EP2117430A2 - Procédé de diagnostic d'états physiologiques par la détection de motifs d'analytes volatiles - Google Patents
Procédé de diagnostic d'états physiologiques par la détection de motifs d'analytes volatilesInfo
- Publication number
- EP2117430A2 EP2117430A2 EP08779564A EP08779564A EP2117430A2 EP 2117430 A2 EP2117430 A2 EP 2117430A2 EP 08779564 A EP08779564 A EP 08779564A EP 08779564 A EP08779564 A EP 08779564A EP 2117430 A2 EP2117430 A2 EP 2117430A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensors
- phenyl
- distinct
- oet
- sensor array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000003745 diagnosis Methods 0.000 title claims description 9
- 230000035790 physiological processes and functions Effects 0.000 title claims description 8
- 230000004044 response Effects 0.000 claims abstract description 38
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000000523 sample Substances 0.000 claims description 38
- 238000013528 artificial neural network Methods 0.000 claims description 21
- 238000012360 testing method Methods 0.000 claims description 18
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 10
- 239000007983 Tris buffer Substances 0.000 claims description 10
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 10
- 229960001484 edetic acid Drugs 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 8
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 claims description 8
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 7
- -1 ureidopropyl Chemical group 0.000 claims description 7
- 206010028980 Neoplasm Diseases 0.000 claims description 6
- 201000011510 cancer Diseases 0.000 claims description 6
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 claims description 6
- 229940043267 rhodamine b Drugs 0.000 claims description 6
- 238000011179 visual inspection Methods 0.000 claims description 6
- LWTIGYSPAXKMDG-UHFFFAOYSA-N 2,3-dihydro-1h-imidazole Chemical compound C1NC=CN1 LWTIGYSPAXKMDG-UHFFFAOYSA-N 0.000 claims description 5
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- 235000010290 biphenyl Nutrition 0.000 claims description 5
- 239000004305 biphenyl Substances 0.000 claims description 5
- VFMUXPQZKOKPOF-UHFFFAOYSA-N 2,3,7,8,12,13,17,18-octaethyl-21,23-dihydroporphyrin platinum Chemical compound [Pt].CCc1c(CC)c2cc3[nH]c(cc4nc(cc5[nH]c(cc1n2)c(CC)c5CC)c(CC)c4CC)c(CC)c3CC VFMUXPQZKOKPOF-UHFFFAOYSA-N 0.000 claims description 4
- MPPQGYCZBNURDG-UHFFFAOYSA-N 2-propionyl-6-dimethylaminonaphthalene Chemical compound C1=C(N(C)C)C=CC2=CC(C(=O)CC)=CC=C21 MPPQGYCZBNURDG-UHFFFAOYSA-N 0.000 claims description 4
- 239000004964 aerogel Substances 0.000 claims description 4
- VYXSBFYARXAAKO-WTKGSRSZSA-N chembl402140 Chemical compound Cl.C1=2C=C(C)C(NCC)=CC=2OC2=C\C(=N/CC)C(C)=CC2=C1C1=CC=CC=C1C(=O)OCC VYXSBFYARXAAKO-WTKGSRSZSA-N 0.000 claims description 4
- VSSSHNJONFTXHS-UHFFFAOYSA-N coumarin 153 Chemical compound C12=C3CCCN2CCCC1=CC1=C3OC(=O)C=C1C(F)(F)F VSSSHNJONFTXHS-UHFFFAOYSA-N 0.000 claims description 4
- 206010012601 diabetes mellitus Diseases 0.000 claims description 4
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 4
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 4
- 239000013068 control sample Substances 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims 2
- 229910052707 ruthenium Inorganic materials 0.000 claims 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims 1
- 125000005504 styryl group Chemical group 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 21
- 230000002596 correlated effect Effects 0.000 abstract description 4
- 239000003039 volatile agent Substances 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 19
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 239000012491 analyte Substances 0.000 description 15
- 238000003491 array Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 11
- 238000009472 formulation Methods 0.000 description 10
- 210000002700 urine Anatomy 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 5
- 230000000875 corresponding effect Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000012703 sol-gel precursor Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 201000005296 lung carcinoma Diseases 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical compound C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 2
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N 2,2-dimethylbutane Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 2
- MBDOYVRWFFCFHM-UHFFFAOYSA-N 2-hexenal Chemical compound CCCC=CC=O MBDOYVRWFFCFHM-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 2
- 208000024799 Thyroid disease Diseases 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 2
- NDFKTBCGKNOHPJ-UHFFFAOYSA-N hept-2-enal Chemical compound CCCCC=CC=O NDFKTBCGKNOHPJ-UHFFFAOYSA-N 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000013642 negative control Substances 0.000 description 2
- LQERIDTXQFOHKA-UHFFFAOYSA-N nonadecane Chemical compound CCCCCCCCCCCCCCCCCCC LQERIDTXQFOHKA-UHFFFAOYSA-N 0.000 description 2
- GYHFUZHODSMOHU-UHFFFAOYSA-N nonanal Chemical compound CCCCCCCCC=O GYHFUZHODSMOHU-UHFFFAOYSA-N 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- JYVLIDXNZAXMDK-UHFFFAOYSA-N pentan-2-ol Chemical compound CCCC(C)O JYVLIDXNZAXMDK-UHFFFAOYSA-N 0.000 description 2
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- NDVASEGYNIMXJL-UHFFFAOYSA-N sabinene Chemical compound C=C1CCC2(C(C)C)C1C2 NDVASEGYNIMXJL-UHFFFAOYSA-N 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 208000021510 thyroid gland disease Diseases 0.000 description 2
- NDVASEGYNIMXJL-NXEZZACHSA-N (+)-sabinene Natural products C=C1CC[C@@]2(C(C)C)[C@@H]1C2 NDVASEGYNIMXJL-NXEZZACHSA-N 0.000 description 1
- JZQKTMZYLHNFPL-BLHCBFLLSA-N (2E,4E)-deca-2,4-dienal Chemical compound CCCCC\C=C\C=C\C=O JZQKTMZYLHNFPL-BLHCBFLLSA-N 0.000 description 1
- ZHHYXNZJDGDGPJ-BSWSSELBSA-N (2e,4e)-nona-2,4-dienal Chemical compound CCCC\C=C\C=C\C=O ZHHYXNZJDGDGPJ-BSWSSELBSA-N 0.000 description 1
- BSAIUMLZVGUGKX-BQYQJAHWSA-N (E)-non-2-enal Chemical compound CCCCCC\C=C\C=O BSAIUMLZVGUGKX-BQYQJAHWSA-N 0.000 description 1
- FIPKSKMDTAQBDJ-UHFFFAOYSA-N 1-methyl-2,3-dihydro-1h-indene Chemical compound C1=CC=C2C(C)CCC2=C1 FIPKSKMDTAQBDJ-UHFFFAOYSA-N 0.000 description 1
- OKVWYBALHQFVFP-UHFFFAOYSA-N 2,3,3-trimethylpentane Chemical compound CCC(C)(C)C(C)C OKVWYBALHQFVFP-UHFFFAOYSA-N 0.000 description 1
- ZHHYXNZJDGDGPJ-UHFFFAOYSA-N 2,4-Nonadienal Natural products CCCCC=CC=CC=O ZHHYXNZJDGDGPJ-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- MBDOYVRWFFCFHM-SNAWJCMRSA-N 2-Hexenal Natural products CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 1
- BSAIUMLZVGUGKX-UHFFFAOYSA-N 2-Nonenal Natural products CCCCCCC=CC=O BSAIUMLZVGUGKX-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- LVBXEMGDVWVTGY-SREVYHEPSA-N 2-octenal Chemical compound CCCCC\C=C/C=O LVBXEMGDVWVTGY-SREVYHEPSA-N 0.000 description 1
- JZQKTMZYLHNFPL-UHFFFAOYSA-N 2-trans-4-trans-decadienal Natural products CCCCCC=CC=CC=O JZQKTMZYLHNFPL-UHFFFAOYSA-N 0.000 description 1
- PQOSNJHBSNZITJ-UHFFFAOYSA-N 3-methyl-3-heptanol Chemical compound CCCCC(C)(O)CC PQOSNJHBSNZITJ-UHFFFAOYSA-N 0.000 description 1
- QYFVEEMPFRRFNN-UHFFFAOYSA-N 5,5-dimethylhexan-1-ol Chemical compound CC(C)(C)CCCCO QYFVEEMPFRRFNN-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 1
- KHMVXSQLPUNRCF-UHFFFAOYSA-N DL-Adalin Natural products C1CCC2CC(=O)CC1(CCCCC)N2 KHMVXSQLPUNRCF-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical compound ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 235000019647 acidic taste Nutrition 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- KQAZVFVOEIRWHN-UHFFFAOYSA-N alpha-thujene Natural products CC1=CCC2(C(C)C)C1C2 KQAZVFVOEIRWHN-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001748 luminescence spectrum Methods 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229940038384 octadecane Drugs 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 208000020016 psychiatric disease Diseases 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 229930006696 sabinene Natural products 0.000 description 1
- 201000000980 schizophrenia Diseases 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- LVBXEMGDVWVTGY-UHFFFAOYSA-N trans-2-octenal Natural products CCCCCC=CC=O LVBXEMGDVWVTGY-UHFFFAOYSA-N 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/082—Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/04—Endocrine or metabolic disorders
- G01N2800/042—Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/70—Mechanisms involved in disease identification
- G01N2800/7023—(Hyper)proliferation
- G01N2800/7028—Cancer
Definitions
- biogas samples such as expired gases or odors from one's breath or from other body parts. These samples can be large in volume, are much safer to handle in comparison to biofluids and offer the potential of completely non-invasive evaluation and investigation, thus providing a significant advantage over aspirate, urine and blood sampling.
- efficient methods to use biogas samples for diagnosis of physiological or diseased states have heretofore been unavailable.
- the present invention provides a method for identification of an ensemble of volatiles without having to know the identity of the individual components of the ensemble.
- this method can be used for diagnosis of a physiological or diseased states.
- the method comprises the steps of providing a sensor array comprising a plurality of distinct sensors having different holding materials or sensing molecules or both.
- the sensor array is exposed to the test biogas sample.
- the response of the sensors is recorded and a pattern is generated.
- the pattern can be compared to a control sample to provide indication of the presence or absence of the gas ensemble profile in the test sample.
- the comparison with the control sample can be done by visual inspection or the pattern could be read by a computer.
- neural networks can be trained to identify the presence or absence of physiological or diseased states.
- the holding materials are formed by xerogel materials and the sensing molecules are luminophores.
- Figure 2a is a false color fluorescence image of an array of xerogel-based sensor elements developed for oxygen detection.
- Figure 2b shows the unique sensitivity of each xerogel array element obtained by controlling the xerogel composition.
- Specimens are the head space gases from male urine donors recorded 12 seconds after array exposure.
- Figure 4 Histogram of sensor element response to breath samples from cancer patients and a control group with no diagnosed cancer. Image of sensor array used to collect data in Example
- Figure 5 Graphical representation of elimination of environmental noise using Adaline- Adaptive Filtering technique.
- Figure 6 Graphical representation of the steps for training a neural network by generating a rule set for identification of physiological or diseased states.
- the present method provides non-invasive method for identification of physiological or diseased states based on the volatile analytes in biogas samples from an individual.
- the method uses a sensor array comprising a plurality of distinct sensors, wherein each sensor (or set of sensors) differs from other sensors (or set of sensors) by the sensing molecules or the holding material composition such that a group of sensors can generate a pattern of responses that can be correlated to particular physiological to diseased states.
- the method comprises the steps of providing a sensor array of distinct sensors comprising different sensing molecules and/or holding material compositions; exposing the sensor array to a biogas specimen from an individual, which results in the generation of a specific combination of responses of the different sensors; generating a pattern based on the characteristics of the responses of the sensors and comparing the pattern obtained from the test specimen of to a control specimen; or subjecting the responses to a rule set from a trained neural network.
- any gaseous test sample can be evaluated.
- the gaseous test sample can be a biogas sample.
- a biogas sample (also referred to herein as biogas specimen) as described herein means a gaseous sample directly emanating from the individual (such as the individual's breath) or it can be the headspace gas from a liquid or tissue sample from the individual such as blood urine or other body fluids or tissues or organs.
- the biogas sample may contain vapor materials such as water vapors and aqueous aerosols.
- arrays of discrete sensor elements can be formed on the face of a light source and detected with an array-based detector. For example, formation of sensor arrays on the face of a light emitting diode (LED) and the simultaneous detection of multiple analytes are described in U.S. patent nos.
- the LED serves as the light source to simultaneously excite the chromophores/luminophores within all the sensors on the LED face and the target analyte-dependent absorbance/emission from all the sensors can be detected by an array detector (e.g., charge coupled device (CCD), complementary metal oxide semiconductor (CMOS)).
- CCD charge coupled device
- CMOS complementary metal oxide semiconductor
- CMOS complementary metal oxide semiconductor
- a distinct pattern will be generated based on the responses of the sensors.
- the response of each sensor is characterized as whether a sensor is responding or not, and/or other characteristics of the response (such as the intensity of the response). The pattern can then be compared to a control pattern.
- the control pattern may be a positive control pattern or a negative control pattern.
- a negative control pattern can be generated by a gas specimen which has an ensemble of gaseous components known to be associated with the absence of a particular condition.
- a positive control pattern can be generated by gas specimen which has an ensemble of gaseous components known to be associated with the presence of a particular condition.
- the sensor array may be provided in the form of a device.
- the device may be a simple hand-held device.
- the device preferably comprises a plurality of distinct sensors.
- the sensors are optically based. This device will allow for remote, stand-off detection and further, electrical interferences are minimized.
- a graphical representation of an example of a typical array-based photonic sensor platform is presented in Figure 1.
- the system comprises three (3) components.
- the excitation component is designed to excite photoluminescence from luminescent probe molecules (also referred to herein as sensing molecules) within the sensors.
- the sensor is designed such that its optical properties are modified by the presence of the molecules of interest (analytes).
- the detector component converts the analyte-altered optical signal (which encodes information about the presence of the analyte and its concentration) to an electrical signal to be processed further.
- the readout and analysis component may be embodied as software that interprets the signals and relates them to the composition of the actual sample under investigation. Excitation Component.
- This component contains the light source.
- suitable excitation/light sources include commercial, single element light emitting diodes (LEDs) ( Figure 1), LED arrays, lasers, lamps, and radioluminescent (RL) light sources. Interference due to background signals that do not arise from the sensors can be further decreased by the use of an optical filter. Sensing Component.
- the sensing component is comprised of an array of sensors.
- the sensors are comprised of sensing molecules sequestered in a holding material such as sol-gel derived material.
- the sol-gel derived material is a nanoporous xerogel.
- the sol-gel derived material is an aerogel.
- Xerogels offer robust, readily tunable sensor platform with high stability. For example, xerogel-based sensor arrays for the simultaneous determination of O 2 , glucose and pH in real time have been developed.
- Figure 2a presents a false color fluorescence image from a portion of a xerogel-based sensor element array that was developed for O 2 detection. By controlling the composition of the xerogel, one can readily create sensors with diverse response curves (Figure 2b).
- ANN artificial neural network
- luminophores that can be used as sensing molecules which can be doped into sol-gel formulations: Rhodamine 6G, Rhodamine B, NBD [nitrobenzo-2-oxa-l,3-diazole], tris(4,7'-diphenyl-l,10'-phenathroline) ruthenium(II), tris(l,10'-phenathroline) ruthenium(II), platinum octaethylporphyrin, pyrene, PRODAN [6- propionyl-2-(N, 7V-dimethylamino) naphthalene], and DCM [4-(dicyanomethylene)-2-methyl- 6-[p-(dimethyl-amino) styryl]-4H-pyran], and Coumarin 153.
- volatile analytes that can be present in gaseous samples, such as biogas samples, include CO 2 , acetone, hydrogen peroxide, ethane, ethanol, pentane, pentanol, isoprene, 2-methylbuta-l, 3-diene, hexanal, propanal, pentanal, butanal, 2-methylpropene, 2-octenal, 2-nonenal, 2-heptenal, 2-hexenal, 2,4- decadienal, 2,4-nonadienal, methyl 2,3-dihydroindene, dimethylnaphthalene, alkylbenzene, n- propylheptane, w-octadecane, n-nonadecane, hexadiene, cresol, sabinene, methyl heptanol, methyl ethyl pentanol, trimethylpentanol, decanol, dode
- the xerogel formulation and the doped luminophore In operation, by controlling the xerogel formulation and the doped luminophore one can control the partitioning of the analyte into the xerogel as well as the luminophore's ability to interact with the analyte(s).
- the interaction between the luminophore within the sensor and the analyte(s) that partition into the xerogel results in a modification of optical properties, for example fluorescence.
- the fluorescence i.e., the signal
- a broad range of partitioning for enough analytes creates a situation where the response from such a diverse sensor array provides a means to discriminate between samples without actually knowing the exact chemical composition of the samples.
- the photoluminescence from a luminophore sequestered within each xerogel sensor is modulated by the presence of a given volatile analyte or volatile analyte mixture.
- the degree of this modulation depends on, for example, the luminophore's photophysics, the volatile analyte's identity (e.g., quenching potential, dielectric constant, refractive index), the volatile analyte's concentration in the sample, concentration of other volatile analytes in the sample, the target volatile analyte's solubility coefficient in the xerogel host matrix, the permeability of the host/xerogel to the volatile analyte, and the physiochemical properties surrounding the luminophore within the porous xerogel matrix.
- sensor arrays can be developed for screening samples into classes.
- the holding material (also referred to herein as the holding matrix) can be varied by designing various sol-gel-derived formulations.
- sol-gel precursors Si(OEt) 4 , R-Si(OEt) 4 , (EtO) 3 -Si-R'-Si(OEt) 3
- R alkyl, (CH 2 ) 3 -CHO, (CH 2 ) 3 -NH 2 , phenyl, phenyl-NH 2 , (CH 2 ) 2 -pyridyl, cycloaminopropyl, CH 2 -NH-phenyl, (CH 2 ) 3 - N(C 2 H 4 -OH) 2 (CH 2 ) S -N + -(R") ⁇ dihydroimidazole, ureidopropyl, and ethylene diamine tetraacetic acid (EDTA);
- R' (CH 2 ) 3 -NH-(CH 2 ) 3 , (CH 2 ) 3 -NH
- the luminophore-doped sol formulations can be printed to form large (e.g. 100,000 element) xerogel-based sensor arrays.
- Large sensor libraries ( ⁇ 5 million different formulations) can be prepared by formulating each combination of precursor with each luminophore in, for example, 10 mol% increments.
- the sensor array comprises at least 10 distinct sensors.
- the number of sensors in the sensor array comprises any integer from 10 to 100 or 100 to 100,000.
- arrays can have 100, 1,000, or 10,000 sensors.
- Detection Component is a charged coupled device (CCD) or complementary metal oxide semiconductor (CMOS) camera.
- An image of the sensor array can be captured by the camera and stored in digital form in, for example, a computer storage subsystem.
- CCD charged coupled device
- CMOS complementary metal oxide semiconductor
- the CCD/CMOS camera is of sufficient resolution and pixel count so the sensors within the sensor array can be analyzed individually for characteristics which can include, for example, color and brightness.
- the array of sensors can optionally include known, fixed value as registration marks. These registration marks can serve to align the image for processing in the readout and analysis component or to mark the position of specific classes of sensors (e.g., xerogel formulations). Providing the registration mark alignment feature allows for the sensor- to-camera alignment to be less critical than it otherwise would. Readout and Analysis Component.
- the neural network can be implemented as, for example, a software program which is run on a computer.
- the software can read the image data from the detection component for processing.
- the neural network can be trained by exposure to sample data of a known condition. For example, with reference to Figure 6, gas specimens or biogas specimens of individuals with physiological or diseased states for which the neural network can be trained (for example, diabetics and non- diabetics), are gathered [step 100].
- a sensor array and corresponding neural network can be exposed to the gas samples, to train the neural network [step HO].
- the recorded sensor array images serve to initially-train the neural network to recognize the sensor pattern associated with the physiological state by determining a rule set for the various trained conditions [step 120].
- the ability of the neural network to reliably detect a condition will increase as the number of training samples increases.
- the neural network can then be challenged to determine the validity of the predetermined rule set and predict the accuracy of the network in detecting the physiological conditions associated with unknown samples, thereby generating a trained neural network [step 130].
- the trained neural network can then be used to determine the physiological or diseased states of individuals with unknown conditions [step 140].
- an expert system may be trained programmatically.
- Adaline- Adaptive Linear Neuron differs from a single perceptron neural net as it continues to learn even from the samples correctly classified.
- Adaline filtering is, for example, superior compared to a Multi-Layer Perceptron (MLP) trained using a back propagation algorithm for noise cancellation in speech signals.
- MLP Multi-Layer Perceptron
- Such filters have been used previously for canceling the maternal heartbeat in fetal electrocardiography and for filtering airplane engine noise from pilot voice signals.
- BEP backward error propagation
- KSOM Kohonen self-organizing map
- Another method according to the invention utilizes pattern matching techniques in the readout and analysis component.
- a pattern may be generated based on the response of the sensor array.
- the pattern can be, for example, a two-dimensional array of values corresponding to the sensor array, a three-dimensional array of values corresponding to the sensor array, a histogram, or the like.
- the pattern can be compared to the pattern of a control gas specimen, or a combination of several control gas specimens, to determine the presence or absence of a physiological or diseased state.
- the present method can be used to detect physiological or diseased states by comparing a specific pattern obtained from a test biogas specimen to predetermined controls.
- diseasesd states include, but are not limited to, diabetes, cancer (such as early stage lung cancer or breast cancer), HFV/ AIDS, and mental illness (such as schizophrenia).
- the present method can also be used for detection of non-physiological states by evaluation of gas samples other than biogas samples.
- gas samples such as environmental samples, samples from chemical plants or processes or the like can be used.
- the present invention provides a method for matching a test gaseous sample to a predetermined control gas sample.
- the method comprises: providing a sensor array comprising a plurality of distinct sensors as described above. The array is exposed to the test gas sample and the responses of a plurality of distinct sensors are recorded. The test gas sample and the predetermined control gas sample responses are then compared to evaluate if the two are matching.
- the evaluation can be done, for example, by visual inspection of the patterns generated by the sensors or by using a trained neural network generated using steps similar to those described in Figure 6.
- This example demonstrates the association of a sensor array response pattern - generated by volatile analytes in the headspace above a urine sample obtained from a patient with diabetes, an altered physiological state.
- Urine samples were collected from three individuals.
- the gaseous samples are comprised of head space gases above urine collected from three fasting (14 hours) male donors (first morning voids).
- Samples 1 and 2 are from normal, healthy donors.
- Sample 3 is from an otherwise healthy donor with Type 2 diabetes.
- FIG. 3 shows raw, unprocessed false color CCD images from a 5x5 xerogel-based sensor array wherein each sensor within the array is derived from a unique xerogel formulation (25 discrete formulations) and each xerogel is doped with the same luminescent reporter molecule (sensing molecule), DCM.
- the DCM emission spectrum shifts as one changes the physicochemical properties of the local microenvironment surrounding the DCM molecule.
- changes in the physicochemical properties within the xerogel induced by the presence of analyte(s) cause the DCM emission to shift and the detected fluorescence to change.
- the sol-gel precursors used were: (A) Si(OEt) 4 ; (B) (EtO) 3 Si-(CH 2 ) 3 -NH 2 ; (C) (EtO) 3 - Si-(CH 2 ) 3 -NH-(CH 2 ) 3 -Si(OEt) 3 ; and (D) (EtO) 3 -Si-(CH 2 ) 7 -CH 3 .
- Sensor number and corresponding composition of the so formed xerogels in the array are given in Table 1.
- Each xerogel-based sensor was also doped with one of three luminophores.
- the sensor responses were categorized and the out puts from the top 17 most diverse responses averaged and compiled ( Figure 4 bottom).
- the sol-gel precursors used were: (A) Si(OEt) 4 ; (B) (EtO) 3 Si-phenyl-NH 2 ; and (C) (EtO) 3 -Si-(CH 2 ) 3 -NH-(CH 2 ) 3 -Si(OEt) 3 .
- Sensor number and corresponding composition of the so formed xerogels in the array are given in Table 2.
- the sensing molecules used in the sensors are: for 1-6: tris(4,7'-diphenyl-l,10'- phenathroline) ruthenium(II); for 7-11 : Rhodamine B; and for 12-17: DCM.
- a histogram of the average response of the sensor elements is shown in bottom portion of Figure 4.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Biomedical Technology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US90067607P | 2007-02-09 | 2007-02-09 | |
| PCT/US2008/001817 WO2008121183A2 (fr) | 2007-02-09 | 2008-02-11 | Procédé de diagnostic d'états physiologiques par la détection de motifs d'analytes volatiles |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2117430A2 true EP2117430A2 (fr) | 2009-11-18 |
Family
ID=39808825
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08779564A Withdrawn EP2117430A2 (fr) | 2007-02-09 | 2008-02-11 | Procédé de diagnostic d'états physiologiques par la détection de motifs d'analytes volatiles |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP2117430A2 (fr) |
| CA (1) | CA2677718A1 (fr) |
| WO (1) | WO2008121183A2 (fr) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160106935A1 (en) * | 2014-10-17 | 2016-04-21 | Qualcomm Incorporated | Breathprint sensor systems, smart inhalers and methods for personal identification |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6063637A (en) * | 1995-12-13 | 2000-05-16 | California Institute Of Technology | Sensors for sugars and other metal binding analytes |
| DK1000345T3 (da) * | 1997-08-01 | 2003-06-02 | Presens Prec Sensing Gmbh | Fremgangsmåde og apparat til dannelse af referencer for fluorescensintensitetssignaler |
| WO1999053287A2 (fr) * | 1998-04-09 | 1999-10-21 | California Institute Of Technology | Techniques electroniques utilisees pour la detection d'analytes |
| WO2001009604A1 (fr) * | 1999-07-28 | 2001-02-08 | The Research Foundation Of State University Of New York | Alignements de microcapteurs et procede d'utilisation de ceux-ci pour detecter des analytes |
| AU2003207552A1 (en) * | 2002-01-29 | 2003-09-02 | James D. Talton | Methods of collecting and analyzing human breath |
| US7291782B2 (en) * | 2002-06-22 | 2007-11-06 | Nanosolar, Inc. | Optoelectronic device and fabrication method |
| US8545762B2 (en) * | 2002-12-30 | 2013-10-01 | Board Of Trustees Of Northern Illinois University | Sensor for detecting compounds |
| US7479404B2 (en) * | 2005-07-08 | 2009-01-20 | The Board Of Trustees Of The University Of Illinois | Photonic crystal biosensor structure and fabrication method |
-
2008
- 2008-02-11 EP EP08779564A patent/EP2117430A2/fr not_active Withdrawn
- 2008-02-11 WO PCT/US2008/001817 patent/WO2008121183A2/fr not_active Ceased
- 2008-02-11 CA CA002677718A patent/CA2677718A1/fr not_active Abandoned
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2008121183A3 * |
Also Published As
| Publication number | Publication date |
|---|---|
| WO2008121183A3 (fr) | 2009-01-08 |
| CA2677718A1 (fr) | 2008-10-09 |
| WO2008121183A2 (fr) | 2008-10-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107024474B (zh) | 用于检测体液中的分析物的方法和器件 | |
| US20080220984A1 (en) | Method for diagnosis of physiological states by detecting patterns of volatile analytes | |
| DK2169387T3 (en) | Multi-parameter method with high sensitivity for analysis of rare events in a biological sample | |
| JP5306350B2 (ja) | 試料媒体および試料媒体の自動読み取り方法 | |
| KR20070083810A (ko) | 질병 진단 시스템 | |
| US20020133073A1 (en) | Spectroscopic system employing a plurality of data types | |
| US20030162301A1 (en) | Method and system for classifying a biological sample | |
| EP2498092A1 (fr) | Procédé d'interverrouillage de véhicule basé sur la détection de drogues dans le souffle expiré | |
| CN1677105A (zh) | 光电子快速诊断测试系统 | |
| US20150118689A1 (en) | Systems and methods for whole blood assays | |
| WO2004005869A1 (fr) | Procede et appareil d'identification d'artefacts spectraux | |
| JP2008523382A (ja) | ポイントオブケア診断用の患者識別 | |
| JP2016191567A (ja) | 蛍光検出システム、イムノクロマトグラフィーデバイス、イムノクロマトグラフィー方法、および蛍光検出方法 | |
| Ullah et al. | Raman spectroscopy and machine learning-based optical probe for tuberculosis diagnosis via sputum | |
| CN1918304B (zh) | 光学编码粒子、系统及高通量筛选 | |
| CN101311726B (zh) | 检测盘的影像检测方法 | |
| EP2117430A2 (fr) | Procédé de diagnostic d'états physiologiques par la détection de motifs d'analytes volatiles | |
| JP2006266882A (ja) | 有効期限情報読み取り機能を備えた免疫学的クロマトグラフ読み取り定量装置。 | |
| US7264971B2 (en) | Read-head for optical diagnostic device | |
| Bordbar et al. | A point of care sensor for detection of alcohols, aldehydes and esters in urinary metabolites of war veterans injured by sulfur mustard | |
| EP4111173B1 (fr) | Lecteur permettant d'analyser des marqueurs fluorescents | |
| RU2784774C1 (ru) | Способ ранней неинвазивной диагностики covid-19 путем анализа выдыхаемого человеком воздуха | |
| JP5193612B2 (ja) | 疾患判定方法、疾患判定装置、疾患判定用データ生成方法及び疾患判定用データ生成装置 | |
| CN210166298U (zh) | 一种可用于干化学分析和免疫学分析的信息采集装置 | |
| JP7452922B2 (ja) | 癌の判別装置の作動方法、判別装置およびプログラム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20090811 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1136951 Country of ref document: HK |
|
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20130903 |
|
| REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1136951 Country of ref document: HK |