EP2375208A1 - Improved heat exchanger - Google Patents
Improved heat exchanger Download PDFInfo
- Publication number
- EP2375208A1 EP2375208A1 EP10461512A EP10461512A EP2375208A1 EP 2375208 A1 EP2375208 A1 EP 2375208A1 EP 10461512 A EP10461512 A EP 10461512A EP 10461512 A EP10461512 A EP 10461512A EP 2375208 A1 EP2375208 A1 EP 2375208A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tubes
- heat exchanger
- tank
- exchanger according
- wall thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000008646 thermal stress Effects 0.000 claims abstract description 8
- 239000012530 fluid Substances 0.000 description 9
- 230000035882 stress Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 4
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/03—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
- F28D1/0391—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/0202—Header boxes having their inner space divided by partitions
- F28F9/0204—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
- F28F9/0209—Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2210/00—Heat exchange conduits
- F28F2210/08—Assemblies of conduits having different features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2225/00—Reinforcing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2270/00—Thermal insulation; Thermal decoupling
- F28F2270/02—Thermal insulation; Thermal decoupling by using blind conduits
Definitions
- the invention concerns heat exchangers, and particularly heat exchangers for the automobile industry.
- heat exchangers for automotive vehicles comprise a beam of tubes for circulating a heat exchange fluid, between two boxes also called tanks or collectors.
- the challenge in the design of heat exchangers is based on making the right trade-offs to ensure the best perfonnance/packaging/endurance ratio.
- This type of radiator has many packaging advantages, yet their design is challenging, because they are subject to high stress in the region of separation between the high temperature region and the low temperature region.
- the invention improves this situation.
- the invention proposes a heat exchanger for an automotive vehicle, comprising a tank and a beam of tubes, received at their extremities in openings of said tank where said tubes are linked to said tank through tube to tank junctions, some of said tube to tank junctions suffering thermal stress characterized in that at least some of the tubes involved in said tube to tank junctions suffering thermal stress have a higher mechanical resistance than the other tubes.
- the mechanical resistance of the heat exchanger is thus enhanced in the areas suffering thermal stress by the tubes themselves. And the risk of failure due to thermal stress is lowered without additional parts or complicated designs. Pressure drop increase is also limited.
- said tubes having higher mechanical resistance are extruded tubes and said other tubes are folded tubes.
- FIG. 1 shows a schematic view of a heat exchanger 2 according to the invention.
- Heat exchanger 2 is a single pass radiator for air cooling, which comprises tanks 4 and 5 and a beam 6 comprised of tubes 8.
- tanks 4 and 5 each comprise a cover 10 received in a collector 12.
- Tank 4 comprises a heat exchange fluid input 14, and tank 5 comprises a heat exchange fluid output 16.
- the beam 6 is made of tubes 8 which are generally long, and parallel between them. Each tube 8 is received in a respective opening of tanks 4 and 6. Between tubes 8, fins are arranged, which enhance the heat exchange surface, and which are not represented here for simplicity.
- the tubes 8 are generally made of aluminium are made by folding of a sheet unto itself, thus forming two channels, as can be seen on figure 3 .
- Beam 6 comprises specific tubes in regions referenced by the number 18 located at the tank end.
- the tubes 19 are made by an extrusion technique. This is particularly advantageous, because it allows designing tubes which have a different cross-section, as well as several ribs for strengthening, for instance two or more ribs, defining channels 40 for fluid circulation.
- tube 19 comprises 3 ribs 20, each having a thickness of 0.35mm.
- the number of ribs may be comprised between 2 and 12, and preferably is more than 7 and less than 12.
- the thickness of ribs 20 may be chosen between 0.15mm and 3mm, and more preferably between 0.2mm and 1.5mm.
- the tube 19 has a radial wall thickness T of 1.5mm and a transverse wall thickness t of 0.35mm.
- the radial wall thickness T may be chosen between 0.225mm and 5mm, and more preferably between 0.75mm and 3mm.
- the transverse wall thickness t may be chosen between 0.15mm and 3mm, and more preferably between 0.2mm and 1.5mm.
- the radial wall thickness T is chosen to be at least bigger than 1.5 times that of the transverse wall thickness t.
- the wall thickness ratio is chosen to be at least bigger than 2, and less than10.
- the tube 19 resistance in terms of thermal shock elongation and compression is defined by its number of ribs, their thickness, the radial wall thickness T and the transverse wall thickness t.
- the cross section of the radial walls of the extruded tubes may be circular as regards the external side thereof and circular and/or elliptic as regards the internal side thereof.
- the channels 40 extending laterally may have a circular and/or elliptic side wall along the tube lateral sides.
- regions 18 may be further strengthened by providing more than one tube 19, e.g. 2 to 4 tubes. Since the regions 18 are located at the extremity of the tanks, the use of the tubes 19 does not complicate the assembly of the heat exchanger.
- FIGS. 4 and 5 show two other embodiments according to the invention.
- tanks 4 and 6 are similar to those of figure 1 , but have additional elements.
- tank 4 further comprises a baffle 22 and a further heat exchange fluid input and/or output 24, the heat exchanger thus being a two-pass heat exchanger.
- tank 5 also further comprises a baffle 26 and a further heat exchange fluid input and/or output 28, the heat exchanger thus forming a double heat exchanger.
- FIG. 6 shows a top view of a region 30, from the inside of tank. In the example shown in figure 6 , it is the region 30 of figure 4 or 5 which is represented, and baffle 22 is shown accordingly.
- the baffle 22 is arranged between two openings of tank 4. Since the heat exchange fluid circulating in the heat exchanger will show significant difference in temperature, the tubes in the region 30, i.e. the tubes received in the opening neighboring baffle 22, are subject to a high level of stress, similarly to tubes 19 of regions 18.
- region 30 comprises tubes 32 received in the openings which surround baffle 32. While the use of a baffle does complicate the assembly process, no other satisfactory solution exists to this day. Also, the use of tubes 32 allows better stress resistance, and ensures tightness of the heat exchanger, thus providing the best trade-off in terms of assembly and resistance.
- the tubes 32 are similar to tubes 19, i.e they are built by an extrusion technique. Furthermore, they have identical dimensions in the example shown here, and they may be made with dimensions within the previously described ranges, including the number of ribs.
- region 30 shown in figure 6 comprises only one tube 32 on each side of baffle 22, it may comprise more than one tube 32 on each side, e.g. 2 to 4. Further, there may be more tubes 32 on one side of baffle 22 than on the other side, e.g. 1 or 2 tubes 32 on one side, and 3 or 4 tubes 32 on the other sides.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
- The invention concerns heat exchangers, and particularly heat exchangers for the automobile industry.
- Typically, heat exchangers for automotive vehicles comprise a beam of tubes for circulating a heat exchange fluid, between two boxes also called tanks or collectors. The challenge in the design of heat exchangers is based on making the right trade-offs to ensure the best perfonnance/packaging/endurance ratio.
- This is particularly the case in the field of double heat exchangers, where a first part of the radiator circulates a heat exchange fluid at a first, high temperature, and a second part of the radiator circulates the heat exchange fluid (or another one) at a second, low temperature.
- This type of radiator has many packaging advantages, yet their design is challenging, because they are subject to high stress in the region of separation between the high temperature region and the low temperature region.
- However, as the designs of the heat exchangers have improved, issues relating to local stress have spread to regular heat exchangers, having single or multiple passes, as their dimensions where increasingly reduced to accommodate smaller packaging and lower weight.
- Many designs have been tried to deal with these problems:
- use of two neighboring baffles in both tanks, thereby generating dead tubes, and in which tightness of the tanks is hard to ensure, and tank assembly process is complicated,
- use of tank profile modification, by brazing the collector and the header forming the tank to provide a baffle, which complicates the tank assembly,
- use of a region separating baffle in both tanks, jointly with corks in the adjoining tubes, in order to reduce the flow in these regions, which among other drawbacks greatly complicates the radiator and tank assembly,
- use of a region separating baffle in both tanks, the baffle also covering several tubes to provide dead tubes, and being complemented with tightness gaskets, which an expansive solution with a complicated assembly,
- use of inserts for creating dead tubes, which greatly complicates the assembly,
- It is obvious from the mere length of the above list that no satisfactory solution has been found so far to provide a good local reinforcement of the tank/tube junction while limiting pressure drop, cost increase and assembly complication.
- The invention improves this situation.
- To meet this goal, the invention proposes a heat exchanger for an automotive vehicle, comprising a tank and a beam of tubes, received at their extremities in openings of said tank where said tubes are linked to said tank through tube to tank junctions, some of said tube to tank junctions suffering thermal stress characterized in that at least some of the tubes involved in said tube to tank junctions suffering thermal stress have a higher mechanical resistance than the other tubes.
- According to the invention, the mechanical resistance of the heat exchanger is thus enhanced in the areas suffering thermal stress by the tubes themselves. And the risk of failure due to thermal stress is lowered without additional parts or complicated designs. Pressure drop increase is also limited.
- Preferably, said tubes having higher mechanical resistance are extruded tubes and said other tubes are folded tubes.
- Other characteristics and advantages of the invention will appear from the following description of drawings, given by way of example and in a non limitative way.
- In the drawings:
-
figure 1 shows a schematic view of a heat exchanger according to the invention, -
figure 2 shows a schematic cross-sectional view of a locally reinforced region of the heat exchanger offigure 1 , -
figure 3 shows a top view of the region offigure 2 , -
figure 4 and5 show two further embodiments of a heat exchanger according to the invention, and -
figure 6 shows a schematic cross-sectional view of a locally reinforced region of the heat exchanger offigures 4 and5 . - The drawings and the following description essentially comprise elements having a defining character. Thus, they may serve to enhance the comprehension of the invention, but also to help defining it, in some cases.
-
Figure 1 shows a schematic view of aheat exchanger 2 according to the invention.Heat exchanger 2 is a single pass radiator for air cooling, which comprises 4 and 5 and atanks beam 6 comprised oftubes 8. - As appears on
figure 2 , 4 and 5 each comprise atanks cover 10 received in acollector 12.Tank 4 comprises a heatexchange fluid input 14, andtank 5 comprises a heatexchange fluid output 16. - The
beam 6 is made oftubes 8 which are generally long, and parallel between them. Eachtube 8 is received in a respective opening of 4 and 6. Betweentanks tubes 8, fins are arranged, which enhance the heat exchange surface, and which are not represented here for simplicity. - The
tubes 8 are generally made of aluminium are made by folding of a sheet unto itself, thus forming two channels, as can be seen onfigure 3 .Beam 6 comprises specific tubes in regions referenced by thenumber 18 located at the tank end. - In the
regions 18, the stress level due to mechanical constraints and temperature shocks is such that the regular foldedtubes 8 may break. In order to overcome this problem, the Applicant has found thatspecific tubes 19 which appear more readily onfigures 2 and3 solves all the resistance issues. - The
tubes 19 are made by an extrusion technique. This is particularly advantageous, because it allows designing tubes which have a different cross-section, as well as several ribs for strengthening, for instance two or more ribs, definingchannels 40 for fluid circulation. - In the example shown on
figure 2 ,tube 19 comprises 3 ribs 20, each having a thickness of 0.35mm. In various embodiments, the number of ribs may be comprised between 2 and 12, and preferably is more than 7 and less than 12. In various embodiments, the thickness of ribs 20 may be chosen between 0.15mm and 3mm, and more preferably between 0.2mm and 1.5mm. - The
tube 19 has a radial wall thickness T of 1.5mm and a transverse wall thickness t of 0.35mm. In various embodiments, the radial wall thickness T may be chosen between 0.225mm and 5mm, and more preferably between 0.75mm and 3mm. In various embodiments, the transverse wall thickness t may be chosen between 0.15mm and 3mm, and more preferably between 0.2mm and 1.5mm. - In general the radial wall thickness T is chosen to be at least bigger than 1.5 times that of the transverse wall thickness t. Preferably, the wall thickness ratio is chosen to be at least bigger than 2, and less than10.
- The
tube 19 resistance in terms of thermal shock elongation and compression is defined by its number of ribs, their thickness, the radial wall thickness T and the transverse wall thickness t. - The adjustment of the tube parameters will vary according to the application which is considered, and the specific heat dissipation sought. However, the wall thickness ratio will remain in the above mentioned ranges.
- The cross section of the radial walls of the extruded tubes may be circular as regards the external side thereof and circular and/or elliptic as regards the internal side thereof. In other words, the
channels 40 extending laterally may have a circular and/or elliptic side wall along the tube lateral sides. - In other embodiments,
regions 18 may be further strengthened by providing more than onetube 19, e.g. 2 to 4 tubes. Since theregions 18 are located at the extremity of the tanks, the use of thetubes 19 does not complicate the assembly of the heat exchanger. -
Figures 4 and5 show two other embodiments according to the invention. In those figures, 4 and 6 are similar to those oftanks figure 1 , but have additional elements. - In
figure 4 ,tank 4 further comprises abaffle 22 and a further heat exchange fluid input and/oroutput 24, the heat exchanger thus being a two-pass heat exchanger. Infigure 5 ,tank 5 also further comprises abaffle 26 and a further heat exchange fluid input and/oroutput 28, the heat exchanger thus forming a double heat exchanger. - The beam of the heat exchangers of
figures 4 and5 show further local stress regions referenced 30.Figure 6 shows a top view of aregion 30, from the inside of tank. In the example shown infigure 6 , it is theregion 30 offigure 4 or5 which is represented, andbaffle 22 is shown accordingly. - In the
region 30, thebaffle 22 is arranged between two openings oftank 4. Since the heat exchange fluid circulating in the heat exchanger will show significant difference in temperature, the tubes in theregion 30, i.e. the tubes received in theopening neighboring baffle 22, are subject to a high level of stress, similarly totubes 19 ofregions 18. - In order to address these stress issues,
region 30 comprises tubes 32 received in the openings which surround baffle 32. While the use of a baffle does complicate the assembly process, no other satisfactory solution exists to this day. Also, the use of tubes 32 allows better stress resistance, and ensures tightness of the heat exchanger, thus providing the best trade-off in terms of assembly and resistance. - The tubes 32 are similar to
tubes 19, i.e they are built by an extrusion technique. Furthermore, they have identical dimensions in the example shown here, and they may be made with dimensions within the previously described ranges, including the number of ribs. - Also, while the
region 30 shown infigure 6 comprises only one tube 32 on each side ofbaffle 22, it may comprise more than one tube 32 on each side, e.g. 2 to 4. Further, there may be more tubes 32 on one side ofbaffle 22 than on the other side, e.g. 1 or 2 tubes 32 on one side, and 3 or 4 tubes 32 on the other sides. - While the invention above has been described with respect to specific embodiments, it should be understood that they can be combined, and that the present specification discloses all of the possible combinations of those specific embodiments.
Claims (11)
- Heat exchanger for an automotive vehicle, comprising a tank and a beam of tubes, received at their extremities in openings of said tank where said tubes are linked to said tank through tube to tank junctions, some of said tube to tank junctions suffering thermal stress characterized in that at least some of the tubes involved in said tube to tank junctions suffering thermal stress have a higher mechanical resistance than the other tubes.
- Heat exchanger according to claim 1 where said tubes having higher mechanical resistance are extruded tubes and said other tubes are folded tubes.
- Heat exchanger according to claim 2, wherein said extruded tubes have a radial wall thickness to transverse wall thickness ratio superior or equal to 1.5.
- Heat exchanger according to claim 3, wherein said radial wall thickness is chosen within the range of 0.225mm to 5mm, and more preferably between 0.75mm and 3mm.
- Heat exchanger according to claim 3, wherein said radial wall thickness is equal to 1.5mm.
- Heat exchanger according to any of the claims 2 to 5, said transverse wall thickness being within the range of 0.15mm to 3mm, and more preferably between 0.2mm and 1.5mm.
- Heat exchanger according to any of the claims 2 to 5, wherein said transverse wall thickness is equal to 0.35mm.
- Heat exchanger according to any of the claims 2 to 7, wherein said extruded tubes comprise a chosen number of ribs, each rib having a thickness chosen within the range of 0.15mm and 3mm, and more preferably between 0.2mm and 1.5mm, the number of ribs beings chosen between 2 and 12, and preferably between 7 and less than 12.
- Heat exchanger according to claim 8, wherein the number of ribs is 3, and wherein the thickness of each rib is 0.35mm.
- Heat exchanger according to any of the claims 2 to 9, wherein said extruded tubes are located at both ends of said beam.
- Heat exchanger according to any of the claims 2 to 10, further comprising at least one baffle located between two openings of a tank, wherein the tubes received in these two openings are extruded tubes.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10461512A EP2375208B1 (en) | 2010-03-31 | 2010-03-31 | Improved heat exchanger |
| PL10461512T PL2375208T3 (en) | 2010-03-31 | 2010-03-31 | Improved heat exchanger |
| CN201110079607.XA CN102207357B (en) | 2010-03-31 | 2011-03-31 | The heat exchanger improved |
| US13/076,770 US20120000634A1 (en) | 2010-03-31 | 2011-03-31 | Heat Exchanger |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10461512A EP2375208B1 (en) | 2010-03-31 | 2010-03-31 | Improved heat exchanger |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2375208A1 true EP2375208A1 (en) | 2011-10-12 |
| EP2375208B1 EP2375208B1 (en) | 2012-12-05 |
Family
ID=43034648
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP10461512A Active EP2375208B1 (en) | 2010-03-31 | 2010-03-31 | Improved heat exchanger |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20120000634A1 (en) |
| EP (1) | EP2375208B1 (en) |
| CN (1) | CN102207357B (en) |
| PL (1) | PL2375208T3 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105578906B (en) * | 2013-10-14 | 2019-05-21 | 菲利普莫里斯生产公司 | Heated aerosol-generating articles containing modified strips |
| SE1450473A1 (en) * | 2014-04-22 | 2015-10-23 | Titanx Engine Cooling Holding Ab | Heat exchanger comprising a core of pipes |
| US20190285363A1 (en) * | 2018-03-16 | 2019-09-19 | Hamilton Sundstrand Corporation | Integral heat exchanger core reinforcement |
| US11365942B2 (en) | 2018-03-16 | 2022-06-21 | Hamilton Sundstrand Corporation | Integral heat exchanger mounts |
| EP3809081A1 (en) * | 2019-10-18 | 2021-04-21 | Valeo Autosystemy SP. Z.O.O. | A heat exchanger |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001153571A (en) * | 1999-09-16 | 2001-06-08 | Denso Corp | Heat exchanger |
| US20010022220A1 (en) * | 2000-03-16 | 2001-09-20 | Tatsuo Ozaki | Compound heat exchanger having cooling fins introducing different heat exchanging performances within heat exchanging core portion |
| US20070071920A1 (en) * | 2005-09-29 | 2007-03-29 | Denso Corporation | Heat exchanger tube and heat exchanger |
| WO2010084889A1 (en) * | 2009-01-22 | 2010-07-29 | ダイキン工業株式会社 | Heat exchanger and hot water supply apparatus of heat pump type eqipped with same |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5376975U (en) * | 1976-11-30 | 1978-06-27 | ||
| GB8406636D0 (en) * | 1984-03-14 | 1984-04-18 | Bicc Plc | Flexible elongate body |
| US5372188A (en) * | 1985-10-02 | 1994-12-13 | Modine Manufacturing Co. | Heat exchanger for a refrigerant system |
| US5009262A (en) * | 1990-06-19 | 1991-04-23 | General Motors Corporation | Combination radiator and condenser apparatus for motor vehicle |
| FR2786259B1 (en) * | 1998-11-20 | 2001-02-02 | Valeo Thermique Moteur Sa | COMBINED HEAT EXCHANGER, PARTICULARLY FOR A MOTOR VEHICLE |
| US6209202B1 (en) * | 1999-08-02 | 2001-04-03 | Visteon Global Technologies, Inc. | Folded tube for a heat exchanger and method of making same |
| LU90919B1 (en) * | 2002-05-14 | 2003-11-17 | Delphi Tech Inc | Method and tool for folding a metal strip |
| US7278472B2 (en) * | 2002-09-20 | 2007-10-09 | Modine Manufacturing Company | Internally mounted radial flow intercooler for a combustion air changer |
| US7527087B2 (en) * | 2003-06-30 | 2009-05-05 | Valeo, Inc. | Heat exchanger |
| DE102004007510B4 (en) * | 2004-02-13 | 2019-08-14 | Mahle International Gmbh | Heat exchangers, in particular oil coolers for motor vehicles |
| US20050230089A1 (en) * | 2004-04-05 | 2005-10-20 | Denso Corporation | Heat exchanger capable of preventing heat stress |
| WO2005119145A1 (en) * | 2004-05-17 | 2005-12-15 | Hera Usa Inc. | Metal hydride air conditioner |
| US7506683B2 (en) * | 2004-05-21 | 2009-03-24 | Valeo, Inc. | Multi-type fins for multi-exchangers |
| CN101061362B (en) * | 2004-07-28 | 2011-11-09 | 瓦莱奥公司 | Automotive heat exchanger assemblies having internal fins and methods of making the same |
| US20070169922A1 (en) * | 2006-01-24 | 2007-07-26 | Pautler Donald R | Microchannel, flat tube heat exchanger with bent tube configuration |
| US20080041559A1 (en) * | 2006-08-16 | 2008-02-21 | Halla Climate Control Corp. | Heat exchanger for vehicle |
| US20080078536A1 (en) * | 2006-09-29 | 2008-04-03 | International Truck Intellectual Property Company, Llc | Corrosion resistant bi-metal charge air cooler |
| JP4440957B2 (en) * | 2007-10-11 | 2010-03-24 | カルソニックカンセイ株式会社 | Heat exchanger |
| US8353330B2 (en) * | 2007-11-02 | 2013-01-15 | Halla Climate Control Corp. | Heat exchanger |
-
2010
- 2010-03-31 PL PL10461512T patent/PL2375208T3/en unknown
- 2010-03-31 EP EP10461512A patent/EP2375208B1/en active Active
-
2011
- 2011-03-31 US US13/076,770 patent/US20120000634A1/en not_active Abandoned
- 2011-03-31 CN CN201110079607.XA patent/CN102207357B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2001153571A (en) * | 1999-09-16 | 2001-06-08 | Denso Corp | Heat exchanger |
| US20010022220A1 (en) * | 2000-03-16 | 2001-09-20 | Tatsuo Ozaki | Compound heat exchanger having cooling fins introducing different heat exchanging performances within heat exchanging core portion |
| US20070071920A1 (en) * | 2005-09-29 | 2007-03-29 | Denso Corporation | Heat exchanger tube and heat exchanger |
| WO2010084889A1 (en) * | 2009-01-22 | 2010-07-29 | ダイキン工業株式会社 | Heat exchanger and hot water supply apparatus of heat pump type eqipped with same |
Also Published As
| Publication number | Publication date |
|---|---|
| CN102207357A (en) | 2011-10-05 |
| CN102207357B (en) | 2016-10-19 |
| US20120000634A1 (en) | 2012-01-05 |
| PL2375208T3 (en) | 2013-05-31 |
| EP2375208B1 (en) | 2012-12-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2375208B1 (en) | Improved heat exchanger | |
| US9328651B2 (en) | Heat exchanger | |
| JP5655676B2 (en) | Condenser | |
| US9976816B2 (en) | Connecting reinforcement for between the plates of a heat exchanger | |
| US9163881B2 (en) | Heat exchanger | |
| US6904965B2 (en) | Radiator with side flat tubes | |
| US10337808B2 (en) | Condenser | |
| US10145623B2 (en) | Vehicle heat exchanger tube and vehicle radiator comprising such a tube | |
| US9827638B2 (en) | Heat exchanger and method of manufacturing the same | |
| CN107850401A (en) | Heat exchanger | |
| WO2010044420A1 (en) | Refrigerant evaporator and air-conditioning device utilizing the same | |
| US20080230213A1 (en) | Fully-Metal Heat Exchanger And Method For Its Production | |
| CN102449425B (en) | header for condenser | |
| JP5194278B2 (en) | Evaporator | |
| US8151871B2 (en) | Heat exchanger | |
| EP3623738A1 (en) | Heat exchanger tube | |
| CN109642778B (en) | air conditioning unit | |
| CN110595248B (en) | Flat pipe, heat exchange pipe, heat exchanger and manufacturing method of heat exchange pipe | |
| US20200240714A1 (en) | Heat exchanger tube and corresponding heat exchanger | |
| JP2019090573A (en) | Heat exchanger and manufacturing method of the same | |
| US6810951B1 (en) | Flat tube for heat exchanger of reduced width | |
| EP1962044A1 (en) | Improved heat exchanger for an automotive vehicle | |
| EP1887295B1 (en) | Condenser with an improved tank | |
| JP2009113625A (en) | Evaporator | |
| EP2738503A1 (en) | Heat exchanger means |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA ME RS |
|
| 17P | Request for examination filed |
Effective date: 20120410 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 587495 Country of ref document: AT Kind code of ref document: T Effective date: 20121215 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010003970 Country of ref document: DE Effective date: 20130124 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 587495 Country of ref document: AT Kind code of ref document: T Effective date: 20121205 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130316 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130305 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20121205 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130405 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130305 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130405 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| 26N | No opposition filed |
Effective date: 20130906 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010003970 Country of ref document: DE Effective date: 20130906 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140331 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121205 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130331 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100331 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20210219 Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210216 Year of fee payment: 12 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230528 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250313 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20250331 Year of fee payment: 16 |