[go: up one dir, main page]

EP2361557A2 - Système de contrôle de dispositif médical orientable - Google Patents

Système de contrôle de dispositif médical orientable Download PDF

Info

Publication number
EP2361557A2
EP2361557A2 EP11003195A EP11003195A EP2361557A2 EP 2361557 A2 EP2361557 A2 EP 2361557A2 EP 11003195 A EP11003195 A EP 11003195A EP 11003195 A EP11003195 A EP 11003195A EP 2361557 A2 EP2361557 A2 EP 2361557A2
Authority
EP
European Patent Office
Prior art keywords
control
medical device
cable
actuator
control body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11003195A
Other languages
German (de)
English (en)
Other versions
EP2361557A3 (fr
EP2361557B1 (fr
Inventor
Anna Chen
Barry Weitzner
John Golden
Dan Bacon
Kim Dang
Richard Rothstein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Ltd Barbados
Original Assignee
Boston Scientific Ltd Barbados
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Scientific Ltd Barbados filed Critical Boston Scientific Ltd Barbados
Publication of EP2361557A2 publication Critical patent/EP2361557A2/fr
Publication of EP2361557A3 publication Critical patent/EP2361557A3/fr
Application granted granted Critical
Publication of EP2361557B1 publication Critical patent/EP2361557B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B10/06Biopsy forceps, e.g. with cup-shaped jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0133Tip steering devices
    • A61M25/0147Tip steering devices with movable mechanical means, e.g. pull wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • A61B2010/0208Biopsy devices with actuators, e.g. with triggered spring mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/00234Surgical instruments, devices or methods for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/00234Surgical instruments, devices or methods for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B2017/0042Surgical instruments, devices or methods with special provisions for gripping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B17/2909Handles
    • A61B2017/2912Handles transmission of forces to actuating rod or piston
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery

Definitions

  • the present invention relates to medical devices in general and, in particular, to devices for manipulating steerable medical devices or other minimally invasive tools within a patient's body.
  • Steerable medical devices and other minimally invasive surgical tools are being increasingly used to perform medical procedures inside a patient's body.
  • Steerable devices generally include an elongated shaft and one or more control cables having distal ends secured at or adjacent the distal tip of the shaft.
  • a control knob or lever selectively tightens the control cables in order to bend the device in a desired direction.
  • the problem with most medical device controllers is that they require two hands in order to move the distal tip of a device in more than one plane. Alternatively, in those designs where a user can move the distal tip in four directions with one hand, two hands are still required in order to advance, retract, or rotate the device.
  • robotic systems have been proposed to allow a physician to direct a distal tip of a device in any direction using motors, these systems are generally expensive and complicated.
  • the present invention is a control system for selectively orienting the distal tip of a steerable medical device.
  • the control has a body with an actuator that can be independently moved in at least two directions so movement of the actuator in each direction moves the distal tip of the medical device in a plane.
  • the control may be mounted on a rail that is fixed with respect to the location of a patient such that advancement or retraction or rotation of the actuator body on the rail causes a corresponding advancement, retraction, or rotation of the medical device.
  • the actuator allows movement of the distal tip in one plane to be decoupled from movement in another plane.
  • the present invention is a control system for selectively orienting a steerable medical device in a number of directions.
  • the control 10 includes a ergonomic, generally cylindrical body 12 having an actuator (described below) that operates to selectively tighten or release control cables that cause the distal tip of a medical device 14 such as a catheter, visualization device or instrument to bend in a desired direction.
  • the control body 12 includes one or more clamps 16 that allow it to be moved along a length of a rail 18 in order to advance or retract the medical device 14 as well as to provide rotation of the medical device around its longitudinal axis.
  • the clamps 16 may provide a friction force that is overcome by a user in order to move the control body 12 along the rail 18.
  • the clamps 16 may include release mechanisms such as a brake or lock that should be loosened to adjust the position of the control body 12 with respect to the rail 18.
  • the clamps 16 and rail 18 may include a gear to move the control body 12. The rail 18 may be clamped to a patient table or otherwise remain fixed with respect to the location of the patient such that the position of the medical device 14 remains constant if the physician's hand is removed from the control 10.
  • the control 10 can be rotated about the longitudinal axis of the rail 18 in the direction of the arrow 25 in order to impart rotational motion or torque to the medical device 14.
  • the medical device 14 is usually routed through a guiding device such as an endoscope or other constraining mechanism such that movement of the control 10 about the axis of the rail 18 causes the distal tip of the medical device 14 to rotate around the longitudinal axis of the device.
  • the control 10 also includes an actuator 20 that is used by a physician, or their assistant, in order to move the distal tip of the medical device 14 in one or more of the up/down or right/left directions.
  • the actuator 20 can be moved forward or backward within a slot 24 that extends longitudinally along the top of the body 12 in order to move the distal tip of the medical device 14 up or down.
  • the actuator 20 can be rotated as indicated by the arrow 26 in order to move the distal tip of the medical device in the right/left directions.
  • movement of the distal tip in the up/down direction is decoupled from movement of the distal tip in the right/left direction so that a physician can maintain the orientation of the distal tip in the up/down direction while changing the right/left orientation or vice versa.
  • the physician is able to adjust the orientation of the distal tip of the medical device with one hand.
  • FIGURE 2 illustrates one embodiment of an actuator 20 for allowing a physician to change the up/down and right/left orientation of a distal tip of a medical device.
  • the actuator 20 has a cap 50 that is connected to a cable guide plate 52 through a shaft 54. Rotation of the cap 50 about the longitudinal axis of the shaft 54 causes tension of one pair of control cables 56, 58. Tension of the control cable 56 causes a medical device tip to bend in the left direction, while tension on a control cable 58 causes a medical device tip to move in the rightward direction.
  • the cable guide plate 52 is generally semi-circular in shape, with a rounded front end and a groove 60 therein to guide the corresponding control cables 56, 58.
  • the rear face of the cable guide plate 52 is generally flat.
  • the ends of the control cables 56, 58 may be either fixedly secured to the cable guide plate 52 or slidably secured to the guide plate. If fixedly secured to the cable guide plate 52, then one control cable is tensioned while the other control cable is compressed as the cable guide plate 52 is rotated by the cap 50. If the ends of the control cables are slidably secured to the cable guide plate 52, then one control cable is tensioned and the other is released from tension as the cable guide plate 52 is rotated.
  • the cables 56, 58 may be a single cable wound around the guide plate 52.
  • the medical device 14 is permanently secured to the body 12 of the control 10. In other embodiments, the medical device is releasably secured to the body 12 by including cable connectors or the like that join the control cables in the medical device to the control cables in the body 12.
  • the stop plate 70 has a raised lip 72 with a pair of holes 74, 76 therein through which the control cables 56, 58 are passed.
  • Each of the control cables 56, 58 are preferably bowden cables, whereby the holes 74, 76 are sized such that the inner control cable of the bowden-type cables passes through the holes but the outer sheaths 56a, 56b of the bowden cables are too large to fit through the holes 74, 76.
  • the stop plate 70 is shaped so that it does not rotate in the body of the control 10 when the actuator 20 is rotated around the axis of the shaft 54, but does move within the body of the control as the actuator 20 is tilted back and forth.
  • the stop plate 70 allows the physician to adjust the left/right position of the medical device 14 without adjusting the up/down position or vice-versa as will be explained below.
  • a ball joint 80 on the shaft 54 cooperates with a corresponding socket (not shown) in the interior of the body 12 of the control 10.
  • a collar 82 extends between the ball joint 80 and the cap 50 whereby the shaft 54 can rotate within the collar 82.
  • a top plate 84 is secured to the other end of the collar 82 and has a hole through which the shaft 54 is passed. The top plate secures the proximal ends of a pair of control cables 90, 92 that control the up/down movement of the medical device.
  • the ball joint 80 allows the actuator 20 to be tilted back and forth with the interior of the body 12. Movement of the cap 50 towards the proximal end of the control 10 causes the control cable 90 to tighten, thereby causing the distal end of the medical device to move upwards. Pushing the cap 50 in the direction of the distal end of the control 10 causes the control cable 92 to tighten thereby causing the distal end of the medical device to move downwards.
  • Movement of the actuator 20 forwards and backwards about the axis of the ball joint 80 does not cause the distal tip of the medical device to move in the left/right direction.
  • rotation of the cap 50 about the longitudinal axis of the shaft 54 does not cause movement of the distal tip in the up/down direction. Therefore, the orientation of the medical device can be independently controlled in the up/down or right/left directions.
  • the actuator 20 may include a power assist mechanism to aid in tensioning the control cables.
  • Such power assist may include hydraulic or pneumatic actuators, electric motors, magnets etc. that provide the additional force required to orient the distal tip of the medical device 14 in the desired direction.
  • FIGURES 3A and 3B illustrate how movement of the distal tip of the medical device 14 in the left/right direction is decoupled from movement of the medical device in the up/down direction.
  • the control cables 56, 58 controlling the left/right movement of the medical device 14 pass through the stop plate 70.
  • the outer sheaths 56a, 58a of the bowden cables Positioned over the control cables are the outer sheaths 56a, 58a of the bowden cables (see FIGURE 2 ).
  • the distal ends of the outer sheaths 56a, 58a are fixed with respect to the distal end of the medical device 14.
  • the proximal ends of the outer sheaths 56a, 58a are joined to the stop plate 70 and move with the cable guide plate 52, as it is moved back and forth within the body 12.
  • control cable 56 has an outer sheath 56a having one end secured to the stop plate 70 and another end abutting the internal wall of the body 12, as shown in FIGURE 3A .
  • the outer sheath 56a is looped to have enough slack such that as the actuator 20 is tilted or moved, the slack in the outer sheath 56a is adjusted.
  • the amount of bend imparted by the control cables 56, 58 to the distal tip of a medical device 14 depends upon the position of the ends of the control cables 56, 58 with respect to a proximal end of the outer sheaths 56a, 58a of the bowden cables.
  • the outer sheaths include a loop or slack that allows them to move as the actuator 20 is moved, this distance does not change as the actuator 20 is tilted forward and back in the body 12. Therefore, a user can adjust the up/down direction of the medical device 14 by tilting the actuator 20 forwards and backwards, as indicated in FIGURE 3A and FIGURE 3B , while not changing the orientation of the distal tip medical device in the left/right direction. In some cases, it may be desirable to limit the movement of the looped bowden cables to prevent them from becoming pinched. Therefore, the body 12 of the controller may include a slot or other restraint to limit the movement of the outer sheaths of the control cables.
  • control cables could be arranged such that rotation of the cap causes the tip to move in the up/down direction and movement of the actuator 20 back and forth causes movement in the left/right direction.
  • the actuator 20 could include nested, rotatable knobs to control both the up/down and left/right directions in a manner similar to that found in conventional endoscopes.
  • the position of the medical device in the left/right direction can be fixed with brakes, mechanical stops, or a sufficient friction force on the cap 50 so that once the desired left/right position of the medical device is determined, the position of the medical device can remain fixed if the user releases the actuator.
  • a braking force can be applied to the medical device control cables in order to fix the position of the medical device.
  • the position of the medical device in the up/down direction can be fixed by inhibiting movement of the actuator in the forward and aft directions, or by applying a braking force to the control cables.
  • FIGURE 4 illustrates how a pair of controls 100, 102 can be secured at a fixed position with respect to a patient such as on a patient table 104 in order to allow a physician to control the orientation of a pair of medical devices.
  • the medical devices preferably include one or more integrated instruments such as biopsy forceps, cauterizers, snares, scalpels, scissors, graspers, needle holders, staplers, fiber optic or solid state imagers etc. contained therein.
  • the medical devices may be catheters that include or more lumens through which instruments can be routed.
  • a moveable gooseneck 106 allowss the position of the controls 100, 102 to be changed.
  • the rails of the controls 100, 102 are shown connected to the gooseneck 106 with a pair of bases, it will be appreciated that the rails may be connected directly to a gooseneck or table 104, if desired.
  • one or more of the controls 100, 102 may be secured to the patient such as by strapping the controls to the patient's leg, torso, head etc.
  • the controls may be secured to the operator's body or to an endoscope or guide tube that is used in the patient.
  • FIGURE 5 illustrates how a physician 110 can use two hands to manipulate the pair of controls 100, 102 in order to perform a procedure within a patient 115.
  • the medical devices controlled by the controls 100, 102 are often used in conjunction with a visualization device such as an endoscope 120 that produces images on a monitor 122 so that the physician can view the procedure.
  • the present invention allows a physician to use two hands to control two medical devices in order to perform examinations or surgical procedures in the GI tract, colon, lungs, or through another orifice of the patient.
  • the medical devices can be inserted through an incision such as with a trocar to access other areas of the body.
  • FIGURES 6A-6E illustrate another embodiment of a control system for selectively orienting a medical device in accordance with the present invention.
  • a control 140 is slidably connected to a rail 142 with a pair of clamps 148 and 150.
  • the clamps allow the actuator 140 to move lengthwise along the rail 142.
  • the clamps 148 and 150 allow the control 140 to be rotated about the longitudinal axis of the rail 142.
  • the control 140 includes an actuator handle 160 that allows a user to control the orientation of a distal tip of a medical device 250 as will be explained below.
  • the handle further includes a trigger 164 that allows a user to actuate a tool within the medical device 250.
  • FIGURE 6B illustrates further details of a control 140 in accordance with an embodiment of the present invention.
  • the control 140 is coupled to the rail with one or more U-shaped clamps 148 and 150.
  • Each of the U-shaped clamps includes a pair of spaced-apart arms 152 that are connected to a pair of side rails 156a, 156b that extend for the length of the control and form a frame to which additional components of the control can be secured.
  • the arms of the clamps 148, 150 are secured to the side rails 156a, 156b with a fastener such as a rivet, screw, adhesive, or the like.
  • the actuator handle 160 is rotatably coupled to the side rails 156a, 156b such that the handle is able to move forward and aft within the control 140.
  • the handle 160 can rotate about a longitudinal axis of a shaft 166. Movement of the handle back and forth causes the distal tip of the medical device 250 to move in one plane while rotation of the actuator handle 160 about the longitudinal axis of the shaft 166 causes movement of the distal tip of the medical device 250 in another plane.
  • FIGURE 6C illustrates further detail of the actuator handle 160.
  • the handle is secured to the pair of side rails 156a, 156b with a trunnion 170 shown in FIGURE 6B .
  • a trunnion 170 includes a pair of outwardly extending posts 172, 174 that fit in corresponding holes formed in the side rails 156a, 156b.
  • a locking mechanism such as a snap ring or other fastener secures the posts 172, 174 into the side rails.
  • the handle 160 is rotatably secured to the trunnion 170 with a shaft 166.
  • a collar 168 fits over the shaft between the trunnion 170 and the handle 160.
  • the collar 168 provides a stop for a bowden-type cable as will be described in further detail below.
  • the trunnion 170 further includes a stop plate 176 that provides an anchor for the ends of the bowden-type cables in the same manner as the stop plate 70 shown in FIGURE 2 .
  • the stop plate 176 pivots back and forth with the posts 172, 174 as the handle 160 is moved back and forth in the control.
  • the trunnion 170 further includes a slot in the center of the trunnion and between the posts 172, 174 in which a cable guide plate or disk 180 is located.
  • the cable guide plate 180 is generally circular and includes a groove 182 therein in which an actuating cable 184 is fitted.
  • the cable guide plate 180 includes a notch 184 that receives a corresponding cable stop 186 that is secured to the cable 184.
  • the cable is wrapped around the cable guide plate 180 and includes a pair of legs that are coupled directly and indirectly to the distal end of the medical device. Movement of the cable guide plate causes corresponding tension or relaxing of the legs of the cable 184.
  • the cable guide 180 is fitted into a slot within the trunnion such that it lies behind the stop plate 176.
  • the shaft 166 fits through a corresponding hole in the cable guide plate 180 and a snap ring or other fastening mechanism secures the components together. Rotation of the handle 160 causes a corresponding rotation of the shaft 166 which in turn is coupled to the cable guide plate 180 to tension or release the legs of the actuating cable 184.
  • FIGURE 6D illustrates further detail of the trunnion 170 within the control 140.
  • the cable guide plate 180 is fitted within the slot of the trunnion 170 and rotates back and forth within the slot by rotation of the actuator handle 160.
  • a ring 207 that fits over the posts of the trunnion 170 has a notch 205 therein.
  • a pin 203 secured in the side rail limits how far the handle can travel by engaging the ends of the notch 205.
  • the cable 190 is actuated by the trigger mechanism 164 on the handle. Depressing the trigger 164 causes a tensioning of the cable 190 to actuate a tool within the medical device.
  • the cable 190 is a bowden-type cable having an outer sheath 192 with one end secured to a cable stop 196 positioned on the collar 168 that is fitted over the shaft 166. The other end of the bowden cable joins a stop 198 that is fitted within a crossbar 200 extending between the pair of side rails 156a, 156b.
  • the crossbar 200 also includes stops for the bowden-type cables that are driven by rotation of the handle as described above.
  • the trunnion also includes a shaft that extends in a direction perpendicular to the posts that are coupled to the side rails.
  • the shaft includes a pair of cable receivers 202, 204 having a slot or other receptacle therein that secures an end of an actuation cable.
  • One of the cable receivers 204 is below the pivot point of the trunnion 170, and the other is above the pivot point Upon tilting the trunnion 170 in the control 140, the cable receivers 202, 204 selectively tension or release control cables that move the distal tip of the medical instrument 250 in a plane.
  • FIGURE 6E Further detail of one embodiment of a trigger mechanism 164 is shown in FIGURE 6E .
  • the trigger 164 is rotatably received within the handle 160 such that squeezing the trigger 165 causes it to rotate about a pivot point
  • the trigger 160 includes an outwardly extending arm 165 to which an end of the actuation cable 190 is secured. As the arm is moved by pressing the trigger, tension on the control cable 190 is increased to actuate the tool at the end of the medical device.
  • a roller or pulley 167 changes the direction of the control cable 190 from within the handle to a direction that extends along the shaft 166.
  • FIGURE 6F illustrates one embodiment of a coupling mechanism that can be used to selectively couple the control 140 to one or more control wires within the medical device 250.
  • the coupler 220 forms an end-wall that is positioned within the actuator housing 140 between the support rails 156a, 156b.
  • the coupler 220 has a number of spring loaded pins 222a, 222b, 222c, etc., positioned therethrough. Each of the pins 222a, 222b, 222c, etc., is connected to a control cable that is moved by the handle 160 or the trigger mechanism 164 as described above.
  • Each pin includes a cable receiving notch 224 therein that receives the ball or stop at the end of a corresponding control cable 226a, 226b, 226c, etc. for the medical device. Secured by a cable ball in the slots 224, each pin allows the tensioning or release of the corresponding cables 226a, 226b, 226c, etc.
  • each of the pins 222a, 222b, 222c, etc. includes a spring 228a, 228b, 228c that biases the pin toward the distal end of the control 140. The springs 228 serve to tension the control cables within the body of the control when not being pulled by the actuator.
  • each of the control cables 226a, 226b, 226c, etc. are inserted into each of the cable receiving slots 224 of the corresponding pins.
  • the balls or cable ends are removed from the cable receiving slots 224.
  • the medical device 250 can be uncoupled from the control 140, cleaned or sterilized for re-use or thrown away.
  • FIGURES 7A-7I illustrate a number of alternative trigger mechanisms that allow a tool to be actuated from the control that orients a medical device in the up/down, right/left, forward/backward, and rotational directions.
  • FIGURE 7A illustrates one embodiment of a trigger mechanism for use with an actuator 300.
  • the actuator 300 controls the orientation of a shaft 302 of a steerable medical device in the manner described above.
  • the shaft 302 includes a tool such as biopsy forceps 304 that is operated by selectively tensioning or releasing a control wire 306.
  • the trigger mechanism includes a thumb wheel 310 about which the control wire 306 is wound. Movement of the thumb wheel 310 about an axle winds or unwinds the control wire 306 on the thumb wheel, thereby tensioning or releasing the control wire coupled to the jaws of the biopsy forceps 304.
  • FIGURE 7B illustrates another embodiment of a trigger mechanism for activating a tool such as a biopsy forceps 304 at the distal end of a steerable medical device.
  • a control wire 306 is connected to a pull ring 320 at one end and to the tool at the other end. Selective tensioning and releasing of the pull ring 320 tightens or releases the control wire 306.
  • the control wire 306 or the pull ring 320 may be spring biased to return the control wire to either the tensioned or untensioned state.
  • FIGURE 7C illustrates another embodiment of a trigger mechanism for operating a tool such as a biopsy forceps 304 at the distal end of a steerable medical device.
  • a slider 330 is coupled to the control wire 306 that operates the biopsy forceps 304.
  • the slider 330 is movable within a slot 332 on the control Movement of the slider 330 in the proximal direction tensions the control wire 306. Similarly, movement of the slider 330 in a distal direction selectively releases the control wire 306 to activate the tool.
  • FIGURE 7D illustrates yet another embodiment of a trigger mechanism for operating a tool such as a biopsy forceps 304 at the distal end of a steerable medical device.
  • a control wire 306 that operates the biopsy forceps 304 is connected to a switch type mechanism 340. Movement of the switch about a pivot point 342 causes the control wire 306 to be wound or unwound around a spool 346 that is coupled to the switch 340. With the control wire 306 wound around the spool 346, tension on the control wire is increased, while unwinding the control wire 306 from the spool 346 causes the tension to be released in order to operate the biopsy forceps 304.
  • FIGURE 7E illustrates yet another alternative embodiment of a trigger mechanism for controlling a biopsy forceps 304 at the distal end of a steerable medical device.
  • a trigger mechanism includes a push button 360.
  • the push button 360 is preferably biased with a spring 362 that causes the button to return to a predefined state.
  • Coupled to the push button 360 is a shaft 364 including an angled slot 366 therein.
  • a post 368 connected to the drive cable 306 moves within a slot 370 that is longitudinally aligned with the actuator and in the angled slot 366.
  • the angled slot 366 on the shaft 364 moves the post 368 back and forth within the slot 370 as the push button 360 is moved up and down in order to actuate the biopsy forceps 304.
  • the push button may be located on the handle of the actuator.
  • a button 390 actuates a cable 306, where the cable includes an outer bowden cable sheath 392 positioned between the actuator and a fixed position 396, for example, within the actuator (not shown). Pushing the button 390 tightens or releases the cable 306 that controls the tool that is actuated with the cable 306.
  • FIGURE 7G shows yet another embodiment of a trigger mechanism for actuating a tool such as a biopsy forceps from a control
  • the handle 400 of the control includes a V-shaped groove 420 that separates portions of the handle.
  • the handle 400 is flexible so that the V-shaped groove can be collapsed or expanded.
  • a control cable 306 is split in a Y-type configuration wherein each leg of the Y is contained in a different side of the V-shaped groove in the handle. Compression of the handle 400 about the V-shaped groove 420 causes the end points of the cable 424, 426 to move toward one another, thereby lengthening the cable.
  • the handle 400 may be made of a plastic material that allows it to bend.
  • the handle may include a hinge mechanism to allow it to bend.
  • FIGURE 7H shows yet another alternative embodiment of the trigger mechanism for actuating a cable 306 connected to a biopsy forceps 304 or other tool at the distal end of a steerable medical device.
  • a handle 450 is spring loaded so that it can be pressed downwards.
  • a control cable 306 has an end coupled to the handle such that pressing the handle releases tension on the control cable. Releasing the handle increases tension on the control cable 306 to actuate the biopsy forceps.
  • FIGURE 7I illustrates yet another embodiment of trigger mechanism 460 that actuates a tool 304 such as a biopsy forceps with a control wire.
  • the trigger mechanism is a pneumatic, hydraulic or electromagnetic actuator such as a solenoid, linear motor, etc. that is activated by a switch 462 such as a foot switch. Activation of the trigger selectively tensions or releases a control cable 306 that actuates the tool 304.
  • actuator(s) could be included in the controls to tension/release control cables that terminate at other locations along the length of the medical device.
  • control cables may be secured to a location more proximal than the distal tip in order to provide bending at a more proximal portion of the device.
  • These control cables can be tensioned with a second actuator on the control body.
  • a single actuator can be used to tension more than one set of control cables.
  • the actuator can selectively engage mechanisms to tension different control cables. Brakes or other devices can be used to fix the position of one set of control cables while the control cables from another set are adjusted.
  • a tool in the medical device can have up to seven degrees of freedom (up/down, left/right at the distal end, up/down, left/right proximally, forward/backward, rotation about its axis and movement of the tool).
  • movement of a medical device in the up/down, left/right direction may be controlled with actuators such as servo motors, hydraulic, pneumatic actuators disposed in a housing that is movable along and rotatable over a fixed rail in order to adjust the distal/proximal movement of a medical device as well as rotation of a device.
  • actuators such as servo motors, hydraulic, pneumatic actuators disposed in a housing that is movable along and rotatable over a fixed rail in order to adjust the distal/proximal movement of a medical device as well as rotation of a device.
  • the control can be placed in a cradle to allow the control to be rotated about its own longitudinal axis.
  • the clamps that hold the control can be designed with slidable connections or the like to allow the control to rotate about its longitudinal axis. If allowed to rotate, there may be less translation error compared with the embodiments of the invention wherein the control is rotated about the rail that control the longitudinal distal and proximal movement of the medical device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Biophysics (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)
  • Endoscopes (AREA)
EP11003195.2A 2005-06-22 2006-06-22 Système de contrôle de dispositif médical orientable Active EP2361557B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/165,593 US7618413B2 (en) 2005-06-22 2005-06-22 Medical device control system
EP06773955A EP1906839B1 (fr) 2005-06-22 2006-06-22 Systeme de commande de dispositif medical orientable

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP06773955.7 Division 2006-06-22
EP06773955A Division EP1906839B1 (fr) 2005-06-22 2006-06-22 Systeme de commande de dispositif medical orientable

Publications (3)

Publication Number Publication Date
EP2361557A2 true EP2361557A2 (fr) 2011-08-31
EP2361557A3 EP2361557A3 (fr) 2011-12-21
EP2361557B1 EP2361557B1 (fr) 2014-04-16

Family

ID=37074631

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11003195.2A Active EP2361557B1 (fr) 2005-06-22 2006-06-22 Système de contrôle de dispositif médical orientable
EP06773955A Active EP1906839B1 (fr) 2005-06-22 2006-06-22 Systeme de commande de dispositif medical orientable
EP11003194.5A Active EP2359751B1 (fr) 2005-06-22 2006-06-22 Système de contrôle de dispositif médical orientable

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP06773955A Active EP1906839B1 (fr) 2005-06-22 2006-06-22 Systeme de commande de dispositif medical orientable
EP11003194.5A Active EP2359751B1 (fr) 2005-06-22 2006-06-22 Système de contrôle de dispositif médical orientable

Country Status (3)

Country Link
US (5) US7618413B2 (fr)
EP (3) EP2361557B1 (fr)
WO (1) WO2007002545A1 (fr)

Families Citing this family (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616017B2 (ja) * 2005-01-17 2011-01-19 オリンパス株式会社 電動湾曲内視鏡装置
US8608797B2 (en) 2005-03-17 2013-12-17 Valtech Cardio Ltd. Mitral valve treatment techniques
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US7618413B2 (en) 2005-06-22 2009-11-17 Boston Scientific Scimed, Inc. Medical device control system
JP4763420B2 (ja) * 2005-10-27 2011-08-31 オリンパスメディカルシステムズ株式会社 内視鏡用操作補助装置
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8920411B2 (en) 2006-06-28 2014-12-30 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US10028783B2 (en) 2006-06-28 2018-07-24 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9456877B2 (en) * 2006-12-01 2016-10-04 Boston Scientific Scimed, Inc. Direct drive instruments and methods of use
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US20090012533A1 (en) * 2007-04-23 2009-01-08 Hansen Medical, Inc. Robotic instrument control system
US9533122B2 (en) * 2007-05-18 2017-01-03 Boston Scientific Scimed, Inc. Catheter drive system with control handle rotatable about two axes separated from housing by shaft
US9005238B2 (en) * 2007-08-23 2015-04-14 Covidien Lp Endoscopic surgical devices
US8579897B2 (en) * 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8568410B2 (en) * 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US8262655B2 (en) * 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US20090062795A1 (en) * 2007-08-31 2009-03-05 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US20090076330A1 (en) * 2007-09-19 2009-03-19 Fujifilm Corporation Endoscope
US8984595B2 (en) * 2007-09-28 2015-03-17 The Aspen Equity Group, Inc. Method and system for hub-and-spoke website browsing and navigation on a multipaned platform for the communication, distribution, and collaboration of information and data
US20090112063A1 (en) * 2007-10-31 2009-04-30 Bakos Gregory J Endoscopic overtubes
US20090112059A1 (en) * 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8480657B2 (en) * 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US20090182332A1 (en) * 2008-01-15 2009-07-16 Ethicon Endo-Surgery, Inc. In-line electrosurgical forceps
US8262680B2 (en) * 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US8679003B2 (en) * 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8771260B2 (en) * 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8403926B2 (en) * 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US20090312645A1 (en) * 2008-06-16 2009-12-17 Boston Scientific Scimed, Inc. Methods and Devices for Accessing Anatomic Structures
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US7954996B2 (en) * 2008-07-08 2011-06-07 General Electric Company Positioning system with tilting arm support for imaging devices
US20100010303A1 (en) * 2008-07-09 2010-01-14 Ethicon Endo-Surgery, Inc. Inflatable access device
US20100010294A1 (en) * 2008-07-10 2010-01-14 Ethicon Endo-Surgery, Inc. Temporarily positionable medical devices
US8262563B2 (en) * 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8968355B2 (en) 2008-08-04 2015-03-03 Covidien Lp Articulating surgical device
US8211125B2 (en) * 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20100048990A1 (en) * 2008-08-25 2010-02-25 Ethicon Endo-Surgery, Inc. Endoscopic needle for natural orifice translumenal endoscopic surgery
US8529563B2 (en) * 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) * 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US20100056862A1 (en) * 2008-09-03 2010-03-04 Ethicon Endo-Surgery, Inc. Access needle for natural orifice translumenal endoscopic surgery
US8409200B2 (en) * 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US20100076451A1 (en) * 2008-09-19 2010-03-25 Ethicon Endo-Surgery, Inc. Rigidizable surgical instrument
US8337394B2 (en) * 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
CN102245256B (zh) 2008-10-10 2014-07-23 萨德拉医学公司 医疗装置以及用于输送医疗装置的输送系统
US8834357B2 (en) * 2008-11-12 2014-09-16 Boston Scientific Scimed, Inc. Steering mechanism
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US20100331622A2 (en) * 2008-11-25 2010-12-30 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US20100152539A1 (en) * 2008-12-17 2010-06-17 Ethicon Endo-Surgery, Inc. Positionable imaging medical devices
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US8911494B2 (en) 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US8926696B2 (en) 2008-12-22 2015-01-06 Valtech Cardio, Ltd. Adjustable annuloplasty devices and adjustment mechanisms therefor
US8808345B2 (en) 2008-12-31 2014-08-19 Medtronic Ardian Luxembourg S.A.R.L. Handle assemblies for intravascular treatment devices and associated systems and methods
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US20100191050A1 (en) * 2009-01-23 2010-07-29 Ethicon Endo-Surgery, Inc. Variable length accessory for guiding a flexible endoscopic tool
US20100191267A1 (en) * 2009-01-26 2010-07-29 Ethicon Endo-Surgery, Inc. Rotary needle for natural orifice translumenal endoscopic surgery
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9226772B2 (en) * 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8517239B2 (en) * 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
KR20100100278A (ko) * 2009-03-06 2010-09-15 주식회사 이턴 수술용 인스트루먼트
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
US12485010B2 (en) 2009-05-07 2025-12-02 Edwards Lifesciences Innovation (Israel) Ltd. Multiple anchor delivery tool
JP4709952B2 (ja) * 2009-07-29 2011-06-29 オリンパスメディカルシステムズ株式会社 内視鏡装置
US20110098704A1 (en) * 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US20110098694A1 (en) * 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Methods and instruments for treating cardiac tissue through a natural orifice
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US8608652B2 (en) * 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US20110115891A1 (en) * 2009-11-13 2011-05-19 Ethicon Endo-Surgery, Inc. Energy delivery apparatus, system, and method for deployable medical electronic devices
GB0920116D0 (en) * 2009-11-17 2009-12-30 Single Use Surgical Ltd Endoscope
US8734467B2 (en) 2009-12-02 2014-05-27 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US20110152610A1 (en) * 2009-12-17 2011-06-23 Ethicon Endo-Surgery, Inc. Intralumenal accessory tip for endoscopic sheath arrangements
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8353487B2 (en) * 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US20110152923A1 (en) * 2009-12-18 2011-06-23 Ethicon Endo-Surgery, Inc. Incision closure device
US20110190764A1 (en) * 2010-01-29 2011-08-04 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9005198B2 (en) * 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US20120118088A1 (en) 2010-11-17 2012-05-17 Boston Scientific Scimed, Inc. Bearing assembly for instrument
US9452016B2 (en) 2011-01-21 2016-09-27 Kardium Inc. Catheter system
US11259867B2 (en) 2011-01-21 2022-03-01 Kardium Inc. High-density electrode-based medical device system
CA2764494A1 (fr) 2011-01-21 2012-07-21 Kardium Inc. Dispositif medical perfectionne destine a etre implante dans des cavites corporelles, par exemple. une oreillette
US9486273B2 (en) 2011-01-21 2016-11-08 Kardium Inc. High-density electrode-based medical device system
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9049987B2 (en) 2011-03-17 2015-06-09 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
EP3345573B1 (fr) 2011-06-23 2020-01-29 Valtech Cardio, Ltd. Élément de fermeture à utiliser avec une structure d'annuloplastie
US8858623B2 (en) 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP2775896B1 (fr) 2011-11-08 2020-01-01 Valtech Cardio, Ltd. Fonction d'orientation commandée d'un outil de pose d'implant
CN104203157B (zh) 2011-12-12 2016-02-03 戴维·阿隆 心脏瓣膜修补器械
USD777925S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
USD777926S1 (en) 2012-01-20 2017-01-31 Kardium Inc. Intra-cardiac procedure device
ES2620535T3 (es) * 2012-01-31 2017-06-28 Boston Scientific Scimed, Inc. Dispositivo médico que tiene un controlador modular
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
EP2900150B1 (fr) 2012-09-29 2018-04-18 Mitralign, Inc. Système de distribution de verrous de plicature
EP3517052A1 (fr) 2012-10-23 2019-07-31 Valtech Cardio, Ltd. Fonction de direction contrôlée pour outil de pose d'implant
EP2911593B1 (fr) 2012-10-23 2020-03-25 Valtech Cardio, Ltd. Techniques d'ancrage de tissu percutané
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
WO2014134183A1 (fr) 2013-02-26 2014-09-04 Mitralign, Inc. Dispositif et procédés pour réparation percutanée de valve tricuspide
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
WO2014152503A1 (fr) 2013-03-15 2014-09-25 Mitralign, Inc. Cathéters de translation, systèmes et leurs procédés d'utilisation
CN105380711B (zh) 2013-03-15 2018-01-02 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) 组合电外科手术装置
CN105208955B (zh) 2013-03-15 2018-11-06 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) 组合式电外科设备
WO2014149250A1 (fr) 2013-03-15 2014-09-25 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Pince de décalage
US9763730B2 (en) 2013-03-15 2017-09-19 Gyrus Acmi, Inc. Electrosurgical instrument
JP6440677B2 (ja) 2013-03-15 2018-12-19 ジャイラス エーシーエムアイ インク 組合せ電気手術デバイス
JP6221300B2 (ja) * 2013-03-28 2017-11-01 住友ベークライト株式会社 カテーテルおよびカテーテル操作部
US10076231B2 (en) 2013-04-22 2018-09-18 Gyrus Acmi, Inc. Surgeon controlled endoscope device and method
US10058234B2 (en) 2013-04-22 2018-08-28 Gyrus Acmi, Inc. Surgeon controlled endoscope device and method
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
JP6458036B2 (ja) * 2013-09-01 2019-01-23 ヒューマン エクステンションズ リミテッド 医療装置のための制御ユニット
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
EP2904983B1 (fr) * 2014-02-05 2019-05-15 Erbe Elektromedizin GmbH Instrument électrochirurgical avec un actionneur rotatif et avec un dispositif de freinage or de blocage
WO2015175246A1 (fr) * 2014-05-02 2015-11-19 Endochoice, Inc. Stoppeur pour les câbles d'une section de courbure d'un endoscope
CN108186111B (zh) * 2014-08-20 2021-03-26 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) 多模式复合电外科装置
US11357483B2 (en) 2014-09-26 2022-06-14 Intuitive Surgical Operations, Inc. Surgical instrument with flexible shaft and actuation element guide
US10195030B2 (en) 2014-10-14 2019-02-05 Valtech Cardio, Ltd. Leaflet-restraining techniques
EP3226810A4 (fr) 2014-12-04 2018-08-15 Edwards Lifesciences Corporation Pince percutanée pour réparation d'une valvule cardiaque
US10085622B2 (en) 2014-12-15 2018-10-02 Gyrus Acmi, Inc. Control of a basket retrieval device
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
DE102015105164A1 (de) * 2015-04-02 2016-10-06 Nordischer Maschinenbau Rud. Baader Gmbh + Co. Kg Muldenförderer, ausgebildet und eingerichtet zum Transportieren von Fischen quer zu ihrer Längserstreckung in Transportrichtung TM sowie Anordnung und Verfahren zur Übergabe von Fischen von einem solchen Muldenförderer an ein dem Muldenförderer nachgeordnetes Transportmittel
CA2982063C (fr) 2015-04-30 2024-07-02 Valtech Cardio Ltd Technologies d'annuloplastie
EP4512372A3 (fr) 2015-05-14 2025-05-14 Edwards Lifesciences Corporation Dispositifs d'étanchéité de valvule cardiaque et dispositifs de pose associés
EP3097839B1 (fr) * 2015-05-29 2017-12-27 Fundacja Rozwoju Kardiochirurgii Im. Prof. Zbigniewa Religi Dispositif de fixation d'outil médical laparoscopique
MX2017014628A (es) * 2015-08-11 2018-06-06 Human Xtensions Ltd Unidad de control para un endoscopio flexible.
WO2017117370A2 (fr) 2015-12-30 2017-07-06 Mitralign, Inc. Système et procédé de réduction de régurgitation tricuspide
CN113633326B (zh) * 2016-01-20 2024-09-13 直观外科手术操作公司 快速暂停和恢复医疗设备可重新定位臂中的运动偏离的系统和方法
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10835714B2 (en) * 2016-03-21 2020-11-17 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799675B2 (en) * 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Cam controlled multi-direction steerable handles
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
US11096676B2 (en) 2016-11-21 2021-08-24 C.R. Bard, Inc. Biopsy device having a hydraulic drive assembly
CN106806023B (zh) * 2016-12-30 2019-02-22 哈尔滨思哲睿智能医疗设备有限公司 一种四自由度手术器械的走丝装置及其走丝方法
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
CN115990075A (zh) 2017-04-18 2023-04-21 爱德华兹生命科学公司 心脏瓣膜密封装置及其递送装置
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
NL2019146B1 (en) 2017-06-29 2019-01-14 Deam Holding B V Medical device with flexible tip
US11051940B2 (en) 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11065117B2 (en) 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11110251B2 (en) 2017-09-19 2021-09-07 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11383373B2 (en) 2017-11-02 2022-07-12 Gyms Acmi, Inc. Bias device for biasing a gripping device by biasing working arms apart
US11298801B2 (en) 2017-11-02 2022-04-12 Gyrus Acmi, Inc. Bias device for biasing a gripping device including a central body and shuttles on the working arms
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US10667834B2 (en) 2017-11-02 2020-06-02 Gyrus Acmi, Inc. Bias device for biasing a gripping device with a shuttle on a central body
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
PL3964175T3 (pl) 2018-01-09 2025-02-24 Edwards Lifesciences Corporation Urządzenia do naprawy zastawek naturalnych
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10123873B1 (en) 2018-01-09 2018-11-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
CN111655200B (zh) 2018-01-24 2023-07-14 爱德华兹生命科学创新(以色列)有限公司 瓣环成形术结构的收缩
WO2019145941A1 (fr) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques pour faciliter la fixation de valve cardiaque et le remplacement de cordon
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
MX2020013973A (es) 2018-07-12 2021-06-15 Valtech Cardio Ltd Sistemas de anuloplastia y herramientas de bloqueo para ello.
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
SG11202105160XA (en) 2018-11-20 2021-06-29 Edwards Lifesciences Corp Deployment tools and methods for delivering a device to a native heart valve
AU2019384540B2 (en) 2018-11-21 2025-01-02 Edwards Lifesciences Corporation Heart valve sealing devices, delivery devices therefor, and retrieval devices
CA3120859A1 (fr) 2018-11-29 2020-06-04 Edwards Lifesciences Corporation Methode et appareil de catheterisation
CR20210427A (es) 2019-02-14 2022-03-30 Edwards Lifesciences Corp Dispositivos de sellado de válvulas cardíacas y dispositivos de suministro para los mismos
CN113395989B (zh) * 2019-02-25 2023-08-11 爱德华兹生命科学公司 用于导丝的调整机构和方法
CA3131522A1 (fr) 2019-02-25 2020-09-03 Edwards Lifesciences Corporation Dispositifs d'etancheite de valvule cardiaque
CR20210575A (es) 2019-05-29 2022-02-28 Valtech Cardio Ltd Sistemas y métodos de manejo de ancla de tejido
US12364606B2 (en) 2019-07-23 2025-07-22 Edwards Lifesciences Innovation (Israel) Ltd. Fluoroscopic visualization of heart valve anatomy
CN114258313A (zh) 2019-08-28 2022-03-29 瓦尔泰克卡迪欧有限公司 低剖面可转向导管
WO2021038559A1 (fr) 2019-08-30 2021-03-04 Valtech Cardio, Ltd. Pointe de canal d'ancrage
WO2021045220A1 (fr) * 2019-09-06 2021-03-11 富士フイルム株式会社 Outil de traitement endoscopique
JP2022551425A (ja) 2019-09-25 2022-12-09 カーディアック・インプランツ・エルエルシー 心臓弁輪縮小システム
US11992631B2 (en) * 2019-09-27 2024-05-28 Boston Scientific Scimed, Inc. Service loop ring
US11730349B2 (en) * 2019-10-25 2023-08-22 Canon U.S.A., Inc. Steerable medical device with bending sections and improved connector therefor
AU2020375903B2 (en) 2019-10-29 2025-10-30 Edwards Lifesciences Innovation (Israel) Ltd. Annuloplasty and tissue anchor technologies
US20220392065A1 (en) 2020-01-07 2022-12-08 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
WO2021141921A1 (fr) 2020-01-07 2021-07-15 Cleerly, Inc. Systèmes, procédés et dispositifs d'analyse d'images médicales, de diagnostic, de stratification de risque, de prise de décision et/ou de suivi de maladie
US11969280B2 (en) 2020-01-07 2024-04-30 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
WO2021236634A2 (fr) 2020-05-20 2021-11-25 Cardiac Implants, Llc Réduction du diamètre d'un anneau valvulaire cardiaque avec commande indépendante sur chacun des ancrages qui sont lancés dans l'anneau
CA3183162A1 (fr) 2020-06-19 2021-12-23 Jake Anthony Sganga Systemes et procedes de guidage de dispositifs intraluminaux a l'interieur du systeme vasculaire
WO2021255533A1 (fr) 2020-06-19 2021-12-23 Valtech Cardio Ltd. Ancres pour tissu à arrêt automatique
AU2022223771A1 (en) 2021-02-19 2023-07-20 Boston Scientific Scimed Inc. Modular medical devices and methods of using the same
EP4364163A1 (fr) 2021-07-01 2024-05-08 Remedy Robotics, Inc. Détermination de position et d'orientation basée sur la vision pour des outils endovasculaires
US11707332B2 (en) 2021-07-01 2023-07-25 Remedy Robotics, Inc. Image space control for endovascular tools
US12121307B2 (en) 2021-07-01 2024-10-22 Remedy Robotics, Inc. Vision-based position and orientation determination for endovascular tools
KR20230154256A (ko) 2021-10-05 2023-11-07 코린더스 인코포레이티드 세장형 의료 디바이스들의 로봇 작동
US20250217981A1 (en) 2022-03-10 2025-07-03 Cleerly, Inc. Systems, methods, and devices for image-based plaque analysis and risk determination
US20250143657A1 (en) 2022-03-10 2025-05-08 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
US12440180B2 (en) 2022-03-10 2025-10-14 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
US12406365B2 (en) 2022-03-10 2025-09-02 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
USD1071198S1 (en) 2023-06-28 2025-04-15 Edwards Lifesciences Corporation Cradle

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485234A (en) * 1966-04-13 1969-12-23 Cordis Corp Tubular products and method of making same
US3949757A (en) * 1974-05-13 1976-04-13 Sabel George H Catheter for atrio-ventricular pacemaker
DE3277287D1 (en) * 1981-10-15 1987-10-22 Olympus Optical Co Endoscope system with an electric bending mechanism
JPS5878639A (ja) * 1981-11-04 1983-05-12 オリンパス光学工業株式会社 内視鏡
US4539976A (en) * 1984-02-08 1985-09-10 Sharpe Jewett M Endoscopic surgical instrument
GB8503547D0 (en) * 1985-02-12 1985-03-13 British Petroleum Co Plc Nozzle
US4688555A (en) 1986-04-25 1987-08-25 Circon Corporation Endoscope with cable compensating mechanism
US5984939A (en) * 1989-12-05 1999-11-16 Yoon; Inbae Multifunctional grasping instrument with cutting member and operating channel for use in endoscopic and non-endoscopic procedures
US5120323A (en) * 1990-01-12 1992-06-09 Schneider (Usa) Inc. Telescoping guide catheter system
US6033378A (en) * 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US5254088A (en) * 1990-02-02 1993-10-19 Ep Technologies, Inc. Catheter steering mechanism
US6413234B1 (en) * 1990-02-02 2002-07-02 Ep Technologies, Inc. Assemblies for creating compound curves in distal catheter regions
US5025778A (en) * 1990-03-26 1991-06-25 Opielab, Inc. Endoscope with potential channels and method of using the same
US5159446A (en) * 1991-06-21 1992-10-27 Olympus Optical Co., Ltd. Electronic endoscope system provided with a separate camera controlling unit and motor controlling unit
DE4312147C2 (de) * 1992-04-14 1996-01-25 Olympus Optical Co Trokar
US5284130A (en) * 1992-06-03 1994-02-08 Ratliff Jack L Surgical instrument positioning and securing apparatus
US5325845A (en) * 1992-06-08 1994-07-05 Adair Edwin Lloyd Steerable sheath for use with selected removable optical catheter
US5462527A (en) * 1993-06-29 1995-10-31 C.R. Bard, Inc. Actuator for use with steerable catheter
US5643294A (en) * 1993-03-01 1997-07-01 United States Surgical Corporation Surgical apparatus having an increased range of operability
DE4306786C1 (de) * 1993-03-04 1994-02-10 Wolfgang Daum Chirurgischer Manipulator
BE1006889A3 (fr) 1993-03-23 1995-01-17 Hourlay Pierre Ecarteur autostatique orientable a effet double pour chirurgie sous videoscopie et endoscopique.
US5501654A (en) * 1993-07-15 1996-03-26 Ethicon, Inc. Endoscopic instrument having articulating element
US5734373A (en) * 1993-07-16 1998-03-31 Immersion Human Interface Corporation Method and apparatus for controlling force feedback interface systems utilizing a host computer
US5827323A (en) * 1993-07-21 1998-10-27 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5402793A (en) * 1993-11-19 1995-04-04 Advanced Technology Laboratories, Inc. Ultrasonic transesophageal probe for the imaging and diagnosis of multiple scan planes
US6858024B1 (en) * 1994-02-14 2005-02-22 Scimed Life Systems, Inc. Guide catheter having selected flexural modulus segments
US5575755A (en) * 1994-02-23 1996-11-19 Welch Allyn, Inc. Fluid insensitive braking for an endoscope
DE4431561C2 (de) * 1994-09-05 1997-11-06 Univ Ludwigs Albert Medizinisches Handhabungsgerät
EP0955860A1 (fr) * 1995-06-07 1999-11-17 Robert T. Chilcoat Endoscope articule offrant des avantages specifiques en laryngoscopie
AU7255896A (en) 1995-10-06 1997-04-28 Brian S. Kelleher Steerable, flexible forceps device
US5860953A (en) * 1995-11-21 1999-01-19 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
US6219032B1 (en) * 1995-12-01 2001-04-17 Immersion Corporation Method for providing force feedback to a user of an interface device based on interactions of a controlled cursor with graphical elements in a graphical user interface
IT1277690B1 (it) * 1995-12-22 1997-11-11 Bieffe Medital Spa Sistema di sostegno ed attuazione a vertebre in particolare per strumenti chirurgici e diagnostici
US5749828A (en) * 1995-12-22 1998-05-12 Hewlett-Packard Company Bending neck for use with invasive medical devices
US5741273A (en) 1996-03-08 1998-04-21 O'regan; Patrick J. Elastic band ligation device for treatment of hemorrhoids
US5826576A (en) * 1996-08-08 1998-10-27 Medtronic, Inc. Electrophysiology catheter with multifunction wire and method for making
US6007482A (en) * 1996-12-20 1999-12-28 Madni; Asad M. Endoscope with stretchable flexible sheath covering
US6013024A (en) * 1997-01-20 2000-01-11 Suzuki Motor Corporation Hybrid operation system
US6126665A (en) * 1997-05-01 2000-10-03 Yoon; Inbae Surgical instrument with arcuately movable offset end effectors and method of using the same
FR2762985B1 (fr) * 1997-05-06 1999-08-20 Visco Dispositif de chirurgie modulaire pour la chirurgie endoscopique et la chirurgie classique
JP3244645B2 (ja) 1997-05-07 2002-01-07 旭光学工業株式会社 内視鏡下外科手術用処置具
US6066090A (en) * 1997-06-19 2000-05-23 Yoon; Inbae Branched endoscope system
US7090683B2 (en) * 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US7789875B2 (en) * 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US7169141B2 (en) * 1998-02-24 2007-01-30 Hansen Medical, Inc. Surgical instrument
US20020087048A1 (en) * 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US6352503B1 (en) * 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
JP3244660B2 (ja) * 1998-08-17 2002-01-07 旭光学工業株式会社 内視鏡用処置具
US6270508B1 (en) 1998-10-26 2001-08-07 Charles H. Klieman End effector and instrument for endoscopic and general surgery needle control
US6325808B1 (en) 1998-12-08 2001-12-04 Advanced Realtime Control Systems, Inc. Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery
US6451027B1 (en) * 1998-12-16 2002-09-17 Intuitive Surgical, Inc. Devices and methods for moving an image capture device in telesurgical systems
US6179776B1 (en) * 1999-03-12 2001-01-30 Scimed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
US6494888B1 (en) 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US7637905B2 (en) * 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
AU2632001A (en) * 2000-01-06 2001-07-16 Raymond L. Bedell Steerable fiberoptic epidural balloon catheter and scope
DE10004264C2 (de) * 2000-02-01 2002-06-13 Storz Karl Gmbh & Co Kg Vorrichtung zur intrakorporalen, minimal-invasiven Behandlung eines Patienten
US6527753B2 (en) * 2000-02-29 2003-03-04 Olympus Optical Co., Ltd. Endoscopic treatment system
WO2001074260A1 (fr) 2000-03-24 2001-10-11 Johns Hopkins University Cavite peritoneale, procede et dispositif
US6858005B2 (en) * 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6656111B2 (en) * 2000-04-19 2003-12-02 Pentax Corporation Control device for an endoscope
WO2002007611A2 (fr) 2000-07-21 2002-01-31 Atropos Limited Instrument chirurgical
JP3600194B2 (ja) * 2000-10-02 2004-12-08 オリンパス株式会社 内視鏡
JP2002177198A (ja) * 2000-10-02 2002-06-25 Olympus Optical Co Ltd 内視鏡
US20030135204A1 (en) * 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
JP4261814B2 (ja) * 2001-04-04 2009-04-30 オリンパス株式会社 組織穿刺システム
JP2002323661A (ja) * 2001-04-24 2002-11-08 Olympus Optical Co Ltd 電動湾曲内視鏡のセンタリング機構
JP2004532074A (ja) * 2001-04-27 2004-10-21 シー・アール・バード・インコーポレーテッド 医療用カテーテル用ハンドルの設計
JP2003010099A (ja) * 2001-06-29 2003-01-14 Olympus Optical Co Ltd 内視鏡
US6793622B2 (en) * 2001-09-05 2004-09-21 Olympus Optical Co., Ltd. Electric bending endoscope
JP2003111769A (ja) 2001-10-03 2003-04-15 Pentax Corp 内視鏡用処置具システム
US20050117118A1 (en) * 2001-10-05 2005-06-02 David Miller Digital ophthalmic workstation
US6755812B2 (en) * 2001-12-11 2004-06-29 Cardiac Pacemakers, Inc. Deflectable telescoping guide catheter
US7338505B2 (en) * 2002-01-09 2008-03-04 Neoguide Systems, Inc. Apparatus and method for endoscopic colectomy
JP2003204920A (ja) * 2002-01-11 2003-07-22 Olympus Optical Co Ltd 挿入補助具
DE10224336B4 (de) * 2002-06-01 2004-04-08 University Of Dundee, Dundee Medizinisches Instrument
US20040059191A1 (en) * 2002-06-17 2004-03-25 Robert Krupa Mechanical steering mechanism for borescopes, endoscopes, catheters, guide tubes, and working tools
US20040193016A1 (en) * 2002-06-17 2004-09-30 Thomas Root Endoscopic delivery system for the non-destructive testing and evaluation of remote flaws
US7993351B2 (en) * 2002-07-24 2011-08-09 Pressure Products Medical Supplies, Inc. Telescopic introducer with a compound curvature for inducing alignment and method of using the same
US6899672B2 (en) * 2002-11-08 2005-05-31 Scimed Life Systems, Inc. Endoscopic imaging system including removable deflection device
US6872178B2 (en) * 2002-11-18 2005-03-29 Andrew Mark Weinberg Colonoscope apparatus and method
JP4236453B2 (ja) 2002-11-27 2009-03-11 オリンパス株式会社 内視鏡装置
US20040249367A1 (en) * 2003-01-15 2004-12-09 Usgi Medical Corp. Endoluminal tool deployment system
US20050245789A1 (en) * 2003-04-01 2005-11-03 Boston Scientific Scimed, Inc. Fluid manifold for endoscope system
US20040199052A1 (en) * 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
DE10324844A1 (de) * 2003-04-01 2004-12-23 Tuebingen Scientific Surgical Products Gmbh Chirurgisches Instrument mit Instrumentengriff und Nullpunkteinstellung
JP4323209B2 (ja) * 2003-04-25 2009-09-02 オリンパス株式会社 電動湾曲内視鏡
US7285088B2 (en) * 2003-05-13 2007-10-23 Olympus Corporation Endoscope apparatus
US7410483B2 (en) * 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US7090637B2 (en) * 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US7824368B2 (en) 2003-06-19 2010-11-02 Ethicon Endo-Surgery, Inc. Method for endoscopic, transgastric access into the abdominal cavity
US7410083B2 (en) * 2003-07-24 2008-08-12 Glen Reid Traffic ticket book holder
DE112004001398T5 (de) * 2003-07-29 2006-06-29 Pentax Corp. Gerät zur inneren Behandlung eines Patienten und System zur inneren Behandlung eines Patienten
JP4445736B2 (ja) 2003-10-01 2010-04-07 オリンパス株式会社 大腸全層切除の処置用挿入補助具とその医療器具システム
US7029435B2 (en) * 2003-10-16 2006-04-18 Granit Medical Innovation, Llc Endoscope having multiple working segments
US7147650B2 (en) * 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
US7686826B2 (en) * 2003-10-30 2010-03-30 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7632266B2 (en) * 2004-02-17 2009-12-15 Boston Scientific Scimed, Inc. Endoscopic devices and related methods of use
JP2005296412A (ja) 2004-04-13 2005-10-27 Olympus Corp 内視鏡治療装置
US9089258B2 (en) * 2004-04-21 2015-07-28 Acclarent, Inc. Endoscopic methods and devices for transnasal procedures
US20050251091A1 (en) * 2004-05-10 2005-11-10 Usgi Medical Inc. Apparatus and methods for transgastric tissue manipulation
US7931661B2 (en) 2004-06-14 2011-04-26 Usgi Medical, Inc. Apparatus and methods for performing transluminal gastrointestinal procedures
JP4767252B2 (ja) 2004-06-14 2011-09-07 ヌームアールエックス・インコーポレーテッド 肺のアクセス装置
US20060089626A1 (en) * 2004-10-22 2006-04-27 Vlegele James W Surgical device guide for use with an imaging system
US7537550B1 (en) * 2004-12-14 2009-05-26 Krull Mark A Exercise weight stack methods and apparatus
US20060178562A1 (en) * 2005-02-10 2006-08-10 Usgi Medical Inc. Apparatus and methods for obtaining endoluminal access with a steerable guide having a variable pivot
US7618413B2 (en) 2005-06-22 2009-11-17 Boston Scientific Scimed, Inc. Medical device control system
JP4125311B2 (ja) * 2005-08-30 2008-07-30 株式会社東芝 ロボットおよびマニピュレータ
JP2009507617A (ja) * 2005-09-14 2009-02-26 ネオガイド システムズ, インコーポレイテッド 経腔的及び他の操作を行うための方法及び装置
JP4763420B2 (ja) * 2005-10-27 2011-08-31 オリンパスメディカルシステムズ株式会社 内視鏡用操作補助装置
US8475361B2 (en) * 2006-01-06 2013-07-02 Olympus Medical Systems Corp. Percutaneous or natural-orifice medical procedure and system therefor
US8617054B2 (en) * 2006-01-13 2013-12-31 Olympus Medical Systems Corp. Medical treatment endoscope
US8021293B2 (en) * 2006-01-13 2011-09-20 Olympus Medical Systems Corp. Medical treatment endoscope
US8092371B2 (en) * 2006-01-13 2012-01-10 Olympus Medical Systems Corp. Medical treatment endoscope
US20070219411A1 (en) * 2006-01-13 2007-09-20 Olympus Medical Systems Corp. Overtube and endoscopic treatment system
US20080172038A1 (en) * 2006-10-18 2008-07-17 Mike Dollar Steerable catheter system
US9456877B2 (en) * 2006-12-01 2016-10-04 Boston Scientific Scimed, Inc. Direct drive instruments and methods of use
US9533122B2 (en) * 2007-05-18 2017-01-03 Boston Scientific Scimed, Inc. Catheter drive system with control handle rotatable about two axes separated from housing by shaft

Also Published As

Publication number Publication date
US20150282788A1 (en) 2015-10-08
EP2361557A3 (fr) 2011-12-21
US9089356B2 (en) 2015-07-28
US20120165829A1 (en) 2012-06-28
US20070010800A1 (en) 2007-01-11
US8057462B2 (en) 2011-11-15
US7618413B2 (en) 2009-11-17
EP1906839B1 (fr) 2013-03-13
US9763650B2 (en) 2017-09-19
EP1906839A1 (fr) 2008-04-09
US20100114116A1 (en) 2010-05-06
US20070010801A1 (en) 2007-01-11
EP2359751A1 (fr) 2011-08-24
EP2361557B1 (fr) 2014-04-16
US9549716B2 (en) 2017-01-24
WO2007002545A1 (fr) 2007-01-04
EP2359751B1 (fr) 2014-04-30

Similar Documents

Publication Publication Date Title
EP2359751B1 (fr) Système de contrôle de dispositif médical orientable
JP5139979B2 (ja) 外科用器具の案内装置
US8409245B2 (en) Surgical instrument
US9901410B2 (en) Surgical positioning and support system
JP4320061B2 (ja) 内視鏡用の制御装置
JP5090441B2 (ja) 外科用器具
CN104736074B (zh) 用于双控制手术器械的系统和方法
US20110021871A1 (en) Laparoscopic surgical instrument
US20120118098A1 (en) Instrument positioning/holding devices
US20160113732A1 (en) Surgical tool
KR20140119183A (ko) 기계화된 다중­기구 수술 시스템
JP2012525916A (ja) 外科用器具の案内装置
CN114423366A (zh) 混合、直接控制和机器人辅助的手术系统
CN101513338A (zh) 处理用内窥镜
JP2022191607A (ja) 医療器具および手術システム
CN223287236U (zh) 远端可操纵的医疗器械及机器人手术系统
US20250072895A1 (en) Systems, devices, and related methods for fastening tissue
KR20240125431A (ko) 수술용 인스트루먼트
CN119950035A (zh) 远端可操纵的医疗器械及机器人手术系统
HK1141426A (en) Surgical instrument

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1906839

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IE NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IE NL

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 19/00 20060101ALI20111114BHEP

Ipc: A61B 17/00 20060101AFI20111114BHEP

17P Request for examination filed

Effective date: 20120619

17Q First examination report despatched

Effective date: 20120907

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A61B 17/29 20060101ALI20131002BHEP

Ipc: A61B 17/00 20060101AFI20131002BHEP

INTG Intention to grant announced

Effective date: 20131030

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1906839

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IE NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006041164

Country of ref document: DE

Effective date: 20140528

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006041164

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BOSTON SCIENTIFIC LIMITED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006041164

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006041164

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006041164

Country of ref document: DE

Owner name: BOSTON SCIENTIFIC LIMITED, BM

Free format text: FORMER OWNER: BOSTON SCIENTIFIC LTD., CHRIST CHURCH, BB

Effective date: 20150202

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006041164

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

Effective date: 20150202

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006041164

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

Effective date: 20141026

26N No opposition filed

Effective date: 20150119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006041164

Country of ref document: DE

Effective date: 20150119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160610

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180511

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006041164

Country of ref document: DE

Owner name: BOSTON SCIENTIFIC MEDICAL DEVICE LIMITED, IE

Free format text: FORMER OWNER: BOSTON SCIENTIFIC LIMITED, HAMILTON, BM

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231116 AND 20231122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240523

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 19