EP2189195A1 - Dispositif d'exercice basculant - Google Patents
Dispositif d'exercice basculant Download PDFInfo
- Publication number
- EP2189195A1 EP2189195A1 EP09014378A EP09014378A EP2189195A1 EP 2189195 A1 EP2189195 A1 EP 2189195A1 EP 09014378 A EP09014378 A EP 09014378A EP 09014378 A EP09014378 A EP 09014378A EP 2189195 A1 EP2189195 A1 EP 2189195A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- feedback
- target value
- user
- feedback stimulus
- detected information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000036544 posture Effects 0.000 claims description 64
- 230000033001 locomotion Effects 0.000 claims description 17
- 230000000694 effects Effects 0.000 claims description 7
- 210000003127 knee Anatomy 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 13
- 210000002414 leg Anatomy 0.000 description 9
- 238000001514 detection method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000001755 vocal effect Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 210000000689 upper leg Anatomy 0.000 description 4
- 230000009467 reduction Effects 0.000 description 3
- 230000010485 coping Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B69/00—Training appliances or apparatus for special sports
- A63B69/04—Training appliances or apparatus for special sports simulating the movement of horses
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B22/00—Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
- A63B22/16—Platforms for rocking motion about a horizontal axis, e.g. axis through the middle of the platform; Balancing drums; Balancing boards or the like
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63G—MERRY-GO-ROUNDS; SWINGS; ROCKING-HORSES; CHUTES; SWITCHBACKS; SIMILAR DEVICES FOR PUBLIC AMUSEMENT
- A63G13/00—Cradle swings; Rocking-horses; Like devices resting on the ground
- A63G13/06—Rocking-horses
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
- A63B71/0622—Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
- A63B2071/0625—Emitting sound, noise or music
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
- A63B71/0622—Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
- A63B2071/0625—Emitting sound, noise or music
- A63B2071/0627—Emitting sound, noise or music when used improperly, e.g. by giving a warning
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
- A63B71/0622—Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
- A63B2071/0625—Emitting sound, noise or music
- A63B2071/063—Spoken or verbal instructions
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2230/00—Measuring physiological parameters of the user
- A63B2230/62—Measuring physiological parameters of the user posture
Definitions
- the present invention relates to a rocking-type exercise device for applying an exercise load to a user sat on a seat by subjecting the seat to rocking movement.
- rocking-type exercise devices for applying an exercise load to a user sat on a seat by subjecting the seat to rocking movement.
- the rocking-type exercise devices are simple and convenient exercise machines that can be used by anybody from children to old persons.
- the rocking-type exercise devices have been spread to rehabilitation-purpose medical institutions and then to general households.
- One typical prior art example of the rocking-type exercise devices is disclosed in, e.g., Japanese Patent Laid-open Publication No. 2006-149468 .
- a pressure sensor or the like is provided in at least one of, e.g., the upper surface of the seat, the side surface of the seat (or the saddle flap) and the inside of the stirrup.
- the exercise posture of a user is determined from the information provided by the pressure sensor.
- the seat is configured to make reciprocating movement in response to the notification of an exercise posture based on the detected information or in response to the detected information itself.
- rocking-type exercise device proposes a configuration in which a notification unit is used to urge a user to correct his or her posture, it fails to suggest a method for accurately leading the user's posture or motion to a target one.
- demand has existed for the development of a rocking-type exercise device capable of bringing the user's posture into close proximity to a target posture with increased accuracy.
- the present invention provides a rocking-type exercise device capable of accurately leading the user's exercise posture to a target exercise posture.
- a rocking-type exercise device including:
- feedback stimulus denotes a stimulus for guiding the user's exercise posture by at least one of a sound, an image, a seat operation amount and a seat operation pattern.
- feedback stimulus will be used in this sense.
- the feedback stimulus outputted by the feedback stimulus output unit may be kept unchanged in meaning but changed in expression over time.
- the feedback stimulus output unit may be configured to redefine the target value or the feedback stimulus based on the detected information, if the detected information fails to come close to the target value for a predetermined time period in spite of the outputting of the feedback stimulus by which to make the detected information come close to the target value.
- the above configuration makes it possible to reduce the target value or to output a safety-purpose feedback stimulus. As a result, the user can safely use the present device with no overwork even when the user has reduced physical strength or when the target value set at first is too high.
- the feedback stimulus output unit may reduce the target value or output a safety-purpose feedback stimulus in order for the seat to safely make the reciprocating movement.
- the user can safely use the present device with no overwork even when the user has reduced physical strength or when the target value set at first is too high.
- the feedback stimulus output unit may be configured to stop outputting the feedback stimulus, if the detected information fails to come close to the target value for a predetermined time period in spite of the outputting of the feedback stimulus by which to make the detected information come close to the target value.
- the feedback stimulus output unit ceases to output the feedback stimulus. This makes it possible for the user to safely perform an exercise in a favored posture with no overwork, instead of compelling the user to do an exercise at the target value.
- the detector unit may include a plurality of posture detector units for detecting postures of different bodily parts of the user to get a plurality of detected posture information
- the feedback stimulus output unit may be configured to output feedback stimuli reflecting the difference between the detected posture information and the target value in the order of greater deviation of the detected posture information from the target value
- the detector unit may include a plurality of posture detector units for detecting postures of different bodily parts of the user, the posture detector units being given a priority order, and wherein the feedback stimulus output unit may be configured to output feedback stimuli in the priority order.
- the posture detector units are given a priority order in which to output feedback stimuli regardless of the difference between the detected information of the posture detector units and the target value.
- the feedback stimulus output unit may include a notification unit through which to notify the user of the feedback stimulus or the feedback stimuli by at least one of a voice and an image, and wherein the feedback stimulus output unit may be configured to output, when notification is performed by the notification unit, the feedback stimulus or the feedback stimuli together with incidental effects varying with the difference between the detected information and the target value.
- At least one of the voice and the image is not merely outputted as the feedback stimulus or the feedback stimuli but outputted together with incidental effects varying with the difference between the detected information and the target value. This helps prevent the feedback stimulus or the feedback stimuli from becoming monotonous, which makes it possible to keep the user highly motivated.
- the feedback stimulus output unit may be configured to output the feedback stimulus or the feedback stimuli after altering the emotion-appealing information contained in the feedback stimulus or the feedback stimuli depending on the difference between the detected information and the target value.
- the feedback stimulus output unit may be configured to output the feedback stimulus or the feedback stimuli in such a way as to remind the user of the moving images of the bodily parts.
- the rocking-type exercise device 10 includes a leg 11 mounted on a floor surface not shown in the drawings, a seat rocking mechanism 12 as a seat rocking unit fixed to the top end of the leg 11, and a seat 13 fixed to the upper portion of the seat rocking mechanism 12.
- the seat 13, on which a user can sit, has a shape imitating a horseback or a saddle.
- the seat rocking mechanism 12 is configured to cause back-and-forth and left-and-right rocking motions to the seat 13.
- the seat rocking mechanism 12 is covered with a cover 14 extending between the upper end of the leg 11 and the seat 13.
- the cover 14 is made of a pliable fabric or the like, thereby allowing the seat 13 to be rocked by the seat rocking mechanism 12.
- the cover 14 may be formed of plural kinds of other materials.
- An operation unit 15 is arranged in the frontal portion (on the left side in Fig. 1 ) of the top surface of the seat 13.
- the startup, stoppage and operation state change of the seat rocking mechanism 12 are performed by operating switches (not shown) provided in the operation unit 15.
- a pressure sensor ⁇ as a detector unit is arranged as shown in Fig. 5 to measure the pressure applied to the saddle flap.
- a so-called stirrup 16 on which the user's foot sole can be placed, is arranged in a rockable manner.
- An angle sensor ⁇ is arranged in the stirrup 16 to measure the angle of the stirrup 16 so that the angle of the knee can be estimated by a microcomputer 17 (see Fig. 6 ) set forth below.
- a base 21 of rectangular plate shape is fixed to the upper surface of the leg 11 shown in Fig. 1 .
- a pair of front and rear shaft-supporting plates 22 is installed upright in the base 21.
- a pair of connecting plates 24 depending from the front and rear end portions of a movable trestle 23 is arranged in an opposing relationship with the shaft-supporting plates 22.
- the shaft-supporting plates 22 and the connecting plates 24 are rotatably interconnected by pivot shafts 25 extending in the back-and-forth direction.
- the pivot shafts 25 are arranged at the transverse center of the base 21 and at two points spaced apart in the back-and-forth direction, thereby supporting the movable trestle 23 so that it can rotate in the transverse direction.
- a platform 27 for holding the seat 13 is arranged above the movable trestle 23 and is connected to the movable trestle 23 through connecting links 26 so that it can rock in the back-and-forth direction.
- a pair of side plates 30 extending in the back-and-forth direction is installed in the left and right portions of the movable trestle 23.
- the connecting links 26 include a front link 26a arranged at the front side and a rear link 26b arranged at the rear side.
- the lower end portion of the front link 26a is pivotally attached to a lower pivot pin 31a provided in the front end portions of the side plates 30.
- the upper end portion of the front link 26a is pivotally attached to an upper pivot pin 32a provided in the front end portion of the platform 27.
- the lower end portion of the rear link 26b is pivotally attached to a lower pivot pin 31b provided in the rear end portions of the side plates 30.
- the upper end portion of the rear link 26b is pivotally attached to an upper pivot pin 32b provided in the rear end portion of the platform 27.
- the front and rear lower pivot pins 31a and 31b constitute transverse shafts for supporting the connecting links 26 so that they can rotate about transverse axes.
- the platform 27 can reciprocatingly rotate about the transverse shafts in the back-and-forth direction as indicated by an arrow M in Fig. 2 .
- the platform 27 is connected to the movable trestle 23 by the connecting links 26 and is swung in the transverse direction together with the movable trestle 23. Therefore, the platform 27 can be reciprocatingly rotated about the pivot shafts 25 in the transverse direction as indicated by an arrow N in Fig. 4 .
- the distance between the front and rear lower pivot pins 31a and 31b is set shorter than the distance between the front and rear upper pivot pins 32a and 32b. Therefore, the rear link 26b makes a specified angle with respect to the base 21 when the front link 26a makes a generally right angle relative to the base 21 as indicated by solid lines in Fig. 2 . As a result, the rear end of the platform 27 becomes lower than the front end thereof, meaning that the platform 27 is tilted backwards.
- the front link 26a makes a specified angle with respect to the base 21 when the rear link 26b makes a generally right angle relative to the base 21 as indicated by phantom lines in Fig. 2 .
- the front end of the platform 27 becomes lower than the rear end thereof, meaning that the platform 27 is tilted forwards. Consequently, the seat 13 fixed to the platform 27 is caused to make tilting movement forwards and backwards.
- a drive unit 35 is accommodated between the base 21 and platform 27.
- the drive unit 35 includes a motor 36 fixed to the base 21 so that the output shaft 37 thereof can protrude upwards.
- a motor gear 38 is fixed to the output shaft 37.
- a first gear 40 engages with the motor gear 38.
- the first gear 40 is coaxially fixed to a first shaft 39 whose transverse ends are pivotally supported on the platform 27.
- An eccentric crank 41 is connected to one end portion of the first shaft 39.
- the first end portion of an arm link 43 is pivotally attached to the eccentric crank 41 by a pivot pin 42, while the second end portion of the arm link 43 is pivotally attached to the front link 26a by a pivot pin 44.
- the eccentric crank 41 makes eccentric circular movement with respect to the first shaft 39 upon rotation of the motor 36
- the front link 26a reciprocates in the back-and-forth direction X
- the seat 13 makes rocking movement in the direction indicated by the arrow M in Fig. 2 .
- the motor 36 (the output shaft 37), the motor gear 38, the first shaft 39, the first gear 40, the eccentric crank 41 and the arm link 43 constitute a first drive unit.
- an interlocking gear 45 is fixed to the first shaft 39 engages with a second gear 47 which is fixed to a second shaft 46 pivotally supported on the movable trestle 23.
- the upper end of an eccentric rod 48 is connected to one end (the right end in Fig. 4 ) of the second shaft 46 by a pivot pin 49 in an eccentric relationship with the rotational axis of the second shaft 46.
- the lower end of the eccentric rod 48 is rotatably connected to a connecting bracket 50 by a pivot pin 51.
- the connecting bracket 50 is fixed to the base 21.
- the motor 36 (the output shaft 37), the motor gear 38, the first gear 40, the first shaft 39, the second shaft 46, the second gear 47 and the eccentric rod 48 constitute a second drive unit.
- the gear ratios of the respective gears in the first drive unit and the second drive unit are set to ensure that the seat 13 reciprocates twice in the back-and-forth direction while reciprocating once in the transverse direction. Therefore, the seat 13 is rocked in such a way as to describe the numeral "8" when the rocking-type exercise device 10 is seen from above, consequently reproducing an operation just like horse riding.
- the seat 13 is rocked in the direction indicated by the arrow M in Fig. 2 and in the direction indicated by the arrow N in Fig. 4 .
- the seat 13 is rocked in the ⁇ X direction around an X-axis, the ⁇ Y direction around a Y-axis and the ⁇ Z direction around a vertical axis (or a Z-axis).
- This enables a user to train a body balance function and an exercise function.
- three motions can be performed by a single motor 36, which assists in reducing the number of motor. This leads to ease of control and reduction in cost and size.
- the output shaft 37 of the motor 36 protrudes in one direction and the motor 36 is installed in vertical orientation. This makes it possible to achieve size reduction by narrowing the installation space of the seat rocking mechanism 12 including the motor 36.
- the seat rocking mechanism 12 is stored between the base 21 and the platform 27, which makes it possible to faithfully reproduce the desired horse riding operation.
- Fig. 6 is a block diagram illustrating a system configuration of the rocking-type exercise device 10.
- a power supply unit 61 carried by a circuit board 60 is designed to convert a commercial alternating current inputted through a power supply plug (not shown) to a direct current of 140V or 15V and then to supply the direct current to individual circuits provided in the circuit board 60.
- a control circuit 62 as a control unit is mounted to the circuit board 60.
- the control circuit 62 includes a microcomputer 17 as a feedback stimulus output unit and a memory 63 which stores drive operation patterns and the like.
- the control circuit 62 is connected to a sensor unit 64, which includes the angle sensor ⁇ and the pressure sensor ⁇ , a voice signal processing IC 65 and a database 66.
- the angle sensor ⁇ detects the angle of the stirrup 16. Based on the result of detection of the angle sensor ⁇ , the microcomputer 17 estimates the knee angle of a user. The pressure sensor ⁇ detects the pinching force of the user's thigh and outputs the result of detection to the microcomputer 17.
- the voice signal processing IC 65 can notify the speaker 68 of, e.g., music data pre-stored in the voice data storage unit 67.
- Tables corresponding to various kinds of operation patterns are stored in the database 66.
- the pinching force (pressure) of the user's thigh is detected by the pressure sensor ⁇ and the result of detection is outputted from the pressure sensor ⁇ to the microcomputer 17 of the control circuit 62 (step S100).
- the microcomputer 17 acquires the result of detection (step S200). After sampling the detection results for a specified time, the microcomputer 17 calculates a representative value S n , i.e., an average value of the detection results outputted from the pressure sensor ⁇ (step S300).
- the microcomputer 17 compares the representative value S n with threshold values pre-divided into a plurality of steps (five steps in the present embodiment) as illustrated in Fig. 8 (step S400). Based on a specified data selection table (see Fig. 8 ) within the feedback data selection table group 69 of the database 66 shown in Fig. 6 , the microcomputer 17 selects the feedback voice data stored in the voice data storage unit 67 through the voice signal processing IC 65 (step S500).
- the threshold values are set in the order of 1V, 2V, 3V, 4V and 5V from the lower side, and the target value indicative of a target exercise posture is set equal to 3V.
- the feedback voice data outputted depending on the representative value S n are also shown in Fig.
- the microcomputer 17 selects the data of "with far greater force.wav” which is a voice record saying "with far greater force”. If the representative value S n is equal to the threshold value 2V, the microcomputer 17 selects the data of "with a little greater force.wav” which is a voice record saying "with a little greater force”. If the representative value S n is equal to the threshold value 3V (or the target value), the microcomputer 17 selects the data of "it's OK.wav” which is a voice record saying "it's OK”.
- the microcomputer 17 selects the data of "relax a little bit.wav” which is a voice record saying "relax a little bit”. If the representative value S n is equal to the threshold value 5V, the microcomputer 17 selects the data of "relax.wav” which is a voice record saying "relax”.
- step S600 the microcomputer 17 allows the speaker 68 to output the feedback voice data selected in step S500 (step S600). Thereafter, the microcomputer 17 is operated to repeat step S100 through step S600.
- the user can recognize the difference between the target posture and the current posture. This makes it possible to lead the user's posture so that the representative value S n can become equal to the target value 3V. Thus, it becomes possible to rapidly and accurately lead the user's exercise posture to the target posture.
- the control circuit 62 as a control unit includes the pressure sensor ⁇ as a detector unit for detecting the exercise posture of the user who sits on the seat 13, and the microcomputer 17 as a feedback stimulus output unit that makes comparison between the detected information (representative value S n ) obtained in the pressure sensor ⁇ and the target value (or the threshold values 3V).
- the microcomputer 17 outputs through the speaker 68 a voice for making the representative value S n come close to the target value.
- a plurality of feedback data selection tables may be used as shown in Figs. 9A and 9B .
- a posture/operation determination algorithm 70 stored in the database 66 may be called out by the microcomputer 17 so that the algorithm 70 can change the feedback data selection tables of the feedback data selection table group 69 over time.
- the algorithm 70 can change the feedback data selection tables of the feedback data selection table group 69 over time.
- it may be possible to employ a configuration in which only the wording of the voice data applied to the user is changed over time without changing the meaning thereof. More specifically, it may be conceivable to employ a configuration in which the data of "it's OK.wav" selected in case of the threshold value 3V in the foregoing embodiment is changed to the data of "keep it up.wav” which is a voice record saying "keep it up” as illustrated in Fig. 9A and then the changed data is outputted from the speaker 68.
- the data of "keep it up.wav” is changed to the data of "good.wav” which is a voice record saying "good” as illustrated in Fig. 9B and then the changed data is outputted from the speaker 68.
- the vocal feedback stimuli identical in meaning but differing in expression over time, it becomes possible to avoid application of monotonous stimuli and to keep the user from getting weary. This makes it possible to keep the user motivated.
- Even in an instance where the user has a difficulty in understanding a specific feedback stimulus e.g., the data of "it's OK.wav”
- it is possible to help the user understand the feedback stimulus by outputting a feedback stimulus of other expression (e.g., the data of "keep it up.wav”). This assists in coping with the difference among individual users.
- the target value is set equal to the threshold value 3V in the foregoing embodiment, the present invention is not limited thereto. As shown in Fig. 10 , the threshold values 2V and 3V may be used as target values without having to limit the target value to a single one.
- the configuration noted above is effective in broadening the width of target value by setting the threshold values 2V and 3V as target values, in such an instance where the representative value S n fails to reach the target value even when a voice as a feedback stimulus has been outputted from the speaker 68 as a feedback stimulus output unit while the user using the rocking-type exercise device 10 for a predetermined time period.
- the broadened target value allows a user with a weak muscular force to safely use the rocking-type exercise device 10 with no overwork. By changing the target value depending on the detected information (or the representative value S n ) in this manner, it becomes possible to set a user-specific target value.
- the threshold values are set into five steps of 1V, 2V, 3V (target value), 4V and 5V.
- the threshold values may be changed to five steps of, e.g., 0.5V, 1V, 1.8V (target value), 2.5V and 3.5V, as illustrated in Fig. 11 .
- the configuration by which to reduce the threshold values in the course of using the rocking-type exercise device 10 can be effectively used in such an instance where the detected information from the sensors (e.g., the pressure sensor ⁇ ) fails to reach the target value (namely, in case where the detected information is smaller than the target value) even when a voice as a feedback stimulus has been outputted from the speaker 68 as a feedback stimulus output unit while the user using the rocking-type exercise device 10 for a predetermined time period.
- the reduction in the target value results in a reduction in exercise amount and sets a user free from excessive burdens. Even if the target value set at first is too high, the user can safely use the rocking-type exercise device 10 with no overwork.
- a configuration in which only the target value is changed may be employed as illustrated in Fig. 12 .
- steps for lowering the target value are added between step S300 and step S400 of the flowchart illustrated in Fig. 7 .
- the microcomputer 17 temporarily stores in the memory 63 the representative values, i.e., the average values of the detected information successively supplied from the pressure sensor ⁇ , as S n , S n-1 and S n-2 in the order of latest occurrence.
- the microcomputer 17 compares the representative values S n , S n-1 and S n-2 with the target value (step S301).
- step S301 If the representative values S n , S n-1 and S n-2 are smaller than the target value (or if YES in step S301), the target value is multiplied by a predetermined numerical value (of smaller than 1), thereby reducing the target value into a new target value (step S302). Then, the flow proceeds to step S400 already described in respect of the foregoing embodiment. If the representative values S n , S n-1 and S n-2 are equal to or greater than the target value (or if NO in step S301), the microcomputer 17 does not change the target value and the flow proceeds to step S400 already described in respect of the foregoing embodiment.
- the target value is set smaller so that the rocking operation can be performed in a safe way.
- the user can safely use the present device 10 with no overwork even when the user has reduced physical strength or when the target value set at first is too high.
- the target value may be kept unchanged in order to safely perform the reciprocating movement, if the detected information supplied from the pressure sensor ⁇ as a detector unit remains smaller than the target value (or the threshold value 3V) for a predetermined time period.
- the target value or the threshold value 3V
- the microcomputer 17 temporarily stores in the memory 63 the representative values, i.e., the average values of the detected information successively supplied from the pressure sensor ⁇ , as S n , S n-1 and S n-2 in the order of latest occurrence.
- the microcomputer 17 calculates the difference U n between S n and S n-1 which precedes S n , and the difference U n-1 between S n-1 and S n-2 which precedes S n-1 (step S310). Then, the microcomputer 17 determines whether the differences U n and U n-1 are all smaller than zero (step S320).
- step S330 If the differences Us and U n-1 are all determined to be smaller than zero (or if YES in step S320), a voice saying "don't overstrain if tired” is outputted through the speaker 68 (step S330). If the differences U n and U n-1 are all determined to be equal to or greater than zero (or if NO in step S320), the microcomputer 17 proceeds to step S400 already described in respect of the foregoing embodiment. At the end of step S330, the microcomputer 17 asks the user, e.g., through the speaker 68, whether to terminate the feedback control for guiding the exercise posture by a voice (step S340).
- step S340 If the user selects the termination of feedback control using a switch not shown (or if YES in step S340), the microcomputer 17 ceases to output the voice as a feedback stimulus and stops the feedback control for guiding the exercise posture by a voice (step S350). In contrast, if the user does not select the termination of feedback control (or if NO in step S340), the flow proceeds to step S400 already described in respect of the foregoing embodiment.
- the microcomputer 17 ceases to output the feedback stimulus (or the voice). This makes it possible for the user to safely perform an exercise in a favored posture with no overwork, instead of compelling the user to do an exercise at the target value.
- only one sensor i.e., the pressure sensor ⁇
- the voice as a feedback stimulus is outputted through the speaker 68 depending on the difference between the detected information and the target value.
- a plurality of sensors e.g., the pressure sensor ⁇ and the angle sensor ⁇ may be used in outputting the voice as a feedback stimulus through the speaker 68.
- the microcomputer 17 may output feedback stimuli (e.g., voices) for improving the detected information of the pressure sensor ⁇ as illustrated in Fig. 14 .
- feedback stimuli e.g., voices
- the user can accurately take a target exercise posture (corresponding to the target value).
- a priority order is applied to the respective sensors ⁇ and ⁇ and voices as feedback stimuli are outputted through the speaker 68 in the priority order.
- the user may be urged to change his or her posture from the state illustrated in Fig. 15A in which the lower half of the user's body (or the legs) is stretched and propped to the state illustrated in Fig. 15B in which the lower half of the user's body (or the legs) is bent.
- it is necessary to urge the user to reduce the angle of the knees prior to reducing the pinching force of the thighs. If the knee angle is not equal to the target value "small" as shown in Fig.
- a voice as a feedback stimulus for improving the detected information (or the representative value S n ) of the angle sensor ⁇ is outputted through the speaker 68, thereby urging the user to pay attention to the knee angle.
- a voice as a feedback stimulus for improving the detected information (or the representative value S n ) of the pressure sensor ⁇ s outputted through the speaker 68.
- the pressure sensor ⁇ and the angle sensor ⁇ are given a priority order in which to output feedback stimuli (e.g., voices) regardless of the difference between the detected information of the respective sensors and the target value.
- the feedback data selection table shown in Fig. 16A may be changed to a feedback data selection table illustrated in Fig. 16B , which indicates the voice data containing the emotion-appealing information for encouragement, or a feedback data selection table depicted in Fig. 16C , which indicates the voice data containing the emotion-appealing information for appreciation.
- Fig. 16B a feedback data selection table depicted in Fig. 16B
- Fig. 16C which indicates the voice data containing the emotion-appealing information for appreciation.
- the content of the emotion-appealing information is changed depending on the difference between the target value and the detected information (or the representative value S n ). Use of this configuration helps prevent the feedback stimulus from becoming monotonous, which makes it possible to keep the user motivated.
- a configuration by which to output a feedback stimulus specifying the names of components making contact with the user's bodily parts may be possible to employ a configuration in which the voice data of "let's lower the stirrup.wav", i.e., a voce record saying "let's lower the stirrup”, is selected when the user's posture is to be changed from the state illustrated in Fig. 17A , in which the legs are stretched, to the state shown in Fig. 17B , in which the shins are oriented vertically downwards.
- a configuration by which to output a feedback stimulus mentioning the user's bodily parts may be employed.
- the voice data of "further stretch the knees.wav" illustrated in Fig. 19 i.e., a voice record saying "further stretch the knees" is selected when the user's posture is to be changed from the state illustrated in Fig. 17C , in which the shins are bent, to the state shown in Fig. 17B , in which the knees are stretched to some extent.
- a configuration by which to select the voice data of "stretch the knees slowly.wav” illustrated in Fig. 20 i.e., a voice record saying "stretch the knees slowly”.
- the feedback stimulus is outputted in the form of a voice according to the foregoing embodiment, the present invention is not limited thereto.
- the feedback stimulus may be a sound such as background music or the like rather than the voice.
- the feedback stimulus may be outputted in the form of an image or the like.
- control circuit 62 may be conceivable for the control circuit 62 to control the seat rocking mechanism 12 in such a manner as to reduce the operation speed of the seat 13 or to make the rocking operation angle of the seat 13 substantially horizontal, thereby lessening the exercise load. This may be notified to the user by a voice or through the display of an image or the like.
- the incidental effects is to change the sound volume, sound quality, sound pitch and peak frequency of a voice or background music outputted as a feedback stimulus. It is preferred that the degree of these effects varies with the difference between the target value and the detected information (or the representative value S n ). Use of this configuration helps prevent the feedback stimulus from becoming monotonous, which makes it possible to keep the user highly motivated.
- the detector units may include, e.g., an image sensor y indicated by a dot line in Fig. 6 .
- the representative value S n refers to the average value obtained by sampling, for a specified time period, the detected information outputted from the pressure sensor ⁇ .
- the present invention is not limited thereto.
- the representative value S n may be a peak value rather than the average value.
- the seat 13 is operated in such a way as to describe the numeral "8", consequently performing a rocking motion just like horse riding.
- the present invention is not limited thereto.
- the values of the threshold and the target and the like are exemplified in the embodiments described above, but the present invention is not limited thereto.
- the threshold value and the target value and the like may be varied as necessary.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Rehabilitation Tools (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2008297154A JP2010119687A (ja) | 2008-11-20 | 2008-11-20 | 揺動型運動装置 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2189195A1 true EP2189195A1 (fr) | 2010-05-26 |
Family
ID=41479157
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP09014378A Withdrawn EP2189195A1 (fr) | 2008-11-20 | 2009-11-17 | Dispositif d'exercice basculant |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20100125024A1 (fr) |
| EP (1) | EP2189195A1 (fr) |
| JP (1) | JP2010119687A (fr) |
| KR (1) | KR20100056991A (fr) |
| CN (1) | CN101732830A (fr) |
| TW (1) | TW201029707A (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013006145A1 (fr) * | 2011-07-04 | 2013-01-10 | Univerza V Ljubljani | Système d'entraîneament à la technique de l'aviron |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4483815B2 (ja) * | 2006-03-28 | 2010-06-16 | パナソニック電工株式会社 | 揺動型運動装置 |
| JP2010172377A (ja) * | 2009-01-27 | 2010-08-12 | Panasonic Electric Works Co Ltd | 運動装置 |
| KR102013705B1 (ko) * | 2013-08-16 | 2019-08-23 | 한국전자통신연구원 | 승마시뮬레이터에서 사용자 자세 인식 장치 및 방법 |
| CN103537070B (zh) * | 2013-11-06 | 2016-01-20 | 廖明忠 | 站立式平衡训练器及站立式平衡训练方法 |
| KR101463211B1 (ko) * | 2014-02-18 | 2014-11-21 | 정필동 | 다 방향 왕복 운동 장치와 이를 이용한 승마 운동 장치 및 승마 운동 방법 |
| KR20150133912A (ko) * | 2014-05-20 | 2015-12-01 | 아진산업(주) | 탑승용 운동기구 운영시스템 |
| KR101487135B1 (ko) * | 2014-07-04 | 2015-02-04 | 정필동 | 승마용 운동기구 |
| US9585487B1 (en) * | 2015-02-06 | 2017-03-07 | Gait, LLC | Relaxation device and method of use |
| DE102016213964A1 (de) | 2016-07-28 | 2018-02-01 | Kuka Roboter Gmbh | Hippotherapievorrichtung |
| US10603566B2 (en) * | 2017-08-29 | 2020-03-31 | Pixart Imaging Inc. | Method and system for posture correction adapted to a sporting equipment |
| CN107744642A (zh) * | 2017-11-24 | 2018-03-02 | 浙江工业大学之江学院 | 一种亲子娱乐健身器材 |
| CN110227235B (zh) * | 2019-07-20 | 2021-12-17 | 永康市豪多健身器材有限公司 | 能增加锻炼乐趣的缩腹机 |
| CN113297876A (zh) * | 2020-02-21 | 2021-08-24 | 佛山市云米电器科技有限公司 | 基于智能冰箱的运动姿势矫正方法、智能冰箱及存储介质 |
| JP2025063371A (ja) * | 2023-10-04 | 2025-04-16 | カシオ計算機株式会社 | 情報処理方法、情報処理装置、プログラム及び情報処理システム |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4713010A (en) * | 1985-07-04 | 1987-12-15 | Paul Veillas | Apparatus for simulating the different paces of a horse and the aids to be applied for controlling the horse |
| US4957444A (en) * | 1988-11-17 | 1990-09-18 | Pegasus Therapeutic Riding, Inc. | Training horse simulator |
| JP2006149468A (ja) | 2004-11-25 | 2006-06-15 | Matsushita Electric Works Ltd | 揺動型運動装置 |
Family Cites Families (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2720599B2 (ja) * | 1990-11-28 | 1998-03-04 | 三菱マテリアル株式会社 | 健康管理システム |
| US5919115A (en) * | 1994-10-28 | 1999-07-06 | The Regents Of Theuniversity Of California | Adaptive exercise machine |
| US5627327A (en) * | 1996-07-22 | 1997-05-06 | Zanakis; Michael | Dynamic system for determining human physical instability |
| US5848939A (en) * | 1996-07-24 | 1998-12-15 | Smith; James R. | Rodeo game system |
| JP2000023923A (ja) * | 1998-07-16 | 2000-01-25 | Omron Corp | 健康づくり支援システム |
| JP2000237364A (ja) * | 1999-02-25 | 2000-09-05 | Hosiden Corp | 運動促進装置 |
| US6488640B2 (en) * | 1999-11-08 | 2002-12-03 | Robert T. Hood, Jr. | Method and device for continuous passive lumbar motion (CLMP) for back exercise |
| GB2363993B (en) * | 2000-06-29 | 2002-11-20 | William Ronald Greenwood | Polo training apparatus |
| US6835141B2 (en) * | 2000-12-13 | 2004-12-28 | Michelle R. Eaves | Motion therapy device |
| US6402626B1 (en) * | 2001-07-09 | 2002-06-11 | William A. Beaty | Bucking machine |
| JP3666485B2 (ja) * | 2003-01-17 | 2005-06-29 | 松下電工株式会社 | バランス訓練装置 |
| JP4199134B2 (ja) * | 2004-01-16 | 2008-12-17 | 株式会社コナミスポーツ&ライフ | トレーニング装置 |
| US20060035774A1 (en) * | 2004-03-10 | 2006-02-16 | Marks Joellen | Prompt-based exercise apparatus, system, and method |
| JP4039428B2 (ja) * | 2004-07-27 | 2008-01-30 | 松下電工株式会社 | 揺動型運動装置 |
| JP4032430B2 (ja) * | 2004-10-01 | 2008-01-16 | 松下電工株式会社 | 揺動型運動装置 |
| US20070232455A1 (en) * | 2004-10-22 | 2007-10-04 | Mytrak Health System Inc. | Computerized Physical Activity System to Provide Feedback |
| US7104927B2 (en) * | 2004-10-26 | 2006-09-12 | Tonic Fitness Technology, Inc. | Riding device |
| US6964614B1 (en) * | 2004-10-26 | 2005-11-15 | Tonic Fitness Technology, Inc. | Riding device |
| US20070027006A1 (en) * | 2005-07-28 | 2007-02-01 | Savvier, Lp | Compact abdominal exerciser |
| JP4327813B2 (ja) * | 2006-03-07 | 2009-09-09 | 株式会社コナミスポーツ&ライフ | トレーニング装置 |
| US20080009395A1 (en) * | 2006-07-10 | 2008-01-10 | Jung-Wen Tseng | Horse-riding type exerciser |
| JP4725972B2 (ja) * | 2006-08-10 | 2011-07-13 | サミー株式会社 | 弾球遊技機 |
| US7448953B2 (en) * | 2006-08-14 | 2008-11-11 | Chiu-Ku Chen | Structure of a horse riding machine |
| US8078426B2 (en) * | 2006-12-28 | 2011-12-13 | Precor Incorporated | Metric display for exercise equipment |
| US7758469B2 (en) * | 2008-05-28 | 2010-07-20 | Precor Incorporated | Exercise device visual representation |
-
2008
- 2008-11-20 JP JP2008297154A patent/JP2010119687A/ja active Pending
-
2009
- 2009-11-16 TW TW098138840A patent/TW201029707A/zh unknown
- 2009-11-16 US US12/591,284 patent/US20100125024A1/en not_active Abandoned
- 2009-11-17 EP EP09014378A patent/EP2189195A1/fr not_active Withdrawn
- 2009-11-20 CN CN200910226482A patent/CN101732830A/zh active Pending
- 2009-11-20 KR KR1020090112709A patent/KR20100056991A/ko not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4713010A (en) * | 1985-07-04 | 1987-12-15 | Paul Veillas | Apparatus for simulating the different paces of a horse and the aids to be applied for controlling the horse |
| US4957444A (en) * | 1988-11-17 | 1990-09-18 | Pegasus Therapeutic Riding, Inc. | Training horse simulator |
| JP2006149468A (ja) | 2004-11-25 | 2006-06-15 | Matsushita Electric Works Ltd | 揺動型運動装置 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013006145A1 (fr) * | 2011-07-04 | 2013-01-10 | Univerza V Ljubljani | Système d'entraîneament à la technique de l'aviron |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20100056991A (ko) | 2010-05-28 |
| CN101732830A (zh) | 2010-06-16 |
| US20100125024A1 (en) | 2010-05-20 |
| JP2010119687A (ja) | 2010-06-03 |
| TW201029707A (en) | 2010-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2189195A1 (fr) | Dispositif d'exercice basculant | |
| US8337364B2 (en) | Training support system and training support method | |
| JP4270113B2 (ja) | 揺動型運動装置 | |
| JP2006167094A (ja) | 複合運動機器 | |
| JP2010233932A (ja) | 運動装置 | |
| KR20100097069A (ko) | 운동 장치 | |
| JP2006034640A (ja) | 運動補助装置 | |
| CN101657174B (zh) | 运动辅助装置 | |
| US20240251966A1 (en) | Intelligent automated chair and methods of using the same | |
| US20230149776A1 (en) | Processing system, processing method, and non-transitory storage medium | |
| JP2007295993A (ja) | トレーニング装置 | |
| US7338412B2 (en) | Rocking exercise apparatus | |
| JPH10216268A (ja) | トレーニングシステム | |
| JP2007089650A (ja) | 運動補助装置 | |
| EP2243521A2 (fr) | Appareil d'entraînement | |
| KR20140127547A (ko) | 신체 상태 기반 운동/재활 난이도 제어 장치 및 방법 | |
| JP5105803B2 (ja) | 足関節運動装置 | |
| JP4258464B2 (ja) | 揺動型運動装置 | |
| JP4325272B2 (ja) | 運動補助装置の動作決定装置、運動補助装置の動作決定方法、運動補助装置 | |
| JP4449896B2 (ja) | 揺動型運動装置 | |
| JP4922702B2 (ja) | 足関節運動装置 | |
| JP5048961B2 (ja) | 揺動型運動装置 | |
| US10722751B2 (en) | Exercise apparatus | |
| JP4886216B2 (ja) | 運動補助装置 | |
| JP7624139B2 (ja) | 運動用機器及びトレーニングシステム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
| 17P | Request for examination filed |
Effective date: 20100922 |
|
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: PANASONIC CORPORATION |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
| 18W | Application withdrawn |
Effective date: 20120418 |