| Könenkamp et al. | Heterojunctions and devices of colloidal semiconductor films and quantum dots | |
| Reyes-Banda et al. | Effect of Se diffusion and the role of a thin CdS buffer layer in the performance of a CdSe/CdTe solar cell | |
| Liang et al. | Effect of Self‐Seed Inducing on the Growth Mechanism and Photovoltaic Performance of Cu2ZnSnSe4 Thin Films | |
| Peng et al. | Interfacial Bridge Bonding Enables High‐Efficiency Sb2 (S, Se) 3 Solar Cells with Record Fill Factor Exceeding 73% | |
| US20120322198A1 (en) | METHODS FOR SUBLIMATION OF Mg AND INCORPORATION INTO CdTe FILMS TO FORM TERNARY COMPOSITIONS | |
| Yen et al. | Annealing studies on zinc oxide thin films deposited by magnetron sputtering | |
| Punitha et al. | Photovoltaic device performance of electron beam evaporated Glass/TCO/CdS/CdTe/Au heterostructure solar cells | |
| US20110265875A1 (en) | Copper and indium based photovoltaic devices and associated methods | |
| EP2426724A1 (fr) | Procédé de production de cellules photovoltaïques | |
| Kotipalli | Surface passivation effects of aluminum oxide on ultra-thin CIGS solar cells | |
| KR20140007085A (ko) | Cigs 태양전지 제조방법 | |
| Kumar et al. | Effect of Thickness Variation of the N-Type Layer in CdS/CdTe Solar Cell | |
| Gretener | Back contact, doping and stability of CdTe thin film solar cells in substrate configuration | |
| Sahu et al. | Silicon solar cells with interfacial passivation of the highly phosphorus-doped emitter surface by oxygen ion implantation | |
| JP2003179237A (ja) | 半導体薄膜の製造方法および太陽電池 | |
| Jamarkattel | Materials Engineering and Control for Advancing High-Efficiency CdSe/CdTe Solar Cells |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20120908 |