EP2241676A1 - Ensembles d'anode à inhibition de corrosion à utiliser avec des structures sous-marines - Google Patents
Ensembles d'anode à inhibition de corrosion à utiliser avec des structures sous-marines Download PDFInfo
- Publication number
- EP2241676A1 EP2241676A1 EP10159836A EP10159836A EP2241676A1 EP 2241676 A1 EP2241676 A1 EP 2241676A1 EP 10159836 A EP10159836 A EP 10159836A EP 10159836 A EP10159836 A EP 10159836A EP 2241676 A1 EP2241676 A1 EP 2241676A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wing
- main frame
- frame
- anode
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000712 assembly Effects 0.000 title claims abstract description 14
- 238000000429 assembly Methods 0.000 title claims abstract description 14
- 230000007797 corrosion Effects 0.000 title claims abstract description 5
- 238000005260 corrosion Methods 0.000 title claims abstract description 5
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000000523 sample Substances 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims description 2
- 230000000284 resting effect Effects 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 241000356143 Euphorbia grandicornis Species 0.000 description 4
- 238000007654 immersion Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B17/0017—Means for protecting offshore constructions
- E02B17/0026—Means for protecting offshore constructions against corrosion
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/18—Means for supporting electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F2213/00—Aspects of inhibiting corrosion of metals by anodic or cathodic protection
- C23F2213/30—Anodic or cathodic protection specially adapted for a specific object
- C23F2213/31—Immersed structures, e.g. submarine structures
Definitions
- the present invention relates to corrosion inhibiting anode assemblies, particularly, but not exclusively, to anode assemblies suitable for use with off-shore structures associated with oil and/or gas production, such as oil and gas platforms.
- the invention relates to both sacrificial anode assemblies and to impressed current anode assemblies.
- a common form of anode assembly is of generally cow-horn shape to provide a stand-off for an elongate anode bar.
- the horns can be produced from round-bar steel or tubular steel, and constitute stand-off supports for the anode bar.
- the stand-off supports may be in the form of an L-shaped bracket.
- a sacrificial anode assembly and an impressed current anode assembly, in the form of a rigid stool-shaped framework in which the legs of the stool each comprise a bar of a sacrificial metal.
- the spacing-apart of the legs of the stool helps to reduce material anode interference.
- Such a free-standing assembly can be positioned on the bed of the sea.
- a problem with such a stool is that if will have a limited surface area of the anodes, and accordingly increasing the surface area results in a very large assembly that is difficult to transport and manoeuvre to its submerged location.
- the stand-off supports may be straight, curve through 90° or be in the shape of a right-angle.
- the main frame is of oblong-rectangular shape in plan, and first and second wing frames are pivotally attached to opposite ends of the main frame, the wing frames being dimensioned such that in said folded condition, the wing frames lie substantially within the plan area of the main frame.
- the widths of the wing frames are narrower than the transverse spacing of the anode bars carried by the longitudinal main frame members to enable the folded wing frames to lie between the anode bars of the main frame as viewed in plan, thereby to help facilitate a relatively compact assembly for transportation.
- the wing frame supports of said first preferred arrangement are preferably arranged to support the extended wing frames substantially perpendicular to the plane of the main frame, ie, substantially vertical when the main frame is resting on a horizontal bed.
- the wing frame supports are preferably then in the form of respective struts extending at an acute angle from a pivot point on the main frame to a pivot point on the respective frame, the struts having a hinge connection at their midpoints to enable the strut to be folded when the wing is in the folded condition.
- the struts are preferably provided with latches associated with the hinges that engage to lock the strut permanently when the wing frame reaches its fully extended condition.
- the main frame is of oblong-rectangular outline in plan and at least one wing frame is pivotally connected thereto about an axis extending along one margin of the main frame, the wing frame in said extended condition extending outwardly from the main frame and generally in a plane parallel to or coincident with the plane of the main frame.
- the wing frame supports may simply comprise feet which engage with the bed when the wing frame is in the extended condition, and the feet may be provided on short support legs extending downwardly from the outer end of the wing frame.
- wing frame assemblies are preferably provided, which open out from the respective margins of the main frame.
- the wing frames preferably each comprise upper and lower elongate anode bars spaced apart vertically, as seen with the wing frame in an extended condition, and the anode bars of the wing frames are so positioned on the wing frames as to be received between anode assemblies that are directly supported on the main frame, when the wing frame is positioned in said folded condition.
- a particularly compact assembly when the wing frames are in their folded conditions, is facilitated by arranging that the horizontal dimension of the wing frame, going from the pivotal axis of the wing to the tip of the wing, is substantially equal to the maximum height, relative to the base of the main frame, of the anodes on the main frame.
- One or more elongate components of the assembly may be formed as a telescopic hydraulic unit that can be extended when the assembly has been immersed in water, preferably as the assembly nears or reaches its deployed position on the bed of the sea or body of water.
- the hydraulic unit/s are preferably provided with latches that hold the extended hydraulic unit, once charged, in a substantially extended condition.
- a pre-charged hydraulic accumulator is preferably mounted on one of the frames, preferably on the main frame, and is connected to the hydraulic unit/s.
- An actuation valve is provided between the accumulator and the hydraulic unit/s, the valve being arranged to be opened when it is desired to extend the hydraulic unit/s.
- the actuation valve is preferably a normally closed probe-operated valve, the probe being positioned to be operated by contact with the sea bed/bed of water when the main frame is deposited onto the bed.
- a normally closed water-pressure operated valve in series with the probe-operated valve, the water pressure operated valve being configured to open when the assembly reaches a predetermined depth of water, thereby reconnecting the supply from the hydraulic accumulator to enable charging of the hydraulic units when the probe-operated valve is opened.
- Unfolding of the folded shipped assembly can be assisted by the provision of one or more floats attached to a part or parts of the wing frames that move upwardly on unfolding of the wing frame/s.
- FIGS. 1 and 2 show a first configuration of a sacrificial anode assembly 1 in the form of an oblong-rectangular main frame 2 in the form of a skid to which is pivotally attached a pair of wing frames 3, 4.
- the main frame is conveniently a commercially available steel freight flat, of dimensions 12192mm x 2438mm in this example, but other skid dimensions are possible.
- Hinge brackets welded to the skid provide pivotal attachment points of the wing frames 3, 4 at opposite ends of the main frame 2.
- Telescopic hydraulic extendable outriggers 6 are shown in Figure 2 extending horizontally from outrigger housings 7 welded to the opposite ends of the skid.
- the outriggers carry feet 8 at their outer ends to engage the seabed.
- the outriggers are powered by a hydraulic accumulator tank, not shown, mounted on the skid, and triggered by a ground engageable trigger mounted on the skid.
- a pressure sensitive safety valve prevents charging of the outriggers until the pressure corresponds to a predetermined depth of immersion.
- An arming mechanism in the form of a manual valve, enables the accumulator to be connected to the hydraulic circuit just prior to immersion of the assembly.
- each outrigger 6 is provided with respective drop catches, not shown, arranged to lock the tubes of the respective outrigger one to another in the extended condition of the outriggers.
- wing frames when displayed in use of the assembly 1, are supported by respective struts 9, 10 which are each pivotally connected at their lower ends at 10', 9' respectively to brackets 12 welded to the main frame 2, and are pivoted at their mid-points 9", 10".
- Tubular latches not shown, slide under gravity down over the mid-point pivots, once the struts have straightened, to hold the struts 9, 10 straight.
- Elongate anode bars 13 of known polygonal transverse cross-section are attached in known manner by curved stand-off supports 14 to the opposite upper margins of the main frame 2.
- Such anode bars 13 and supports 14 are often termed of cow-horn' type, and the anode bars are conveniently cast onto a continuous cow-horn shape of length of steel round bar.
- the wing frames 3, 4 each comprise straight lengths of round alloy bars 15 interconnected by steel round bar lengths 16. This configuration of alloy bars 15 keeps the bars spaced-apart from one another, and also spaced from the bars 13 on the main frame 2.
- the wing frames are initially in a folded condition in which they lie within the plan area of the main frame and substantially parallel thereto so as to provide a compact assembly for transportation and lowering to the seabed.
- the wing frames 3, 4 are preferably provided with buoyancy means, not shown, to urge them towards their upright position.
- the frame assembly is provided with leads 50 electrically connected to the pivoted ends of the wing frames 3,4 at 51 and carrying a roving contact 52 for attachment in use to the structure being protected.
- Figures 9 to 13 show a second assembly configuration in which four wing frames 20, 21, 22, 23 are pivotally attached to the respective sides of the main frame 2.
- the main frame 2 can be a commercially available freight flat as in the embodiment of Figures 1 to 8 .
- construction of the main frame 2 is provided with an array of cow-horn shaped anode units arranged in three groups 25, 26, 27 of longitudinally extending anodes, and in addition there are four transversely extending bars 28, 29, 30, 31.
- the bars in each group 25, 26, 27 have stand-off supports of two different heights, so that alternate elongate bars in each group are higher and lower than one another, in order to help space the alloy bars apart.
- the wing frames 20, 21, 22, 23 each comprise a series of elongate alloy bars connected as a rectangular cage by steel rods 30. As shown in Figures 10 and 11 , the alloy bars are in two horizontal layers. For example, in Figure 10 bar 35 is positioned above bar 30, and in the same vertical plane.
- the wing frames in their extended, deployed condition shown are supported by legs 36 which stand on the seabed, and the anode bars 30, 35, 37 for example, of the wing frames lie in planes parallel to the plane of the main frame.
- the wing frames are permitted to be put in a folded condition for shipping, and to enable easy lowering of the assembly to the seabed.
- the positioning of the groups of bars 25, 26, 27 and that of bars 28, 29, 30 and 31, is chosen to define un-obscured strip-like areas on top of the main frame 40, 41, 42 and 43 to accommodate anodes on the wing frames 20, 22.
- the stand-off arm supports of the alternate anode bars 45 attached to the main frame are taller when deployed than the corresponding stand-offs in Figures 10, 11 in order to space the anodes 46 more from one another in the vertical direction.
- the upper 48 and lower 47 bars of the wing frames are spaced apart more in the vertical direction when deployed.
- the stand-off arm supports 45 mounted on the skid 2, and those stand-off arm supports 60 mounted on the wing frames, are telescopic hydraulic units with respective latches to hold them in the extended raised, deployed condition, shown in Figures 15 and 16 .
- FIG. 14 to 18 The unfolding of the assembly of Figures 14 to 18 , and the extending of the hydraulic units of supports 45 and 60, is preferably accomplished using a hydraulic accumulator tank, not shown, in Figures 14 to 18 , provided on the skid 2.
- Figure 19 schematically shows the hydraulic circuit.
- Activation of the hydraulic units 45, 60 is by operation of a probe 61 mounted on the skid 2 and arranged to be operated by contact with the sea bed, when the assembly is lowered to the sea bed.
- a pressure sensor 62 is preferably provided, responsive to the water pressure to initiate charging of the hydraulic units, until a predetermined depth of the assembly has been reached sufficient to enable the hydraulic accumulators 63.
- Figures 1 to 19 have been designed primarily for use as sacrificial anode assemblies, but modifications of those embodiments may instead be used as impressed current anode assemblies, the individual anodes of the anode assemblies being fed with electrical current from a suitable supply on the structure, as is usual.
- the modifications required are to electrically isolate the anodes from the main frame 2 by the incorporation of suitable insulators in their mountings, such as by the use of tubular plastics anode supports.
- Aluminium alloy is usually employed in sea water.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0906501A GB0906501D0 (en) | 2009-04-16 | 2009-04-16 | Corrosion inhibiting anode assemblies for use with underwater structures |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP2241676A1 true EP2241676A1 (fr) | 2010-10-20 |
| EP2241676B1 EP2241676B1 (fr) | 2013-03-20 |
Family
ID=40750654
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP20100159836 Not-in-force EP2241676B1 (fr) | 2009-04-16 | 2010-04-14 | Ensembles d'anode à inhibition de corrosion à utiliser avec des structures sous-marines |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP2241676B1 (fr) |
| DK (1) | DK2241676T3 (fr) |
| GB (1) | GB0906501D0 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016038475A1 (fr) * | 2014-09-12 | 2016-03-17 | Bac Corrosion Control A/S | Construction d'anode et procédé de déploiement de construction d'anode |
| EP3447167A1 (fr) * | 2017-08-25 | 2019-02-27 | David William Whitmore | Fabrication d'anodes sacrificielles |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4609307A (en) * | 1984-11-05 | 1986-09-02 | Exxon Production Research Co. | Anode pod system for offshore structures and method of installation |
| US7138038B1 (en) | 2004-02-23 | 2006-11-21 | James N Britton | Expandable anode pod |
-
2009
- 2009-04-16 GB GB0906501A patent/GB0906501D0/en not_active Ceased
-
2010
- 2010-04-14 DK DK10159836T patent/DK2241676T3/da active
- 2010-04-14 EP EP20100159836 patent/EP2241676B1/fr not_active Not-in-force
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4609307A (en) * | 1984-11-05 | 1986-09-02 | Exxon Production Research Co. | Anode pod system for offshore structures and method of installation |
| US7138038B1 (en) | 2004-02-23 | 2006-11-21 | James N Britton | Expandable anode pod |
Non-Patent Citations (1)
| Title |
|---|
| TURNIPSEED S P: "OFFSHORE PLATFORM CATHODIC PROTECTION RETROFITS", MATERIALS PERFORMANCE, NACE INTERNATIONAL, HOUSTON, TX, US, vol. 35, no. 10, 1 October 1996 (1996-10-01), pages 11 - 16, XP000636514, ISSN: 0094-1492 * |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016038475A1 (fr) * | 2014-09-12 | 2016-03-17 | Bac Corrosion Control A/S | Construction d'anode et procédé de déploiement de construction d'anode |
| EP3447167A1 (fr) * | 2017-08-25 | 2019-02-27 | David William Whitmore | Fabrication d'anodes sacrificielles |
Also Published As
| Publication number | Publication date |
|---|---|
| DK2241676T3 (da) | 2013-05-27 |
| GB0906501D0 (en) | 2009-05-20 |
| EP2241676B1 (fr) | 2013-03-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2351147B1 (fr) | Dispositif destiné à un récepteur vertical de composantes de champ électromagnétique | |
| JP5774158B2 (ja) | 水沈した支持構体の設置 | |
| US7635237B2 (en) | Retrievable surface installed cathodic protection for marine structures | |
| US10517279B2 (en) | Submersible net pen system | |
| US3747354A (en) | Retractable pier | |
| KR101410372B1 (ko) | 파일가이드용 수상시설물 계류장치 | |
| WO2006030042A1 (fr) | Vivier submersible ameliore | |
| NO333691B1 (no) | Et flytende vindturbinanlegg. | |
| EP2241676B1 (fr) | Ensembles d'anode à inhibition de corrosion à utiliser avec des structures sous-marines | |
| WO2009147449A1 (fr) | Structure de pylone et procédé permettant de lever ou de baisser ladite structure | |
| CN109537555A (zh) | 一种自升式海洋平台 | |
| US2941370A (en) | Offshore platforms | |
| KR101640901B1 (ko) | 해상 풍력발전기 거치이동장치 및 그를 구비한 해상 풍력발전기 설치용 선박 | |
| EP3191618B1 (fr) | Construction d'anode et procédé de déploiement de construction d'anode | |
| JP6194440B2 (ja) | 海上において風力エネルギーを電気エネルギーに変換する風力発電プラント | |
| CN218880781U (zh) | 浮式调高装置 | |
| US9022693B1 (en) | Rapid deployable floating production system | |
| KR101613067B1 (ko) | 파일가이드용 수상시설물 계류장치 | |
| US12371913B1 (en) | Moveable edge scaffold | |
| RU2620816C1 (ru) | Самоподъемная буровая ледостойкая установка | |
| KR200455682Y1 (ko) | 부유식 수상구조물 흔들림 방지 추 | |
| JP5351929B2 (ja) | ハンガーレール装置組立用支持具、ハンガーレール装置の組立方法及びハンガーレール装置の取替方法 | |
| CN206914610U (zh) | 一种船舶用升降式烟囱 | |
| NL1040731B1 (nl) | Werkwijze en constructies voor het plaatsen van een verlengdeel op een hefeilandpoot. | |
| JPH07324337A (ja) | ケーソンの着水装置及び着水方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA ME RS |
|
| 17P | Request for examination filed |
Effective date: 20110418 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 602182 Country of ref document: AT Kind code of ref document: T Effective date: 20130415 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010005529 Country of ref document: DE Effective date: 20130516 |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130701 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130620 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20130517 Year of fee payment: 4 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 602182 Country of ref document: AT Kind code of ref document: T Effective date: 20130320 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130621 |
|
| REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20130320 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130720 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130722 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20131101 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131101 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20131231 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010005529 Country of ref document: DE Effective date: 20131101 |
|
| 26N | No opposition filed |
Effective date: 20140102 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130521 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131101 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130414 |
|
| REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20140430 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140414 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140414 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140430 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130414 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20100414 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130320 |