EP2454405B1 - Method and apparatus of forming integrated multilayer fabrics - Google Patents
Method and apparatus of forming integrated multilayer fabrics Download PDFInfo
- Publication number
- EP2454405B1 EP2454405B1 EP09847437.2A EP09847437A EP2454405B1 EP 2454405 B1 EP2454405 B1 EP 2454405B1 EP 09847437 A EP09847437 A EP 09847437A EP 2454405 B1 EP2454405 B1 EP 2454405B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yarn
- winding
- binder
- yarns
- fabrics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004744 fabric Substances 0.000 title claims description 156
- 238000000034 method Methods 0.000 title claims description 49
- 238000004804 winding Methods 0.000 claims description 199
- 239000011230 binding agent Substances 0.000 claims description 163
- 238000003780 insertion Methods 0.000 claims description 64
- 230000037431 insertion Effects 0.000 claims description 63
- 239000000969 carrier Substances 0.000 claims description 47
- 230000033001 locomotion Effects 0.000 claims description 38
- 230000010354 integration Effects 0.000 claims description 25
- 238000010009 beating Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 14
- 238000007493 shaping process Methods 0.000 claims description 11
- 238000009940 knitting Methods 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 89
- 239000000835 fiber Substances 0.000 description 23
- 230000008569 process Effects 0.000 description 14
- 239000002131 composite material Substances 0.000 description 6
- 239000011157 advanced composite material Substances 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 238000009954 braiding Methods 0.000 description 3
- 229920006253 high performance fiber Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- 239000011162 core material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 239000013305 flexible fiber Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- -1 poly(ethylene terephthalate) Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 238000009958 sewing Methods 0.000 description 2
- 239000011165 3D composite Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B21/14—Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B39/00—Knitting processes, apparatus or machines not otherwise provided for
- D04B39/06—Knitting processes, apparatus or machines not otherwise provided for adapted for combined knitting and weaving
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D37/00—Circular looms
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D41/00—Looms not otherwise provided for, e.g. for weaving chenille yarn; Details peculiar to these looms
- D03D41/004—Looms for three-dimensional fabrics
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B21/20—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes specially adapted for knitting articles of particular configuration
Definitions
- This invention generally relates to multilayer fabrics, and more particularly to integrated multilayer fabrics having a prescribed integration pattern formed of winding yarns arranged in a plurality of layers at prescribed angles bound together by a set of through-the-layers binder yarns, and an apparatus and method of fabricating same.
- Integrated multilayer fabrics have wide applications such as advanced composites, power transmission and conveyer belts, fabrics in paper forming machines, among others.
- Advanced composites include high performance fibers in a matrix. Depending on the fibers and matrix materials and manufacturing parameters, advanced composites offer superior strength-to-weigh and modulus-to-weight ratios, fatigue strength, damage tolerance, tailored coefficient of thermal expansion, chemical resistance, weatherability, temperature resistance, among others.
- Fibers are the basic load-bearing component in a fiber reinforced composite. They are often pre-assembled into various forms to facilitate the fabricsation of composite parts. Advanced composites are often made from prepreg tapes, sheets and fabrics that are parallel continuous fibers or single-layer fabrics held by a matrix forming material. They are used to make parts by laminate layup and tape or filament winding. The traditional laminated composites are vulnerable to delamination because the layers of strong fibers are connected only by the matrix material that often is much weaker than the fibers. The introduction of fiber reinforcement in the through-the-thickness direction in a three dimensional composite could effectively control delamination failures and make the composite very damage tolerant. Besides performance enhancement, composites reinforced with integrated fiber structures may also offer other advantages such as the potential for automated and net shape processing and lower manufacturing cost.
- Fully interlocked and adjacent layer interlocked three dimensional fabrics may be formed by weaving or braiding.
- the yarns are crimped due to yarn interlacing or intertwining, and the yarn crimps in the fabrics cause a reduction in the stiffness and strength of the composites reinforced with such fabrics.
- the fabrics layers are integrated by interlocking, there are no reinforcing yarns placed directly in the through-the-thickness direction.
- Multilayer fabrics having layers of parallel fibers at predetermined angles bound by a knitting process are also commonly used in reinforced composites. Methods of making such multilayer fabrics are disclosed in U.S. Patent No. 4,518,640 to Wilkens . These methods are suitable for making flat fabrics with fixed yarn orientations.
- the in-plane layers normally include high performance fibers such as glass and/or graphite fibers, whereas the knitting yarns generally are made of flexible fibers such as poly(ethylene terephthalate) (PET) or aramid rather than using the same type of high performance fibers as in the in-plane layers.
- PET poly(ethylene terephthalate)
- aramid rather than using the same type of high performance fibers as in the in-plane layers.
- Fabrics with solid rectangular or other cross sectional shapes such as I and T sections may be constructed with reinforcing fibers in both in-plane and through-the-thickness directions by three dimensional weaving and braiding processes, as disclosed in, for examples, U.S. Patent No. 4,312,261 to Florentine and U.S. Patent No. 5,085,252 to Mohamed et al. These processes are generally limited in the dimensions of the fabrics that can be produced.
- Tubular fabrics may be constructed with reinforcing fibers both in the circumferential layers and in the through-the-thickness direction, as disclosed in, for example, U.S. Patent No. 4,001,478 to King and U.S. Patent No. 4,346,741 to Banos et al. Such processes do not afford the flexibility of changing the fabrics geometry and yarn orientation at different locations in the fabrics as needed.
- US 6129122 A discloses a method for fabricating multilayer fabrics having a prescribed integration pattern with winding yarns and binder yarns, comprising the steps of:
- JPH-01174637 refers to weaving of a three-dimensional circular woven fabric in high efficiency, by forming a spiral traversing path of a shuttle which delivers a circumferential yarn of a three-dimensional circular woven fabric.
- a number of shuttle guides are arranged in circular form around a core material.
- a number of yarn beams to supply a radial yarn arranged in radial direction in a three-dimensional circular woven fabric and a number of yarn beam to supply a longitudinal yarn to be arranged in the axial direction along the inner circumference of a circular woven fabric are arranged in a state to form circular forms at the out side of the shuttle guides.
- Each shuttle guide is provided with plural stages of guiding channels extending in a direction perpendicular to the radial direction radiating from the center material. The height of the guiding channels are made to be successively lowered to form a spiral path.
- US5091246 (A ) shows a three dimensional fabric of substantially columnar shape having an axis.
- a plurality of substantially cylindrical axial yarn layers are arranged concentrically about and outward from the axis.
- Each of the axial yarn layers includes a plurality of axial yarns extending longitudinally relative to the axis.
- Circumferential yarn turns are inserted to extend circumferentially around the axis at several positions including outside of the outermost axial yarn layer.
- a plurality of radial yarns are woven between the circumferential yarn turns to extend zigzag successively in the longitudinal and radial directions relative to the axis.
- the radial yarns are woven substantially perpendicular to the circumferential yarns, between the circumferential yarns, each of the radial yarns are woven in a particular plane that extends through the axis.
- the traditional methods of forming integrated fabrics lack the flexibility of varying the fiber orientation and/or the cross sectional shape and/or dimension as the fabrics are being formed. They are often associated with other disadvantages such as low production rate, low level of automation, need for frequent replenishment of yarn packages, and low fiber volume fraction.
- the cross sections include regular or irregular tubular shapes, and regular or irregular solid shapes such as I-section, T-Section, U-Section, and flat section, among others.
- the present invention provides an apparatus and method according to claims 1 and 6.
- the apparatus and method disclosed in this invention overcome the above mentioned limitations and disadvantages of the existing methods for forming integrated fabrics, so that parts with simple as well as complex shapes can be made without yarn interlacing or intertwining.
- the apparatus and method provide for the use of large yarn packages, simple tension control, the ability to be scaled up to produce fabrics with large cross sectional dimensions, and the process can be highly automated, among other advantages.
- the method is for fabricating multilayer fabrics having a prescribed integration pattern with winding yarns and binder yarns.
- the method includes the step of providing a plurality of winding yarn carriers arranged in a multilayer structure along a first direction and configured such that each winding yarn carrier is operably movable with respect to one another along a second direction that is perpendicular to the first direction.
- Each winding yarn carrier has a set of spatially-separated supply yarn packages adapted for supplying the winding yarns to form a winding yarn layer, whereby the supplied winding yarns from the plurality of winding yarn carriers form a plurality of winding yarn layers.
- the plurality of winding yarn carriers arranged such that the winding yarns form a plurality of winding yarn layers at prescribed angles in ranges from about 0° to about ⁇ 90° with respect to the first direction that is coincident with the longitudinal direction of the formed multilayer fabrics.
- the method further includes the step of (a) forming a plurality of crossover points of the winding yarns by moving at least one winding yarn carrier along the second direction according to the integration pattern; (b) transporting the binder yarns through the plurality of winding yarn layers at predetermined locations along the first direction, and locking the binder yarns in place; (c) pushing the binder yarns toward the fell of the multilayer fabrics; (d) taking up the formed multilayer fabrics; and (e) repeating steps (a)-(d) until the multilayer fabrics are fabricated to have desired dimensions.
- the method may also include the step of removing slacks in the binder yarns before the taking up step is performed.
- the binder yarns are carried by a plurality of binder yarn insertion needles positioned in relation to the plurality of winding yarn carriers.
- the transporting step is performed by passing the plurality of binder yarn insertion needles through the plurality of winding yarn layers at the predetermined locations along the first direction, so as to fasten the plurality of winding yarn layers together through- the-layers.
- the prescribed integration pattern is formed by controlling the layer number of the winding yarns, relative distances of the winding yarn carrier movements, and activation or omission of the binder yarns in operation.
- the apparatus is for fabricating multilayer fabrics having a prescribed integration pattern.
- the apparatus has a plurality of winding yarn carriers arranged in a multilayer structure along a first direction and configured such that each winding yarn carrier is operably movable with respect to one another along a second direction that is perpendicular to the first direction.
- Each winding yarn carrier has a set of spatially-separated supply yarn packages adapted for supplying the winding yarns to form a winding yarn layer, whereby the supplied winding yarns from the plurality of winding yarn carriers form a plurality of winding yarn layers.
- the movements of one or more winding yarn carriers in opposite directions create a plurality of crossover points by the corresponding winding yarns.
- Each winding yarn carrier can be moved angularly or translationally along the second direction.
- the apparatus also has a plurality of binder yarn insertion needles positioned in relation to the plurality of winding yarn carriers for transporting binder yarns through the plurality of winding yarn layers at the predetermined locations along the first direction, so as to fasten the plurality of winding yarn layers together through- the-layers, and at least one beating bar adapted for inserting through openings of the laid winding yarns for a beat-up motion at a predetermined time to push the binder yarns toward the fell of the fabrics.
- the apparatus further comprises a plurality of shaping rings adapted for condensing the plurality of winding yarn layers and supporting the winding yarn layers while the binder yarns are inserted and during the beat-up motion.
- the positions of the plurality of shaping rings are changeable during each cycle of fabrics formation.
- the apparatus may also have a holding yarn feeding needle and a holding yarn insertion needle positioned in relation to the plurality of binder yarn insertion needles such that when the plurality of binder yarn insertion needles insert the binder yarns through the plurality of winding yarn layers to form open loops by folding the binder yarns, the holding yarn feeding needle and the holding yarn insertion needle move a holding yarn through the binder yarn open loops to lock the binder yarns in the fabrics.
- the apparatus may further have an auxiliary bar accompanying each binder yarn insertion needle for keeping the binder yarn loop open while the holding yarn is inserted, and for tightening the binder yarn after the holding yarn is inserted while limiting the bending curvature in the binder yarn as it is tightened.
- the apparatus may include a knitting mechanism having a needle and a yarn feeder to form a loop of the holding yarn that goes through the open loop of the folded binder yarn, wherein the holding yarn is adapted for holding the binder yarn in place, and preventing the binder yarn from being pulled out as the binder yarn insertion needle retreats and the slacks in the binder yarn is removed.
- the apparatus has one or more tensioning control devices placed in each winding yarn carrier for regulating the tension of the winding yarns as the winding yarns are withdrawn, and a braking mechanism associated with the one or more tension control devices for preventing the winding yarns from being withdrawn during the beat-up motion.
- the method is for fabricating multilayer fabrics having a prescribed integration pattern in connection with an apparatus having a plurality of winding yarn carriers arranged in a multilayer structure along a first direction and configured such that each winding yarn carrier is operably movable with respect to one another along a second direction that is perpendicular to the first direction, wherein each winding yarn carrier has a set of spatially-separated supply yarn packages adapted for supplying the winding yarns to form a winding yarn layer, whereby the supplied winding yarns from the plurality of winding yarn carriers form a plurality of winding yarn layers, and wherein the movements of one or more winding yarn carriers in opposite directions create a plurality of crossover points by the corresponding winding yarns; a plurality of binder yarn insertion needles positioned in relation to the plurality of winding yarn carriers; a holding yarn feeding needle and a holding yarn insertion needle having a hook, positioned in relation to the plurality of binder yarn insertion needles; and at least one beating bar.
- the method includes the steps of (a) moving at least one winding yarn carrier along the second direction according to the integration pattern to form a plurality of crossover points of the winding yarns; (b) inserting the plurality of binder yarn insertion needles through the plurality of winding yarn layers at predetermined locations along the first direction for transporting the binder yarns through the plurality of winding yarn layers to form open loops by folding the binder yarns; (c) locking the inserted binder yarns in place, so as to fasten the plurality of winding yarn layers together through-the-layers; (d) inserting at least one beating bar through openings of the laid winding yarns for a beat-up motion at a predetermined time to push the binder yarns toward the fell of the fabrics; (e) taking up the formed multilayer fabrics at a predetermined rate; and (f) repeating steps (a)-(e) until the multilayer fabrics are fabricated to have desired dimensions.
- the motion of locking the binder yarns in place comprises the steps of (a) inserting the holding yarn insertion needle through a binder yarn loop; (b) retreating the binder yarn insertion needle associated with the bind yarn loop from the top surface of the fabrics without tightening the binder yarn; (c) moving the holding yarn feeding needle inward to feed a holding yarn to the hook of the holding yarn insertion needle; (d) retreating the holding yarn insertion needle through the binder yarn loop and lock the holding yarn into a prior holding yarn loop; (e) tightening the binder yarn as the holding yarn insertion needle retreats further; and (f) moving the holding yarn insertion needle circumferentially to a next binder yarn loop; and (g) repeating steps (a)-(f) until all the binder yarns are locked and tightened in place.
- the method further includes the step of beating up the winding yarn layers before the inserting step is performed.
- the present invention provides a method for forming integrated multilayer fabrics having a variety of constant or variable cross sectional shapes, constant or variable fiber orientation and integration patterns.
- the integrated multilayer fabrics there are two systems of yarns, one is the system of winding yarns and the other is system of binder yarns.
- the winding yarns are arranged in a plurality of layers at prescribed angles that can vary in ranges from about 0° to about ⁇ 90° with respect to longitudinal direction of the fabrics.
- the binder yarns are to fasten, through-the- layers, the layers of winding yarns together.
- An auxiliary system of holding yarns may be used to lock the binder yarns in place.
- the holding yarns Since the primary function of the holding yarns is not to provide structural strength and stiffness to the fabrics structure but to simply hold the binder yarns in place, flexible fibers such as nylon or PET threads may be used as the holding yarns.
- the supply yarns to form each layer of winding yarns are placed in an individual carrier.
- Fabrics with desired cross sectional shape, fiber orientation and integration patterns is formed by repeating a cycle of operations which includes the following steps: forming a plurality of new cross over points of the winding yarns by moving each of the winding yarn carriers according to the integration pattern; transporting a plurality of the binder yarns through the layers of the winding yarns at desired locations and locking the binder yarns in place; pushing the binder yarns to the position to form the fabrics and removing any slacks in the yarns and taking up the newly formed fabrics by a controlled distance in the direction of the machine direction, i.e., the longitudinal direction of the fabrics.
- the integrated multilayer fabrics having variable cross sectional shapes, variable fiber orientations, and variable integration patterns are formed by controlling the number of fiber layers engaged, the relative distances of the winding yarn carriers movement, and activation or omission of binder yarns as the forming process proceeds.
- this invention in one aspect, relates to integrated multilayer fabrics formed of yarns arranged in a plurality of layers at prescribed angles bound together by a set of through-the-layers yarns, and a method of forming the integrated multilayer fabrics that can be tailored to have a variety of constant or variable cross sectional shapes, constant or variable fiber orientation and integration patterns according to requirements for local fiber architecture and fabrics geometry.
- integrated multilayer fabrics are fabricated with two systems of yarns: the winding yarns and the binder yarns.
- the winding yarns are arranged in a plurality of layers at prescribed angles that can vary in the ranges from about 0° to about ⁇ 90° with respect to longitudinal direction of the fabrics.
- the binder yarns are used to fasten the desired layers of the winding yarns together.
- the number of the layers of winding yarns can be varied as desired but limited by the number of winding yarn carriers in the apparatus.
- the layers of winding yarns may be shaped by an optional mandrel of appropriate geometry along the machine direction to form hollow fabrics or fabrics with a core.
- the winding yarn orientations for the individual layers can be altered for different locations within the fabrics as the fabrics are being formed.
- FIG. 1 an apparatus 100 for fabricating integrated multilayer fabrics with a prescribed integration pattern is schematically shown according to one embodiment of the present invention.
- the apparatus 100 has two winding yarn carriers 110a and 110b arranged in a two-layer structure along a first direction 101 and configured such that each winding yarn carrier 110a/110b is operably movable with respect to one another along a second direction 102a/102b that is perpendicular to the first direction 101.
- the winding yarns 130 are provided by a plurality of yarn supply packages 120.
- the yarn supply packages 120 supplying the winding yarns 130 to form each layer of the fabrics are spaced mounted on one individual yarn carrier 110a/110b.
- a mandrel 103 is employed to take up the fabricated fabrics 112, and the ends of the winding yarns 130 extending from the supply yarn packages 120 are incorporated into the fabrics laid on the mandrel 103.
- the movements of one or more winding yarn carriers 110a and 110b in opposite directions 102a and 102b create a plurality of crossover points 132 by the corresponding winding yarns 130.
- the winding yarn carriers 110a and 110b are configured to be angularly rotatable either individually or cooperatively, along the directions 102a and/or 102b.
- the rotations of the winding yarn carriers 110a and 110b are around the axis 101 of the mandrel 103.
- tubular or tubular-like multilayer fabrics can be fabricated.
- the winding yarn carriers may be configured to be translationally movable either individually or cooperatively along a (second) direction that is perpendicular to a (first) direction along which the winding yarn carriers are aligned/arranged.
- the movements of the winding yarn carriers are controlled by the control system.
- the prescribed integration pattern is formed by controlling the layer number of the winding yarns, relative distances of the winding yarn carrier movements, the distance of fabric take up in the first direction, and activation or omission of the binder yarns in operation.
- two winding yarn carriers 110a and 110b are utilized in the exemplary embodiment, and thus the supplied winding yarns 130 from the two winding yarn carriers 110a and 110b form a two winding yarn layers.
- the number of the winding yarn carriers determines the maximum number of layers of the fabrics to be produced.
- Each carrier of the winding yarns places the yarns in a ply at a desired angle by a motion in the circumferential direction such as the rotation of a rigid ring carrier.
- the winding yarn carriers may be rigid or flexible.
- Rigid carriers may be circular as described in the example or having other geometric shapes. Examples of flexible carriers include belts, chains, and linked mechanisms moving on tracks.
- winding yarns from some of the winding yarn carriers can be supplied from a stationary creel. These carriers may remain stationary during the process to place 0° layers of winding yarns, or may move in a back and forth motion to form ribs in the fabric.
- Packages to supply the winding yarns may contain one yarn per package, or multiple yarns in a single package to supply multiple threads during the winding motion.
- the packages may be of flanged, cross wound, or other configurations.
- the winding yarn packages may be placed on the inside face, on the outside face, a side face, or inside the carrier.
- one or more tension control devices may be fitted on each winding yarn carrier to regulate the tension of the winding yarns as they are withdrawn.
- a braking mechanism may be employed as a separate or as a part of the tension control device to prevent the winding yarns from being withdrawn during beat-up.
- the apparatus 100 also has one or more binder yarn insertion needles 140 positioned in relation to the plurality of winding yarn carriers 130 for transporting/inserting binder yarns through the plurality of winding yarn layers at the predetermined locations along the first direction 101, so as to fasten the plurality of winding yarn layers together through-the-layers.
- the binder yarns are provided by appropriate packages that can be individual packages or multi-thread packages such as beams.
- the binder yarns are inserted through the layers of winding yarns 130 at appropriate internals specified by the integration pattern and are locked in place.
- the binder yarns may be introduced in the through-the-layers direction after the newly laid winding yarns 130 are condensed together, much like in sewing.
- the sewing-type of layer integration may result in some impalement of the winding yarns.
- the binder yarns can be inserted through the gaps between the newly formed crossover points 132 of the winding yarns 130 before they are condensed together to avoid impalement of the winding yarns, as in the case of the illustrative example presented earlier.
- There are several options for the mechanisms of binder yarn placement including a variety of knitting mechanisms, rapier yarn transfer mechanisms, shuttles, sewing stations, among others.
- a plurality of binder yarn insertion needles 140 is utilized to insert the binder yarns through the layers of winding yarns to form open loops by the folded binder yarns.
- the apparatus 100 may also have a holding yarn feeding needle 172 and a holding yarn insertion needle 174 positioned in relation to the plurality of binder yarn insertion needles 140.
- the holding yarn feeding needle 172 and the holding yarn insertion needle 174 move a holding yarn through the binder yarn open loops to lock the binder yarns in the fabrics.
- the apparatus 100 is equipped with the same number of needle sets for the binder yarn and the holding yarn as the number of winding yarn packages for fast operating speed.
- the motion of each needle set follows the command by the control system.
- only one holding yarn needle pair is needed. In such a case the needle pair completes one turn of movement in the circumferential direction relative to the laid winding yarn layers in each fabrics forming cycle.
- the apparatus 100 also has one or more beating bars 160 adapted for inserting through openings of the laid winding yarns for a beat-up motion at a predetermined time to push the binder yarns toward the fell 105 of the fabrics.
- the one or more beating bars 160 penetrates through openings of the laid winding yarns 130 for the beat-up motion at appropriate time to push the winding yarns 130 toward the fabrics fell 105 in preparation for binder yarn insertion.
- the beat-up motion prior to binder yarn insertion allows the binder yarns to be placed as close to the fabrics fell 105 as possible.
- the beating bar may be fitted with rotating wheels or low friction materials, together with appropriate geometry, to minimize abrasion and damage to the winding yarns.
- a post-insertion beat-up motion may follow the binder yarn insertion to push the newly inserted binder yarn to the fabrics fell 105. Similar motion may be accomplished with a single beating bar traveling in the circumferential direction, although multiple bars are preferred for operation effectiveness and efficiency.
- the apparatus 100 further comprises a plurality of shaping rings 151, 153 and 155 adapted for condensing the plurality of winding yarn layers and supporting the winding yarn layers while the binder yarns are inserted and during the beat-up motion.
- the positions of the plurality of shaping rings are changeable during each cycle of fabrics formation.
- the apparatus 100 may further have an auxiliary bar (not shown) accompanying each binder yarn insertion needle 140 for keeping the binder yarn loop open while the holding yarn is inserted, and for tightening the binder yarn after the holding yarn is inserted while limiting the bending curvature in the binder yarn as it is tightened.
- an auxiliary bar (not shown) accompanying each binder yarn insertion needle 140 for keeping the binder yarn loop open while the holding yarn is inserted, and for tightening the binder yarn after the holding yarn is inserted while limiting the bending curvature in the binder yarn as it is tightened.
- the apparatus may include a knitting mechanism having a needle and a yarn feeder to form a loop of the holding yarn that goes through the open loop of the folded binder yarn, wherein the holding yarn is adapted for holding the binder yarn in place, and preventing the binder yarn from being pulled out as the binder yarn insertion needle retreats and the slacks in the binder yarn is removed.
- integrated multilayer fabrics can be produced in connection with the apparatus as disclosed above, according to the following steps: at first, a plurality of crossover points of the winding yarns is formed by moving at least one winding yarn carrier along the second direction. The movements are controlled by a control system according to the integration pattern. Then, the binder yarns are transported or inserted through the plurality of winding yarn layers at predetermined locations along the first direction and are locked in place. The binder yarns are pushed toward the plurality of crossover points of the winding yarns to form multilayer fabrics. The formed multilayer fabrics are then taken up. The above steps are repeated until the multilayer fabrics are fabricated to have desired dimensions.
- the process can be operated in a continuous or stepwise motion with the synchronization of the motions of the winding yarn carriers, binder yarn insertion, beat-up and take-up of the fabrics.
- FIG. 2 a flow chart for fabricating multilayer fabrics are shown according to one embodiment of the present invention.
- six ring-like winding yarn carriers 310a-310f are employed.
- each winding yarn ring carrier 310a, 310b, 310c, 310d, 310e or 310f is furnished with winding yarn packages 320 and the yarn ends are tied to the mandrel 303 placed inside the shaping ring 351 along the mandrel axis 301 whose diameter matched the inner diameter of the tubular fabrics 312 to be produced.
- the following steps complete one cycle: at step 211, winding yarn carriers 310a-310f are moved, according to the designed/prescribed fabrics pattern, to deposit the winding yarns 330.
- winding yarn carriers 310a (top) and 310f (bottom) move in the positive (counterclockwise) direction for one step
- winding yarn carriers 310b and 310e in the negative (clockwise) direction for one step
- winding yarn carrier 310c remains stationary
- winding yarn carrier 310d completes one revolution.
- the brakes for the winding yarns 330 are activated for stopping depositing the winding yarns 330 at step 213.
- the beating bar 360 moves to the fabrics fell for beat-up and then retreats.
- the binder yarn 342 is inserted through the openings between the winding yarn crossover points 332.
- the binder yarn 342 is inserted and locked in place by a holding yarn 371 at step 233.
- any slacks in the binder yarn and holding yarn is removed.
- the control system determines whether the binder yarn insertion is complete at step 237. If the binder yarn insertion is not complete, the process will start at step 231. Otherwise, the brakes for the winding yarns 330 are released at step 240. Then, the fabricated fabric 312 is taken up by the mandrel 303 in a pre-set distance or rate at step 250. The control system determines whether the desired fabrics are done at step 255. If the desired fabrics are done, the fabricating process ends at step 270. Otherwise, the parameters may be adjusted if needed at step 260, then, the process is repeated from step 211.
- the processing sequence may be adjusted and the motions may be continuous or stepwise.
- the combination of the speeds of the winding yarn carriers (step size of carrier motion) and the speed of fabrics take-up in the machine direction (step size of mandrel movement) determines the local yarn orientations in the fabrics.
- the speed of the yarn carriers By varying the speed of the yarn carriers relative to that of fabrics take-up, the yarn orientations can be altered as required. Therefore it is possible to produce fabrics with varying ply angles along the length by adjusting the relative speeds of winding and take up as the fabrics are formed.
- the number of active yarns drawn from packages should be limited or thinner yarns should be used accordingly for desired layer thickness.
- Figs. 3-6 show schematically one example of the binder yarn insertion and the corresponding locking mechanism according to one embodiment of the present invention. Auxiliary parts and some movements of the parts are omitted herewith as they are known to people skilled in the art.
- a plurality of binder yarn insertion needles 340 insert the binder yarns 342 through the layers of winding yarns 330 to form open loops defined by the folded binder yarns such that a holding yarn 371 may go through the loops to lock the binder yarns 342.
- An auxiliary bar may accompany each binder yarn insertion needle 340 to keep the binder yarn loop open while the holding yarn 371 is inserted, and to help tightening the binder yarn 342 after the holding yarn 371 is inserted while limiting the bending curvature in the binder yarn 342 as it is tightened.
- a knitting mechanism including a needle and yarn feeder forms a loop of the holding yarn which goes through the open loop of the folded binder yarn.
- the purpose of the holding yarn 371 is to hold the binder yarn 342 in place in the fabrics 312, and to prevent the binder yarn 342 from being pulled out as the binder yarn insertion needle 340 retreats and the slacks in the binder yarn 342 is removed.
- the sequence of forming holding yarn loops to lock the binder yarn is as follows, with steps (a) to (d) illustrated in Figs. 3-6 , respectively:
- the holding yarn insertion mechanism moves circumferentially to the next binder yarn location, and steps (c) and (d) are repeated until all the binder yarns 341 are locked and tightened.
- the mandrel carrying the fabrics advances upward for fabrics take-up.
- the mandrel carrying the finished fabrics moves upwards such that the holding yarn (or binder yarn if holding yarn is not used) loops will be on the outer surface of the fabrics.
- the mandrel and the fabrics can move through the shaping ring downwards such that the loops formed by the holding yarn (or binder yarn if holding yarn is not used) appear on the inner surface of the fabrics.
- the insertion and locking of each binder yarn by the holding yarn at any given point can be executed or omitted via the control system, and therefore the integration pattern can be altered as desired even within the same piece of fabrics.
- Fig. 7 shows an example of tubular fabrics with a [45/-45/0/90/-45/45] layup, according to one embodiment of the present invention, where the ply orientations from inner surface to outer surface are given in degrees.
- Fabrics of various cross sectional shapes may be formed according to the above disclosed method. Some of them are illustrated in Fig. 8 as examples. Besides capable of making cylindrical tubular structures (a), many variants are available to produce fabrics with different cross sectional shapes and varying cross sectional shapes along the length.
- the mandrel can be noncircular in shape to produce fabrics having noncircular cross sections such as those depicted in (b) and (c).
- the size or shape of the cross-sectional of the fabrics can also vary along the length, such as (d).
- a mandrel is not use but a shaping mechanism is used instead so as flat (e) or other shaped sections (f) can be produced.
- a flat sectioned panel can also be made by cutting open a tubular fabric (a), and a T-section (f) can be formed by collapsing tubular fabric (a).
- a tubular fabric a
- a T-section f
- a discontinuous layer may be laid.
- a single or a plurality of such discontinuous layers manifests themselves as ribs of the fabrics (g).
- the width, height, and interval of the ribs may be varied as required.
- the ribs may be on the outer, inner or both faces of the fabrics.
- Flat sectioned fabrics with ribs may be obtained by cutting open a tubular ribbed fabric (g).
- Fabrics with varying wall thickness within a cross-sectional (i) can be made by changing the amount of axial (0 degree) yarns at different cross sectional locations, by placing incomplete layers of winding yarns, or both.
- the present invention recites an apparatus and method for fabricating integrated multilayer fabrics with the winding yarns arranged in a plurality of layers at prescribed angles bound together by a set of through-the-layers yarns.
- the integrated multilayer fabrics can be tailored to have a variety of constant or variable cross sectional shapes, constant or variable fiber orientation and integration patterns according to requirements for local fiber architecture and fabrics geometry.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Nonwoven Fabrics (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
- Woven Fabrics (AREA)
- Looms (AREA)
- Knitting Of Fabric (AREA)
Description
- This invention generally relates to multilayer fabrics, and more particularly to integrated multilayer fabrics having a prescribed integration pattern formed of winding yarns arranged in a plurality of layers at prescribed angles bound together by a set of through-the-layers binder yarns, and an apparatus and method of fabricating same.
- Integrated multilayer fabrics have wide applications such as advanced composites, power transmission and conveyer belts, fabrics in paper forming machines, among others.
- Advanced composites include high performance fibers in a matrix. Depending on the fibers and matrix materials and manufacturing parameters, advanced composites offer superior strength-to-weigh and modulus-to-weight ratios, fatigue strength, damage tolerance, tailored coefficient of thermal expansion, chemical resistance, weatherability, temperature resistance, among others.
- Fibers are the basic load-bearing component in a fiber reinforced composite. They are often pre-assembled into various forms to facilitate the fabricsation of composite parts. Advanced composites are often made from prepreg tapes, sheets and fabrics that are parallel continuous fibers or single-layer fabrics held by a matrix forming material. They are used to make parts by laminate layup and tape or filament winding. The traditional laminated composites are vulnerable to delamination because the layers of strong fibers are connected only by the matrix material that often is much weaker than the fibers. The introduction of fiber reinforcement in the through-the-thickness direction in a three dimensional composite could effectively control delamination failures and make the composite very damage tolerant. Besides performance enhancement, composites reinforced with integrated fiber structures may also offer other advantages such as the potential for automated and net shape processing and lower manufacturing cost.
- Fully interlocked and adjacent layer interlocked three dimensional fabrics may be formed by weaving or braiding. In such fabrics the yarns are crimped due to yarn interlacing or intertwining, and the yarn crimps in the fabrics cause a reduction in the stiffness and strength of the composites reinforced with such fabrics. Although the fabrics layers are integrated by interlocking, there are no reinforcing yarns placed directly in the through-the-thickness direction.
- Multilayer fabrics having layers of parallel fibers at predetermined angles bound by a knitting process, known as non-crimp fabrics, are also commonly used in reinforced composites. Methods of making such multilayer fabrics are disclosed in
U.S. Patent No. 4,518,640 to Wilkens . These methods are suitable for making flat fabrics with fixed yarn orientations. The in-plane layers normally include high performance fibers such as glass and/or graphite fibers, whereas the knitting yarns generally are made of flexible fibers such as poly(ethylene terephthalate) (PET) or aramid rather than using the same type of high performance fibers as in the in-plane layers. - Fabrics with solid rectangular or other cross sectional shapes such as I and T sections may be constructed with reinforcing fibers in both in-plane and through-the-thickness directions by three dimensional weaving and braiding processes, as disclosed in, for examples,
U.S. Patent No. 4,312,261 to Florentine andU.S. Patent No. 5,085,252 to Mohamed et al. These processes are generally limited in the dimensions of the fabrics that can be produced. - Tubular fabrics may be constructed with reinforcing fibers both in the circumferential layers and in the through-the-thickness direction, as disclosed in, for example,
U.S. Patent No. 4,001,478 to King andU.S. Patent No. 4,346,741 to Banos et al. Such processes do not afford the flexibility of changing the fabrics geometry and yarn orientation at different locations in the fabrics as needed. -
US 6129122 A discloses a method for fabricating multilayer fabrics having a prescribed integration pattern with winding yarns and binder yarns, comprising the steps of: - (a) providing a plurality of winding yarn carriers arranged in a multilayer structure along a first direction and configured such that each winding yarn carrier is operably movable with respect to one another along a second direction that is perpendicular to the first direction, wherein each winding yarn carrier provides a set of supply yarn packages mounted on the corresponding winding yarn carrier to form a winding yarn layer, whereby the supplied winding yarns from the plurality of winding yarn carriers form a plurality of winding yarn layers;
- (b) forming a plurality of crossover points of the winding yarns by moving at least one winding yarn carrier along the second direction according to the integration pattern;
- (c) transporting the binder yarns through the plurality of winding yarn layers at predetermined locations along the first direction, and locking the binder yarns in place;
- (d) pushing the binder yarns toward the fell of the multilayer fabrics;
- (e) taking up the formed multilayer fabrics; and
- (f) repeating steps (b)-(e) until the multilayer fabrics are fabricated to have desired dimensions.
- JPH-01174637 (A) refers to weaving of a three-dimensional circular woven fabric in high efficiency, by forming a spiral traversing path of a shuttle which delivers a circumferential yarn of a three-dimensional circular woven fabric. A number of shuttle guides are arranged in circular form around a core material. A number of yarn beams to supply a radial yarn arranged in radial direction in a three-dimensional circular woven fabric and a number of yarn beam to supply a longitudinal yarn to be arranged in the axial direction along the inner circumference of a circular woven fabric are arranged in a state to form circular forms at the out side of the shuttle guides. Each shuttle guide is provided with plural stages of guiding channels extending in a direction perpendicular to the radial direction radiating from the center material. The height of the guiding channels are made to be successively lowered to form a spiral path.
-
US5091246 (A ) shows a three dimensional fabric of substantially columnar shape having an axis. A plurality of substantially cylindrical axial yarn layers are arranged concentrically about and outward from the axis. Each of the axial yarn layers includes a plurality of axial yarns extending longitudinally relative to the axis. Circumferential yarn turns are inserted to extend circumferentially around the axis at several positions including outside of the outermost axial yarn layer. Inside of the innermost axial yarn layer, and between the inner and outer axial yarn layers. A plurality of radial yarns are woven between the circumferential yarn turns to extend zigzag successively in the longitudinal and radial directions relative to the axis. The radial yarns are woven substantially perpendicular to the circumferential yarns, between the circumferential yarns, each of the radial yarns are woven in a particular plane that extends through the axis. - The traditional methods of forming integrated fabrics lack the flexibility of varying the fiber orientation and/or the cross sectional shape and/or dimension as the fabrics are being formed. They are often associated with other disadvantages such as low production rate, low level of automation, need for frequent replenishment of yarn packages, and low fiber volume fraction.
- Therefore, a heretofore unaddressed need exists in the art to address the aforementioned deficiencies and inadequacies.
- It is therefore the object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics of a desired cross-sectional geometry consisting of multiple layers of fibers bound together by through-the-layers binder yarns, each layer following prescribed fiber orientation, and the fibers in the layers being not interlaced or intertwined.
- It is another object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics of desired cross sectional geometry. Examples of the cross sections include regular or irregular tubular shapes, and regular or irregular solid shapes such as I-section, T-Section, U-Section, and flat section, among others.
- It is yet another object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics of variable cross-sectional geometry such that the cross- sectional dimensions can vary along the lengthwise direction of the fabrics.
- It is a further object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics of variable cross-sectional geometry such that the shape can vary along the lengthwise direction of the fabrics.
- It is yet a further object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics of variable cross-sectional geometry such that the wall thickness for the fabrics in a hollow form, or the thickness of the fabrics in solid form, can vary along the lengthwise direction of the fabrics.
- It is one object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics of variable cross sectional geometry such that the wall thickness for hollow sectioned fabrics can vary within the cross-sectional and along the length of the fabrics.
- It is another object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics of variable cross sectional geometry such that the integration pattern can vary by the fixation or omission of selected binder yarns or by the method of binder yarn fixation.
- It is yet another object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics in which the fiber orientation of each layer may vary along the lengthwise direction of the fabrics.
- It is a further object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics by withdrawing yarns to form the fabrics layers from the yarn supply packages without paying back thus eliminating the need for springs or elastic bands for paying out and pulling back yarns as required in common two dimensional and three dimensional braiding processes.
- It is yet a further object of this invention to provide an apparatus and a method for forming integrated multilayer fabrics by controlling yarn tensions with direct tension control devices facilitated by the fact the yarns forming the fabrics layers only move in one direction from the packages without the need to compensate for yarn paying back.
- The present invention provides an apparatus and method according to
claims 1 and 6. - The apparatus and method disclosed in this invention overcome the above mentioned limitations and disadvantages of the existing methods for forming integrated fabrics, so that parts with simple as well as complex shapes can be made without yarn interlacing or intertwining. The apparatus and method provide for the use of large yarn packages, simple tension control, the ability to be scaled up to produce fabrics with large cross sectional dimensions, and the process can be highly automated, among other advantages.
- In one aspect, the method is for fabricating multilayer fabrics having a prescribed integration pattern with winding yarns and binder yarns. In one embodiment, the method includes the step of providing a plurality of winding yarn carriers arranged in a multilayer structure along a first direction and configured such that each winding yarn carrier is operably movable with respect to one another along a second direction that is perpendicular to the first direction. Each winding yarn carrier has a set of spatially-separated supply yarn packages adapted for supplying the winding yarns to form a winding yarn layer, whereby the supplied winding yarns from the plurality of winding yarn carriers form a plurality of winding yarn layers. In one embodiment, the plurality of winding yarn carriers arranged such that the winding yarns form a plurality of winding yarn layers at prescribed angles in ranges from about 0° to about ±90° with respect to the first direction that is coincident with the longitudinal direction of the formed multilayer fabrics.
- The method further includes the step of (a) forming a plurality of crossover points of the winding yarns by moving at least one winding yarn carrier along the second direction according to the integration pattern; (b) transporting the binder yarns through the plurality of winding yarn layers at predetermined locations along the first direction, and locking the binder yarns in place; (c) pushing the binder yarns toward the fell of the multilayer fabrics; (d) taking up the formed multilayer fabrics; and (e) repeating steps (a)-(d) until the multilayer fabrics are fabricated to have desired dimensions.
- The method may also include the step of removing slacks in the binder yarns before the taking up step is performed.
- In one embodiment, the binder yarns are carried by a plurality of binder yarn insertion needles positioned in relation to the plurality of winding yarn carriers. The transporting step is performed by passing the plurality of binder yarn insertion needles through the plurality of winding yarn layers at the predetermined locations along the first direction, so as to fasten the plurality of winding yarn layers together through- the-layers.
- In one embodiment, the prescribed integration pattern is formed by controlling the layer number of the winding yarns, relative distances of the winding yarn carrier movements, and activation or omission of the binder yarns in operation.
- The apparatus is for fabricating multilayer fabrics having a prescribed integration pattern.The apparatus has a plurality of winding yarn carriers arranged in a multilayer structure along a first direction and configured such that each winding yarn carrier is operably movable with respect to one another along a second direction that is perpendicular to the first direction. Each winding yarn carrier has a set of spatially-separated supply yarn packages adapted for supplying the winding yarns to form a winding yarn layer, whereby the supplied winding yarns from the plurality of winding yarn carriers form a plurality of winding yarn layers. The movements of one or more winding yarn carriers in opposite directions create a plurality of crossover points by the corresponding winding yarns. Each winding yarn carrier can be moved angularly or translationally along the second direction.
- The apparatus also has a plurality of binder yarn insertion needles positioned in relation to the plurality of winding yarn carriers for transporting binder yarns through the plurality of winding yarn layers at the predetermined locations along the first direction, so as to fasten the plurality of winding yarn layers together through- the-layers, and at least one beating bar adapted for inserting through openings of the laid winding yarns for a beat-up motion at a predetermined time to push the binder yarns toward the fell of the fabrics.
- In one embodiment, the apparatus further comprises a plurality of shaping rings adapted for condensing the plurality of winding yarn layers and supporting the winding yarn layers while the binder yarns are inserted and during the beat-up motion. The positions of the plurality of shaping rings are changeable during each cycle of fabrics formation.
- The apparatus may also have a holding yarn feeding needle and a holding yarn insertion needle positioned in relation to the plurality of binder yarn insertion needles such that when the plurality of binder yarn insertion needles insert the binder yarns through the plurality of winding yarn layers to form open loops by folding the binder yarns, the holding yarn feeding needle and the holding yarn insertion needle move a holding yarn through the binder yarn open loops to lock the binder yarns in the fabrics.
- In addition, the apparatus may further have an auxiliary bar accompanying each binder yarn insertion needle for keeping the binder yarn loop open while the holding yarn is inserted, and for tightening the binder yarn after the holding yarn is inserted while limiting the bending curvature in the binder yarn as it is tightened.
- In one embodiment, the apparatus may include a knitting mechanism having a needle and a yarn feeder to form a loop of the holding yarn that goes through the open loop of the folded binder yarn, wherein the holding yarn is adapted for holding the binder yarn in place, and preventing the binder yarn from being pulled out as the binder yarn insertion needle retreats and the slacks in the binder yarn is removed.
- In one embodiment, the apparatus has one or more tensioning control devices placed in each winding yarn carrier for regulating the tension of the winding yarns as the winding yarns are withdrawn, and a braking mechanism associated with the one or more tension control devices for preventing the winding yarns from being withdrawn during the beat-up motion.
- The method is for fabricating multilayer fabrics having a prescribed integration pattern in connection with an apparatus having a plurality of winding yarn carriers arranged in a multilayer structure along a first direction and configured such that each winding yarn carrier is operably movable with respect to one another along a second direction that is perpendicular to the first direction, wherein each winding yarn carrier has a set of spatially-separated supply yarn packages adapted for supplying the winding yarns to form a winding yarn layer, whereby the supplied winding yarns from the plurality of winding yarn carriers form a plurality of winding yarn layers, and wherein the movements of one or more winding yarn carriers in opposite directions create a plurality of crossover points by the corresponding winding yarns; a plurality of binder yarn insertion needles positioned in relation to the plurality of winding yarn carriers; a holding yarn feeding needle and a holding yarn insertion needle having a hook, positioned in relation to the plurality of binder yarn insertion needles; and at least one beating bar.
- In one embodiment, the method includes the steps of (a) moving at least one winding yarn carrier along the second direction according to the integration pattern to form a plurality of crossover points of the winding yarns; (b) inserting the plurality of binder yarn insertion needles through the plurality of winding yarn layers at predetermined locations along the first direction for transporting the binder yarns through the plurality of winding yarn layers to form open loops by folding the binder yarns; (c) locking the inserted binder yarns in place, so as to fasten the plurality of winding yarn layers together through-the-layers; (d) inserting at least one beating bar through openings of the laid winding yarns for a beat-up motion at a predetermined time to push the binder yarns toward the fell of the fabrics; (e) taking up the formed multilayer fabrics at a predetermined rate; and (f) repeating steps (a)-(e) until the multilayer fabrics are fabricated to have desired dimensions.
- In one embodiment, the motion of locking the binder yarns in place comprises the steps of (a) inserting the holding yarn insertion needle through a binder yarn loop; (b) retreating the binder yarn insertion needle associated with the bind yarn loop from the top surface of the fabrics without tightening the binder yarn; (c) moving the holding yarn feeding needle inward to feed a holding yarn to the hook of the holding yarn insertion needle; (d) retreating the holding yarn insertion needle through the binder yarn loop and lock the holding yarn into a prior holding yarn loop; (e) tightening the binder yarn as the holding yarn insertion needle retreats further; and (f) moving the holding yarn insertion needle circumferentially to a next binder yarn loop; and (g) repeating steps (a)-(f) until all the binder yarns are locked and tightened in place.
- In one embodiment, the method further includes the step of beating up the winding yarn layers before the inserting step is performed.
- The present invention provides a method for forming integrated multilayer fabrics having a variety of constant or variable cross sectional shapes, constant or variable fiber orientation and integration patterns. In the integrated multilayer fabrics, there are two systems of yarns, one is the system of winding yarns and the other is system of binder yarns. The winding yarns are arranged in a plurality of layers at prescribed angles that can vary in ranges from about 0° to about ±90° with respect to longitudinal direction of the fabrics. The binder yarns are to fasten, through-the- layers, the layers of winding yarns together. An auxiliary system of holding yarns may be used to lock the binder yarns in place. Since the primary function of the holding yarns is not to provide structural strength and stiffness to the fabrics structure but to simply hold the binder yarns in place, flexible fibers such as nylon or PET threads may be used as the holding yarns. The supply yarns to form each layer of winding yarns are placed in an individual carrier. Fabrics with desired cross sectional shape, fiber orientation and integration patterns is formed by repeating a cycle of operations which includes the following steps: forming a plurality of new cross over points of the winding yarns by moving each of the winding yarn carriers according to the integration pattern; transporting a plurality of the binder yarns through the layers of the winding yarns at desired locations and locking the binder yarns in place; pushing the binder yarns to the position to form the fabrics and removing any slacks in the yarns and taking up the newly formed fabrics by a controlled distance in the direction of the machine direction, i.e., the longitudinal direction of the fabrics. The integrated multilayer fabrics having variable cross sectional shapes, variable fiber orientations, and variable integration patterns are formed by controlling the number of fiber layers engaged, the relative distances of the winding yarn carriers movement, and activation or omission of binder yarns as the forming process proceeds.
- These and other aspects of the present invention will become apparent from the following description of the preferred embodiment taken in conjunction with the following drawings, although variations and modifications therein may be affected without departing from the scope of the appended claims.
- The accompanying drawings illustrate one or more embodiments of the invention and, together with the written description, serve to explain the principles of the invention. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment, wherein:
-
Fig. 1 shows schematically an apparatus for fabricating multilayer fabrics according to one embodiment of the present invention; -
Fig. 2 shows a flow chart of a method for fabricating multilayer fabrics according to one embodiment of the present invention; -
Figs. 3-6 show schematically a sequential process for fabricating multilayer fabrics in connection with an apparatus according to one embodiment of the present invention, (a) a top view of the apparatus, and (b) a cross-sectional view of the apparatus; -
Fig. 7 shows schematically tubular fabrics with a [45/-45/0/90/-45/45] layup according to one embodiment of the present invention, where the ply orientations from inner surface to outer surface are given in degrees; and -
Fig. 8 shows schematically the fabrics of various cross-sectional shapes (a)-(i) fabricated according to embodiments of the present invention. - The present invention is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Various embodiments of the invention are now described in detail. Referring to the drawings, like numbers indicate like components throughout the views. As used in the description herein and throughout the claims that follow, the meaning of "a", "an", and "the" includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein and throughout the claims that follow, the meaning of "in" includes "in" and "on" unless the context clearly dictates otherwise.
- The terms used in this specification generally have their ordinary meanings in the art, within the context of the invention, and in the specific context where each term is used. Certain terms that are used to describe the invention are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the invention. The use of examples anywhere in this specification, including examples of any terms discussed herein, is illustrative only, and in no way limits the scope and meaning of the invention or of any exemplified term. Likewise, the invention is not limited to various embodiments given in this specification.
- As used herein, "around", "about" or "approximately" shall generally mean within 20 percent, preferably within 10 percent, and more preferably within 5 percent of a given value or range. Numerical quantities given herein are approximate, meaning that the term "around", "about" or "approximately" can be inferred if not expressly stated.
- The description will be made as to the embodiments of the present invention in conjunction with the accompanying drawings in
Figs. 1-8 . In accordance with the purposes of this invention, as embodied and broadly described herein, this invention, in one aspect, relates to integrated multilayer fabrics formed of yarns arranged in a plurality of layers at prescribed angles bound together by a set of through-the-layers yarns, and a method of forming the integrated multilayer fabrics that can be tailored to have a variety of constant or variable cross sectional shapes, constant or variable fiber orientation and integration patterns according to requirements for local fiber architecture and fabrics geometry. - According to the present invention, integrated multilayer fabrics are fabricated with two systems of yarns: the winding yarns and the binder yarns. The winding yarns are arranged in a plurality of layers at prescribed angles that can vary in the ranges from about 0° to about ±90° with respect to longitudinal direction of the fabrics. The binder yarns are used to fasten the desired layers of the winding yarns together. The number of the layers of winding yarns can be varied as desired but limited by the number of winding yarn carriers in the apparatus. In one embodiment, the layers of winding yarns may be shaped by an optional mandrel of appropriate geometry along the machine direction to form hollow fabrics or fabrics with a core. The winding yarn orientations for the individual layers can be altered for different locations within the fabrics as the fabrics are being formed.
- Referring to
Fig. 1 , anapparatus 100 for fabricating integrated multilayer fabrics with a prescribed integration pattern is schematically shown according to one embodiment of the present invention. Theapparatus 100 has two winding 110a and 110b arranged in a two-layer structure along ayarn carriers first direction 101 and configured such that each windingyarn carrier 110a/110b is operably movable with respect to one another along asecond direction 102a/102b that is perpendicular to thefirst direction 101. The windingyarns 130 are provided by a plurality of yarn supply packages 120. Theyarn supply packages 120 supplying the windingyarns 130 to form each layer of the fabrics are spaced mounted on oneindividual yarn carrier 110a/110b. In this exemplary embodiment shown inFig. 1 , amandrel 103 is employed to take up the fabricatedfabrics 112, and the ends of the windingyarns 130 extending from thesupply yarn packages 120 are incorporated into the fabrics laid on themandrel 103. The movements of one or more winding 110a and 110b inyarn carriers 102a and 102b create a plurality ofopposite directions crossover points 132 by the corresponding windingyarns 130. - In this embodiment, the winding
110a and 110b are configured to be angularly rotatable either individually or cooperatively, along theyarn carriers directions 102a and/or 102b. The rotations of the winding 110a and 110b are around theyarn carriers axis 101 of themandrel 103. Accordingly, tubular or tubular-like multilayer fabrics can be fabricated. In other embodiments, the winding yarn carriers may be configured to be translationally movable either individually or cooperatively along a (second) direction that is perpendicular to a (first) direction along which the winding yarn carriers are aligned/arranged. In operation, the movements of the winding yarn carriers are controlled by the control system. The prescribed integration pattern is formed by controlling the layer number of the winding yarns, relative distances of the winding yarn carrier movements, the distance of fabric take up in the first direction, and activation or omission of the binder yarns in operation. - Additionally, two winding
110a and 110b are utilized in the exemplary embodiment, and thus the supplied windingyarn carriers yarns 130 from the two winding 110a and 110b form a two winding yarn layers. However, there is no limitation on the number of the winding yarn carriers to be used to practice the present invention. According to the present invention, the number of the winding yarn carriers determines the maximum number of layers of the fabrics to be produced.yarn carriers - Each carrier of the winding yarns places the yarns in a ply at a desired angle by a motion in the circumferential direction such as the rotation of a rigid ring carrier. The winding yarn carriers may be rigid or flexible. Rigid carriers may be circular as described in the example or having other geometric shapes. Examples of flexible carriers include belts, chains, and linked mechanisms moving on tracks.
- In one embodiment, winding yarns from some of the winding yarn carriers can be supplied from a stationary creel. These carriers may remain stationary during the process to place 0° layers of winding yarns, or may move in a back and forth motion to form ribs in the fabric.
- Packages to supply the winding yarns may contain one yarn per package, or multiple yarns in a single package to supply multiple threads during the winding motion. The packages may be of flanged, cross wound, or other configurations. The winding yarn packages may be placed on the inside face, on the outside face, a side face, or inside the carrier.
- Additionally, one or more tension control devices (not shown) may be fitted on each winding yarn carrier to regulate the tension of the winding yarns as they are withdrawn. A braking mechanism may be employed as a separate or as a part of the tension control device to prevent the winding yarns from being withdrawn during beat-up.
- The
apparatus 100 also has one or more binder yarn insertion needles 140 positioned in relation to the plurality of windingyarn carriers 130 for transporting/inserting binder yarns through the plurality of winding yarn layers at the predetermined locations along thefirst direction 101, so as to fasten the plurality of winding yarn layers together through-the-layers. - The binder yarns are provided by appropriate packages that can be individual packages or multi-thread packages such as beams. The binder yarns are inserted through the layers of winding
yarns 130 at appropriate internals specified by the integration pattern and are locked in place. The binder yarns may be introduced in the through-the-layers direction after the newly laid windingyarns 130 are condensed together, much like in sewing. The sewing-type of layer integration may result in some impalement of the winding yarns. Additionally, the binder yarns can be inserted through the gaps between the newly formedcrossover points 132 of the windingyarns 130 before they are condensed together to avoid impalement of the winding yarns, as in the case of the illustrative example presented earlier. There are several options for the mechanisms of binder yarn placement, including a variety of knitting mechanisms, rapier yarn transfer mechanisms, shuttles, sewing stations, among others. - In embodiments shown in
Figs. 1 and3-6 , a plurality of binder yarn insertion needles 140 is utilized to insert the binder yarns through the layers of winding yarns to form open loops by the folded binder yarns. Theapparatus 100 may also have a holdingyarn feeding needle 172 and a holdingyarn insertion needle 174 positioned in relation to the plurality of binder yarn insertion needles 140. When the plurality of binder yarn insertion needles 140 inserts the binder yarns through the plurality of winding yarn layers to form open loops by folding the binder yarns, the holdingyarn feeding needle 172 and the holdingyarn insertion needle 174 move a holding yarn through the binder yarn open loops to lock the binder yarns in the fabrics. - Preferably, the
apparatus 100 is equipped with the same number of needle sets for the binder yarn and the holding yarn as the number of winding yarn packages for fast operating speed. The motion of each needle set follows the command by the control system. As a minimum, only one holding yarn needle pair is needed. In such a case the needle pair completes one turn of movement in the circumferential direction relative to the laid winding yarn layers in each fabrics forming cycle. - As shown in
Fig. 1 , theapparatus 100 also has one or more beating bars 160 adapted for inserting through openings of the laid winding yarns for a beat-up motion at a predetermined time to push the binder yarns toward the fell 105 of the fabrics. - In operation, the one or more beating bars 160 penetrates through openings of the laid winding
yarns 130 for the beat-up motion at appropriate time to push the windingyarns 130 toward the fabrics fell 105 in preparation for binder yarn insertion. The beat-up motion prior to binder yarn insertion allows the binder yarns to be placed as close to the fabrics fell 105 as possible. The beating bar may be fitted with rotating wheels or low friction materials, together with appropriate geometry, to minimize abrasion and damage to the winding yarns. Alternatively or in addition to the pre-insertion beat-up, a post-insertion beat-up motion may follow the binder yarn insertion to push the newly inserted binder yarn to the fabrics fell 105. Similar motion may be accomplished with a single beating bar traveling in the circumferential direction, although multiple bars are preferred for operation effectiveness and efficiency. - The
apparatus 100 further comprises a plurality of shaping rings 151, 153 and 155 adapted for condensing the plurality of winding yarn layers and supporting the winding yarn layers while the binder yarns are inserted and during the beat-up motion. The positions of the plurality of shaping rings are changeable during each cycle of fabrics formation. - In addition, the
apparatus 100 may further have an auxiliary bar (not shown) accompanying each binderyarn insertion needle 140 for keeping the binder yarn loop open while the holding yarn is inserted, and for tightening the binder yarn after the holding yarn is inserted while limiting the bending curvature in the binder yarn as it is tightened. - The apparatus may include a knitting mechanism having a needle and a yarn feeder to form a loop of the holding yarn that goes through the open loop of the folded binder yarn, wherein the holding yarn is adapted for holding the binder yarn in place, and preventing the binder yarn from being pulled out as the binder yarn insertion needle retreats and the slacks in the binder yarn is removed.
- According to the present invention, integrated multilayer fabrics can be produced in connection with the apparatus as disclosed above, according to the following steps: at first, a plurality of crossover points of the winding yarns is formed by moving at least one winding yarn carrier along the second direction. The movements are controlled by a control system according to the integration pattern. Then, the binder yarns are transported or inserted through the plurality of winding yarn layers at predetermined locations along the first direction and are locked in place. The binder yarns are pushed toward the plurality of crossover points of the winding yarns to form multilayer fabrics. The formed multilayer fabrics are then taken up. The above steps are repeated until the multilayer fabrics are fabricated to have desired dimensions.
- The process can be operated in a continuous or stepwise motion with the synchronization of the motions of the winding yarn carriers, binder yarn insertion, beat-up and take-up of the fabrics.
- Referring to
Figs. 2 and3 , and particularly toFig. 2 , a flow chart for fabricating multilayer fabrics are shown according to one embodiment of the present invention. In this embodiment, six ring-like windingyarn carriers 310a-310f are employed. - Before starting the process, each winding
310a, 310b, 310c, 310d, 310e or 310f is furnished with windingyarn ring carrier yarn packages 320 and the yarn ends are tied to themandrel 303 placed inside the shapingring 351 along themandrel axis 301 whose diameter matched the inner diameter of thetubular fabrics 312 to be produced. After an initial run to reach steady-state atstep 201, the following steps complete one cycle: atstep 211, windingyarn carriers 310a-310f are moved, according to the designed/prescribed fabrics pattern, to deposit the windingyarns 330. In one embodiment, windingyarn carriers 310a (top) and 310f (bottom) move in the positive (counterclockwise) direction for one step, winding 310b and 310e in the negative (clockwise) direction for one step, windingyarn carriers yarn carrier 310c remains stationary, and windingyarn carrier 310d completes one revolution. Then, the brakes for the windingyarns 330 are activated for stopping depositing the windingyarns 330 atstep 213. Atstep 220, the beatingbar 360 moves to the fabrics fell for beat-up and then retreats. Atstep 231, thebinder yarn 342 is inserted through the openings between the winding yarn crossover points 332. Thebinder yarn 342 is inserted and locked in place by a holdingyarn 371 atstep 233. Atstep 235, any slacks in the binder yarn and holding yarn is removed. The control system (not shown) determines whether the binder yarn insertion is complete atstep 237. If the binder yarn insertion is not complete, the process will start atstep 231. Otherwise, the brakes for the windingyarns 330 are released atstep 240. Then, the fabricatedfabric 312 is taken up by themandrel 303 in a pre-set distance or rate atstep 250. The control system determines whether the desired fabrics are done atstep 255. If the desired fabrics are done, the fabricating process ends atstep 270. Otherwise, the parameters may be adjusted if needed atstep 260, then, the process is repeated fromstep 211. - The processing sequence may be adjusted and the motions may be continuous or stepwise. The combination of the speeds of the winding yarn carriers (step size of carrier motion) and the speed of fabrics take-up in the machine direction (step size of mandrel movement) determines the local yarn orientations in the fabrics. By varying the speed of the yarn carriers relative to that of fabrics take-up, the yarn orientations can be altered as required. Therefore it is possible to produce fabrics with varying ply angles along the length by adjusting the relative speeds of winding and take up as the fabrics are formed. To wind the layer at close to 90°, the number of active yarns drawn from packages should be limited or thinner yarns should be used accordingly for desired layer thickness.
-
Figs. 3-6 show schematically one example of the binder yarn insertion and the corresponding locking mechanism according to one embodiment of the present invention. Auxiliary parts and some movements of the parts are omitted herewith as they are known to people skilled in the art. A plurality of binder yarn insertion needles 340 insert thebinder yarns 342 through the layers of windingyarns 330 to form open loops defined by the folded binder yarns such that a holdingyarn 371 may go through the loops to lock thebinder yarns 342. An auxiliary bar (not shown) may accompany each binderyarn insertion needle 340 to keep the binder yarn loop open while the holdingyarn 371 is inserted, and to help tightening thebinder yarn 342 after the holdingyarn 371 is inserted while limiting the bending curvature in thebinder yarn 342 as it is tightened. A knitting mechanism including a needle and yarn feeder forms a loop of the holding yarn which goes through the open loop of the folded binder yarn. The purpose of the holdingyarn 371 is to hold thebinder yarn 342 in place in thefabrics 312, and to prevent thebinder yarn 342 from being pulled out as the binderyarn insertion needle 340 retreats and the slacks in thebinder yarn 342 is removed. - The sequence of forming holding yarn loops to lock the binder yarn is as follows, with steps (a) to (d) illustrated in
Figs. 3-6 , respectively: - At step (a), as shown in
Fig. 3 , theouter shaping ring 355 is lowered to reduce friction among the windingyarns 330 as a given amount of windingyarns 330 are released by the angular motion of the windingyarn carriers 310a-310f. The beatingbar 360 is pushed into the winding yarn layers for beat-up prior to binder yarn insertion, and then theouter shaping ring 355 is raised to condense the winding yarn layers. The beatingbar 360 is then retreated. - At step (b), as shown in
Fig. 4 , the binder yarn insertion needles 340 penetrate through the openings in the winding yarn layers to expose holdingopen loops 345 on the top surface of thefabrics 312. The holdingyarn insertion needle 374 penetrates through thebinder yarn loop 345. - At step (c), as shown in
Fig. 5 , the binder yarn insertion needles 340 retreat from the top surface of thefabrics 312 without tightening the binder yarn 341. The holdingyarn feeding needle 372 moves inward so as to feed the holdingyarn 371 to the hook of the holdingyarn insertion needle 374. - At step (d), as shown in
Fig. 6 , the holdingyarn insertion needle 374 retreats through thebinder yarn loop 345 and lock the holdingyarn 371 into the previous holding yarn loop. The binder yarn 341 is tightened as the binderyarn insertion needle 340 retreats further. - The holding yarn insertion mechanism moves circumferentially to the next binder yarn location, and steps (c) and (d) are repeated until all the binder yarns 341 are locked and tightened. The mandrel carrying the fabrics advances upward for fabrics take-up.
- The above steps are repeated until the entire piece of fabrics is completed.
- In this illustrative example, the mandrel carrying the finished fabrics moves upwards such that the holding yarn (or binder yarn if holding yarn is not used) loops will be on the outer surface of the fabrics. Alternatively, the mandrel and the fabrics can move through the shaping ring downwards such that the loops formed by the holding yarn (or binder yarn if holding yarn is not used) appear on the inner surface of the fabrics.
- According to the present invention, the insertion and locking of each binder yarn by the holding yarn at any given point can be executed or omitted via the control system, and therefore the integration pattern can be altered as desired even within the same piece of fabrics.
- The movements of one or more winding yarn carriers in opposite directions create a plurality of crossover points by the corresponding winding yarns, which influences the pattern of the fabrics.
Fig. 7 shows an example of tubular fabrics with a [45/-45/0/90/-45/45] layup, according to one embodiment of the present invention, where the ply orientations from inner surface to outer surface are given in degrees. - Fabrics of various cross sectional shapes may be formed according to the above disclosed method. Some of them are illustrated in
Fig. 8 as examples. Besides capable of making cylindrical tubular structures (a), many variants are available to produce fabrics with different cross sectional shapes and varying cross sectional shapes along the length. The mandrel can be noncircular in shape to produce fabrics having noncircular cross sections such as those depicted in (b) and (c). The size or shape of the cross-sectional of the fabrics can also vary along the length, such as (d). In another variant, a mandrel is not use but a shaping mechanism is used instead so as flat (e) or other shaped sections (f) can be produced. A flat sectioned panel can also be made by cutting open a tubular fabric (a), and a T-section (f) can be formed by collapsing tubular fabric (a). Normally the winding yarns from each carrier form a continuous layer of yarns in the fabrics when the carrier moves in one generally direction. However, by strategically placing yarn packages at appropriate locations in the carrier and having the carrier move alternatively in a back and forth motion, a discontinuous layer may be laid. A single or a plurality of such discontinuous layers manifests themselves as ribs of the fabrics (g). The width, height, and interval of the ribs may be varied as required. The ribs may be on the outer, inner or both faces of the fabrics. Flat sectioned fabrics with ribs may be obtained by cutting open a tubular ribbed fabric (g). Fabrics with varying wall thickness within a cross-sectional (i) can be made by changing the amount of axial (0 degree) yarns at different cross sectional locations, by placing incomplete layers of winding yarns, or both. - In sum, the present invention, among other things, recites an apparatus and method for fabricating integrated multilayer fabrics with the winding yarns arranged in a plurality of layers at prescribed angles bound together by a set of through-the-layers yarns. The integrated multilayer fabrics can be tailored to have a variety of constant or variable cross sectional shapes, constant or variable fiber orientation and integration patterns according to requirements for local fiber architecture and fabrics geometry.
- The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
- The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
Claims (8)
- An apparatus (100) for fabricating multilayer fabrics (112/312) having a prescribed integration pattern, comprising: a plurality of winding yarn carriers (110a/110b/310a/.../310f), a plurality of binder yarn insertion needles (140/340), a holding yarn feeding needle (172/372), a holding yarn insertion needle (174/374), and at least one beating bar (160/360), wherein(a) the plurality of winding yarn carriers (110a/110b/310a/.../310f) is arranged in a multilayer structure along a first direction (101/301) and configured such that each winding yarn carrier (110a/110b/310a/.../310f) is operably movable with respect to one another along a second direction (102a/102b) that is perpendicular to the first direction (101/301), wherein each winding yarn carrier (110a/110b/310a/.../310f) provides a set of supply yarn packages (120) mounted on the corresponding winding yarn carrier (110a/110b/310a/.../310f) or a stationary creel to form a winding yarn layer, whereby the supplied winding yarns (130/330) from the plurality of winding yarn carriers (110a/110b/310a/.../310f) form a plurality of winding yarn layers, and wherein the movements of each winding yarn carrier (110a/110b/310a/.../310f) with respect to one another along the second direction (102a/102b) create a plurality of crossover points (132/332) by the corresponding winding yarns (130/330);(b) the plurality of binder yarn insertion needles (140/340) is positioned in relation to the plurality of winding yarn carriers (110a/110b/310a/.../310f) and is operably movable along the first direction (101/301) for transporting binder yarns (342) through the plurality of winding yarn layers at the predetermined locations, so as to fasten the plurality of winding yarn layers together through-the-layers;(c) the holding yarn feeding needle (172/372) and the holding yarn insertion needle (174/374) are positioned in relation to the plurality of binder yarn insertion needles (140/340) such that when the plurality of binder yarn insertion needles (140/340) insert the binder yarns (342) through the plurality of winding yarn layers to form open loops (345) by folding the binder yarns (342), the holding yarn feeding needle (172/372) and the holding yarn insertion needle (174/374) move a holding yarn (371) through the binder yarn open loops (345) to lock the binder yarns (342) in the fabrics (112/312); and(d) the at least one beating bar (160/360) is adapted for inserting through openings of the laid winding yarns (130/330) for a beat-up motion at a predetermined time to push the binder yarns (342) toward the fell (105) of the fabrics (112/312).
- The apparatus of claim 1, further comprising a plurality of shaping rings (151/153/155) adapted for condensing the plurality of winding yarn layers and supporting the winding yarn layers while the binder yarns (342) are inserted and during the beat-up motion, wherein the positions of the plurality of shaping rings (151/153/155) are changeable during each cycle of fabrics formation.
- The apparatus of claim 1, further comprising
an auxiliary bar accompanying each binder yarn insertion needle (140/340) for keeping the binder yarn loop (374) open while the holding yarn (371) is inserted, and for tightening the binder yarn (140/340) after the holding yarn (371) is inserted while limiting the bending curvature in the binder yarn (140/340) as it is tightened. - The apparatus of claim 1, further comprising a knitting mechanism having a needle and a yarn feeder to form a loop of the holding yarn (371) that goes through the open loop (345) of the folded binder yarn (342), wherein the holding yarn (371) is adapted for holding the binder yarn (342) in place, and preventing the binder yarn (342) from being pulled out as the binder yarn insertion needle (340) retreats and the slacks in the binder yarn (342) is removed.
- The apparatus of claim 1, further comprisingone or more tensioning control devices placed in each winding yarn carrier for regulating the tension of the winding yarns as the winding yarns are withdrawn; anda braking mechanism associated with the one or more tension control devices for preventing the winding yarns from being withdrawn during the beat-up motion.
- A method for fabricating multilayer fabrics (312) having a prescribed integration pattern with an apparatus of claim 1, wherein(a) at least one winding yarn carrier (310a/.../310f) is moved along the second direction according to the integration pattern to form a plurality of crossover points (332) of the winding yarns (330);(b) the plurality of binder yarn insertion needles (340) is inserted through the plurality of winding yarn layers at predetermined locations along the first direction (301) for transporting the binder yarns (342) through the plurality of winding yarn layers to form open loops (345) by folding the binder yarns (342);(c) the inserted binder yarns (342) is locked in place, so as to fasten the plurality of winding yarn layers together through-the-layers, which comprises the steps of:(i) inserting the holding yarn insertion needle (374) through a binder yarn loop (345);(ii) retreating the binder yarn insertion needle (340) associated with the bind yarn loop (345) from the top surface of the fabrics without tightening the binder yarn (342);(iii) moving the holding yarn feeding needle (372) inward to feed a holding yarn (371) to a hook of the holding yarn insertion needle (374);(iv) retreating the holding yarn insertion needle (374) through the binder yarn loop (345) and lock the holding yarn (342) into a prior holding yarn loop;(v) tightening the binder yarn (342) as the holding yarn insertion needle (374) retreats further; and(vi) moving the holding yarn insertion needle (374) circumferentially to a next binder yarn loop; and(vii) repeating steps (i)-(vi) until all the binder yarns (342) are locked and tightened in place;(d) the at least one beating bar (360) is inserted through openings of the laid winding yarns (330) for a beat-up motion at a predetermined time to push the binder yarns (342) toward the fell of the fabrics (312);(e) the formed multilayer fabrics (312) is taken up at a predetermined rate; and(f) steps (a)-(e) are repeated until the multilayer fabrics (312) are fabricated to have desired dimensions.
- The method of claim 6, further characterized in that the winding yarn layers are beaten up before the inserting step is performed.
- The apparatus of claim 1 or the method of claim 6, wherein each winding yarn carrier (110a/110b/310a/.../310f) is angularly or translationally movable along the second direction.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2009/050818 WO2011008210A1 (en) | 2009-07-16 | 2009-07-16 | Method and apparatus of forming integrated multilayer fabrics |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP2454405A1 EP2454405A1 (en) | 2012-05-23 |
| EP2454405A4 EP2454405A4 (en) | 2018-02-28 |
| EP2454405B1 true EP2454405B1 (en) | 2019-11-27 |
Family
ID=43449626
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP09847437.2A Active EP2454405B1 (en) | 2009-07-16 | 2009-07-16 | Method and apparatus of forming integrated multilayer fabrics |
Country Status (8)
| Country | Link |
|---|---|
| EP (1) | EP2454405B1 (en) |
| JP (1) | JP5394573B2 (en) |
| KR (1) | KR101319361B1 (en) |
| AU (1) | AU2009349683B2 (en) |
| BR (1) | BR112012001679A2 (en) |
| CA (1) | CA2767622C (en) |
| RU (1) | RU2499089C2 (en) |
| WO (1) | WO2011008210A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2800722C1 (en) * | 2022-11-17 | 2023-07-26 | Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" | Methods for forming a woven multilayer shell (variants) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102903461A (en) * | 2012-10-26 | 2013-01-30 | 南通合硕电子有限公司 | Method for weaving threads |
| CN103147222A (en) * | 2013-02-26 | 2013-06-12 | 东华大学 | Device capable of realizing braided structure |
| CN111118730A (en) * | 2020-01-13 | 2020-05-08 | 四川京兆鸿科技有限公司 | An auxiliary device based on the application of the reducing die of the horizontal ring braiding machine |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4001478A (en) * | 1967-10-16 | 1977-01-04 | Avco Corporation | Three-dimensional fabric material |
| US4346741A (en) | 1977-06-20 | 1982-08-31 | Societe Nationale Industrielle Et Aerospatiale | Three-dimensional woven articles |
| JPS55107318U (en) * | 1979-01-25 | 1980-07-26 | ||
| US4506611A (en) * | 1979-10-22 | 1985-03-26 | Hitco | Three-dimensional thick fabrics and methods and apparatus for making same |
| US4312261A (en) | 1980-05-27 | 1982-01-26 | Florentine Robert A | Apparatus for weaving a three-dimensional article |
| DE3304345C2 (en) * | 1983-02-09 | 1986-04-10 | Karl Mayer Textil-Maschinen-Fabrik Gmbh, 6053 Obertshausen | Warp knitted fabric with reinforcement threads |
| JPH01174637A (en) * | 1987-12-29 | 1989-07-11 | Toyota Autom Loom Works Ltd | Three-dimensional circular loom |
| FR2643657B1 (en) * | 1989-02-20 | 1994-08-12 | Toyoda Automatic Loom Works | THREE-DIMENSIONAL FABRIC AND METHOD FOR THE PRODUCTION THEREOF |
| US5085252A (en) | 1990-08-29 | 1992-02-04 | North Carolina State University | Method of forming variable cross-sectional shaped three-dimensional fabrics |
| RU2029008C1 (en) * | 1991-07-15 | 1995-02-20 | Витебский технологический институт легкой промышленности | Knitted-coat-breast padding |
| FR2718757B1 (en) * | 1994-04-18 | 1996-06-14 | Aerospatiale | Method and machine for producing a plate-shaped reinforcement for a piece of composite material. |
| US6129122A (en) | 1999-06-16 | 2000-10-10 | 3Tex, Inc. | Multiaxial three-dimensional (3-D) circular woven fabric |
| JP3221490B2 (en) * | 1999-07-02 | 2001-10-22 | 村田機械株式会社 | Threading jig and threading method for multiple blader |
| FR2869330B1 (en) * | 2004-04-23 | 2006-07-21 | Messier Bugatti Sa | PROCESS FOR PRODUCING TWO-DIMENSIONAL HELICOIDAL FIBROUS TABLET |
| JP4840063B2 (en) * | 2006-10-06 | 2011-12-21 | 東レ株式会社 | Multi-axis substrate manufacturing method |
-
2009
- 2009-07-16 AU AU2009349683A patent/AU2009349683B2/en not_active Ceased
- 2009-07-16 CA CA2767622A patent/CA2767622C/en active Active
- 2009-07-16 JP JP2012520577A patent/JP5394573B2/en not_active Expired - Fee Related
- 2009-07-16 KR KR1020117030515A patent/KR101319361B1/en not_active Expired - Fee Related
- 2009-07-16 BR BR112012001679A patent/BR112012001679A2/en not_active Application Discontinuation
- 2009-07-16 WO PCT/US2009/050818 patent/WO2011008210A1/en not_active Ceased
- 2009-07-16 EP EP09847437.2A patent/EP2454405B1/en active Active
- 2009-07-16 RU RU2012101213/12A patent/RU2499089C2/en active
Non-Patent Citations (1)
| Title |
|---|
| None * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2800722C1 (en) * | 2022-11-17 | 2023-07-26 | Акционерное общество "Уральский научно-исследовательский институт композиционных материалов" | Methods for forming a woven multilayer shell (variants) |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2011008210A1 (en) | 2011-01-20 |
| JP5394573B2 (en) | 2014-01-22 |
| CA2767622C (en) | 2014-02-18 |
| AU2009349683A1 (en) | 2012-02-09 |
| KR101319361B1 (en) | 2013-10-16 |
| RU2012101213A (en) | 2013-08-27 |
| EP2454405A4 (en) | 2018-02-28 |
| JP2012533692A (en) | 2012-12-27 |
| KR20120014592A (en) | 2012-02-17 |
| RU2499089C2 (en) | 2013-11-20 |
| EP2454405A1 (en) | 2012-05-23 |
| CA2767622A1 (en) | 2011-01-20 |
| AU2009349683B2 (en) | 2014-03-20 |
| BR112012001679A2 (en) | 2016-04-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8082761B2 (en) | Method of forming integrated multilayer fabrics | |
| EP0546107B1 (en) | Method of forming variable cross-sectional shaped three-dimensional fabrics | |
| US4506611A (en) | Three-dimensional thick fabrics and methods and apparatus for making same | |
| CN101379237B (en) | Three-dimensional textile component structure consisting of high-tensile threads and method for producing said structure | |
| EP2937197B1 (en) | Method to transport and lay down dry fiber bundles | |
| EP2740822A1 (en) | Spiral textile and system for weaving the same | |
| US4331091A (en) | Three-dimensional thick fabrics and method and apparatus for making same | |
| US8161775B2 (en) | Integrated hollow fabric structure | |
| CN102134781B (en) | Integral tube fabric structure | |
| CN101603228B (en) | Method and apparatus for manufacturing monolithic multilayer fabrics | |
| EP3015253B1 (en) | System to fabricate helical fabric | |
| EP2454405B1 (en) | Method and apparatus of forming integrated multilayer fabrics | |
| EP2740823B1 (en) | Weaving with retractable fingers | |
| EP2759626B1 (en) | Helical textile with uniform thickness | |
| US8341980B2 (en) | Integrated multiaxial articles: method, apparatus and fabrics | |
| CN202055011U (en) | Integral tubular fabric structure | |
| WO2012125164A1 (en) | An integrated hollow fabric structure | |
| EP2262939B1 (en) | Helical textile with uniform thickness | |
| CN201485586U (en) | Apparatus for manufacturing monolithic multilayer fabrics | |
| JPH03220343A (en) | Tri-dimensional multiaxial woven fabric structure and loom for weaving the same | |
| Bilisik | Multiaxial three-dimensional (3-D) circular weaving and multiaxial 3-D circular woven preforms for composite |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20120104 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20180126 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: D03D 37/00 20060101ALI20180122BHEP Ipc: D04B 9/42 20060101ALI20180122BHEP Ipc: D03D 41/00 20060101ALI20180122BHEP Ipc: D04B 1/22 20060101AFI20180122BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20190806 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STONEFERRY TECHNOLOGY, LLC Owner name: SINOMA SCIENCE & TECHNOLOGY LTD. |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009060591 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1206757 Country of ref document: AT Kind code of ref document: T Effective date: 20191215 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20191127 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200227 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200227 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200228 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200327 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200419 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009060591 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1206757 Country of ref document: AT Kind code of ref document: T Effective date: 20191127 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20200828 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200716 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200731 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200716 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191127 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220727 Year of fee payment: 14 Ref country code: DE Payment date: 20220727 Year of fee payment: 14 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220725 Year of fee payment: 14 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009060591 Country of ref document: DE |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230716 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240201 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230716 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230731 |