EP2460560A1 - Hydroalcoholic gel compositions for use with dispensers - Google Patents
Hydroalcoholic gel compositions for use with dispensers Download PDFInfo
- Publication number
- EP2460560A1 EP2460560A1 EP12156895A EP12156895A EP2460560A1 EP 2460560 A1 EP2460560 A1 EP 2460560A1 EP 12156895 A EP12156895 A EP 12156895A EP 12156895 A EP12156895 A EP 12156895A EP 2460560 A1 EP2460560 A1 EP 2460560A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- adipate
- ester
- polyglyceryl
- plug
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 185
- 150000002148 esters Chemical class 0.000 claims abstract description 84
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 75
- 239000002562 thickening agent Substances 0.000 claims abstract description 32
- 229920000058 polyacrylate Polymers 0.000 claims abstract description 17
- 239000000654 additive Substances 0.000 claims description 88
- 230000000996 additive effect Effects 0.000 claims description 83
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 44
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 43
- 229920001451 polypropylene glycol Polymers 0.000 claims description 41
- 125000004432 carbon atom Chemical group C* 0.000 claims description 40
- 125000000217 alkyl group Chemical group 0.000 claims description 33
- 229920000728 polyester Polymers 0.000 claims description 32
- 229920001223 polyethylene glycol Polymers 0.000 claims description 30
- 150000001735 carboxylic acids Chemical class 0.000 claims description 28
- -1 ethylene glycol diesters Chemical class 0.000 claims description 25
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 22
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 20
- 125000004185 ester group Chemical group 0.000 claims description 20
- 229960004063 propylene glycol Drugs 0.000 claims description 19
- 125000002947 alkylene group Chemical group 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 16
- 229920002125 Sokalan® Polymers 0.000 claims description 15
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 claims description 15
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 14
- 150000002191 fatty alcohols Chemical class 0.000 claims description 14
- 229920000570 polyether Polymers 0.000 claims description 14
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 claims description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000004264 Petrolatum Substances 0.000 claims description 12
- 239000002480 mineral oil Substances 0.000 claims description 12
- 235000010446 mineral oil Nutrition 0.000 claims description 12
- 229940066842 petrolatum Drugs 0.000 claims description 12
- 235000019271 petrolatum Nutrition 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 12
- 239000004721 Polyphenylene oxide Substances 0.000 claims description 11
- NXQMCAOPTPLPRL-UHFFFAOYSA-N 2-(2-benzoyloxyethoxy)ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOC(=O)C1=CC=CC=C1 NXQMCAOPTPLPRL-UHFFFAOYSA-N 0.000 claims description 10
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 10
- FWIUBOWVXREPPL-UHFFFAOYSA-N 2-[2-(7-methyloctanoyloxy)ethoxy]ethyl 7-methyloctanoate Chemical compound CC(C)CCCCCC(=O)OCCOCCOC(=O)CCCCCC(C)C FWIUBOWVXREPPL-UHFFFAOYSA-N 0.000 claims description 10
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 claims description 10
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 claims description 10
- JKRZOJADNVOXPM-UHFFFAOYSA-N Oxalic acid dibutyl ester Chemical compound CCCCOC(=O)C(=O)OCCCC JKRZOJADNVOXPM-UHFFFAOYSA-N 0.000 claims description 10
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 claims description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 claims description 10
- BHGAOGZUKUXCDC-UHFFFAOYSA-N bis(14-methylpentadecyl) hexanedioate Chemical compound CC(C)CCCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCCCC(C)C BHGAOGZUKUXCDC-UHFFFAOYSA-N 0.000 claims description 10
- 229920001577 copolymer Polymers 0.000 claims description 10
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 10
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 claims description 10
- USZDQUQLJBLEDN-UHFFFAOYSA-N 1-(1-tetradecoxypropan-2-yloxy)propan-2-yl propanoate Chemical compound CCCCCCCCCCCCCCOCC(C)OCC(C)OC(=O)CC USZDQUQLJBLEDN-UHFFFAOYSA-N 0.000 claims description 9
- SNJKWPXWLBQHJA-UHFFFAOYSA-N bis[1-[1-(1-tetradecoxypropan-2-yloxy)propan-2-yloxy]propan-2-yl] hexanedioate Chemical compound CCCCCCCCCCCCCCOCC(C)OCC(C)OCC(C)OC(=O)CCCCC(=O)OC(C)COC(C)COC(C)COCCCCCCCCCCCCCC SNJKWPXWLBQHJA-UHFFFAOYSA-N 0.000 claims description 9
- 229940099822 di-ppg-2 myreth-10 adipate Drugs 0.000 claims description 9
- 229940031569 diisopropyl sebacate Drugs 0.000 claims description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 8
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 8
- XFKBBSZEQRFVSL-UHFFFAOYSA-N dipropan-2-yl decanedioate Chemical compound CC(C)OC(=O)CCCCCCCCC(=O)OC(C)C XFKBBSZEQRFVSL-UHFFFAOYSA-N 0.000 claims description 8
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 claims description 8
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 7
- 150000001298 alcohols Chemical class 0.000 claims description 7
- 239000001087 glyceryl triacetate Substances 0.000 claims description 7
- 235000013773 glyceryl triacetate Nutrition 0.000 claims description 7
- 229960002622 triacetin Drugs 0.000 claims description 7
- 125000005250 alkyl acrylate group Chemical group 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 229920006037 cross link polymer Polymers 0.000 claims description 6
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 claims description 6
- FTSXVYQZLNPTCM-UHFFFAOYSA-N (3-benzoyloxy-2,2,4-trimethylpentyl) benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC(C)(C)C(C(C)C)OC(=O)C1=CC=CC=C1 FTSXVYQZLNPTCM-UHFFFAOYSA-N 0.000 claims description 5
- CKLFCQSAMZMOJN-UHFFFAOYSA-N 1-o,2-o-bis(2-octyldodecyl) 3-o-(3,3,4,4,5,5,6,6,7,7,7-undecafluoroheptyl) 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)CC(O)(CC(=O)OCCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F)C(=O)OCC(CCCCCCCC)CCCCCCCCCC CKLFCQSAMZMOJN-UHFFFAOYSA-N 0.000 claims description 5
- BJQHLKABXJIVAM-BGYRXZFFSA-N 1-o-[(2r)-2-ethylhexyl] 2-o-[(2s)-2-ethylhexyl] benzene-1,2-dicarboxylate Chemical compound CCCC[C@H](CC)COC(=O)C1=CC=CC=C1C(=O)OC[C@H](CC)CCCC BJQHLKABXJIVAM-BGYRXZFFSA-N 0.000 claims description 5
- YUSLYKMVQSVFDX-UHFFFAOYSA-N 2,2,3,3,4-pentahydroxyoctadecanoic acid Chemical compound CCCCCCCCCCCCCCC(O)C(O)(O)C(O)(O)C(O)=O YUSLYKMVQSVFDX-UHFFFAOYSA-N 0.000 claims description 5
- OMVSWZDEEGIJJI-UHFFFAOYSA-N 2,2,4-Trimethyl-1,3-pentadienol diisobutyrate Chemical compound CC(C)C(=O)OC(C(C)C)C(C)(C)COC(=O)C(C)C OMVSWZDEEGIJJI-UHFFFAOYSA-N 0.000 claims description 5
- CUEJHYHGUMAGBP-UHFFFAOYSA-N 2-[2-(1h-indol-5-yl)phenyl]acetic acid Chemical compound OC(=O)CC1=CC=CC=C1C1=CC=C(NC=C2)C2=C1 CUEJHYHGUMAGBP-UHFFFAOYSA-N 0.000 claims description 5
- AHSGHEXYEABOKT-UHFFFAOYSA-N 2-[2-(2-benzoyloxyethoxy)ethoxy]ethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCOCCOCCOC(=O)C1=CC=CC=C1 AHSGHEXYEABOKT-UHFFFAOYSA-N 0.000 claims description 5
- YEOWONAMJWJGQU-UHFFFAOYSA-N 2-[2-(2-ethylheptanoyloxy)ethoxy]ethyl 2-ethylheptanoate Chemical compound CCCCCC(CC)C(=O)OCCOCCOC(=O)C(CC)CCCCC YEOWONAMJWJGQU-UHFFFAOYSA-N 0.000 claims description 5
- AWOTXJMTZAPRFT-UHFFFAOYSA-N 2-octyldodecyl n-[[1,3,3-trimethyl-5-(2-octyldodecoxycarbonylamino)cyclohexyl]methyl]carbamate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)NCC1(C)CC(NC(=O)OCC(CCCCCCCC)CCCCCCCCCC)CC(C)(C)C1 AWOTXJMTZAPRFT-UHFFFAOYSA-N 0.000 claims description 5
- ALKCLFLTXBBMMP-UHFFFAOYSA-N 3,7-dimethylocta-1,6-dien-3-yl hexanoate Chemical compound CCCCCC(=O)OC(C)(C=C)CCC=C(C)C ALKCLFLTXBBMMP-UHFFFAOYSA-N 0.000 claims description 5
- HCLVXVIAGDXHTL-UHFFFAOYSA-N 4-(5-butyldodecan-5-yloxy)-3-hydroxy-4-oxobutanoic acid Chemical compound CCCCCCCC(CCCC)(CCCC)OC(=O)C(O)CC(O)=O HCLVXVIAGDXHTL-UHFFFAOYSA-N 0.000 claims description 5
- HBTAOSGHCXUEKI-UHFFFAOYSA-N 4-chloro-n,n-dimethyl-3-nitrobenzenesulfonamide Chemical compound CN(C)S(=O)(=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 HBTAOSGHCXUEKI-UHFFFAOYSA-N 0.000 claims description 5
- YMCIVAPEOZDEGH-UHFFFAOYSA-N 5-chloro-2,3-dihydro-1h-indole Chemical compound ClC1=CC=C2NCCC2=C1 YMCIVAPEOZDEGH-UHFFFAOYSA-N 0.000 claims description 5
- BIBSVSRJRVSBNF-MFERNQICSA-N 5-o-octadecanoyl 1-o-(9-octylicosan-9-yl) (2s)-2-aminopentanedioate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(=O)CC[C@H](N)C(=O)OC(CCCCCCCC)(CCCCCCCC)CCCCCCCCCCC BIBSVSRJRVSBNF-MFERNQICSA-N 0.000 claims description 5
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 claims description 5
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 claims description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 5
- GOJCZVPJCKEBQV-UHFFFAOYSA-N Butyl phthalyl butylglycolate Chemical compound CCCCOC(=O)COC(=O)C1=CC=CC=C1C(=O)OCCCC GOJCZVPJCKEBQV-UHFFFAOYSA-N 0.000 claims description 5
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 claims description 5
- PYGXAGIECVVIOZ-UHFFFAOYSA-N Dibutyl decanedioate Chemical compound CCCCOC(=O)CCCCCCCCC(=O)OCCCC PYGXAGIECVVIOZ-UHFFFAOYSA-N 0.000 claims description 5
- DKMROQRQHGEIOW-UHFFFAOYSA-N Diethyl succinate Chemical compound CCOC(=O)CCC(=O)OCC DKMROQRQHGEIOW-UHFFFAOYSA-N 0.000 claims description 5
- BJQHLKABXJIVAM-UHFFFAOYSA-N Diethylhexyl phthalate Natural products CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims description 5
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 claims description 5
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 claims description 5
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 claims description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 5
- 229930006000 Sucrose Natural products 0.000 claims description 5
- KRADHMIOFJQKEZ-UHFFFAOYSA-N Tri-2-ethylhexyl trimellitate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(=O)OCC(CC)CCCC)C(C(=O)OCC(CC)CCCC)=C1 KRADHMIOFJQKEZ-UHFFFAOYSA-N 0.000 claims description 5
- DOOTYTYQINUNNV-UHFFFAOYSA-N Triethyl citrate Chemical compound CCOC(=O)CC(O)(C(=O)OCC)CC(=O)OCC DOOTYTYQINUNNV-UHFFFAOYSA-N 0.000 claims description 5
- 229940078576 acetyl triethylhexyl citrate Drugs 0.000 claims description 5
- 150000005215 alkyl ethers Chemical class 0.000 claims description 5
- HIIPJZUJGNLWJQ-UHFFFAOYSA-N bis(14-methylpentadecyl) dodecanedioate Chemical compound CC(C)CCCCCCCCCCCCCOC(=O)CCCCCCCCCCC(=O)OCCCCCCCCCCCCCC(C)C HIIPJZUJGNLWJQ-UHFFFAOYSA-N 0.000 claims description 5
- UNZOESWLBMZBEY-JEIPZWNWSA-N bis(16-methylheptadecyl) (e)-but-2-enedioate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)\C=C\C(=O)OCCCCCCCCCCCCCCCC(C)C UNZOESWLBMZBEY-JEIPZWNWSA-N 0.000 claims description 5
- HGKOWIQVWAQWDS-UHFFFAOYSA-N bis(16-methylheptadecyl) 2-hydroxybutanedioate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)CC(O)C(=O)OCCCCCCCCCCCCCCCC(C)C HGKOWIQVWAQWDS-UHFFFAOYSA-N 0.000 claims description 5
- ITIHYXREPVHWNY-UHFFFAOYSA-N bis(16-methylheptadecyl) decanedioate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCCCCCCCCCC(C)C ITIHYXREPVHWNY-UHFFFAOYSA-N 0.000 claims description 5
- GFRHRWJBYWRSJE-UHFFFAOYSA-N bis(16-methylheptadecyl) hexanedioate Chemical compound CC(C)CCCCCCCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCCCCCCCC(C)C GFRHRWJBYWRSJE-UHFFFAOYSA-N 0.000 claims description 5
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 claims description 5
- RWPICVVBGZBXNA-UHFFFAOYSA-N bis(2-ethylhexyl) benzene-1,4-dicarboxylate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(=O)OCC(CC)CCCC)C=C1 RWPICVVBGZBXNA-UHFFFAOYSA-N 0.000 claims description 5
- WMNULTDOANGXRT-UHFFFAOYSA-N bis(2-ethylhexyl) butanedioate Chemical compound CCCCC(CC)COC(=O)CCC(=O)OCC(CC)CCCC WMNULTDOANGXRT-UHFFFAOYSA-N 0.000 claims description 5
- GJRRTUSXQPXVES-UHFFFAOYSA-N bis(2-methylpropyl) oxalate Chemical compound CC(C)COC(=O)C(=O)OCC(C)C GJRRTUSXQPXVES-UHFFFAOYSA-N 0.000 claims description 5
- WLRZTBZLAQJGJP-OKTFGQEQSA-N bis(2-octyldodecyl) (2s)-2-(dodecanoylamino)pentanedioate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)[C@@H](NC(=O)CCCCCCCCCCC)CCC(=O)OCC(CCCCCCCC)CCCCCCCCCC WLRZTBZLAQJGJP-OKTFGQEQSA-N 0.000 claims description 5
- IHURUMZMADFAGS-VHXPQNKSSA-N bis(2-octyldodecyl) (Z)-hexatriacont-18-enedioate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)CCCCCCCCCCCCCCCC\C=C/CCCCCCCCCCCCCCCCC(=O)OCC(CCCCCCCC)CCCCCCCCCC IHURUMZMADFAGS-VHXPQNKSSA-N 0.000 claims description 5
- OOCBIZIRIHNNGC-UHFFFAOYSA-N bis(2-octyldodecyl) 2-hydroxybutanedioate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)CC(O)C(=O)OCC(CCCCCCCC)CCCCCCCCCC OOCBIZIRIHNNGC-UHFFFAOYSA-N 0.000 claims description 5
- VOKLGPGMRNGCOO-UHFFFAOYSA-N bis(2-octyldodecyl) decanedioate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)CCCCCCCCC(=O)OCC(CCCCCCCC)CCCCCCCCCC VOKLGPGMRNGCOO-UHFFFAOYSA-N 0.000 claims description 5
- VTSODSKQIAGVCA-UHFFFAOYSA-N bis(2-octyldodecyl) dodecanedioate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)CCCCCCCCCCC(=O)OCC(CCCCCCCC)CCCCCCCCCC VTSODSKQIAGVCA-UHFFFAOYSA-N 0.000 claims description 5
- WLFITRMCTPBSQS-UHFFFAOYSA-N bis(2-octyldodecyl) hexanedioate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)CCCCC(=O)OCC(CCCCCCCC)CCCCCCCCCC WLFITRMCTPBSQS-UHFFFAOYSA-N 0.000 claims description 5
- FNQVCKJDSDFDTE-UHFFFAOYSA-N bis(3-methylbutyl) 2-hydroxybutanedioate Chemical compound CC(C)CCOC(=O)CC(O)C(=O)OCCC(C)C FNQVCKJDSDFDTE-UHFFFAOYSA-N 0.000 claims description 5
- ZWYAVGUHWPLBGT-UHFFFAOYSA-N bis(6-methylheptyl) decanedioate Chemical compound CC(C)CCCCCOC(=O)CCCCCCCCC(=O)OCCCCCC(C)C ZWYAVGUHWPLBGT-UHFFFAOYSA-N 0.000 claims description 5
- 229940100539 dibutyl adipate Drugs 0.000 claims description 5
- HCQHIEGYGGJLJU-UHFFFAOYSA-N didecyl hexanedioate Chemical compound CCCCCCCCCCOC(=O)CCCCC(=O)OCCCCCCCCCC HCQHIEGYGGJLJU-UHFFFAOYSA-N 0.000 claims description 5
- WYACBZDAHNBPPB-UHFFFAOYSA-N diethyl oxalate Chemical compound CCOC(=O)C(=O)OCC WYACBZDAHNBPPB-UHFFFAOYSA-N 0.000 claims description 5
- 229940067572 diethylhexyl adipate Drugs 0.000 claims description 5
- 229940096810 diethylhexyl sebacate Drugs 0.000 claims description 5
- 229940105984 diethylhexyl succinate Drugs 0.000 claims description 5
- 229940031769 diisobutyl adipate Drugs 0.000 claims description 5
- 229940116961 diisocetyl dodecanedioate Drugs 0.000 claims description 5
- 229940031578 diisopropyl adipate Drugs 0.000 claims description 5
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 claims description 5
- 229960001826 dimethylphthalate Drugs 0.000 claims description 5
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 claims description 5
- 229940114373 dipentaerythrityl hexa c5-10 acid esters Drugs 0.000 claims description 5
- 229940019780 dipentaerythrityl hexa c5-9 acid esters Drugs 0.000 claims description 5
- ITHNIFCFNUZYLQ-UHFFFAOYSA-N dipropan-2-yl oxalate Chemical compound CC(C)OC(=O)C(=O)OC(C)C ITHNIFCFNUZYLQ-UHFFFAOYSA-N 0.000 claims description 5
- HZHMMLIMOUNKCK-UHFFFAOYSA-N dipropyl oxalate Chemical compound CCCOC(=O)C(=O)OCCC HZHMMLIMOUNKCK-UHFFFAOYSA-N 0.000 claims description 5
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 5
- KSCKTBJJRVPGKM-UHFFFAOYSA-N octan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-] KSCKTBJJRVPGKM-UHFFFAOYSA-N 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- BFZNCPXNOGIELB-UHFFFAOYSA-N propan-2-yl 10-[5,6-dihexyl-2-(8-oxo-8-propan-2-yloxyoctyl)cyclohex-3-en-1-yl]dec-9-enoate Chemical compound CCCCCCC1C=CC(CCCCCCCC(=O)OC(C)C)C(C=CCCCCCCCC(=O)OC(C)C)C1CCCCCC BFZNCPXNOGIELB-UHFFFAOYSA-N 0.000 claims description 5
- 229940116351 sebacate Drugs 0.000 claims description 5
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 claims description 5
- 239000005720 sucrose Substances 0.000 claims description 5
- WEAPVABOECTMGR-UHFFFAOYSA-N triethyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCOC(=O)CC(C(=O)OCC)(OC(C)=O)CC(=O)OCC WEAPVABOECTMGR-UHFFFAOYSA-N 0.000 claims description 5
- 239000001069 triethyl citrate Substances 0.000 claims description 5
- VMYFZRTXGLUXMZ-UHFFFAOYSA-N triethyl citrate Natural products CCOC(=O)C(O)(C(=O)OCC)C(=O)OCC VMYFZRTXGLUXMZ-UHFFFAOYSA-N 0.000 claims description 5
- 235000013769 triethyl citrate Nutrition 0.000 claims description 5
- TUUQISRYLMFKOG-UHFFFAOYSA-N trihexyl 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCCCCCOC(=O)CC(C(=O)OCCCCCC)(OC(C)=O)CC(=O)OCCCCCC TUUQISRYLMFKOG-UHFFFAOYSA-N 0.000 claims description 5
- 125000005591 trimellitate group Chemical group 0.000 claims description 5
- 229940047179 trimethylpentanediyl dibenzoate Drugs 0.000 claims description 5
- FRDNONBEXWDRDM-UHFFFAOYSA-N tris(2-ethylhexyl) 2-acetyloxypropane-1,2,3-tricarboxylate Chemical compound CCCCC(CC)COC(=O)CC(C(=O)OCC(CC)CCCC)(OC(C)=O)CC(=O)OCC(CC)CCCC FRDNONBEXWDRDM-UHFFFAOYSA-N 0.000 claims description 5
- DUHIKWRPAQIIBL-UHFFFAOYSA-N tris(2-ethylhexyl) 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound CCCCC(CC)COC(=O)CC(O)(C(=O)OCC(CC)CCCC)CC(=O)OCC(CC)CCCC DUHIKWRPAQIIBL-UHFFFAOYSA-N 0.000 claims description 5
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 abstract description 10
- 230000001476 alcoholic effect Effects 0.000 abstract 1
- 239000000499 gel Substances 0.000 description 120
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 23
- 239000002202 Polyethylene glycol Substances 0.000 description 22
- 239000004615 ingredient Substances 0.000 description 15
- 230000009467 reduction Effects 0.000 description 12
- 235000011187 glycerol Nutrition 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000003205 fragrance Substances 0.000 description 8
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 7
- 239000003906 humectant Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 6
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 5
- 239000003995 emulsifying agent Substances 0.000 description 5
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 4
- 229960001631 carbomer Drugs 0.000 description 4
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- FOYKKGHVWRFIBD-UHFFFAOYSA-N gamma-tocopherol acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 FOYKKGHVWRFIBD-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- SLINHMUFWFWBMU-UHFFFAOYSA-N Triisopropanolamine Chemical compound CC(O)CN(CC(C)O)CC(C)O SLINHMUFWFWBMU-UHFFFAOYSA-N 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 239000002537 cosmetic Substances 0.000 description 3
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 3
- 229940043276 diisopropanolamine Drugs 0.000 description 3
- 239000002210 silicon-based material Substances 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical group OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- NSOXQYCFHDMMGV-UHFFFAOYSA-N Tetrakis(2-hydroxypropyl)ethylenediamine Chemical compound CC(O)CN(CC(C)O)CCN(CC(C)O)CC(C)O NSOXQYCFHDMMGV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- LWZFANDGMFTDAV-BURFUSLBSA-N [(2r)-2-[(2r,3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O LWZFANDGMFTDAV-BURFUSLBSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 239000003212 astringent agent Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 229940008099 dimethicone Drugs 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 229940113120 dipropylene glycol Drugs 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229950006451 sorbitan laurate Drugs 0.000 description 2
- 235000011067 sorbitan monolaureate Nutrition 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 239000000516 sunscreening agent Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- ZWVMLYRJXORSEP-UHFFFAOYSA-N 1,2,6-Hexanetriol Chemical compound OCCCCC(O)CO ZWVMLYRJXORSEP-UHFFFAOYSA-N 0.000 description 1
- KWVPFECTOKLOBL-KTKRTIGZSA-N 2-[(z)-octadec-9-enoxy]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCO KWVPFECTOKLOBL-KTKRTIGZSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- FQCSIUSICFAMDD-UHFFFAOYSA-N 2-oxopyrrolidine-1-carboxylic acid;sodium Chemical compound [Na].OC(=O)N1CCCC1=O FQCSIUSICFAMDD-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- 239000001692 EU approved anti-caking agent Substances 0.000 description 1
- 229940124091 Keratolytic Drugs 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 229930064664 L-arginine Natural products 0.000 description 1
- 235000014852 L-arginine Nutrition 0.000 description 1
- DYIOQMKBBPSAFY-BENRWUELSA-N Palmityl myristoleate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCC DYIOQMKBBPSAFY-BENRWUELSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229940069521 aloe extract Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 239000000058 anti acne agent Substances 0.000 description 1
- 229940124340 antiacne agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003139 biocide Substances 0.000 description 1
- BUOSLGZEBFSUDD-BGPZCGNYSA-N bis[(1s,3s,4r,5r)-4-methoxycarbonyl-8-methyl-8-azabicyclo[3.2.1]octan-3-yl] 2,4-diphenylcyclobutane-1,3-dicarboxylate Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1C(C=2C=CC=CC=2)C(C(=O)O[C@@H]2[C@@H]([C@H]3CC[C@H](N3C)C2)C(=O)OC)C1C1=CC=CC=C1 BUOSLGZEBFSUDD-BGPZCGNYSA-N 0.000 description 1
- 239000004067 bulking agent Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229940073669 ceteareth 20 Drugs 0.000 description 1
- 229940093532 cetyl myristoleate Drugs 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229940117583 cocamine Drugs 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000008406 cosmetic ingredient Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229940086555 cyclomethicone Drugs 0.000 description 1
- 239000003398 denaturant Substances 0.000 description 1
- 239000007854 depigmenting agent Substances 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 150000002194 fatty esters Chemical class 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000005908 glyceryl ester group Chemical group 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- QAKXLTNAJLFSQC-UHFFFAOYSA-N hexadecyl tetradecanoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCC QAKXLTNAJLFSQC-UHFFFAOYSA-N 0.000 description 1
- QVTWBMUAJHVAIJ-UHFFFAOYSA-N hexane-1,4-diol Chemical compound CCC(O)CCCO QVTWBMUAJHVAIJ-UHFFFAOYSA-N 0.000 description 1
- 229940051250 hexylene glycol Drugs 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 239000003752 hydrotrope Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 230000001530 keratinolytic effect Effects 0.000 description 1
- 239000003410 keratolytic agent Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003893 lactate salts Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229940100573 methylpropanediol Drugs 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229940095127 oleth-20 Drugs 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DYIOQMKBBPSAFY-UHFFFAOYSA-N palmityl myristoleate Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCC=CCCCC DYIOQMKBBPSAFY-UHFFFAOYSA-N 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical class CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000011012 sanitization Methods 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 239000012056 semi-solid material Substances 0.000 description 1
- 239000003352 sequestering agent Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 229950004959 sorbitan oleate Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 150000003509 tertiary alcohols Chemical class 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- UUJLHYCIMQOUKC-UHFFFAOYSA-N trimethyl-[oxo(trimethylsilylperoxy)silyl]peroxysilane Chemical compound C[Si](C)(C)OO[Si](=O)OO[Si](C)(C)C UUJLHYCIMQOUKC-UHFFFAOYSA-N 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 229940124543 ultraviolet light absorber Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/042—Gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
- A61K8/375—Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/8141—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- A61K8/8147—Homopolymers or copolymers of acids; Metal or ammonium salts thereof, e.g. crotonic acid, (meth)acrylic acid; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/87—Application Devices; Containers; Packaging
Definitions
- This invention relates to hydroalcoholic gel compositions for use with dispensers, wherein the frequency of mis-directed dispenser output is reduced when the hydroalcoholic gel compositions include a plug-preventing additive.
- Personal care and sanitizing compositions are often formulated as hydroalcoholic gels. Frequently, these products are provided in dispensers. Dispenser outlets such as nozzles can become clogged or partially blocked over time, due to the coagulation of gel creating a deposit on the nozzles. The clogged nozzle then causes mis-direction of the product when the dispenser is next used. Instead of dispensing product directly into the user's hand, product shoots from the clogged nozzle in a sideways fashion. Mis-directed product may hit walls, clothing, the floor, and can cause damage to these articles or areas.
- hydroalcoholic gel compositions that exhibit a reduced occurrence of clogging of dispenser nozzles.
- One or more embodiments provide a method of reducing the formation of coagulated gel deposits, the method comprising the steps of combining a C 1-4 alcohol, an effective amount of a polyacrylate thickener; and a plug-preventing additive to form a dispensable gel composition; wherein the plug-preventing additive comprises an ester having from two to six ester groups or a polymeric ester that includes at least one ester group; and wherein said composition comprises at least about 40 wt. % of said alcohol and less than about 1 wt.
- % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof all based upon the total weight of the dispensable gel composition, and storing the dispensable gel in a pump-type dispenser that is activated on a periodic basis, wherein the formation of coagulated gel deposits is reduced when compared to a dispensable gel that does not include the plug-preventing additive.
- One or more embodiments of this invention further provide a method of reducing the frequency of mis-directed output from a gel dispenser, the method comprising the steps of combining a C 1-4 alcohol, an effective amount of a polyacrylate thickener; and a plug-preventing additive to form a dispensable gel composition; wherein said plug-preventing additive comprises an ester having from two to six ester groups or a polymeric ester that includes at least one ester group; and wherein said composition comprises at least about 40 wt. % of said alcohol and less than about 1 wt.
- % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof all based upon the total weight of the dispensable gel composition, and storing the dispensable gel in a pump-type dispenser that includes an outlet and that is activated on a periodic basis, wherein the frequency of mis-directed output is reduced when compared to a dispensable gel that does not include the plug-preventing additive.
- One or more embodiments of this invention still further provide a gel composition
- a gel composition comprising at least about 60 wt. % of a C 1-4 alcohol, based upon the total weight of the gel composition, an effective amount of a polyacrylate thickener, an ester plug-preventing additive that includes from two to six ester groups or a polymeric ester that includes at least one ester group, and less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, based upon the total weight of the gel composition.
- dispensable hydroalcoholic gel compositions of the present invention include a hydroalcoholic carrier, a polyacrylate thickener, and a plug-preventing additive.
- the hydroalcoholic carrier includes water and alcohol.
- the alcohol is a lower alkanol, i.e. an alcohol containing 1 to 4 carbon atoms. Typically, these alcohols have antimicrobial properties. Examples of lower alkanols include, but are not limited to, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tertiary butanol, and mixtures thereof. In one embodiment, the alcohol comprises ethanol.
- the hydroalcoholic gel composition comprises an amount of alcohol of at least about 40 weight percent (wt. %), based upon the total weight of the hydroalcoholic gel composition. In one embodiment, the hydroalcoholic gel composition comprises at least about 45 weight percent alcohol, in another embodiment, the hydroalcoholic gel composition comprises at least about 50 weight percent alcohol, and in yet another embodiment, the hydroalcoholic gel composition comprises at least about 60 weight percent alcohol, based upon the total weight of hydroalcoholic gel composition. More or less alcohol may be required in certain instances, depending particularly on other ingredients and/or the amounts thereof employed in the composition.
- the hydroalcoholic gel composition comprises from about 40 weight percent to about 98 weight percent alcohol, in other embodiments, the hydroalcoholic gel composition comprises from about 45 weight percent to about 95 weight percent of alcohol, in yet other embodiments, the hydroalcoholic gel composition comprises from about 50 weight percent to about 90 weight percent of alcohol, and in still other embodiments, the hydroalcoholic gel composition comprises from about 60 weight percent to about 80 weight percent of alcohol, based upon the total weight of the hydroalcoholic gel composition.
- the hydroalcoholic gel composition may include a mixture of C 1-9 alkanols.
- the hydroalcoholic gel composition includes a mixture of one or more C 1-4 alkanols and one or more C 5-9 alkanols.
- the mixture may include primary, secondary, or tertiary alcohols.
- the hydroalcoholic gel may be thickened with polyacrylate thickeners such as those conventionally available and/or known in the art.
- polyacrylate thickeners include carbomers, acrylates/C 10-30 alkyl acrylate crosspolymers, copolymers of acrylic acid and alkyl (C5 -C10) acrylate, copolymers of acrylic acid and maleic anhydride, and mixtures thereof.
- the polymeric thickener includes from about 0.5% to about 4% by weight of a cross-linking agent.
- cross-linking agents include the polyalkenyl polyethers.
- polymers of the polyacrylate type include those sold under the trade names Carbopol®, Acrysol® ICS-1, Polygel® , Sokalan®, Carbopol® 1623, Carbopol® 695, Ultrez 10, and Polygel® DB.
- the composition of the present invention includes an effective amount of a polymeric thickener to adjust the viscosity of the hydroalcoholic gel to a viscosity range of from about 1000 to about 65,000 centipoise.
- the viscosity of the hydroalcoholic gel is from about 5000 to about 35,000, and in another embodiment, the viscosity is from about 10,000 to about 25,000.
- the viscosity is measured by a Brookfield RV Viscometer using RV and/or LV Spindles at 22 °C +/- 3 °C.
- the effective amount of thickener will vary depending upon a number of factors, including the amount of alcohol and other ingredients in the hydroalcoholic gel composition.
- an effective amount of thickener is at least about 0.01 wt. %, based upon the total weight of the hydroalcoholic gel composition.
- the effective amount is at least about 0.02 wt. %, in yet other embodiments at least about 0.05 wt. %, and it still other embodiments, at least about 0.1 wt. %.
- the effective amount of thickener is at least about 0.5 wt. %, and in another embodiment, at least about 0.75 wt.
- the compositions according to the present invention comprise up to about 10% by weight of the total composition of a polymeric thickener.
- the amount of thickener is from about 0.01 to about 1 wt. %, in another embodiment, from about 0.02 to about 0.4 wt. %, and in another embodiment, from about 0.05 to about 0.3 wt. %, based upon the total weight of the hydroalcoholic gel.
- the amount of thickener is from about 0.1 to about 10 wt. %, in another embodiment from about 0.5% to about 5% by weight, in another embodiment from about 0.75% to about 2% wt. %, based upon the total weight of the hydroalcoholic gel.
- the hydroalcoholic gel may further comprise a neutralizer.
- neutralizing agents to form salts of carbomer polymers are known.
- neutralizing agents include amines, alkanolamines, alkanolamides, inorganic bases, amino acids, including salts, esters and acyl derivatives thereof.
- the neutralizer may be selected based on the amount of alcohol that is to be gelled.
- Table 2 shows commonly recommended neutralizers for hydroalcoholic systems. Table 2 Up to % Alcohol Neutralizer 20% Sodium Hydroxide 30% Potassium Hydroxide 60% Triethanolamine 60% Tris Amino 80% AMP-95 ® 90% Neutrol TE 90% Diisopropanolamine 90% Triisopropanolamine >90% Ethomeen C-25
- the hydroalcoholic gel further includes one or more plug-preventing additives.
- the additive prevents the hydroalcoholic gel from coagulating into solid or semi-solid material that may deposit onto a surface or plug a dispenser nozzle.
- the plug-preventing additive comprises a compound that includes from 2 to 6 ester groups or a polymeric ester that includes at least one ester group.
- the plug-preventing additive comprises a monomeric or polymeric di-ester, tri-ester, tetraester, penta-ester, or hexa-ester, or a polymeric monoester.
- the plug-preventing additive includes one or more of C1-C30 alcohol esters of C1-C30 carboxylic acids, ethylene glycol monoesters of C1-C30 carboxylic acids, ethylene glycol diesters of C1-C30 carboxylic acids, propylene glycol monoesters of C1-C30 carboxylic acids, propylene glycol diesters of C1-C30 carboxylic acids, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of C4-C20 alkyl ethers, C1-C30 carboxylic acid monoesters and polyesters of di-C8-C30 alkyl ethers, and mixtures thereof.
- the plug-preventing additive includes one or more of C1-C22 alcohol esters of C1-C22 carboxylic acids, C11-C22 alcohol esters of C3-C10 carboxylic acids, ethylene glycol monoesters of C1-C22 carboxylic acids, ethylene glycol diesters of C1-C22 carboxylic acids, propylene glycol monoesters of C1-C22 carboxylic acids, propylene glycol diesters of C1-C22 carboxylic acids, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of C4-C22 alkyl ethers, C1-C22 carboxylic acid monoesters and polyesters of di-C8-C22 alkyl ethers, and mixtures thereof.
- the ester is formed from any of a variety of acids and alcohols. In one or more embodiments, at least one of the acid or alcohol includes a fatty chain. In one or more embodiments, the ester is formed from an acid having from about 4 to about 28 carbon atoms, and an alcohol having from about 2 to about 22 carbon atoms, in another embodiment, the ester is formed from an acid having from about 8 to about 22 carbon atoms, and an alcohol having from about 2 to about 22 carbon atoms.
- ester plug-preventing additives include acetyl tributyl citrate, acetyl triethyl citrate, acetyl triethylhexyl citrate, acetyl trihexyl citrate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, butyroyl trihexyl citrate, dibutyl adipate, dibutyloctyl malate, dibutyl oxalate, dibutyl phthalate, dibutyl sebacate, dicapryl adipate, dicaprylyl/capryl sebacate, diethylene glycol dibenzoate, diethylene glycol diethylhexanoate/diisononanoate, diethylene glycol diisononanoate, diethylene glycol rosinate, diethylhexyl adipate, diethylhexyl phthalate, diethylhexyl sebacate
- the plug-preventing additive comprises a polymeric ester.
- the polymeric ester includes a polyether polymer chain and at least one ester group. In one embodiment, the polymeric ester includes two or more ester groups.
- the polymer chain includes a polyethylene glycol (PEG) chain, a polypropylene glycol (PPG), or a combination thereof. In one or more embodiments, the polymer chain includes up to about 12 PEG units, PPG units, or a combination thereof. In one or more embodiments, the polymer chain includes up to about 10 PEG units, PPG units, or a combination thereof. In one or more embodiments, the polymer chain includes up to about 8 PEG units, PPG units, or a combination thereof. In one or more embodiments, the polyether polymer chain includes from about 1 to about 12 PPG or PEG units, in other embodiments from about 2 to about 8 PPG or PEG units, or a combination thereof.
- PEG polyethylene glycol
- PPG polypropylene glycol
- polymeric esters include those that may be represented by the following formula wherein R 1 is a linear or branched alkyl group having from 1 to 28 carbon atoms, each R 2 , which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, and each R 3 , which may be the same or different, includes an alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R 3 group is attached to R 2 via an ether linkage.
- R 1 is a linear or branched alkyl group having from 1 to 28 carbon atoms
- each R 2 which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof
- each R 3 which may be the same or different, includes an alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R 3 group is attached to R 2 via an ether linkage.
- R 1 includes up to about 20 carbon atoms, in other embodiments, R 1 includes up to about 10 carbon atoms, and in other embodiments, R 1 includes up to about 8 carbon atoms.
- R 3 may be represented by the formula CH 3 (CH 2 ) z O-, where in one or more embodiments z is an integer from 1 to about 21, in other embodiments from 2 to about 17, and in other embodiments from 3 to about 15.
- the polymeric ester may be represented by the following formula wherein R 4 includes a linear or branched, alkyl or alkylene group having from 1 to about 22 carbon atoms.
- R 4 may be represented by the formula CH 3 (CH 2 ) z -, where in one or more embodiments z is an integer from 1 to about 21, in other embodiments from 2 to about 17, and in other embodiments from 3 to about 15.
- n is an integer from 1 to about 20, in other embodiments from 2 to about 10.
- x is zero, in other embodiments x is an integer up to about 12, in other embodiments up to about 10, in other embodiments up to about 8.
- y is zero, in other embodiments, y is an integer up to about 12, in other embodiments up to about 10, and in other embodiments up to about 8.
- polymeric esters further include those that may be represented by the following formula wherein R 1 , R 2 , and R 3 are as described hereinabove.
- polymeric esters include any of the above di-, tri, tetra-, penta-, or hexa-esters modified to include a PPG, PEG, or PPG/PEG polymer chain of the appropriate length. Specific examples include Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-myristyl ether adipate, and PPG-2 myristyl ether propionate. In one or more embodiments, a mixture of one or more polymeric esters and one or more monomeric di-, tri-, tetra-, penta-, or hexa-esters may be employed as plug-preventing additives.
- the plug-preventing additive is present in an amount of from about 0.005 to about 4 weight percent active, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the plug-preventing additive is present in an amount of from about 0.01 to about 1 weight percent, based upon the total weight of the hydroalcoholic gel composition, and in yet another embodiment, the plug-preventing additive is present in an amount of from about 0.02 to about 0.7 weight percent, based upon the total weight of the hydroalcoholic gel composition.
- the plug-preventing additive is added directly to the hydroalcoholic gel composition.
- the plug-preventing additive is added to the hydroalcoholic gel composition as a solution or emulsion.
- the plug-preventing additive may be premixed with a carrier to form a plug-preventing additive solution or emulsion, with the proviso that the carrier does not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition.
- Examples of carriers include water, alcohol, glycols such as propylene or ethylene glycol, ketones, linear and/or cyclic hydrocarbons, triglycerides, carbonates, silicones, alkenes, esters such as acetates, benzoates, fatty esters, glyceryl esters, ethers, amides, polyethylene glycols and PEG/PPG copolymers, inorganic salt solutions such as saline, and mixtures thereof.
- carriers include water, alcohol, glycols such as propylene or ethylene glycol, ketones, linear and/or cyclic hydrocarbons, triglycerides, carbonates, silicones, alkenes, esters such as acetates, benzoates, fatty esters, glyceryl esters, ethers, amides, polyethylene glycols and PEG/PPG copolymers, inorganic salt solutions such as saline, and mixtures thereof.
- the amount of solution or emulsion that is added to the hydroalcoholic gel composition is selected so that the amount of plug-preventing additive falls within the ranges set forth hereinabove.
- the balance of the hydroalcoholic gel composition includes water or other suitable solvent.
- one or more volatile silicone-based materials are included in the formulation to further aid the evaporation process. Exemplary volatile silicones have a lower heat of evaporation than alcohol.
- use of silicone-based materials can lower the surface tension of the fluid composition. This provides greater contact with the surface.
- the silicone-based material such as cyclomethicone, trimethylsiloxy silicate or a combination thereof, may be included in the formulation at a concentration of from about 4 wt. % to about 50 wt. % and in another embodiment from about 5 wt. % to about 35 wt. %, and in yet another embodiment from about 11 wt. % to about 25 wt. %, based upon the total weight of the hydroalcoholic gel composition.
- the hydroalcoholic gel composition of this invention may further include a wide range of optional ingredients, with the proviso that they do not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition.
- CTFA International Cosmetic Ingredient Dictionary and Handbook, Eleventh Edition, 2005 , and the 2004 CTFA International Buyer's Guide both of which are incorporated by reference herein in their entirety, describe a wide variety of non-limiting cosmetic and pharmaceutical ingredients commonly used in the skin care industry, that are suitable for use in the compositions of the present invention. Non-limiting examples of functional classes of ingredients are described in these references.
- Examples of these functional classes include: abrasives, anti-acne agents, anticaking agents, antioxidants, binders, biological additives, botanicals, bulking agents, chelating agents, chemical additives; colorants, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, emulsifiers, external analgesics, film formers, fragrance components, humectants, odor-neutralizing agents, opacifying agents, plasticizers, preservatives, propellants, reducing agents, skin bleaching agents, skin-conditioning agents (emollient, humectants, miscellaneous, and occlusive), skin protectants, solvents, foam boosters, hydrotropes, solubilizing agents, suspending agents (nonsurfactant), sunscreen agents, ultraviolet light absorbers, detackifiers, and viscosity increasing agents (aqueous and nonaqueous).
- abrasives anti-acne agents, anticaking agents
- one or more ingredients may be encapsulated or microencapsulated.
- actives, colorants, fragrances, flavors, botanicals, solids, or other synthetic components may be present in the composition in encapsulated form.
- Surfactants may be included in the hydroalcoholic gel compositions for the purpose of boosting or modifying the gel quality and characteristics, for modifying the feel of the final formulation during rub in and/or dry time, for providing persistence or long-lasting microbial action of the alcohol, for solubilizing other ingredients such as fragrances or sunscreens, and for irritation mitigation.
- Optional surfactants include, but are not necessarily limited to, sulfosuccinates, amine oxides, PEG-80 sorbitan laurate, polyglucosides, alkanolamides, sorbitan derivatives, fatty alcohol ethoxylates, quaternary ammonium compounds, amidoamines, sultaines, isothionates, sarcosinates, betaines, polysorbates and fatty alcohol polyethylene glycols.
- the hydroalcoholic gel composition comprises one or more of the following optional components: glycerin, fragrance, isopropyl myristate, titanium dioxide, alumina, tocopheryl acetate, aloe extract, dye, and propylene glycol.
- the hydroalcoholic gel composition includes one or more auxiliary thickeners, such as cationic polymeric thickeners.
- the amount of optional components is not particularly limited, so long as the optional components do not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition.
- one or more auxiliary agents may be present in the hydroalcoholic gel composition in an amount of from about 0 to about 2 weight percent, based upon the total weight of the hydroalcoholic gel composition. In other embodiments, one or more auxiliary agents may be present in the hydroalcoholic gel composition in an amount of from about 0.1 to about 1 weight percent, based upon the total weight of the hydroalcoholic gel composition.
- the hydroalcoholic gel composition comprises one or more humectants.
- humectants include propylene glycol, dipropyleneglycol, hexylene glycol, 1,4-dihydroxyhexane, 1,2,6-hexanetriol, sorbitol, butylene glycol, propanediols, such as methyl propane diol, dipropylene glycol, triethylene glycol, glycerin (glycerol), polyethylene glycols, ethoxydiglycol, polyethylene sorbitol, and combinations thereof.
- humectants include glycolic acid, glycolate salts, lactate salts, lactic acid, sodium pyrrolidone carboxylic acid, hyaluronic acid, chitin, and the like.
- the humectant is present in an amount of from about 0.1 to about 20 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- the humectant is present in an amount of from about 1 to about 8 % by weight, in another embodiment from about 2 to about 3 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- the hydroalcoholic gel composition comprises one or more conditioning or moisturizing esters.
- esters include cetyl myristate, cetyl myristoleate, and other cetyl esters, and isopropyl myristate.
- the ester is present in an amount of up to 10 % by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment the ester is present in an amount of from about 0.5 to about 5 % by weight, in another embodiment from about 1 to about 2 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- the hydroalcoholic gel composition includes one or more emulsifying agents.
- emulsifying agents include stearyl alcohol, sorbitan oleate trideceth-2, poloxamers, and PEG/PPG-20/6 dimethicone.
- the emulsifying agent is present in an amount of up to about 10 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- the emulsifying agent is present in an amount of from about 0.1 to about 5 % by weight, in another embodiment from about 0.5 to about 2 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- the hydroalcoholic gel composition includes one or more solubilizers.
- solubilizers include PEG-40 hydrogenated castor oil, polysorbate-80, PEG-80 sorbitan laurate, ceteareth-20, oleth-20, PEG-4, and propylene glycol.
- the amount of solubilizer is not particularly limited, so long as it does not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition.
- alcohol is the only active antimicrobial ingredient introduced into the composition.
- amount of auxiliary antimicrobial ingredients is less than about 0.5 wt. %, and in another embodiment, less than about 0.1 wt. %, based upon the total weight of the hydroalcoholic gel composition.
- the composition includes auxiliary antimicrobial agents in addition to alcohol.
- the hydroalcoholic gel composition of the present invention may optionally further comprise a wide range of topical drug actives, with the proviso that they do not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition.
- the amount of the limited optional ingredient is less than about 0.5 percent by weight, in another embodiment, less than about 0.1 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of the limited optional ingredient.
- the amount of fatty alcohol is limited. In one embodiment, the amount of fatty alcohol is less than about 0.5 percent by weight, in another embodiment, less than about 0.1 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of fatty alcohol.
- the amount of petrolatum or mineral oil is limited. In one embodiment, the amount of petrolatum or mineral oil is less than about 0.5 percent by weight, in another embodiment, less than about 0.1 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of petrolatum or mineral oil. In these or other embodiments, the total amount of fatty alcohol, petrolatum, and mineral oil is less than about 1 wt. %.
- the amount of glycerin is limited. In one embodiment, the amount of glycerin is less than about 1 percent by weight, in another embodiment, less than about 0.5 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of glycerin.
- the dispensable hydroalcoholic gel composition may be prepared by simply mixing the components together.
- the order of addition is not particularly limited.
- the hydroalcoholic gel composition is prepared by a method comprising dispersing the polymeric thickener in alcohol with slow to moderate agitation, adding water, and then adding a plug-preventing additive, and mixing until the mixture is homogeneous.
- the hydroalcoholic gel composition is prepared by a method comprising dispersing the polymeric thickener in water with slow to moderate agitation, adding alcohol, a plug-preventing additive, and mixing until the mixture is homogeneous.
- a neutralizer is added to the mixture to neutralize the thickener and form the gel.
- optional ingredients may be added at various points during the mixing process. It will also be understood that a gel may be formed without a neutralizer if the thickener is one that swells when mixed with water or alcohol.
- the hydroalcoholic gel composition of the present invention may be employed in any type of dispenser typically used for gel products, for example pump dispensers.
- Pump dispensers may be affixed to bottles or other free-standing containers. Pump dispensers may be incorporated into wall-mounted dispensers. Pump dispensers may be activated manually by hand or foot pump, or may be automatically activated.
- Useful dispensers include those available from GOJO Industries under the designations NXT® and TFX TM as well as traditional bag-in-box dispensers. Examples of dispensers are described in U.S. Pat. Nos. 5,265,772 , 5,944,227 , 6,877,642 , 7,028,861 , and U.S. Published Application Nos. 2006/0243740 A1 and 2006/0124662 A1 , all of which are incorporated herein by reference.
- the dispenser includes an outlet such as a nozzle, through which the hydroalcoholic gel composition is dispensed.
- the hydroalcoholic gel of the present invention exhibited less misdirection upon being dispensed than did common hydroalcoholic gels that did not contain an anti-plug agent.
- Frequency of mis-directed output may be determined as a percentage of total dispenser actuations. Comparative measurements may be taken at various rates of actuation.
- An output target may be created to distinguish between acceptable output and mis-directed output. In one or more embodiments, the output target simulates the hand(s) of the dispenser user. The output target defines a zone of acceptable output. In one or more embodiments, when an effective amount of an anti-plug agent is added to a hydroalcoholic gel composition, the frequency of mis-directed output may be reduced.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 50 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 30 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 20% frequency when the rate of dispenser actuation is 0.1 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 15 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.1 actuations per hour.
- the frequency of mis-directed output may be reduced.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 10 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 5 % frequency when the rate of dispenser actuation is 0.1 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 1 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one embodiment, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 0.5 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.1 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 40 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 30 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 20 % frequency when the rate of dispenser actuation is 0.5 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 15 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.5 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 10 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 5 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 1 % frequency when the rate of dispenser actuation is 0.5 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 0.5 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.5 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 40 % frequency when the rate of dispenser actuation is 3 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 30 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 20 % frequency when the rate of dispenser actuation is 3 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 15 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 3 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 10 % frequency when the rate of dispenser actuation is 3 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 5 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 1 % frequency when the rate of dispenser actuation is 3 actuations per hour.
- the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 0.5 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 3 actuations per hour.
- the effectiveness of the plug-preventing additive may be expressed in terms of the percent reduction in the frequency of misdirection. That is, a hydroalcoholic gel composition containing a plug-preventing additive may be tested in comparison to a control that does not contain a plug-preventing additive.
- the frequency of misdirection may be determined as described hereinabove, and the percent reduction in frequency of misdirection may be calculated for the composition containing the plug-preventing additive compared to the control. More generally, the percent reduction in the frequency of misdirection may be calculated for any rate of actuation and any output target zone relative to a control composition that does not contain any plug-preventing additive and is tested under the same conditions. In one or more embodiments, the percent reduction in the frequency of misdirection is at least about 50%.
- the percent reduction in the frequency of misdirection is at least about 60%, in yet other embodiments, at least about 70% in still other embodiments, at least about 80%. In one or more embodiments, the percent reduction in the frequency of misdirection is at least about 90%, in other embodiments, at least about 95%, and in yet other embodiments, at least about 97%.
- Hydroalcoholic gel formulations were prepared by mixing ingredients in the amounts shown in the following tables 3 to 6.
- the gels were dispensed by using a GOJO NXT® side-by-side dispenser with 1000 ml refills and DP1 pumps.
- the dispenser is ADA compliant, and features one-hand push operation.
- the rate of actuations was held constant for all samples.
- the output target was positioned about 3 inches below the nozzle tip, and was defined by a 2.5 inch square. The percentage of mis-direction based upon the total number of actuations is provided for each composition.
- the percentage data in the tables below is the average of up to about 900 actuations that were observed for each formulation. Where the frequency of mis-direction was relatively high, deposits of coagulated gel were observed on surfaces of the dispenser nozzle.
- Example 2 Example 3 Water qs qs qs Acrylates/C 10-30 AlkylAcrylate 0.3 0.3 0.3 Ethanol SDA 3C 74 74 74 Glycerin 0.25 0.25 0.25 Aminomethyl Propanol (95%) .098 .098 0.098 Diisopropyl Sebacate 0.25 ---- 0.25 PEG/PPG-20/6 dimethicone (65%) 0.10 ---- ---- Fragrance ---- ---- 0.13 Tocopheryl Acetate ---- ---- 0.001 Isopropyl Myristate 0.25 0.001 0.001 % Misdirection 2.0 52.0 7.7 TABLE4 Weight % Example 4 Example 5 Water qs qs Carbomer 0.25 0.25 Ethanol SDA 3C 65 65 Glycerin 0.25 0.25 Aminomethyl Propanol 0.098 0.098 Diisopropyl Sebacate ---- 0.5 Iso
- Examples 8-16 are hydroalcoholic gel formulations that contain about 74 wt. % ethanol SDA 3 C. They also each contain the same amount of the following ingredients: Acrylates/C10-30 alkyl acrylate crosspolymer, glycerin, aminomethyl propanol, and water. Examples 8-16 differ in the amount and type of plug-preventing additive that was included in the formulation. These are summarized below in Table 7.
- Example 9 differs from Example 8 only in that Example 9 includes 0.13 wt. % fragrance. Examples 8-16 were dispensed and tested for frequency of mis-direction as described above for Examples 1-7. Example 8 was designated as a control, against which the frequency of mis-direction was normalized for Examples 9-16.
- Table 7 summarizes the percent reduction in the frequency of misdirection, which may also be referred to as the percent reduction in mis-directed output, for Examples 9-16 relative to Example 8.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Chemical & Material Sciences (AREA)
- Emergency Medicine (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Dermatology (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Cosmetics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Medicinal Preparation (AREA)
- Colloid Chemistry (AREA)
Abstract
Description
- This application claims the benefit of
. The application is expressly incorporated herein by reference.U.S. Provisional Application No. 60/983,856 filed on October 30, 2007 - This invention relates to hydroalcoholic gel compositions for use with dispensers, wherein the frequency of mis-directed dispenser output is reduced when the hydroalcoholic gel compositions include a plug-preventing additive.
- Personal care and sanitizing compositions are often formulated as hydroalcoholic gels. Frequently, these products are provided in dispensers. Dispenser outlets such as nozzles can become clogged or partially blocked over time, due to the coagulation of gel creating a deposit on the nozzles. The clogged nozzle then causes mis-direction of the product when the dispenser is next used. Instead of dispensing product directly into the user's hand, product shoots from the clogged nozzle in a sideways fashion. Mis-directed product may hit walls, clothing, the floor, and can cause damage to these articles or areas.
- Therefore there remains a need for hydroalcoholic gel compositions that exhibit a reduced occurrence of clogging of dispenser nozzles.
- One or more embodiments provide a method of reducing the formation of coagulated gel deposits, the method comprising the steps of combining a C1-4 alcohol, an effective amount of a polyacrylate thickener; and a plug-preventing additive to form a dispensable gel composition; wherein the plug-preventing additive comprises an ester having from two to six ester groups or a polymeric ester that includes at least one ester group; and wherein said composition comprises at least about 40 wt. % of said alcohol and less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, all based upon the total weight of the dispensable gel composition, and storing the dispensable gel in a pump-type dispenser that is activated on a periodic basis, wherein the formation of coagulated gel deposits is reduced when compared to a dispensable gel that does not include the plug-preventing additive.
- One or more embodiments of this invention further provide a method of reducing the frequency of mis-directed output from a gel dispenser, the method comprising the steps of combining a C1-4 alcohol, an effective amount of a polyacrylate thickener; and a plug-preventing additive to form a dispensable gel composition; wherein said plug-preventing additive comprises an ester having from two to six ester groups or a polymeric ester that includes at least one ester group; and wherein said composition comprises at least about 40 wt. % of said alcohol and less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, all based upon the total weight of the dispensable gel composition, and storing the dispensable gel in a pump-type dispenser that includes an outlet and that is activated on a periodic basis, wherein the frequency of mis-directed output is reduced when compared to a dispensable gel that does not include the plug-preventing additive.
- One or more embodiments of this invention still further provide a gel composition comprising at least about 60 wt. % of a C1-4 alcohol, based upon the total weight of the gel composition, an effective amount of a polyacrylate thickener, an ester plug-preventing additive that includes from two to six ester groups or a polymeric ester that includes at least one ester group, and less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, based upon the total weight of the gel composition.
- In one or more embodiments, dispensable hydroalcoholic gel compositions of the present invention include a hydroalcoholic carrier, a polyacrylate thickener, and a plug-preventing additive. In one or more embodiments, the hydroalcoholic carrier includes water and alcohol.
- In one embodiment, the alcohol is a lower alkanol, i.e. an alcohol containing 1 to 4 carbon atoms. Typically, these alcohols have antimicrobial properties. Examples of lower alkanols include, but are not limited to, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tertiary butanol, and mixtures thereof. In one embodiment, the alcohol comprises ethanol.
- Generally, the hydroalcoholic gel composition comprises an amount of alcohol of at least about 40 weight percent (wt. %), based upon the total weight of the hydroalcoholic gel composition. In one embodiment, the hydroalcoholic gel composition comprises at least about 45 weight percent alcohol, in another embodiment, the hydroalcoholic gel composition comprises at least about 50 weight percent alcohol, and in yet another embodiment, the hydroalcoholic gel composition comprises at least about 60 weight percent alcohol, based upon the total weight of hydroalcoholic gel composition. More or less alcohol may be required in certain instances, depending particularly on other ingredients and/or the amounts thereof employed in the composition. In certain embodiments, the hydroalcoholic gel composition comprises from about 40 weight percent to about 98 weight percent alcohol, in other embodiments, the hydroalcoholic gel composition comprises from about 45 weight percent to about 95 weight percent of alcohol, in yet other embodiments, the hydroalcoholic gel composition comprises from about 50 weight percent to about 90 weight percent of alcohol, and in still other embodiments, the hydroalcoholic gel composition comprises from about 60 weight percent to about 80 weight percent of alcohol, based upon the total weight of the hydroalcoholic gel composition.
- The hydroalcoholic gel composition may include a mixture of C1-9 alkanols. In one or more embodiments, the hydroalcoholic gel composition includes a mixture of one or more C1-4 alkanols and one or more C5-9 alkanols. The mixture may include primary, secondary, or tertiary alcohols.
- The hydroalcoholic gel may be thickened with polyacrylate thickeners such as those conventionally available and/or known in the art. Examples of polyacrylate thickeners include carbomers, acrylates/C 10-30 alkyl acrylate crosspolymers, copolymers of acrylic acid and alkyl (C5 -C10) acrylate, copolymers of acrylic acid and maleic anhydride, and mixtures thereof.
- In one or more embodiments, the polymeric thickener includes from about 0.5% to about 4% by weight of a cross-linking agent. Examples of cross-linking agents include the polyalkenyl polyethers.
- Commercially available polymers of the polyacrylate type include those sold under the trade names Carbopol®, Acrysol® ICS-1, Polygel® , Sokalan®, Carbopol® 1623, Carbopol® 695, Ultrez 10, and Polygel® DB.
- In one or more embodiments, the composition of the present invention includes an effective amount of a polymeric thickener to adjust the viscosity of the hydroalcoholic gel to a viscosity range of from about 1000 to about 65,000 centipoise. In one embodiment, the viscosity of the hydroalcoholic gel is from about 5000 to about 35,000, and in another embodiment, the viscosity is from about 10,000 to about 25,000. The viscosity is measured by a Brookfield RV Viscometer using RV and/or LV Spindles at 22 °C +/- 3 °C.
- As will be appreciated by one of skill in the art, the effective amount of thickener will vary depending upon a number of factors, including the amount of alcohol and other ingredients in the hydroalcoholic gel composition. In one or more embodiments, an effective amount of thickener is at least about 0.01 wt. %, based upon the total weight of the hydroalcoholic gel composition. In other embodiments, the effective amount is at least about 0.02 wt. %, in yet other embodiments at least about 0.05 wt. %, and it still other embodiments, at least about 0.1 wt. %. In one embodiment, the effective amount of thickener is at least about 0.5 wt. %, and in another embodiment, at least about 0.75 wt. %, based upon the total weight of the hydroalcoholic gel. In one or more embodiments, the compositions according to the present invention comprise up to about 10% by weight of the total composition of a polymeric thickener. In certain embodiments, the amount of thickener is from about 0.01 to about 1 wt. %, in another embodiment, from about 0.02 to about 0.4 wt. %, and in another embodiment, from about 0.05 to about 0.3 wt. %, based upon the total weight of the hydroalcoholic gel. In one embodiment, the amount of thickener is from about 0.1 to about 10 wt. %, in another embodiment from about 0.5% to about 5% by weight, in another embodiment from about 0.75% to about 2% wt. %, based upon the total weight of the hydroalcoholic gel.
- In one or more embodiments, the hydroalcoholic gel may further comprise a neutralizer. The use of neutralizing agents to form salts of carbomer polymers is known. Examples of neutralizing agents include amines, alkanolamines, alkanolamides, inorganic bases, amino acids, including salts, esters and acyl derivatives thereof.
- Examples of common neutralizers are shown in Table 1, along with the manufacturers of these neutralizers, and the suggested ratio (per one part polymeric thickener) to achieve neutralization (pH 7.0) when the polymeric thickener has an equivalent weight of about 76 +/- 4.
Table 1 Trade Name CTFA Name Manufacturer Neutralization Ratio Base/ Carbopol® Polymer NaOH (18%) Sodium Hydroxide 2.3/1.0 Ammonia (28%) Ammonium Hydroxide 0.7/1.0 KOH(18%) Potassium Hydroxide 2.7/1.0 L-Arginine Arginine Ajinomoto 4.5/1.0 AMh-95® Aminomethyl Propanol Angus 0.9/1.0 Neutrol® TE Tetrahydroxypropyl Ethylenediamine BASF 2.3/1.0 TEA (99%) Triethanolamine 1.5/1.0 Tris Amino® (40%)* Tromethamine Angus 3.3/1.0 Ethomeen® C-25 PEG-15 Cocamine Akzo 6.2/1.0 Diisopropanolamine Diisopropanolamine Dow 1.2/1.0 Triisopropanolamine Triisopropanolamine Dow 1.5/1.0 - In one or more embodiments, the neutralizer may be selected based on the amount of alcohol that is to be gelled. Table 2 shows commonly recommended neutralizers for hydroalcoholic systems.
Table 2 Up to % Alcohol Neutralizer 20% Sodium Hydroxide 30% Potassium Hydroxide 60% Triethanolamine 60% Tris Amino 80% AMP-95® 90% Neutrol TE 90% Diisopropanolamine 90% Triisopropanolamine >90% Ethomeen C-25 - The hydroalcoholic gel further includes one or more plug-preventing additives. In general, the additive prevents the hydroalcoholic gel from coagulating into solid or semi-solid material that may deposit onto a surface or plug a dispenser nozzle. In one or more embodiments, the plug-preventing additive comprises a compound that includes from 2 to 6 ester groups or a polymeric ester that includes at least one ester group. In one embodiment, the plug-preventing additive comprises a monomeric or polymeric di-ester, tri-ester, tetraester, penta-ester, or hexa-ester, or a polymeric monoester.
- In one or more embodiments, the plug-preventing additive includes one or more of C1-C30 alcohol esters of C1-C30 carboxylic acids, ethylene glycol monoesters of C1-C30 carboxylic acids, ethylene glycol diesters of C1-C30 carboxylic acids, propylene glycol monoesters of C1-C30 carboxylic acids, propylene glycol diesters of C1-C30 carboxylic acids, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of C4-C20 alkyl ethers, C1-C30 carboxylic acid monoesters and polyesters of di-C8-C30 alkyl ethers, and mixtures thereof.
- In one or more embodiments, the plug-preventing additive includes one or more of C1-C22 alcohol esters of C1-C22 carboxylic acids, C11-C22 alcohol esters of C3-C10 carboxylic acids, ethylene glycol monoesters of C1-C22 carboxylic acids, ethylene glycol diesters of C1-C22 carboxylic acids, propylene glycol monoesters of C1-C22 carboxylic acids, propylene glycol diesters of C1-C22 carboxylic acids, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of C4-C22 alkyl ethers, C1-C22 carboxylic acid monoesters and polyesters of di-C8-C22 alkyl ethers, and mixtures thereof.
- In one or more embodiments, the ester is formed from any of a variety of acids and alcohols. In one or more embodiments, at least one of the acid or alcohol includes a fatty chain. In one or more embodiments, the ester is formed from an acid having from about 4 to about 28 carbon atoms, and an alcohol having from about 2 to about 22 carbon atoms, in another embodiment, the ester is formed from an acid having from about 8 to about 22 carbon atoms, and an alcohol having from about 2 to about 22 carbon atoms.
- Examples of ester plug-preventing additives include acetyl tributyl citrate, acetyl triethyl citrate, acetyl triethylhexyl citrate, acetyl trihexyl citrate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, butyroyl trihexyl citrate, dibutyl adipate, dibutyloctyl malate, dibutyl oxalate, dibutyl phthalate, dibutyl sebacate, dicapryl adipate, dicaprylyl/capryl sebacate, diethylene glycol dibenzoate, diethylene glycol diethylhexanoate/diisononanoate, diethylene glycol diisononanoate, diethylene glycol rosinate, diethylhexyl adipate, diethylhexyl phthalate, diethylhexyl sebacate, diethylhexyl succinate, diethylhexyl terephthalate, diethyl oxalate, diethyl phthalate, diethyl sebacate, diethyl succinate, diisoamyl malate, diisobutyl adipate, diisobutyl maleate, diisobutyl oxalate, diisocetyl adipate, diisocetyl dodecanedioate, diisodecyl adipate, diisononyl adipate, diisocetyl adipate, diisooctyl maleate, diisooctyl sebacate, diisopropyl adipate, diisopropyl oxalate, diisopropyl sebacate, diisopropyl dimer dilinoleate, diisostearyl adipate, diisostearyl fumarate, diisostearyl glutarate, diisostearyl malate, diisostearyl sebacate, dimethyl adipate, dimethyl oxalate, dimethyl phthalate, dioctyldodecyl adipate, Dioctyldodecyl Dimer Dilinoleate, Dioctyldodecyl Dodecanedioate, Dioctyldodecyl Fluoroheptyl Citrate, Dioctyldodecyl IPDI, Dioctyldodecyl Lauroyl Glutamate, Dioctyldodecyl Malate, Dioctyldodecyl Sebacate, Dioctyldodecyl Stearoyl Glutamate, dipentaerythrityl hexa c5-9 acid esters, dipentaerythrityl hexa c5-10 acid esters, dipropyl oxalate, pentaerythrityl tetra c5-9 acid esters, pentaerythrityl tetra c5-10 acid esters, , tributyl citrate, tricaprylyl/capryl trimellitate, triethyl citrate, triethylene glycol dibenzoate, triethylene glycol rosinate, triethylhexyl citrate, triethylhexyl trimellitate, trimethylpentanediyl dibenzoate, trimethyl pentanyl diisobutyrate, polyglyceryl-6 pentacaprylate, polyglyceryl-10 pentahydroxystearate, polyglyceryl-10 pentaisostearate, polyglyceryl-10 pentalaurate, polyglyceryl-10 pentalinoleate, polyglyceryl-5 pentamyristate, polyglyceryl-4 pentaoleate, polyglyceryl-6 pentaoleate, polyglyceryl-10 pentaoleate, polyglyceryl-3 pentaricinoleate, polyglyceryl-6 pentaricinoleate, polyglyceryl-10 pentaricinoleate, polyglyceryl-4 pentastearate, polyglyceryl-6 pentastearate, polyglyceryl-10 pentastearate, sorbeth-20 pentaisostearate, sorbeth-30 pentaisostearate, sorbeth-40 pentaisostearate, sorbeth-50 pentaisostearate, sorbeth-40 pentaoleate, sucrose pentaerucate, and triacetin, combinations thereof.
- In one or more embodiments, the plug-preventing additive comprises a polymeric ester. In one embodiment, the polymeric ester includes a polyether polymer chain and at least one ester group. In one embodiment, the polymeric ester includes two or more ester groups.
- In one or more embodiments, the polymer chain includes a polyethylene glycol (PEG) chain, a polypropylene glycol (PPG), or a combination thereof. In one or more embodiments, the polymer chain includes up to about 12 PEG units, PPG units, or a combination thereof. In one or more embodiments, the polymer chain includes up to about 10 PEG units, PPG units, or a combination thereof. In one or more embodiments, the polymer chain includes up to about 8 PEG units, PPG units, or a combination thereof. In one or more embodiments, the polyether polymer chain includes from about 1 to about 12 PPG or PEG units, in other embodiments from about 2 to about 8 PPG or PEG units, or a combination thereof.
- Examples of polymeric esters include those that may be represented by the following formula
wherein R1 is a linear or branched alkyl group having from 1 to 28 carbon atoms, each R2, which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, and each R3, which may be the same or different, includes an alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R3 group is attached to R2 via an ether linkage. - In one or more embodiments, R1 includes up to about 20 carbon atoms, in other embodiments, R1 includes up to about 10 carbon atoms, and in other embodiments, R1 includes up to about 8 carbon atoms. In one or more embodiments, R3 may be represented by the formula CH3(CH2)zO-, where in one or more embodiments z is an integer from 1 to about 21, in other embodiments from 2 to about 17, and in other embodiments from 3 to about 15.
- In one or more embodiments, the polymeric ester may be represented by the following formula
wherein R4 includes a linear or branched, alkyl or alkylene group having from 1 to about 22 carbon atoms. In one or more embodiments, R4 may be represented by the formula CH3(CH2)z-, where in one or more embodiments z is an integer from 1 to about 21, in other embodiments from 2 to about 17, and in other embodiments from 3 to about 15. In one or more embodiments, n is an integer from 1 to about 20, in other embodiments from 2 to about 10. In one or more embodiments, x is zero, in other embodiments x is an integer up to about 12, in other embodiments up to about 10, in other embodiments up to about 8. In one or more embodiments, y is zero, in other embodiments, y is an integer up to about 12, in other embodiments up to about 10, and in other embodiments up to about 8. -
- Examples of polymeric esters include any of the above di-, tri, tetra-, penta-, or hexa-esters modified to include a PPG, PEG, or PPG/PEG polymer chain of the appropriate length. Specific examples include Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-myristyl ether adipate, and PPG-2 myristyl ether propionate. In one or more embodiments, a mixture of one or more polymeric esters and one or more monomeric di-, tri-, tetra-, penta-, or hexa-esters may be employed as plug-preventing additives.
- In one embodiment, the plug-preventing additive is present in an amount of from about 0.005 to about 4 weight percent active, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the plug-preventing additive is present in an amount of from about 0.01 to about 1 weight percent, based upon the total weight of the hydroalcoholic gel composition, and in yet another embodiment, the plug-preventing additive is present in an amount of from about 0.02 to about 0.7 weight percent, based upon the total weight of the hydroalcoholic gel composition.
- In one embodiment, the plug-preventing additive is added directly to the hydroalcoholic gel composition. In one or more other embodiments, the plug-preventing additive is added to the hydroalcoholic gel composition as a solution or emulsion. In other words, the plug-preventing additive may be premixed with a carrier to form a plug-preventing additive solution or emulsion, with the proviso that the carrier does not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition. Examples of carriers include water, alcohol, glycols such as propylene or ethylene glycol, ketones, linear and/or cyclic hydrocarbons, triglycerides, carbonates, silicones, alkenes, esters such as acetates, benzoates, fatty esters, glyceryl esters, ethers, amides, polyethylene glycols and PEG/PPG copolymers, inorganic salt solutions such as saline, and mixtures thereof. It will be understood that, when the plug-preventing additive is premixed to form a plug-preventing additive solution or emulsion, the amount of solution or emulsion that is added to the hydroalcoholic gel composition is selected so that the amount of plug-preventing additive falls within the ranges set forth hereinabove.
- In one or more embodiments, the balance of the hydroalcoholic gel composition includes water or other suitable solvent. In one embodiment, one or more volatile silicone-based materials are included in the formulation to further aid the evaporation process. Exemplary volatile silicones have a lower heat of evaporation than alcohol. In certain embodiments, use of silicone-based materials can lower the surface tension of the fluid composition. This provides greater contact with the surface. In one embodiment, the silicone-based material, such as cyclomethicone, trimethylsiloxy silicate or a combination thereof, may be included in the formulation at a concentration of from about 4 wt. % to about 50 wt. % and in another embodiment from about 5 wt. % to about 35 wt. %, and in yet another embodiment from about 11 wt. % to about 25 wt. %, based upon the total weight of the hydroalcoholic gel composition.
- The hydroalcoholic gel composition of this invention may further include a wide range of optional ingredients, with the proviso that they do not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition. The CTFA International Cosmetic Ingredient Dictionary and Handbook, Eleventh Edition, 2005, and the 2004 CTFA International Buyer's Guide, both of which are incorporated by reference herein in their entirety, describe a wide variety of non-limiting cosmetic and pharmaceutical ingredients commonly used in the skin care industry, that are suitable for use in the compositions of the present invention. Non-limiting examples of functional classes of ingredients are described in these references. Examples of these functional classes include: abrasives, anti-acne agents, anticaking agents, antioxidants, binders, biological additives, botanicals, bulking agents, chelating agents, chemical additives; colorants, cosmetic astringents, cosmetic biocides, denaturants, drug astringents, emulsifiers, external analgesics, film formers, fragrance components, humectants, odor-neutralizing agents, opacifying agents, plasticizers, preservatives, propellants, reducing agents, skin bleaching agents, skin-conditioning agents (emollient, humectants, miscellaneous, and occlusive), skin protectants, solvents, foam boosters, hydrotropes, solubilizing agents, suspending agents (nonsurfactant), sunscreen agents, ultraviolet light absorbers, detackifiers, and viscosity increasing agents (aqueous and nonaqueous). Examples of other functional classes of materials useful herein that are well known to one of ordinary skill in the art include solubilizing agents, sequestrants, and keratolytics, and the like. In one or more embodiments, one or more ingredients may be encapsulated or microencapsulated. For example, actives, colorants, fragrances, flavors, botanicals, solids, or other synthetic components may be present in the composition in encapsulated form.
- Surfactants may be included in the hydroalcoholic gel compositions for the purpose of boosting or modifying the gel quality and characteristics, for modifying the feel of the final formulation during rub in and/or dry time, for providing persistence or long-lasting microbial action of the alcohol, for solubilizing other ingredients such as fragrances or sunscreens, and for irritation mitigation. Optional surfactants include, but are not necessarily limited to, sulfosuccinates, amine oxides, PEG-80 sorbitan laurate, polyglucosides, alkanolamides, sorbitan derivatives, fatty alcohol ethoxylates, quaternary ammonium compounds, amidoamines, sultaines, isothionates, sarcosinates, betaines, polysorbates and fatty alcohol polyethylene glycols.
- In one or more embodiments, the hydroalcoholic gel composition comprises one or more of the following optional components: glycerin, fragrance, isopropyl myristate, titanium dioxide, alumina, tocopheryl acetate, aloe extract, dye, and propylene glycol. In these or other embodiments, the hydroalcoholic gel composition includes one or more auxiliary thickeners, such as cationic polymeric thickeners.
- The amount of optional components is not particularly limited, so long as the optional components do not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition. In certain embodiments, one or more auxiliary agents may be present in the hydroalcoholic gel composition in an amount of from about 0 to about 2 weight percent, based upon the total weight of the hydroalcoholic gel composition. In other embodiments, one or more auxiliary agents may be present in the hydroalcoholic gel composition in an amount of from about 0.1 to about 1 weight percent, based upon the total weight of the hydroalcoholic gel composition.
- In certain embodiments, the hydroalcoholic gel composition comprises one or more humectants. Examples of humectants include propylene glycol, dipropyleneglycol, hexylene glycol, 1,4-dihydroxyhexane, 1,2,6-hexanetriol, sorbitol, butylene glycol, propanediols, such as methyl propane diol, dipropylene glycol, triethylene glycol, glycerin (glycerol), polyethylene glycols, ethoxydiglycol, polyethylene sorbitol, and combinations thereof. Other humectants include glycolic acid, glycolate salts, lactate salts, lactic acid, sodium pyrrolidone carboxylic acid, hyaluronic acid, chitin, and the like. In one embodiment, the humectant is present in an amount of from about 0.1 to about 20 % by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment the humectant is present in an amount of from about 1 to about 8 % by weight, in another embodiment from about 2 to about 3 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- In these or other embodiments, the hydroalcoholic gel composition comprises one or more conditioning or moisturizing esters. Examples of esters include cetyl myristate, cetyl myristoleate, and other cetyl esters, and isopropyl myristate. In one embodiment, the ester is present in an amount of up to 10 % by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment the ester is present in an amount of from about 0.5 to about 5 % by weight, in another embodiment from about 1 to about 2 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- In one or more embodiments, the hydroalcoholic gel composition includes one or more emulsifying agents. Examples of emulsifying agents include stearyl alcohol, sorbitan oleate trideceth-2, poloxamers, and PEG/PPG-20/6 dimethicone. In one embodiment, the emulsifying agent is present in an amount of up to about 10 % by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment the emulsifying agent is present in an amount of from about 0.1 to about 5 % by weight, in another embodiment from about 0.5 to about 2 % by weight, based upon the total weight of the hydroalcoholic gel composition.
- In one or more embodiments, the hydroalcoholic gel composition includes one or more solubilizers. Examples of solubilizers include PEG-40 hydrogenated castor oil, polysorbate-80, PEG-80 sorbitan laurate, ceteareth-20, oleth-20, PEG-4, and propylene glycol. The amount of solubilizer is not particularly limited, so long as it does not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition.
- In one embodiment, alcohol is the only active antimicrobial ingredient introduced into the composition. In this embodiment, the amount of auxiliary antimicrobial ingredients is less than about 0.5 wt. %, and in another embodiment, less than about 0.1 wt. %, based upon the total weight of the hydroalcoholic gel composition. In other embodiments, the composition includes auxiliary antimicrobial agents in addition to alcohol.
- The hydroalcoholic gel composition of the present invention may optionally further comprise a wide range of topical drug actives, with the proviso that they do not deleteriously affect the anti-clogging properties of the hydroalcoholic gel composition.
- For reasons including solubility and aesthetics, one or more of any of the optional ingredients listed above may be limited. In one or more embodiments, the amount of the limited optional ingredient is less than about 0.5 percent by weight, in another embodiment, less than about 0.1 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of the limited optional ingredient.
- For reasons including solubility and aesthetics, one or more of the following components may be limited. In one or more embodiments, the amount of fatty alcohol is limited. In one embodiment, the amount of fatty alcohol is less than about 0.5 percent by weight, in another embodiment, less than about 0.1 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of fatty alcohol.
- In one or more embodiments, the amount of petrolatum or mineral oil is limited. In one embodiment, the amount of petrolatum or mineral oil is less than about 0.5 percent by weight, in another embodiment, less than about 0.1 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of petrolatum or mineral oil. In these or other embodiments, the total amount of fatty alcohol, petrolatum, and mineral oil is less than about 1 wt. %.
- In one or more embodiments, the amount of glycerin is limited. In one embodiment, the amount of glycerin is less than about 1 percent by weight, in another embodiment, less than about 0.5 percent by weight, based upon the total weight of the hydroalcoholic gel composition. In another embodiment, the hydroalcoholic gel composition is devoid of glycerin.
- The dispensable hydroalcoholic gel composition may be prepared by simply mixing the components together. The order of addition is not particularly limited. In one embodiment, the hydroalcoholic gel composition is prepared by a method comprising dispersing the polymeric thickener in alcohol with slow to moderate agitation, adding water, and then adding a plug-preventing additive, and mixing until the mixture is homogeneous. In other embodiments, the hydroalcoholic gel composition is prepared by a method comprising dispersing the polymeric thickener in water with slow to moderate agitation, adding alcohol, a plug-preventing additive, and mixing until the mixture is homogeneous. In one or more embodiments, a neutralizer is added to the mixture to neutralize the thickener and form the gel. Those of skill in the art will understand that optional ingredients may be added at various points during the mixing process. It will also be understood that a gel may be formed without a neutralizer if the thickener is one that swells when mixed with water or alcohol.
- The hydroalcoholic gel composition of the present invention may be employed in any type of dispenser typically used for gel products, for example pump dispensers. A wide variety of pump dispensers are suitable. Pump dispensers may be affixed to bottles or other free-standing containers. Pump dispensers may be incorporated into wall-mounted dispensers. Pump dispensers may be activated manually by hand or foot pump, or may be automatically activated. Useful dispensers include those available from GOJO Industries under the designations NXT® and TFX™ as well as traditional bag-in-box dispensers. Examples of dispensers are described in
U.S. Pat. Nos. 5,265,772 ,5,944,227 ,6,877,642 ,7,028,861 , andU.S. Published Application Nos. 2006/0243740 A1 and2006/0124662 A1 , all of which are incorporated herein by reference. In one or more embodiments, the dispenser includes an outlet such as a nozzle, through which the hydroalcoholic gel composition is dispensed. - In one or more embodiments, the hydroalcoholic gel of the present invention exhibited less misdirection upon being dispensed than did common hydroalcoholic gels that did not contain an anti-plug agent. Frequency of mis-directed output may be determined as a percentage of total dispenser actuations. Comparative measurements may be taken at various rates of actuation. An output target may be created to distinguish between acceptable output and mis-directed output. In one or more embodiments, the output target simulates the hand(s) of the dispenser user. The output target defines a zone of acceptable output. In one or more embodiments, when an effective amount of an anti-plug agent is added to a hydroalcoholic gel composition, the frequency of mis-directed output may be reduced. In certain embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 50 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 30 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 20% frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one embodiment, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 15 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.1 actuations per hour.
- In one or more embodiments, when an effective amount of an anti-plug agent is added to a hydroalcoholic gel composition, the frequency of mis-directed output may be reduced. In certain embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 10 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 5 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 1 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one embodiment, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 0.5 % frequency when the rate of dispenser actuation is 0.1 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.1 actuations per hour.
- In certain embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 40 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 30 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 20 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one embodiment, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 15 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.5 actuations per hour.
- In certain embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 10 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 5 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 1 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one embodiment, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 0.5 % frequency when the rate of dispenser actuation is 0.5 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 0.5 actuations per hour.
- In certain embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 40 % frequency when the rate of dispenser actuation is 3 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 30 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 20 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one embodiment, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 15 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 3 actuations per hour.
- In certain embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 10 % frequency when the rate of dispenser actuation is 3 actuations per hour. In other embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 5 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 1 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one embodiment, the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle with less than 0.5 % frequency when the rate of dispenser actuation is 3 actuations per hour. In one or more embodiments, substantially none of the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser nozzle when the rate of dispenser actuation is 3 actuations per hour.
- In one or more embodiments, the effectiveness of the plug-preventing additive may be expressed in terms of the percent reduction in the frequency of misdirection. That is, a hydroalcoholic gel composition containing a plug-preventing additive may be tested in comparison to a control that does not contain a plug-preventing additive. The frequency of misdirection may be determined as described hereinabove, and the percent reduction in frequency of misdirection may be calculated for the composition containing the plug-preventing additive compared to the control. More generally, the percent reduction in the frequency of misdirection may be calculated for any rate of actuation and any output target zone relative to a control composition that does not contain any plug-preventing additive and is tested under the same conditions. In one or more embodiments, the percent reduction in the frequency of misdirection is at least about 50%. In other embodiments, the percent reduction in the frequency of misdirection is at least about 60%, in yet other embodiments, at least about 70% in still other embodiments, at least about 80%. In one or more embodiments, the percent reduction in the frequency of misdirection is at least about 90%, in other embodiments, at least about 95%, and in yet other embodiments, at least about 97%.
- In order to demonstrate the practice of the present invention, the following examples have been prepared and tested. The examples should not, however, be viewed as limiting the scope of the invention. The claims will serve to define the invention.
- Hydroalcoholic gel formulations were prepared by mixing ingredients in the amounts shown in the following tables 3 to 6. The gels were dispensed by using a GOJO NXT® side-by-side dispenser with 1000 ml refills and DP1 pumps. The dispenser is ADA compliant, and features one-hand push operation. The rate of actuations was held constant for all samples. The output target was positioned about 3 inches below the nozzle tip, and was defined by a 2.5 inch square. The percentage of mis-direction based upon the total number of actuations is provided for each composition.
- The tests were performed over 15 days, and each sample was tested in multiple dispensers. Thus, the percentage data in the tables below is the average of up to about 900 actuations that were observed for each formulation. Where the frequency of mis-direction was relatively high, deposits of coagulated gel were observed on surfaces of the dispenser nozzle.
TABLE 3 Weight % Example 1 Example 2 Example 3 Water qs qs qs Acrylates/C 10-30 AlkylAcrylate 0.3 0.3 0.3 Ethanol SDA 3C 74 74 74 Glycerin 0.25 0.25 0.25 Aminomethyl Propanol (95%) .098 .098 0.098 Diisopropyl Sebacate 0.25 ---- 0.25 PEG/PPG-20/6 dimethicone (65%) 0.10 ---- ---- Fragrance ---- ---- 0.13 Tocopheryl Acetate ---- ---- 0.001 Isopropyl Myristate 0.25 0.001 0.001 % Misdirection 2.0 52.0 7.7 TABLE4 Weight % Example 4 Example 5 Water qs qs Carbomer 0.25 0.25 Ethanol SDA 3C 65 65 Glycerin 0.25 0.25 Aminomethyl Propanol 0.098 0.098 Diisopropyl Sebacate ---- 0.5 Isopropyl Myristate 0.5 ---- % Misdirection 7.1 0 TABLE 5 Weight % Example 6 Water qs Carbomer 0.23 Ethanol SDA 3C 64.5 Glycerin 0.25 Aminomethyl Propanol 0.098 Diisopropyl Sebacate ---- Isopropyl Myristate 0.001 Fragrance 0.13 Tocopheryl Acetate 0.001 % Misdirection 35.0 TABLE 6 Weight % Example 7 Water qs Carbomer 0.23 Ethanol SDA 3C 64.5 Glycerin 0.25 Aminomethyl Propanol 0.098 Diisopropyl Sebacate 0.25 Isopropyl Myristate ---- Fragrance 0.13 Tocopheryl Acetate 0.0001 % Misdirection 0.44 - Examples 8-16 are hydroalcoholic gel formulations that contain about 74 wt. % ethanol SDA 3 C. They also each contain the same amount of the following ingredients: Acrylates/C10-30 alkyl acrylate crosspolymer, glycerin, aminomethyl propanol, and water. Examples 8-16 differ in the amount and type of plug-preventing additive that was included in the formulation. These are summarized below in Table 7. Example 9 differs from Example 8 only in that Example 9 includes 0.13 wt. % fragrance. Examples 8-16 were dispensed and tested for frequency of mis-direction as described above for Examples 1-7. Example 8 was designated as a control, against which the frequency of mis-direction was normalized for Examples 9-16. Table 7 summarizes the percent reduction in the frequency of misdirection, which may also be referred to as the percent reduction in mis-directed output, for Examples 9-16 relative to Example 8.
TABLE 7 Example No. Plug-Preventing Additive (wt.%) (%) Reduction Mis-directed Output 8 None N/A 9 None 5.66 10 0.25% Di-PPG-3-ceteth-4 adipate 97.13 11 0.5% Di-PPG-3-ceteth-4 adipate 98.19 12 0.5% Di-PPG-2 -myreth-10 adipate 97.94 13 0.5% Di-PPG-3 myristyl ether adipate 98.45 14 0.5% PPG-2 myristyl ether propionate 99.37 15 0.5% triacetin 55.75 16 1.0% triacetin 57.95 - Various modifications and alterations that do not depart from the scope and spirit of this invention will become apparent to those skilled in the art. This invention is not to be duly limited to the illustrative embodiments set forth herein.
The following clauses also describe the invention - 1. A method of reducing the formation of coagulated gel deposits, the method comprising the steps of:
- combining a C1-4 alcohol, an effective amount of a polyacrylate thickener; and a plug-preventing additive to form a dispensable gel composition; wherein said plug-preventing additive comprises an ester having from two to six ester groups or a polymeric ester that includes at least one ester group; and wherein said composition comprises at least about 40 wt. % of said alcohol and less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, all based upon the total weight of the dispensable gel composition; and
- storing the dispensable gel in a pump-type dispenser that is activated on a periodic basis, wherein the formation of coagulated gel deposits is reduced when compared to a dispensable gel that does not include the plug-preventing additive.
- 2. The method of clause 1, wherein said alcohol comprises methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tertiary butanol, or mixtures thereof.
- 3. The method of clause 1, wherein said ester plug-preventing additive comprises one or more of C1-C30 alcohol esters of C1-C30 carboxylic acids, ethylene glycol monoesters of C1-C30 carboxylic acids, ethylene glycol diesters of C1-C30 carboxylic acids, propylene glycol monoesters of C1-C30 carboxylic acids, propylene glycol diesters of C1-C30 carboxylic acids, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of C4-C20 alkyl ethers, C1-C30 carboxylic acid monoesters and polyesters of di-C8-C30 alkyl ethers, and mixtures thereof.
- 4. The method of clause 1, wherein said ester plug-preventing additive comprises one or more of C1-C22 alcohol esters of C1-C22 carboxylic acids, C11-C22 alcohol esters of C3-C10 carboxylic acids, ethylene glycol monoesters of C1-C22 carboxylic acids, ethylene glycol diesters of C 1-C22 carboxylic acids, propylene glycol monoesters of C 1-C22 carboxylic acids, propylene glycol diesters of C1-C22 carboxylic acids, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of C4-C22 alkyl ethers, C1-C22 carboxylic acid monoesters and polyesters of di-C8-C22 alkyl ethers, and mixtures thereof.
- 5. The method of clause 1, wherein said ester plug-preventing additive is formed from an acid having from about 4 to about 28 carbon atoms, and an alcohol having from about 2 to about 22 carbon atoms.
- 6. The method of clause 1, wherein said ester plug-preventing additive comprises a polymer chain that includes up to about 12 PEG units, PPG units, or a combination thereof
- 7. The method of clause 1, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein each R2, which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein each R3, which may be the same or different, includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R3 group is attached to R2 via an ether linkage. - 8. The method of clause 1, wherein said ester plug-preventing additive is represented by the formula
wherein R4 includes a linear or branched, alkyl or alkylene group having from 1 to about 22 carbon atoms, wherein n is an integer from 1 to about 20, wherein x is zero or an integer up to about 12, and wherein y is zero or an integer up to about 12. - 9. The method of clause 1, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein R2 includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein R3 includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein R3 is attached to R2 via an ether linkage. - 10. The method of clause 1, wherein said ester plug-preventing additive comprises acetyl tributyl citrate, acetyl triethyl citrate, acetyl triethylhexyl citrate, acetyl trihexyl citrate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, butyroyl trihexyl citrate, dibutyl adipate, dibutyloctyl malate, dibutyl oxalate, dibutyl phthalate, dibutyl sebacate, dicapryl adipate, dicaprylyl/capryl sebacate, diethylene glycol dibenzoate, diethylene glycol diethylhexanoate/diisononanoate, diethylene glycol diisononanoate, diethylene glycol rosinate, diethylhexyl adipate, diethylhexyl phthalate, diethylhexyl sebacate, diethylhexyl succinate, diethylhexyl terephthalate, diethyl oxalate, diethyl phthalate, diethyl sebacate, diethyl succinate, diisoamyl malate, diisobutyl adipate, diisobutyl maleate, diisobutyl oxalate, diisocetyl adipate, diisocetyl dodecanedioate, diisodecyl adipate, diisononyl adipate, diisocetyl adipate, diisooctyl maleate, diisooctyl sebacate, diisopropyl adipate, diisopropyl oxalate, diisopropyl sebacate, diisopropyl dimer dilinoleate, diisostearyl adipate, diisostearyl fumarate, diisostearyl glutarate, diisostearyl malate, diisostearyl sebacate, dimethyl adipate, dimethyl oxalate, dimethyl phthalate, dioctyldodecyl adipate, Dioctyldodecyl Dimer Dilinoleate, Dioctyldodecyl Dodecanedioate, Dioctyldodecyl Fluoroheptyl Citrate, Dioctyldodecyl IPDI, Dioctyldodecyl Lauroyl Glutamate, Dioctyldodecyl Malate, Dioctyldodecyl Sebacate, Dioctyldodecyl Stearoyl Glutamate, dipentaerythrityl hexa c5-9 acid esters, dipentaerythrityl hexa c5-10 acid esters, dipropyl oxalate, pentaerythrityl tetra c5-9 acid esters, pentaerythrityl tetra c5-10 acid esters, , tributyl citrate, tricaprylyl/capryl trimellitate, triethyl citrate, triethylene glycol dibenzoate, triethylene glycol rosinate, triethylhexyl citrate, triethylhexyl trimellitate, trimethylpentanediyl dibenzoate, trimethyl pentanyl diisobutyrate, polyglyceryl-6 pentacaprylate, polyglyceryl-10 pentahydroxystearate, polyglyceryl-10 pentaisostearate, polyglyceryl-10 pentalaurate, polyglyceryl-10 pentalinoleate, polyglyceryl-5 pentamyristate, polyglyceryl-4 pentaoleate, polyglyceryl-6 pentaoleate, polyglyceryl-10 pentaoleate, polyglyceryl-3 pentaricinoleate, polyglyceryl-6 pentaricinoleate, polyglyceryl-10 pentaricinoleate, polyglyceryl-4 pentastearate, polyglyceryl-6 pentastearate, polyglyceryl-10 pentastearate, sorbeth-20 pentaisostearate, sorbeth-30 pentaisostearate, sorbeth-40 pentaisostearate, sorbeth-50 pentaisostearate, sorbeth-40 pentaoleate, sucrose pentaerucate, triacetin, Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-Myristyl ether adipate, PPG-2 Myristyl ether propionate, or a mixture thereof.
- 11. The method of clause 1, wherein said ester plug-preventing additive comprises Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-myristyl ether adipate, PPG-2 myristyl ether propionate, or a mixture thereof.
- 12. The method of clause 1, wherein said polyacrylate thickener is selected from the group consisting of carbomers, acrylates/C 10-30 alkyl acrylate crosspolymers, copolymers of acrylic acid and alkyl (C5 -C10) acrylate, copolymers of acrylic acid and maleic anhydride, and mixtures thereof.
- 13. The method of clause 1, wherein the composition comprises from about 0.005 to about 4 wt. % ester plug-preventing additive, based upon the total weight of the composition.
- 14. A method of reducing the frequency of mis-directed output from a gel dispenser, the method comprising the steps of:
- combining a C1-4 alcohol, an effective amount of a polyacrylate thickener; and a plug-preventing additive to form a dispensable gel composition; wherein said plug-preventing additive comprises an ester having from two to six ester groups or a polymeric ester that includes at least one ester group; and wherein said composition comprises at least about 40 wt. % of said alcohol and less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, all based upon the total weight of the dispensable gel composition; and
- storing the dispensable gel in a pump-type dispenser that includes an outlet and that is activated on a periodic basis, wherein the frequency of mis-directed output is reduced when compared to a dispensable gel that does not include the plug-preventing additive.
- 15. The method of clause 14, wherein the dispenser output will be outside of a 2.5 inch square zone about 3 inches directly below the dispenser outlet with less than 50 % frequency when the rate of dispenser actuation is 0.1 actuations per hour.
- 16. The method of clause 14, wherein the reduction in the frequency of mis-directed dispenser output is at least about 50%, when compared to a control gel that is tested under the same conditions.
- 17. The method of clause 14, wherein the reduction in the frequency of mis-directed dispenser output is at least about 70%, when compared to a control gel that is tested under the same conditions.
- 18. The method of clause 14, wherein the reduction in the frequency of mis-directed dispenser output is at least about 90%, when compared to a control gel that is tested under the same conditions.
- 19. The method of clause 14, wherein said ester plug-preventing additive comprises a polymer chain that includes up to about 12 PEG units, PPG units, or a combination thereof
- 20. The method of clause 14, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein each R2, which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein each R3, which may be the same or different, includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R3 group is attached to R2 via an ether linkage. - 21. The method of clause 14, wherein said ester plug-preventing additive is represented by the formula
wherein R4 includes a linear or branched, alkyl or alkylene group having from 1 to about 22 carbon atoms, wherein n is an integer from 1 to about 20, wherein x is zero or an integer up to about 12, and wherein y is zero or an integer up to about 12. - 22. The method of clause 14, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein R2 includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein R3 includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein R3 is attached to R2 via an ether linkage. - 23. The method of clause 14, wherein said ester plug-preventing additive comprises acetyl tributyl citrate, acetyl triethyl citrate, acetyl triethylhexyl citrate, acetyl trihexyl citrate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, butyroyl trihexyl citrate, dibutyl adipate, dibutyloctyl malate, dibutyl oxalate, dibutyl phthalate, dibutyl sebacate, dicapryl adipate, dicaprylyl/capryl sebacate, diethylene glycol dibenzoate, diethylene glycol diethylhexanoate/diisononanoate, diethylene glycol diisononanoate, diethylene glycol rosinate, diethylhexyl adipate, diethylhexyl phthalate, diethylhexyl sebacate, diethylhexyl succinate, diethylhexyl terephthalate, diethyl oxalate, diethyl phthalate, diethyl sebacate, diethyl succinate, diisoamyl malate, diisobutyl adipate, diisobutyl maleate, diisobutyl oxalate, diisocetyl adipate, diisocetyl dodecanedioate, diisodecyl adipate, diisononyl adipate, diisocetyl adipate, diisooctyl maleate, diisooctyl sebacate, diisopropyl adipate, diisopropyl oxalate, diisopropyl sebacate, diisopropyl dimer dilinoleate, diisostearyl adipate, diisostearyl fumarate, diisostearyl glutarate, diisostearyl malate, diisostearyl sebacate, dimethyl adipate, dimethyl oxalate, dimethyl phthalate, dioctyldodecyl adipate, Dioctyldodecyl Dimer Dilinoleate, Dioctyldodecyl Dodecanedioate, Dioctyldodecyl Fluoroheptyl Citrate, Dioctyldodecyl IPDI, Dioctyldodecyl Lauroyl Glutamate, Dioctyldodecyl Malate, Dioctyldodecyl Sebacate, Dioctyldodecyl Stearoyl Glutamate, dipentaerythrityl hexa c5-9 acid esters, dipentaerythrityl hexa c5-10 acid esters, dipropyl oxalate, pentaerythrityl tetra c5-9 acid esters, pentaerythrityl tetra c5-10 acid esters, , tributyl citrate, tricaprylyl/capryl trimellitate, triethyl citrate, triethylene glycol dibenzoate, triethylene glycol rosinate, triethylhexyl citrate, triethylhexyl trimellitate, trimethylpentanediyl dibenzoate, trimethyl pentanyl diisobutyrate, polyglyceryl-6 pentacaprylate, polyglyceryl-10 pentahydroxystearate, polyglyceryl-10 pentaisostearate, polyglyceryl-10 pentalaurate, polyglyceryl-10 pentalinoleate, polyglyceryl-5 pentamyristate, polyglyceryl-4 pentaoleate, polyglyceryl-6 pentaoleate, polyglyceryl-10 pentaoleate, polyglyceryl-3 pentaricinoleate, polyglyceryl-6 pentaricinoleate, polyglyceryl-10 pentaricinoleate, polyglyceryl-4 pentastearate, polyglyceryl-6 pentastearate, polyglyceryl-10 pentastearate, sorbeth-20 pentaisostearate, sorbeth-30 pentaisostearate, sorbeth-40 pentaisostearate, sorbeth-50 pentaisostearate, sorbeth-40 pentaoleate, sucrose pentaerucate, triacetin, Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-Myristyl ether adipate, PPG-2 Myristyl ether propionate, or a mixture thereof.
- 24. The method of clause 14, wherein said ester plug-preventing additive comprises Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-myristyl ether adipate, PPG-2 myristyl ether propionate, or a mixture thereof.
- 25. The method of clause 14, wherein said polyacrylate thickener is selected from the group consisting of carbomers, acrylates/C 10-30 alkyl acrylate crosspolymers, copolymers of acrylic acid and alkyl (C5 -C10) acrylate, copolymers of acrylic acid and maleic anhydride, and mixtures thereof.
- 26. The method of clause 14, wherein the composition comprises from about 0.005 to about 4 wt. % ester plug-preventing additive, based upon the total weight of the composition.
- 27. A gel composition comprising:
- at least about 60 wt. % of a C1-4 alcohol, based upon the total weight of the gel composition;
- an effective amount of a polyacrylate thickener;
- of an ester plug-preventing additive that includes from two to six ester groups or a polymeric ester that includes at least one ester group; and
- less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, based upon the total weight of the gel composition.
- 28. The composition of clause 27, wherein said alcohol comprises methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tertiary butanol, or mixtures thereof.
- 29. The composition of clause 27, wherein said ester plug-preventing additive comprises one or more of C1-C30 alcohol esters of C1-C30 carboxylic acids, ethylene glycol monoesters of C1-C30 carboxylic acids, ethylene glycol diesters of C1-C30 carboxylic acids, propylene glycol monoesters of C1-C30 carboxylic acids, propylene glycol diesters of C1-C30 carboxylic acids, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of C4-C20 alkyl ethers, C1-C30 carboxylic acid monoesters and polyesters of di-C8-C30 alkyl ethers, and mixtures thereof.
- 30. The composition of clause 27, wherein said ester plug-preventing additive comprises one or more of C1-C22 alcohol esters of C1-C22 carboxylic acids, C11-C22 alcohol esters of C3-C10 carboxylic acids, ethylene glycol monoesters of C1-C22 carboxylic acids, ethylene glycol diesters of C1-C22 carboxylic acids, propylene glycol monoesters of C1-C22 carboxylic acids, propylene glycol diesters of C1-C22 carboxylic acids, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C22 carboxylic acid monoesters and polyesters of C4-C22 alkyl ethers, C1-C22 carboxylic acid monoesters and polyesters of di-C8-C22 alkyl ethers, and mixtures thereof.
- 31. The composition of clause 27, wherein said ester plug-preventing additive is formed from an acid having from about 8 to about 22 carbon atoms, and an alcohol having from about 2 to about 22 carbon atoms.
- 32. The composition of clause 27, wherein said ester plug-preventing additive comprises a polymer chain that includes up to about 12 PEG units, PPG units, or a combination thereof
- 33. The composition of clause 27, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein each R2, which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein each R3, which may be the same or different, includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R3 group is attached to R2 via an ether linkage. - 34. The composition of clause 27, wherein said ester plug-preventing additive is represented by the formula
wherein R4 includes a linear or branched, alkyl or alkylene group having from 1 to about 22 carbon atoms, wherein n is an integer from 1 to about 20, wherein x is zero or an integer up to about 12, and wherein y is zero or an integer up to about 12. - 35. The composition of clause 27, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein R2 includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein R3 includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein R3 is attached to R2 via an ether linkage. - 36. The composition of clause 27, wherein said ester plug-preventing additive comprises acetyl tributyl citrate, acetyl triethyl citrate, acetyl triethylhexyl citrate, acetyl trihexyl citrate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, butyroyl trihexyl citrate, dibutyl adipate, dibutyloctyl malate, dibutyl oxalate, dibutyl phthalate, dibutyl sebacate, dicapryl adipate, dicaprylyl/capryl sebacate, diethylene glycol dibenzoate, diethylene glycol diethylhexanoate/diisononanoate, diethylene glycol diisononanoate, diethylene glycol rosinate, diethylhexyl adipate, diethylhexyl phthalate, diethylhexyl sebacate, diethylhexyl succinate, diethylhexyl terephthalate, diethyl oxalate, diethyl phthalate, diethyl sebacate, diethyl succinate, diisoamyl malate, diisobutyl adipate, diisobutyl maleate, diisobutyl oxalate, diisocetyl adipate, diisocetyl dodecanedioate, diisodecyl adipate, diisononyl adipate, diisocetyl adipate, diisooctyl maleate, diisooctyl sebacate, diisopropyl adipate, diisopropyl oxalate, diisopropyl sebacate, diisopropyl dimer dilinoleate, diisostearyl adipate, diisostearyl fumarate, diisostearyl glutarate, diisostearyl malate, diisostearyl sebacate, dimethyl adipate, dimethyl oxalate, dimethyl phthalate, dioctyldodecyl adipate, Dioctyldodecyl Dimer Dilinoleate, Dioctyldodecyl Dodecanedioate, Dioctyldodecyl Fluoroheptyl Citrate, Dioctyldodecyl IPDI, Dioctyldodecyl Lauroyl Glutamate, Dioctyldodecyl Malate, Dioctyldodecyl Sebacate, Dioctyldodecyl Stearoyl Glutamate, dipentaerythrityl hexa c5-9 acid esters, dipentaerythrityl hexa c5-10 acid esters, dipropyl oxalate, pentaerythrityl tetra c5-9 acid esters, pentaerythrityl tetra c5-10 acid esters, , tributyl citrate, tricaprylyl/capryl trimellitate, triethyl citrate, triethylene glycol dibenzoate, triethylene glycol rosinate, triethylhexyl citrate, triethylhexyl trimellitate, trimethylpentanediyl dibenzoate, trimethyl pentanyl diisobutyrate, polyglyceryl-6 pentacaprylate, polyglyceryl-10 pentahydroxystearate, polyglyceryl-10 pentaisostearate, polyglyceryl-10 pentalaurate, polyglyceryl-10 pentalinoleate, polyglyceryl-5 pentamyristate, polyglyceryl-4 pentaoleate, polyglyceryl-6 pentaoleate, polyglyceryl-10 pentaoleate, polyglyceryl-3 pentaricinoleate, polyglyceryl-6 pentaricinoleate, polyglyceryl-10 pentaricinoleate, polyglyceryl-4 pentastearate, polyglyceryl-6 pentastearate, polyglyceryl-10 pentastearate, sorbeth-20 pentaisostearate, sorbeth-30 pentaisostearate, sorbeth-40 pentaisostearate, sorbeth-50 pentaisostearate, sorbeth-40 pentaoleate, sucrose pentaerucate, triacetin, Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-Myristyl ether adipate, PPG-2 Myristyl ether propionate, or a mixture thereof.
- 37. The composition of clause 27, wherein said ester plug-preventing additive comprises Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-myristyl ether adipate, PPG-2 myristyl ether propionate, or a mixture thereof.
- 38. The composition of clause 27, wherein said polyacrylate thickener is selected from the group consisting of carbomers, acrylates/C 10-30 alkyl acrylate crosspolymers, copolymers of acrylic acid and alkyl (C5 -C10) acrylate, copolymers of acrylic acid and maleic anhydride, and mixtures thereof.
- 39. The composition of clause 27, wherein the composition comprises from about 0.005 to about 4 wt. % ester plug-preventing additive, based upon the total weight of the composition.
- 40. The composition of clause 27, wherein the viscosity of the composition is from about 1000 to about 65,000 centipoise.
Claims (15)
- A method of reducing the formation of coagulated gel deposits, the method comprising the steps of:combining a C1-4 alcohol, an effective amount of a polyacrylate thickener; and a plug-preventing additive to form a dispensable gel composition; wherein said plug-preventing additive comprises an ester having from two to six ester groups or a polymeric ester that includes at least one ester group; and wherein said composition comprises at least about 40 wt. % of said alcohol and less than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, all based upon the total weight of the dispensable gel composition; andstoring the dispensable gel in a pump-type dispenser that is activated on a periodic basis, wherein the formation of coagulated gel deposits is reduced when compared to a dispensable gel that does not include the plug-preventing additive.
- The method of claim 1, wherein said ester plug-preventing additive comprises one or more of C1-C30 alcohol esters of C1-C30 carboxylic acids, ethylene glycol monoesters of C1-C30 carboxylic acids, ethylene glycol diesters of C1-C30 carboxylic acids, propylene glycol monoesters of C1-C30 carboxylic acids, propylene glycol diesters of C1-C30 carboxylic acids, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of C4-C20 alkyl ethers, C1-C30 carboxylic acid monoesters and polyesters of di-C8-C30 alkyl ethers, and mixtures thereof.
- The method of claim 1, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein each R2, which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein each R3, which may be the same or different, includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R3 group is attached to R2 via an ether linkage. - The method of claim 1, wherein said ester plug-preventing additive is represented by the formula
wherein R4 includes a linear or branched, alkyl or alkylene group having from 1 to about 22 carbon atoms, wherein n is an integer from 1 to about 20, wherein x is zero or an integer up to about 12, and wherein y is zero or an integer up to about 12. - The method of claim 1, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein R2 includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein R3 includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein R3 is attached to R2 via an ether linkage. - The method of claim 1, wherein said ester plug-preventing additive comprises acetyl tributyl citrate, acetyl triethyl citrate, acetyl triethylhexyl citrate, acetyl trihexyl citrate, butyl benzyl phthalate, butyl phthalyl butyl glycolate, butyroyl trihexyl citrate, dibutyl adipate, dibutyloctyl malate, dibutyl oxalate, dibutyl phthalate, dibutyl sebacate, dicapryl adipate, dicaprylyl/capryl sebacate, diethylene glycol dibenzoate, diethylene glycol diethylhexanoate/diisononanoate, diethylene glycol diisononanoate, diethylene glycol rosinate, diethylhexyl adipate, diethylhexyl phthalate, diethylhexyl sebacate, diethylhexyl succinate, diethylhexyl terephthalate, diethyl oxalate, diethyl phthalate, diethyl sebacate, diethyl succinate, diisoamyl malate, diisobutyl adipate, diisobutyl maleate, diisobutyl oxalate, diisocetyl adipate, diisocetyl dodecanedioate, diisodecyl adipate, diisononyl adipate, diisocetyl adipate, diisooctyl maleate, diisooctyl sebacate, diisopropyl adipate, diisopropyl oxalate, diisopropyl sebacate, diisopropyl dimer dilinoleate, diisostearyl adipate, diisostearyl fumarate, diisostearyl glutarate, diisostearyl malate, diisostearyl sebacate, dimethyl adipate, dimethyl oxalate, dimethyl phthalate, dioctyldodecyl adipate, Dioctyldodecyl Dimer Dilinoleate, Dioctyldodecyl Dodecanedioate, Dioctyldodecyl Fluoroheptyl Citrate, Dioctyldodecyl IPDI, Dioctyldodecyl Lauroyl Glutamate, Dioctyldodecyl Malate, Dioctyldodecyl Sebacate, Dioctyldodecyl Stearoyl Glutamate, dipentaerythrityl hexa c5-9 acid esters, dipentaerythrityl hexa c5-10 acid esters, dipropyl oxalate, pentaerythrityl tetra c5-9 acid esters, pentaerythrityl tetra c5-10 acid esters, , tributyl citrate, tricaprylyl/capryl trimellitate, triethyl citrate, triethylene glycol dibenzoate, triethylene glycol rosinate, triethylhexyl citrate, triethylhexyl trimellitate, trimethylpentanediyl dibenzoate, trimethyl pentanyl diisobutyrate, polyglyceryl-6 pentacaprylate, polyglyceryl-10 pentahydroxystearate, polyglyceryl-10 pentaisostearate, polyglyceryl-10 pentalaurate, polyglyceryl-10 pentalinoleate, polyglyceryl-5 pentamyristate, polyglyceryl-4 pentaoleate, polyglyceryl-6 pentaoleate, polyglyceryl-10 pentaoleate, polyglyceryl-3 pentaricinoleate, polyglyceryl-6 pentaricinoleate, polyglyceryl-10 pentaricinoleate, polyglyceryl-4 pentastearate, polyglyceryl-6 pentastearate, polyglyceryl-10 pentastearate, sorbeth-20 pentaisostearate, sorbeth-30 pentaisostearate, sorbeth-40 pentaisostearate, sorbeth-50 pentaisostearate, sorbeth-40 pentaoleate, sucrose pentaerucate, triacetin, Di-PPG-3-ceteth-4 adipate, Di-PPG-2-myreth-10 adipate, Di-PPG-3-Myristyl ether adipate, PPG-2 Myristyl ether propionate, or a mixture thereof.
- The method of claim 1, wherein the composition comprises from about 0.005 to about 4 wt. % ester plug-preventing additive, based upon the total weight of the composition.
- A gel composition comprising:at least about 60 wt. % of a C1-4 alcohol, based upon the total weight of the gel composition, wherein said alcohol comprises methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tertiary butanol, or mixtures thereof;an effective amount of a polyacrylate thickener;an ester plug-preventing additive that includes from two to six ester groups or a polymeric ester that includes at least one ester group; andless than about 1 wt. % of fatty alcohol, petrolatum, mineral oil, or mixtures thereof, based upon the total weight of the gel composition.
- The composition of claim 8, wherein said ester plug-preventing additive comprises one or more of C1-C30 alcohol esters of C1-C30 carboxylic acids, ethylene glycol monoesters of C1-C30 carboxylic acids, ethylene glycol diesters of C1-C30 carboxylic acids, propylene glycol monoesters of C1-C30 carboxylic acids, propylene glycol diesters of C1-C30 carboxylic acids, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of polypropylene glycols, C1-C30 carboxylic acid monoesters and polyesters of C4-C20 alkyl ethers, C1-C30 carboxylic acid monoesters and polyesters of di-C8-C30 alkyl ethers, and mixtures thereof.
- The composition of claim 8, wherein said ester plug-preventing additive comprises a polymer chain that includes up to about 12 PEG units, PPG units, or a combination thereof.
- The composition of claim 8, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein each R2, which may be the same or different, includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein each R3, which may be the same or different, includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein each R3 group is attached to R2 via an ether linkage. - The composition of claim 8, wherein said ester plug-preventing additive is represented by the formula
wherein R4 includes a linear or branched, alkyl or alkylene group having from 1 to about 22 carbon atoms, wherein n is an integer from 1 to about 20, wherein x is zero or an integer up to about 12, and wherein y is zero or an integer up to about 12. - The composition of claim 8, wherein said ester plug-preventing additive is represented by the formula
wherein R1 is a linear or branched alkyl group, having from 1 to about 28 carbon atoms, wherein R2 includes a polyether chain having from 1 to about 12 PEG or PPG groups, or a combination thereof, wherein R3 includes a linear or branched alkyl or alkylene group having from 1 to about 30 carbon atoms, and wherein R3 is attached to R2 via an ether linkage. - The composition of claim 8, wherein said polyacrylate thickener is selected from the group consisting of carbomers, acrylates/C 10-30 alkyl acrylate crosspolymers, copolymers of acrylic acid and alkyl (C5 -C10) acrylate, copolymers of acrylic acid and maleic anhydride, and mixtures thereof.
- The composition of claim 8, wherein the viscosity of the composition is from about 1000 to about 65,000 centipoise.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US98385607P | 2007-10-30 | 2007-10-30 | |
| EP08844714.9A EP2288416B2 (en) | 2007-10-30 | 2008-10-29 | Hydroalcoholic gel compositions for use with dispensers |
Related Parent Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08844714.9 Division | 2008-10-29 | ||
| EP08844714.9A Division-Into EP2288416B2 (en) | 2007-10-30 | 2008-10-29 | Hydroalcoholic gel compositions for use with dispensers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2460560A1 true EP2460560A1 (en) | 2012-06-06 |
Family
ID=40591724
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08844714.9A Active EP2288416B2 (en) | 2007-10-30 | 2008-10-29 | Hydroalcoholic gel compositions for use with dispensers |
| EP12156895A Withdrawn EP2460560A1 (en) | 2007-10-30 | 2008-10-29 | Hydroalcoholic gel compositions for use with dispensers |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08844714.9A Active EP2288416B2 (en) | 2007-10-30 | 2008-10-29 | Hydroalcoholic gel compositions for use with dispensers |
Country Status (15)
| Country | Link |
|---|---|
| US (1) | US8822547B2 (en) |
| EP (2) | EP2288416B2 (en) |
| JP (1) | JP5385908B2 (en) |
| KR (2) | KR20150086390A (en) |
| CN (1) | CN102123764B (en) |
| AT (1) | ATE547152T1 (en) |
| AU (1) | AU2008318855B2 (en) |
| BR (1) | BRPI0818481A8 (en) |
| CA (1) | CA2702608C (en) |
| DK (1) | DK2288416T4 (en) |
| ES (1) | ES2383253T5 (en) |
| MY (1) | MY147580A (en) |
| PT (1) | PT2288416E (en) |
| TW (1) | TWI429456B (en) |
| WO (1) | WO2009058802A2 (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7842725B2 (en) | 2008-07-24 | 2010-11-30 | Ecolab USA, Inc. | Foaming alcohol compositions with selected dimethicone surfactants |
| AU2010202421B2 (en) | 2009-06-15 | 2014-05-08 | Gojo Industries, Inc. | Method and compositions for use with gel dispensers |
| EP2549993A4 (en) | 2010-03-23 | 2014-08-06 | Gojo Ind Inc | ANTIMICROBIAL COMPOSITIONS |
| US9232790B2 (en) * | 2011-08-02 | 2016-01-12 | Kimberly-Clark Worldwide, Inc. | Antimicrobial cleansing compositions |
| US9636286B2 (en) | 2013-06-19 | 2017-05-02 | Coloplast A/S | Antimicrobial cleanser |
| DE102013215828A1 (en) | 2013-08-09 | 2015-02-12 | Beiersdorf Ag | Gel-shaped sunscreen with fatty alcohols |
| DE102013215831A1 (en) | 2013-08-09 | 2015-02-12 | Beiersdorf Ag | Gel-shaped, alcoholic sunscreen |
| BR112016022734B1 (en) | 2014-04-30 | 2020-12-01 | Kimberly-Clark Worldwide, Inc. | method for reducing cell oxidative stress, method for reducing cell apoptosis induced by oxidative stress and method for reducing cell photodamage |
| GB2541315B (en) | 2014-04-30 | 2019-07-10 | Kimberly Clark Co | Topical compositions for stimulating adipogenesis and lipogenesis to reduce the signs of skin aging |
| GB2541317B (en) | 2014-04-30 | 2020-06-03 | Kimberly Clark Co | Methods of reducing signs of skin aging |
| AU2014392629B2 (en) | 2014-04-30 | 2021-04-01 | Kimberly-Clark Worldwide, Inc. | Use of Undaria extract to reduce signs of skin aging |
| US11628129B2 (en) | 2017-04-04 | 2023-04-18 | Gojo Industries, Inc. | Methods and compounds for increasing virucidal efficacy in hydroalcoholic systems |
| DE102018216823A1 (en) | 2018-10-01 | 2020-04-02 | Beiersdorf Ag | Fatty alcohol-containing, ethanolic sunscreen with a reduced tendency to stain textiles |
| DE102019218009A1 (en) * | 2019-11-22 | 2021-05-27 | Henkel Ag & Co. Kgaa | Alcohol-based sprayable gel with yield point |
| CN116075583A (en) | 2020-07-06 | 2023-05-05 | 埃科莱布美国股份有限公司 | Foaming mixed alcohol/water compositions comprising a combination of an alkylsiloxane and a hydrotrope/solubilizer |
| EP4176031A1 (en) | 2020-07-06 | 2023-05-10 | Ecolab USA Inc. | Peg-modified castor oil based compositions for microemulsifying and removing multiple oily soils |
| US12472129B2 (en) | 2020-07-06 | 2025-11-18 | Ecolab Usa Inc. | Foaming mixed alcohol/water compositions comprising a structured alkoxylated siloxane |
| CN116983230A (en) * | 2023-09-26 | 2023-11-03 | 天津世纪康泰生物医学工程有限公司 | No-blocking wash-free ethanol gel after drying and preparation method thereof |
Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3069319A (en) * | 1959-10-14 | 1962-12-18 | American Cyanamid Co | Sprayable composition |
| US4933177A (en) * | 1981-02-27 | 1990-06-12 | Societe Anonyme Dite: L'oreal | Cosmetic compositions for the treatment of the hair and skin contain in the form of a powder particles resulting from the pulverization of at least one plant substance and a cohesion agent |
| US4961921A (en) * | 1989-04-21 | 1990-10-09 | Gaf Chemicals Corporation | Non-aerosol pump spray compositions |
| US5265772A (en) | 1992-10-19 | 1993-11-30 | Gojo Industries, Inc. | Dispensing apparatus with tube locator |
| US5340570A (en) * | 1991-11-18 | 1994-08-23 | Shiseido Co., Ltd. | Dispensing system for sprayable gel-type hair conditioner |
| EP0796610A1 (en) * | 1996-03-18 | 1997-09-24 | Unilever Plc | Hair treatment composition comprising a crosslinked C1-C10 alkyl vinyl ether/maleic anhydride copolymer |
| WO1999039687A1 (en) * | 1998-02-04 | 1999-08-12 | Unilever Plc | Underarm cosmetic compositions with lower alkyl acetate |
| US5944227A (en) | 1998-07-06 | 1999-08-31 | Gojo Industries, Inc. | Dispenser for multiple cartridges |
| WO2003003998A1 (en) * | 2001-07-06 | 2003-01-16 | Stockhausen Gmbh & Co. Kg | Method for producing disinfectant skin and hand care gels |
| US6877642B1 (en) | 2000-01-04 | 2005-04-12 | Joseph S. Kanfer | Wall-mounted dispenser for liquids |
| US7028861B2 (en) | 2003-12-16 | 2006-04-18 | Joseph S. Kanfer | Electronically keyed dispensing systems and related methods of installation and use |
| US20060124662A1 (en) | 2004-12-15 | 2006-06-15 | Reynolds Aaron R | Electronically keyed dispensing systems and related methods utilizing near field frequency response |
| US20060243740A1 (en) | 2003-03-21 | 2006-11-02 | Reynolds Aaron R | Apparatus for hands-free dispensing of a measured quantity of material |
| EP1764135A1 (en) * | 2005-09-19 | 2007-03-21 | Clariant International Ltd. | Cold production method for pearly lustre preparations containing alcohols |
| US20070082039A1 (en) * | 2004-10-18 | 2007-04-12 | Jones Gerald S Jr | Synthesis of fatty alcohol esters of alpha-hydroxy carboxylic acids, the use of the same as percutaneous permeation enhancers, and topical gels for the transdermal delivery of steroids |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CH557174A (en) | 1970-01-30 | 1974-12-31 | Gaf Corp | COSMETIC PREPARATION. |
| US4525348A (en) * | 1983-12-19 | 1985-06-25 | Yoshitomi Pharmaceutical Industries, Ltd. | Pranoprofen gelled ointment |
| US4956170A (en) * | 1989-06-28 | 1990-09-11 | S. C. Johnson & Son, Inc. | Skin moisturizing/conditioning antimicrobial alcoholic gels |
| JP2961556B2 (en) | 1990-06-15 | 1999-10-12 | 丸石製薬株式会社 | Composition for skin disinfection |
| JPH04244010A (en) | 1991-01-30 | 1992-09-01 | Lion Corp | Spray hair fixing cosmetics |
| US5167950A (en) | 1991-03-28 | 1992-12-01 | S. C. Johnson & Son | High alcohol content aerosol antimicrobial mousse |
| JPH0761028A (en) * | 1993-08-27 | 1995-03-07 | Mita Ind Co Ltd | Powder jet image forming apparatus |
| EP1407761A1 (en) | 1995-06-22 | 2004-04-14 | Minnesota Mining And Manufacturing Company | Stable hydroalcoholic compositions |
| US7566460B2 (en) | 1995-06-22 | 2009-07-28 | 3M Innovative Properties Company | Stable hydroalcoholic compositions |
| US6096349A (en) * | 1996-11-13 | 2000-08-01 | The Procter & Gamble Company | Sprayable disinfecting compositions and processes for disinfecting surfaces therewith |
| US6488665B1 (en) * | 1997-04-08 | 2002-12-03 | Allegiance Corporation | Antimicrobial alcohol gel pre-operative skin-preparation delivery system |
| US5985294A (en) | 1997-11-05 | 1999-11-16 | The Procter & Gamble Company | Personal care compositions |
| JP3524823B2 (en) * | 1999-08-30 | 2004-05-10 | 株式会社アリミノ | Hairdressing composition |
| JP2001278777A (en) * | 2000-03-30 | 2001-10-10 | Kose Corp | Skin detergent |
| JP2002167315A (en) | 2000-12-01 | 2002-06-11 | Lion Corp | Hair styling composition for non-gas former |
| DE10138456A1 (en) † | 2001-08-04 | 2003-02-13 | Bode Chemie Gmbh & Co | Alcoholic gels |
| PL1668105T3 (en) | 2003-09-29 | 2019-03-29 | Deb Ip Limited | High alcohol content gel-like and foaming compositions |
| JP2005187411A (en) | 2003-12-26 | 2005-07-14 | Lion Corp | Cleaning composition for non-aerosol type foam discharge container |
| US20050220745A1 (en) * | 2004-04-01 | 2005-10-06 | L'oreal S.A. | Cosmetic compositions containing swelled silicone elastomer powders and gelled block copolymers |
| MX2007010289A (en) * | 2005-02-25 | 2008-02-20 | Solutions Biomed Llc | Aqueous disinfectants and sterilants. |
| DE102005059742A1 (en) † | 2005-12-13 | 2007-06-14 | Beiersdorf Ag | Transparent sunscreen |
| US8758739B2 (en) * | 2006-05-03 | 2014-06-24 | L'oreal | Cosmetic compositions containing block copolymers, tackifiers and gelling agents |
| RU2008151178A (en) | 2006-05-24 | 2010-06-27 | Дзе Дайл Корпорейшн (Us) | METHODS AND PRODUCTS POSSESSING A STRONG ANTI-VIRAL AND ANTIBACTERIAL ACTION |
-
2008
- 2008-10-29 CA CA2702608A patent/CA2702608C/en active Active
- 2008-10-29 PT PT08844714T patent/PT2288416E/en unknown
- 2008-10-29 WO PCT/US2008/081502 patent/WO2009058802A2/en not_active Ceased
- 2008-10-29 JP JP2010532189A patent/JP5385908B2/en active Active
- 2008-10-29 DK DK08844714.9T patent/DK2288416T4/en active
- 2008-10-29 KR KR1020157018134A patent/KR20150086390A/en not_active Ceased
- 2008-10-29 AU AU2008318855A patent/AU2008318855B2/en active Active
- 2008-10-29 US US12/739,033 patent/US8822547B2/en active Active
- 2008-10-29 KR KR1020107009454A patent/KR101567614B1/en not_active Expired - Fee Related
- 2008-10-29 EP EP08844714.9A patent/EP2288416B2/en active Active
- 2008-10-29 AT AT08844714T patent/ATE547152T1/en active
- 2008-10-29 EP EP12156895A patent/EP2460560A1/en not_active Withdrawn
- 2008-10-29 CN CN200880113944.2A patent/CN102123764B/en not_active Expired - Fee Related
- 2008-10-29 BR BRPI0818481A patent/BRPI0818481A8/en active Search and Examination
- 2008-10-29 TW TW097141599A patent/TWI429456B/en not_active IP Right Cessation
- 2008-10-29 MY MYPI2010001596A patent/MY147580A/en unknown
- 2008-10-29 ES ES08844714T patent/ES2383253T5/en active Active
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3069319A (en) * | 1959-10-14 | 1962-12-18 | American Cyanamid Co | Sprayable composition |
| US4933177A (en) * | 1981-02-27 | 1990-06-12 | Societe Anonyme Dite: L'oreal | Cosmetic compositions for the treatment of the hair and skin contain in the form of a powder particles resulting from the pulverization of at least one plant substance and a cohesion agent |
| US4961921A (en) * | 1989-04-21 | 1990-10-09 | Gaf Chemicals Corporation | Non-aerosol pump spray compositions |
| US5340570A (en) * | 1991-11-18 | 1994-08-23 | Shiseido Co., Ltd. | Dispensing system for sprayable gel-type hair conditioner |
| US5265772A (en) | 1992-10-19 | 1993-11-30 | Gojo Industries, Inc. | Dispensing apparatus with tube locator |
| EP0796610A1 (en) * | 1996-03-18 | 1997-09-24 | Unilever Plc | Hair treatment composition comprising a crosslinked C1-C10 alkyl vinyl ether/maleic anhydride copolymer |
| WO1999039687A1 (en) * | 1998-02-04 | 1999-08-12 | Unilever Plc | Underarm cosmetic compositions with lower alkyl acetate |
| US5944227A (en) | 1998-07-06 | 1999-08-31 | Gojo Industries, Inc. | Dispenser for multiple cartridges |
| US6877642B1 (en) | 2000-01-04 | 2005-04-12 | Joseph S. Kanfer | Wall-mounted dispenser for liquids |
| WO2003003998A1 (en) * | 2001-07-06 | 2003-01-16 | Stockhausen Gmbh & Co. Kg | Method for producing disinfectant skin and hand care gels |
| US20060243740A1 (en) | 2003-03-21 | 2006-11-02 | Reynolds Aaron R | Apparatus for hands-free dispensing of a measured quantity of material |
| US7028861B2 (en) | 2003-12-16 | 2006-04-18 | Joseph S. Kanfer | Electronically keyed dispensing systems and related methods of installation and use |
| US20070082039A1 (en) * | 2004-10-18 | 2007-04-12 | Jones Gerald S Jr | Synthesis of fatty alcohol esters of alpha-hydroxy carboxylic acids, the use of the same as percutaneous permeation enhancers, and topical gels for the transdermal delivery of steroids |
| US20060124662A1 (en) | 2004-12-15 | 2006-06-15 | Reynolds Aaron R | Electronically keyed dispensing systems and related methods utilizing near field frequency response |
| EP1764135A1 (en) * | 2005-09-19 | 2007-03-21 | Clariant International Ltd. | Cold production method for pearly lustre preparations containing alcohols |
Non-Patent Citations (2)
| Title |
|---|
| "CTFA International Buyer's Guide", 2004 |
| "The CTFA International Cosmetic Ingredient Dictionary and Handbook", 2005 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110144214A1 (en) | 2011-06-16 |
| CA2702608A1 (en) | 2009-05-07 |
| EP2288416B1 (en) | 2012-02-29 |
| BRPI0818481A8 (en) | 2016-04-26 |
| EP2288416A2 (en) | 2011-03-02 |
| ATE547152T1 (en) | 2012-03-15 |
| CN102123764B (en) | 2015-04-15 |
| BRPI0818481A2 (en) | 2014-10-07 |
| PT2288416E (en) | 2012-05-02 |
| TW200934515A (en) | 2009-08-16 |
| WO2009058802A3 (en) | 2011-02-10 |
| CN102123764A (en) | 2011-07-13 |
| JP2011517310A (en) | 2011-06-02 |
| KR20100087139A (en) | 2010-08-03 |
| AU2008318855B2 (en) | 2013-06-13 |
| ES2383253T5 (en) | 2015-03-06 |
| EP2288416B2 (en) | 2014-12-24 |
| DK2288416T3 (en) | 2012-06-25 |
| JP5385908B2 (en) | 2014-01-08 |
| MY147580A (en) | 2012-12-31 |
| CA2702608C (en) | 2016-05-10 |
| TWI429456B (en) | 2014-03-11 |
| WO2009058802A2 (en) | 2009-05-07 |
| AU2008318855A1 (en) | 2009-05-07 |
| ES2383253T3 (en) | 2012-06-19 |
| KR101567614B1 (en) | 2015-11-09 |
| HK1159540A1 (en) | 2012-08-03 |
| US8822547B2 (en) | 2014-09-02 |
| KR20150086390A (en) | 2015-07-27 |
| DK2288416T4 (en) | 2015-02-23 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2288416B1 (en) | Hydroalcoholic gel compositions for use with dispensers | |
| US10285399B2 (en) | Methods and compositions for use with gel dispensers | |
| ES2634191T3 (en) | New water-in-oil type emulsions with high aqueous phase content, liquid and stable storage consistencies | |
| JP3912546B2 (en) | Shampoo composition | |
| US20230218491A1 (en) | Methods and compounds for increasing virucidal efficacy in hydroalcoholic systems | |
| JP2022528342A (en) | Alkane and ester-based compositions with temperature storage stability, their use as softeners and emulsions containing them | |
| JP7129386B2 (en) | aerosol cosmetics | |
| JP7083263B2 (en) | Makeup protective cosmetics | |
| US20080311053A1 (en) | Fluorinated phosphate ester surfactant and fluorinated alcohol compositions | |
| HK1159540B (en) | Hydroalcoholic gel compositions for use with dispensers | |
| JP3446172B2 (en) | Cleansing cosmetics | |
| CN120957699A (en) | Skin care compositions | |
| WO2024134242A1 (en) | Oil-in-water emulsion | |
| JP2024083776A (en) | Composition | |
| JP2025186375A (en) | Reverse latex for cosmetic compositions containing a specific chelating agent and a polyelectrolyte combining strong acid and neutral functions | |
| CN120897732A (en) | Sunscreen compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AC | Divisional application: reference to earlier application |
Ref document number: 2288416 Country of ref document: EP Kind code of ref document: P |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
| 17P | Request for examination filed |
Effective date: 20121205 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20130716 |