EP2172573A1 - Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same - Google Patents
Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same Download PDFInfo
- Publication number
- EP2172573A1 EP2172573A1 EP07829943A EP07829943A EP2172573A1 EP 2172573 A1 EP2172573 A1 EP 2172573A1 EP 07829943 A EP07829943 A EP 07829943A EP 07829943 A EP07829943 A EP 07829943A EP 2172573 A1 EP2172573 A1 EP 2172573A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- less
- cooling
- stainless steel
- martensitic stainless
- air cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001105 martensitic stainless steel Inorganic materials 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000003129 oil well Substances 0.000 title description 5
- 230000008569 process Effects 0.000 title description 2
- 238000001816 cooling Methods 0.000 claims abstract description 109
- 238000005496 tempering Methods 0.000 claims abstract description 34
- 238000010791 quenching Methods 0.000 claims abstract description 29
- 230000000171 quenching effect Effects 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 239000000203 mixture Substances 0.000 claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 230000009466 transformation Effects 0.000 claims abstract description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 4
- 239000010935 stainless steel Substances 0.000 claims abstract description 4
- 230000007704 transition Effects 0.000 claims description 9
- 238000009863 impact test Methods 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 abstract description 37
- 239000010959 steel Substances 0.000 abstract description 37
- 229910052758 niobium Inorganic materials 0.000 abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 description 25
- 238000005260 corrosion Methods 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 21
- 239000003921 oil Substances 0.000 description 19
- 238000012937 correction Methods 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000002269 spontaneous effect Effects 0.000 description 6
- 239000007858 starting material Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- -1 chlorine ions Chemical class 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/14—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/22—Martempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
Definitions
- the present invention relates to a martensitic stainless steel seamless pipe for oil country tubular goods, and in more particular relates to a seamless steel pipe for oil country tubular goods which has a high strength, such as a yield strength of 110 ksi (758 MPa) or more, and a superior low temperature toughness and to a method for manufacturing the martensitic stainless steel seamless pipe.
- Oil country tubular goods used in the environments as described above are required to include a material which simultaneously has a high strength, a superior corrosion resistance, and also a superior toughness.
- Patent Document 1 martensitic stainless steel suitably used for oil country tubular goods has been proposed which contains 0.01% to 0.1% of C, 9% to 15% of Cr, and 0.1% or less of N, and which has a high toughness even though having a relatively high C content and a high strength.
- Patent Document 1 when the amount of carbides present in prior-austenite grain boundaries is decreased to 0.5 volume percent or less, the maximum minor axis of the carbides is set to 10 and 200 nm, the ratio between an average Cr concentration and an average Fe concentration in the carbides is set to 0.4 or less, a M 23 C 6 type carbide is suppressed from being precipitated, and a M 3 C type carbide is positively precipitated, the toughness can be significantly improved.
- the present invention is made to solve the related technical problems described above, and an object of the present invention is to propose a seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness and a stable method for manufacturing the seamless steel pipe.
- the "superior low temperature toughness" of the present invention indicates the case in which the fracture transition temperature vTrs in a Charpy impact test is -60°C or less.
- the inventors of the present invention carried out an intensive research on the influences of component compositions and heat treatment conditions upon the change in toughness with an increase in strength of a 13 Cr martensitic stainless steel pipe.
- the Cr content is set to a relatively low content, such as approximately 11% of Cr
- the Ni content is also set to a relatively low content, such as 4.0% or less
- a quenching treatment is performed, when an appropriate tempering treatment is performed in which heating is performed to a tempering temperature in the range of more than 450°C to 550°C, and cooling is then performed, even if Mo is not added, a high strength of a 110 ksi grade of yield strength can be ensured, and a high toughness having a vTrs of -60°C or less can also be obtained.
- a tempering treatment was then performed in such a way that heating was performed to a temperature in the range of 425°C to 575°C, and spontaneous cooling was then performed. In addition, in the cooling of the tempering treatment, a correctional treatment was performed.
- tensile test and a Charpy impact test were performed on the obtained seamless steel pipe, so that tensile characteristics (yield strength YS, and tensile strength TS) and the low temperature toughness (fracture transition temperature vTrs) were measured.
- the obtained results are shown in Fig. 1 . From Fig. 1 , according to this component system, it is found that when tempering is performed at a temperature in the range of more than 450°C to 550°C after a quenching treatment, a high toughness and a high strength can be simultaneously obtained.
- a seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of -60°C or less can be easily and also stably manufactured, and significant industrial advantages can be obtained.
- a method for manufacturing a seamless steel pipe for oil country tubular goods will be described.
- a stainless steel seamless pipe which has a composition containing less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities.
- the content is an important element relating to the strength of martensitic stainless steel, and in order to ensure a desired strength, the content is preferably 0.003% or more; however, when the content is 0.010% or more, the toughness and also the corrosion resistance are liable to be degraded. Hence, in the present invention, the C content is limited to less than 0.010%. In addition, in order to stably ensure the strength and the toughness, the content is preferably in the range of 0.003% to 0.008%.
- the Si is an element functioning as a deoxidizing agent in a normal steelmaking process, and in the present invention, the content is preferably 0.1% or more; however, when the content is more than 1.0%, the toughness is degraded, and hot workability is also degraded. Hence, the Si content is limited to 1.0% or less. In addition, the content is preferably in the range of 0.1% to 0.3%.
- Mn is an element to increase the strength, and in order to ensure a strength necessary as a steel pipe for oil country tubular goods, the content must be 0.1% or more in the present invention; however, when the content is more than 2.0%, the toughness is adversely influenced. Hence, the Mn content is limited in the range of 0.1% to 2.0%. In addition, the content is preferably in the range of 0.5% to 1.5%.
- the P is an element to degrade the corrosion resistance, such as CO 2 corrosion resistance, and is preferably decreased as small as possible in the present invention; however, an excessive decrease may cause an increase in cost.
- the P content is limited to 0.020% or less. In addition, the content is preferably 0.015% or less.
- S is an element to considerably degrade the hot workability in a pipe manufacturing process and is preferably decreased as small as possible; however, when the content is decreased to 0.010% or less, pipe manufacturing can be performed by a normal process, and hence the S content is limited to 0.010% or less. In addition, the content is preferably 0.003% or less.
- the content is an element having a strong deoxidizing function, and in order to obtain this effect, the content is preferably 0.001% or more; however, when the content is more than 0.10%, the toughness is adversely influenced. Hence the Al content is limited to 0.10% or less. In addition, the content is preferably 0.05% or less.
- Cr is an element to improve the corrosion resistance by forming a passivation film and is also an element to particularly contribute to an effective improvement in CO 2 corrosion resistance and resistance to CO 2 stress corrosion cracking.
- the content is 10% or more, corrosion resistance required for oil country tubular goods can be ensured, and hence the lower limit is set to 10% in the present invention.
- the content is large, such as more than 14%, since ferrite is easily generated, a large amount of an expensive austenite generation element must be added in order to stably ensure a martensitic phase or to prevent degradation of the hot workability, so that economical problems may arise.
- the Cr content is limited in the range of 10% to 14%.
- the content is preferably in the range of 10.5% to 11.5%.
- Ni has a function to strengthen a passivation film and is an element to improve the corrosion resistance, such as CO 2 corrosion resistance.
- the content In order to obtain the effect as described above, the content must be 0.1% or more. On the other hand, when the content is more than 4.0%, the improvement effect is saturated, and as a result, a manufacturing cost is inevitably increased. Hence, the Ni content is limited in the range of 0.1% to 4.0%. In addition, the content is preferably in the range of 1.5% to 3.0%.
- N is an element to significantly improve pitting resistance, and when the content is 0.003% or more, the effect described above becomes significant. On the other hand, when the content is more than 0.05%, various nitrides are formed, and as a result, the toughness is degraded. Hence, the N content is limited to 0.05% or less. In addition, the content is preferably in the range of 0.01% to 0.02%.
- the components described above are basic components of the starting material, according to the present invention, besides those basic components described above, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo and/or at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti may also be contained.
- Cu and Mo are elements each having a function to improve the corrosion resistance and, whenever necessary, at least one of them may be selected and contained.
- Cu is an element having a function to improve the pitting resistance by strengthening a passivation film, and in order to obtain the effect as described above, the content is preferably 0.2% or more.
- the content is more than 2.0%, Cu is partly precipitated, and as a result, the toughness is degraded.
- the content thereof is preferably limited to 2.0% or less.
- the content is in the range of 0.2% to 1.0%.
- Mo is an element having a function to increase the resistance against pitting caused by Cl - , and in order to obtain the above effect, the content is preferably 0.2% or more.
- the content is more than 2.0%, the strength is not only decreased, but a material cost is also increased.
- the Mo content is preferably limited to 2.0% or less.
- the content is in the range of 0.2% to 1.0%.
- At least one of 0.02% or more of V, 0.01% or more of Nb, and 0.02% or more of Ti is preferably contained.
- the toughness is degraded.
- the contents of V, Nb, and Ti are each preferably limited to 0.10% or less.
- the V content is 0.02% to 0.05%
- the Nb content is 0.01% to 0.05%
- the Ti content is 0.02% to 0.05%.
- the balance other than those components described above contains Fe and inevitable impurities.
- the inevitable impurities 0.010% or less of O may be contained.
- a method for manufacturing a starting material having the above composition is not particularly limited, it is preferable that after molten steel having the above composition is formed by a commonly known steelmaking method, for example, using a converter, an electrical furnace, a vacuum melting furnace, and the like, a steel pipe material, such as a billet, be formed by a common method, such as a continuous casting method, or an ingot-making and blooming method. Subsequently, the steel pipe material is heated and is processed by hot working using a common Mannesmann-plug mill type or Mannesmann-mandrel mill type manufacturing process to form a seamless steel pipe having a desired dimension, and this seamless steel pipe is preferably used as the starting material.
- a seamless steel pipe may also be manufactured by press type hot extrusion.
- the seamless steel pipe is preferably cooled to room temperature at a cooling rate equivalent to or more than that of air cooling.
- the starting material (seamless steel pipe) is first processed by a quenching treatment.
- the quenching treatment of the present invention is a treatment in which after re-heating is performed to a heating temperature for quenching equivalent to or more than the Ac 3 transformation point, cooling is performed from the heating temperature for quenching to a temperature range of 100°C or less at a cooling rate equivalent to or more than that of air cooling.
- a fine martensitic microstructure can be obtained.
- a heating temperature for quenching is less than the Ac 3 transformation point, since heating cannot be performed to the austenite single phase region, and a sufficient martensitic microstructure cannot be obtained by subsequent cooling, a desired strength cannot be ensured.
- the heating temperature for quenching of the quenching treatment is limited to be equivalent to or more than the Ac 3 transformation point.
- the heating temperature is preferably 950°C or less.
- the cooling from the quenching heating temperature is performed to a temperature range of 100°C or less at a cooling rate equivalent to or more than that of air cooling. Since the starting material of the present invention has high hardenability, when the cooling is performed to a temperature range of 100°C or less at a cooling rate approximately equivalent to that of air cooling, a sufficiently quenched microstructure (martensitic microstructure) can be obtained.
- a holding time at the heating temperature for quenching is preferably set to 10 minutes or more in view of uniform heating.
- the seamless steel pipe processed by the quenching treatment is subsequently processed by a tempering treatment.
- the tempering treatment is an important treatment to ensure a superior low temperature toughness.
- the tempering treatment of the present invention is defined as a treatment in which after heating is performed to a tempering temperature in the range of more than 450°C to 550°C and is maintained preferably for 30 minutes or more, cooling is performed preferably to room temperature preferably at a cooling rate equivalent to or more than that of air cooling.
- the tempering temperature is 450°C or less, since the tempering is insufficient, the toughness is degraded, and as a result, a high strength and a high toughness cannot be simultaneously obtained.
- the tempering temperature is more than 550°C, besides a decrease in strength, since the grain boundaries become brittle, the intergranular fracture is liable to occur, and the toughness is also degraded; hence, a high strength and a high toughness cannot be simultaneously obtained.
- the tempering temperature is preferably in the range of 500°C to 550°C.
- the holding time at the tempering temperature is preferably set to 30 minutes or more.
- the cooling from the tempering temperature is preferably performed at a cooling rate equivalent to or more than that of air cooling.
- a correction treatment for correcting defect in pipe shape may be performed in the cooling of the tempering treatment.
- the correction treatment is preferably performed in a temperature range of 400°C or more.
- the temperature of the correction treatment is less than 400°C, a working strain is locally applied to the steel pipe when the correction treatment is performed, and hence variation in mechanical characteristics is liable to be generated.
- the correction treatment is performed in a temperature range of 400°C or more.
- a seamless steel pipe manufactured by the above-described manufacturing method is a martensitic stainless steel seamless pipe which has the composition described above and which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of - 60°C or less in a Charpy impact test.
- this martensitic stainless steel seamless pipe has a microstructure including a tempered martensitic phase as a primary phase.
- the seamless steel pipes thus obtained were subjected to a quenching treatment and a tempering treatment, and were further subjected to a correction treatment whenever necessary.
- V-notch test pieces (10 mm thick) in accordance with JIS Z 2242 standard were obtained from the seamless steel pipes which were subjected to the quenching treatment and the tempering treatment and were further subjected to the correction treatment whenever necessary, a Charpy impact test was carried out to obtain the fracture transition temperature vTrs and absorption energy vE -60 at a temperature of -60°C, so that the toughness was evaluated.
- a Charpy impact test was performed at a temperature of -60°C, and the variation was evaluated from the average value (ave) and the minimum value (min) of the absorption energy vE -60 .
- corrosion test pieces having a thickness of 3 mm, a width of 25 mm, and a length of 50 mm were formed from the steel pipes by machining, and a corrosion test was performed.
- the corrosion test was performed in such a way that the corrosion test pieces were immersed for one week (168 hours) in a test solution, a 20%-NaCl aqueous solution (solution temperature: 80°C, and a CO 2 gas environment at 30 bar pressure), which was placed in an autoclave.
- the weights of the test pieces subjected to the corrosion test were measured, and corrosion rates were obtained by calculating the weight loss before and after the corrosion test.
- the surfaces of the test pieces subjected to the corrosion test were observed with a loupe having a magnification of 10 to confirm the pitting generation.
- the pitting in the case in which at least one pit was observed, it was regarded that pitting occurred, and in the other cases, it was regarded that no pitting occurred.
- the obtained results are shown in Table 3.
- a martensitic stainless steel seamless pipe could be obtained which had a sufficient corrosion resistance as oil country tubular goods and which simultaneously had a high strength of a 110 ksi grade of YS and a superior low temperature toughness having a vTrs of -60°C or less.
- the strength was not sufficient, or the low temperature toughness was degraded, desired high strength and high toughness could not be ensured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
- The present invention relates to a martensitic stainless steel seamless pipe for oil country tubular goods, and in more particular relates to a seamless steel pipe for oil country tubular goods which has a high strength, such as a yield strength of 110 ksi (758 MPa) or more, and a superior low temperature toughness and to a method for manufacturing the martensitic stainless steel seamless pipe.
- In consideration of a steep rise in crude oil prices and depletion of petroleum resources to be expected in near future, in recent years, for example, deep oil wells; oil wells and gas wells with a severe corrosive environment containing carbon dioxide, chlorine ions, and the like; and oil wells with a severe drilling environment, such as in a cold district or on a sea bed, to which attention has not been paid in the past, have been aggressively developed. Oil country tubular goods used in the environments as described above are required to include a material which simultaneously has a high strength, a superior corrosion resistance, and also a superior toughness.
- Heretofore, in oil wells and gas wells with an environment containing carbon dioxide CO2, chlorine ions Cl-, and the like, as oil country tubular goods used for drilling operation, a 13% Cr martensitic stainless steel pipe has been frequently used.
- For example, in Patent Document 1, martensitic stainless steel suitably used for oil country tubular goods has been proposed which contains 0.01% to 0.1% of C, 9% to 15% of Cr, and 0.1% or less of N, and which has a high toughness even though having a relatively high C content and a high strength. According to a technique disclosed in Patent Document 1, when the amount of carbides present in prior-austenite grain boundaries is decreased to 0.5 volume percent or less, the maximum minor axis of the carbides is set to 10 and 200 nm, the ratio between an average Cr concentration and an average Fe concentration in the carbides is set to 0.4 or less, a M23C6 type carbide is suppressed from being precipitated, and a M3C type carbide is positively precipitated, the toughness can be significantly improved. In order to control the structure and the composition of the carbides described above in a desired range, according to the technique disclosed in Patent Document 1, air cooling (spontaneous cooling) is performed after hot working, air cooling (spontaneous cooling) is performed after a solution treatment, or following air cooling (spontaneous cooling) performed after a solution treatment, tempering is performed at a low temperature of 450°C or less.
- Patent Document 1: Japanese Unexamined Patent Application Publication No.
2002-363708 - However, according to the technique disclosed in Patent Document 1, when only air cooling (spontaneous cooling) is performed after hot rolling, or when only air cooling (spontaneous cooling) is performed after a solution treatment, there has been a problem in that a desired strength of a 110 ksi grade of yield strength (758∼862 MPa), and a superior low temperature toughness cannot be simultaneously obtained. In addition, in order to ensure a strength of a 110 ksi grade of yield strength by the technique disclosed in Patent Document 1, the C content must be set to 0.01 mass percent or more. However, when the C content is set to 0.01 mass percent or more, the low temperature toughness is degraded, and a superior low temperature toughness having a fracture transition temperature of -60°C or less cannot be disadvantageously ensured. In addition, when the technique disclosed in Patent Document 1 is applied to a steel pipe so as to perform low temperature tempering at 450°C or less, a working stress is generated by correction performed immediately after the finish of heating of the tempering treatment, and there has been a problem in that variation of steel pipe characteristics is increased. The present invention is made to solve the related technical problems described above, and an object of the present invention is to propose a seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness and a stable method for manufacturing the seamless steel pipe. In addition, the "superior low temperature toughness" of the present invention indicates the case in which the fracture transition temperature vTrs in a Charpy impact test is -60°C or less.
- In order to achieve the object described above, the inventors of the present invention carried out an intensive research on the influences of component compositions and heat treatment conditions upon the change in toughness with an increase in strength of a 13 Cr martensitic stainless steel pipe. As a result, it was found that in a component system in which the C content is controlled to be less than 0.010 mass percent, the Cr content is set to a relatively low content, such as approximately 11% of Cr, and the Ni content is also set to a relatively low content, such as 4.0% or less, after a quenching treatment is performed, when an appropriate tempering treatment is performed in which heating is performed to a tempering temperature in the range of more than 450°C to 550°C, and cooling is then performed, even if Mo is not added, a high strength of a 110 ksi grade of yield strength can be ensured, and a high toughness having a vTrs of -60°C or less can also be obtained. First, the results of fundamental experiments performed by the inventors of the present invention will be described.
- After a quenching treatment (810°C×15 minutes) was performed on a seamless steel pipe having a composition containing on a mass percent basis, 0.008% of C, 0.12% of Si, 1.14% of Mn, 0.019% of P, 0.001% of S, 0.04% of Al, 10.9% of Cr, 2.3% of Ni, 0.5% of Cu, 0.01% of N, and the balance being Fe, a tempering treatment was then performed in such a way that heating was performed to a temperature in the range of 425°C to 575°C, and spontaneous cooling was then performed. In addition, in the cooling of the tempering treatment, a correctional treatment was performed. A tensile test and a Charpy impact test were performed on the obtained seamless steel pipe, so that tensile characteristics (yield strength YS, and tensile strength TS) and the low temperature toughness (fracture transition temperature vTrs) were measured. The obtained results are shown in
Fig. 1 . FromFig. 1 , according to this component system, it is found that when tempering is performed at a temperature in the range of more than 450°C to 550°C after a quenching treatment, a high toughness and a high strength can be simultaneously obtained. That is, it is found that even if a 11% Cr-2% Ni composition is used, when tempering is performed at a temperature in the range of more than 450°C to 550°C after a quenching treatment, a high toughness having a vTrs of -60°C or less and a high strength of a YS 110 ksi grade can be stably ensured. Based on the above findings, intensive researches were further carried out, and as a result, the present invention was made. That is, the summary of the present invention are as follows. - (1) A martensitic stainless steel seamless pipe for oil country tubular goods comprises: a composition which contains on a mass percent basis, less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities. The martensitic stainless steel seamless pipe simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of -60°C or less in a Charpy impact test.
- (2) In the martensitic stainless steel seamless pipe for oil country tubular goods according to the above (1), the composition further contains on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
- (3) In the martensitic stainless steel seamless pipe for oil country tubular goods according to the above (1) or (2), the composition further contains on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
- (4) A method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness, comprises: performing a quenching treatment on a stainless steel seamless pipe having a composition which contains on a mass percent basis, less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities in which after heating is performed to a heating temperature for quenching equivalent to or more than the Ac3 transformation point, cooling is performed from the heating temperature for quenching to a temperature range of 100°C or less at a cooling rate equivalent to or more than that of air cooling; and performing a tempering treatment in which following the quenching treatment, heating is performed to a tempering temperature in the range of more than 450°C to 550°C, and cooling is then performed.
- (5) In the method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to the above (4), the composition further contains on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
- (6) In the method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to the above (4) or (5), the composition further contains on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
- (7) In the method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to one of the above (4) to (6), in the cooling of the tempering treatment, a correctional treatment is performed in a temperature range of 400°C or more.
- According to the present invention, a seamless steel pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of -60°C or less can be easily and also stably manufactured, and significant industrial advantages can be obtained.
-
- [
Fig. 1 ]
Fig. 1 is a graph showing the relationship of the tempering temperature with the yield strength YS, tensile strength TS, and fracture transition temperature vTrs. - First, a method for manufacturing a seamless steel pipe for oil country tubular goods will be described. In the present invention, as a starring material, a stainless steel seamless pipe is used which has a composition containing less than 0.010% of C, 1.0% or less of Si, 0.1% to 2.0% of Mn, 0.020% or less of P, 0.010% or less of S, 0.10% or less of Al, 10% to 14% of Cr, 0.1% to 4.0% of Ni, 0.05% or less of N, and the balance being Fe and inevitable impurities.
- In addition, hereinafter, "mass percent" is simply represented by "%". First, the reasons for limiting the composition of the starting material will be described.
- C is an important element relating to the strength of martensitic stainless steel, and in order to ensure a desired strength, the content is preferably 0.003% or more; however, when the content is 0.010% or more, the toughness and also the corrosion resistance are liable to be degraded. Hence, in the present invention, the C content is limited to less than 0.010%. In addition, in order to stably ensure the strength and the toughness, the content is preferably in the range of 0.003% to 0.008%.
- Si is an element functioning as a deoxidizing agent in a normal steelmaking process, and in the present invention, the content is preferably 0.1% or more; however, when the content is more than 1.0%, the toughness is degraded, and hot workability is also degraded. Hence, the Si content is limited to 1.0% or less. In addition, the content is preferably in the range of 0.1% to 0.3%.
- Mn is an element to increase the strength, and in order to ensure a strength necessary as a steel pipe for oil country tubular goods, the content must be 0.1% or more in the present invention; however, when the content is more than 2.0%, the toughness is adversely influenced. Hence, the Mn content is limited in the range of 0.1% to 2.0%. In addition, the content is preferably in the range of 0.5% to 1.5%.
- P is an element to degrade the corrosion resistance, such as CO2 corrosion resistance, and is preferably decreased as small as possible in the present invention; however, an excessive decrease may cause an increase in cost. As the range in which the corrosion resistance, such as CO2 corrosion resistance, is not degraded and in which the decrease can be industrially performed at a relatively low cost, the P content is limited to 0.020% or less. In addition, the content is preferably 0.015% or less.
- S is an element to considerably degrade the hot workability in a pipe manufacturing process and is preferably decreased as small as possible; however, when the content is decreased to 0.010% or less, pipe manufacturing can be performed by a normal process, and hence the S content is limited to 0.010% or less. In addition, the content is preferably 0.003% or less.
- Al is an element having a strong deoxidizing function, and in order to obtain this effect, the content is preferably 0.001% or more; however, when the content is more than 0.10%, the toughness is adversely influenced. Hence the Al content is limited to 0.10% or less. In addition, the content is preferably 0.05% or less.
- Cr is an element to improve the corrosion resistance by forming a passivation film and is also an element to particularly contribute to an effective improvement in CO2 corrosion resistance and resistance to CO2 stress corrosion cracking. When the content is 10% or more, corrosion resistance required for oil country tubular goods can be ensured, and hence the lower limit is set to 10% in the present invention. On the other hand, when the content is large, such as more than 14%, since ferrite is easily generated, a large amount of an expensive austenite generation element must be added in order to stably ensure a martensitic phase or to prevent degradation of the hot workability, so that economical problems may arise. Hence, the Cr content is limited in the range of 10% to 14%. In addition, in order to ensure more stable microstructure and hot workability, the content is preferably in the range of 10.5% to 11.5%.
- Ni has a function to strengthen a passivation film and is an element to improve the corrosion resistance, such as CO2 corrosion resistance. In order to obtain the effect as described above, the content must be 0.1% or more. On the other hand, when the content is more than 4.0%, the improvement effect is saturated, and as a result, a manufacturing cost is inevitably increased. Hence, the Ni content is limited in the range of 0.1% to 4.0%. In addition, the content is preferably in the range of 1.5% to 3.0%.
- N is an element to significantly improve pitting resistance, and when the content is 0.003% or more, the effect described above becomes significant. On the other hand, when the content is more than 0.05%, various nitrides are formed, and as a result, the toughness is degraded. Hence, the N content is limited to 0.05% or less. In addition, the content is preferably in the range of 0.01% to 0.02%.
- Although the components described above are basic components of the starting material, according to the present invention, besides those basic components described above, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo and/or at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti may also be contained.
- At least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo
- Cu and Mo are elements each having a function to improve the corrosion resistance and, whenever necessary, at least one of them may be selected and contained.
- Cu is an element having a function to improve the pitting resistance by strengthening a passivation film, and in order to obtain the effect as described above, the content is preferably 0.2% or more. On the other hand, when the content is more than 2.0%, Cu is partly precipitated, and as a result, the toughness is degraded. Hence, when Cu is contained, the content thereof is preferably limited to 2.0% or less. In addition, more preferably, the content is in the range of 0.2% to 1.0%.
- In addition, Mo is an element having a function to increase the resistance against pitting caused by Cl-, and in order to obtain the above effect, the content is preferably 0.2% or more. On the other hand, when the content is more than 2.0%, the strength is not only decreased, but a material cost is also increased. Hence, the Mo content is preferably limited to 2.0% or less. In addition, more preferably, the content is in the range of 0.2% to 1.0%.
- At least one selected from the group consisting of V: 0.10% or less, Nb: 0.10% or less, and Ti: 0.10% or less
V, Nb, and Ti are components to increase the strength, and whenever necessary, at least one of them may be selected and contained. - In order to obtain the effect as described above, at least one of 0.02% or more of V, 0.01% or more of Nb, and 0.02% or more of Ti is preferably contained. On the other hand, when at least one of more than 0.10% of V, more than 0.10% of Nb, and more than 0.10% of Ti is contained, the toughness is degraded. Hence, when being contained, the contents of V, Nb, and Ti are each preferably limited to 0.10% or less. In addition, more preferably, the V content is 0.02% to 0.05%, the Nb content is 0.01% to 0.05%, and the Ti content is 0.02% to 0.05%.
- The balance other than those components described above contains Fe and inevitable impurities. In addition, as the inevitable impurities, 0.010% or less of O may be contained.
- In the present invention, although a method for manufacturing a starting material having the above composition is not particularly limited, it is preferable that after molten steel having the above composition is formed by a commonly known steelmaking method, for example, using a converter, an electrical furnace, a vacuum melting furnace, and the like, a steel pipe material, such as a billet, be formed by a common method, such as a continuous casting method, or an ingot-making and blooming method. Subsequently, the steel pipe material is heated and is processed by hot working using a common Mannesmann-plug mill type or Mannesmann-mandrel mill type manufacturing process to form a seamless steel pipe having a desired dimension, and this seamless steel pipe is preferably used as the starting material. In addition, a seamless steel pipe may also be manufactured by press type hot extrusion. In addition, after the pipe is formed, the seamless steel pipe is preferably cooled to room temperature at a cooling rate equivalent to or more than that of air cooling.
- The starting material (seamless steel pipe) is first processed by a quenching treatment.
- The quenching treatment of the present invention is a treatment in which after re-heating is performed to a heating temperature for quenching equivalent to or more than the Ac3 transformation point, cooling is performed from the heating temperature for quenching to a temperature range of 100°C or less at a cooling rate equivalent to or more than that of air cooling. As a result, a fine martensitic microstructure can be obtained. When a heating temperature for quenching is less than the Ac3 transformation point, since heating cannot be performed to the austenite single phase region, and a sufficient martensitic microstructure cannot be obtained by subsequent cooling, a desired strength cannot be ensured. Hence, the heating temperature for quenching of the quenching treatment is limited to be equivalent to or more than the Ac3 transformation point. In addition, the heating temperature is preferably 950°C or less. The cooling from the quenching heating temperature is performed to a temperature range of 100°C or less at a cooling rate equivalent to or more than that of air cooling. Since the starting material of the present invention has high hardenability, when the cooling is performed to a temperature range of 100°C or less at a cooling rate approximately equivalent to that of air cooling, a sufficiently quenched microstructure (martensitic microstructure) can be obtained. In addition, a holding time at the heating temperature for quenching is preferably set to 10 minutes or more in view of uniform heating.
- The seamless steel pipe processed by the quenching treatment is subsequently processed by a tempering treatment. In the present invention, the tempering treatment is an important treatment to ensure a superior low temperature toughness. The tempering treatment of the present invention is defined as a treatment in which after heating is performed to a tempering temperature in the range of more than 450°C to 550°C and is maintained preferably for 30 minutes or more, cooling is performed preferably to room temperature preferably at a cooling rate equivalent to or more than that of air cooling. As a result, a seamless steel pipe which simultaneously has a high strength of YS 110 ksi or more and a superior low temperature toughness having a vTrs of -60°C or less can be obtained. When the tempering temperature is 450°C or less, since the tempering is insufficient, the toughness is degraded, and as a result, a high strength and a high toughness cannot be simultaneously obtained. On the other hand, when the tempering temperature is more than 550°C, besides a decrease in strength, since the grain boundaries become brittle, the intergranular fracture is liable to occur, and the toughness is also degraded; hence, a high strength and a high toughness cannot be simultaneously obtained. The tempering temperature is preferably in the range of 500°C to 550°C. In addition, in order to stably maintain the properties, the holding time at the tempering temperature is preferably set to 30 minutes or more. In addition, the cooling from the tempering temperature is preferably performed at a cooling rate equivalent to or more than that of air cooling.
- In addition, in the present invention, whenever necessary, a correction treatment for correcting defect in pipe shape may be performed in the cooling of the tempering treatment. The correction treatment is preferably performed in a temperature range of 400°C or more. When the temperature of the correction treatment is less than 400°C, a working strain is locally applied to the steel pipe when the correction treatment is performed, and hence variation in mechanical characteristics is liable to be generated. Hence, it is decided that the correction treatment is performed in a temperature range of 400°C or more.
- A seamless steel pipe manufactured by the above-described manufacturing method is a martensitic stainless steel seamless pipe which has the composition described above and which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of - 60°C or less in a Charpy impact test. In addition, this martensitic stainless steel seamless pipe has a microstructure including a tempered martensitic phase as a primary phase. Hence, a steel pipe can be obtained which simultaneously has a desired high strength and a desired high toughness and which also has a sufficient corrosion resistance as oil country tubular goods.
- After various types of molten steel having the compositions shown in Table 1 were degassed, slabs were formed by a continuous casting method, and billets (size: 207 mm in diameter) were obtained by billet rolling of the slabs processed by re-heating, so that steel-pipe materials were prepared. After the steel pipe materials were heated and formed into pipes by hot working using a Mannesmann-type manufacturing process, cooling was performed, so that seamless steel pipes (outside diameter: 177.8 mm, and wall thickness: 12.7 mm) were obtained.
- The seamless steel pipes thus obtained were subjected to a quenching treatment and a tempering treatment, and were further subjected to a correction treatment whenever necessary.
- After API strip tensile specimens were obtained from the seamless steel pipes which were subjected to the quenching treatment and the tempering treatment and were further subjected to the correction treatment whenever necessary, a tensile test was performed, so that the tensile characteristics (yield strength YS, and tensile strength TS) were obtained.
- In addition, V-notch test pieces (10 mm thick) in accordance with JIS Z 2242 standard were obtained from the seamless steel pipes which were subjected to the quenching treatment and the tempering treatment and were further subjected to the correction treatment whenever necessary, a Charpy impact test was carried out to obtain the fracture transition temperature vTrs and absorption energy vE-60 at a temperature of -60°C, so that the toughness was evaluated. In addition, after test pieces were obtained from 12 points along the circumference of each steel pipe subjected to the correction treatment, a Charpy impact test was performed at a temperature of -60°C, and the variation was evaluated from the average value (ave) and the minimum value (min) of the absorption energy vE-60.
- In addition, corrosion test pieces having a thickness of 3 mm, a width of 25 mm, and a length of 50 mm were formed from the steel pipes by machining, and a corrosion test was performed.
- The corrosion test was performed in such a way that the corrosion test pieces were immersed for one week (168 hours) in a test solution, a 20%-NaCl aqueous solution (solution temperature: 80°C, and a CO2 gas environment at 30 bar pressure), which was placed in an autoclave. The weights of the test pieces subjected to the corrosion test were measured, and corrosion rates were obtained by calculating the weight loss before and after the corrosion test. In addition, the surfaces of the test pieces subjected to the corrosion test were observed with a loupe having a magnification of 10 to confirm the pitting generation. As for the pitting, in the case in which at least one pit was observed, it was regarded that pitting occurred, and in the other cases, it was regarded that no pitting occurred. The obtained results are shown in Table 3.
- According to the invention examples, a martensitic stainless steel seamless pipe could be obtained which had a sufficient corrosion resistance as oil country tubular goods and which simultaneously had a high strength of a 110 ksi grade of YS and a superior low temperature toughness having a vTrs of -60°C or less. On the other hand, according to the comparative examples out of the range of the present invention, since the strength was not sufficient, or the low temperature toughness was degraded, desired high strength and high toughness could not be ensured.
TABLE 1 STEEL No. CHEMICAL COMPOSITION (mass%) REMARKS C Si Mn P S Al Cr Ni N Cu, Mo V, Ti, Nb A 0.008 0.16 1.25 0.015 0.001 0.02 11.0 2.8 0.01 - - INVENTION EXAMPLE B 0.008 0.12 1.14 0.019 0.001 0.04 10.9 2.3 0.01 Cu:0.5 - INVENTION EXAMPLE C 0.008 0.15 1.31 0.018 0.001 0.03 11.1 2.8 0.03 Mo:0.6 - INVENTION EXAMPLE D 0.007 0.13 1.28 0.016 0.001 0.02 11.1 2.4 0.01 - V: 0.03 INVENTION EXAMPLE E 0.008 0.24 0.87 0.016 0.001 0.02 11.0 1.3 0.01 - Nb:0.03 INVENTION EXAMPLE F 0.008 0.15 1.72 0.015 0.001 0.03 13.2 3.5 0.01 - Ti:0.03 INVENTION EXAMPLE G 0.008 0.19 1.55 0.015 0.001 0.02 11.1 2.3 0.01 Cu:0.4 V:0.02,
Nb: 0.02INVENTION EXAMPLE H 0.012 0.16 1.33 0.014 0.001 0.03 11.4 2.0 0.01 - - COMPARATIVE
EXAMPLEI 0.012 0.24 1.05 0.014 0.001 0.03 11.4 2.6 0.01 - V: 0.03 COMPARATIVE
EXAMPLEJ 0.008 0.21 0.84 0.015 0.001 0.02 9.4 2.3 0.01 - - COMPARATIVE
EXAMPLEK 0.008 0.18 1.21 0.015 0.001 0.03 14.5 3.5 0.01 Cu:0.5 - COMPARATIVE
EXAMPLETABLE 2 STEEL
PIPE
No.STEEL
No.COOLING AFTER
PIPE FORMATIONQUENCHING TREATMENT TEMPERING TREATMENT CORRECTION TREATMENT REMARKS HEATING
TEMPERATURECOOLING COOLING
STOP
TEMPERATURETEMPERING
TEMPERATURECOOLING COOLING
STOP
TEMPERATURECORRECTION
TEMPERATURE(°C) (°C) (°C) (°C) (°C) 1 A AIR COOLING 850 AIR COOLING 25 510 AIR COOLING 25 - INVENTION EXAMPLE 2 B AIR COOLING 810 AIR COOLING 25 425 AIR COOLING 25 385 COMPARATIVE EXAMPLE 3 B AIR COOLING 810 AIR COOLING 25 450 AIR COOLING 25 410 INVENTION EXAMPLE 4 B AIR COOLING 810 AIR COOLING 25 475 AIR COOLING 25 435 INVENTION EXAMPLE 5 B AIR COOLING 810 AIR COOLING 25 500 AIR COOLING 25 460 INVENTION EXAMPLE 6 B AIR COOLING 810 AIR COOLING 25 525 AIR COOLING 25 485 INVENTION EXAMPLE 7 B AIR COOLING 810 AIR COOLING 25 550 AIR COOLING 25 510 INVENTION EXAMPLE 8 B AIR COOLING 810 AIR COOLING 25 575 AIR COOLING 25 535 COMPARATIVE EXAMPLE 9 C AIR COOLING 840 AIR COOLING 25 500 AIR COOLING 25 - INVENTION EXAMPLE 10 D AIR COOLING 820 AIR COOLING 25 500 AIR COOLING 25 - INVENTION EXAMPLE 11 E AIR COOLING 820 AIR COOLING 25 500 AIR COOLING 25 - INVENTION EXAMPLE 12 F AIR COOLING 810 AIR COOLING 25 500 AIR COOLING 25 - INVENTION EXAMPLE 13 G AIR COOLING 810 AIR COOLING 25 500 AIR COOLING 25 - INVENTION EXAMPLE 14 H AIR COOLING 830 AIR COOLING 25 450 AIR COOLING 25 - COMPARATIVE EXAMPLE 15 H AIR COOLING 830 AIR COOLING 25 550 AIR COOLING 25 - COMPARATIVE EXAMPLE 16 I AIR COOLING 830 AIR COOLING 25 450 AIR COOLING 25 - COMPARATIVE EXAMPLE 17 I AIR COOLING 830 AIR COOLING 25 550 AIR COOLING 25 - COMPARATIVE EXAMPLE 18 J AIR COOLING 850 AIR COOLING 25 500 AIR COOLING 25 - COMPARATIVE EXAMPLE 19 K AIR COOLING 850 AIR COOLING 25 500 AIR COOLING 25 - COMPARATIVE EXAMPLE TABLE 3 STEEL PIPE
No.STEEL
No.TENSILE CHARACTERISTICS TOUGHNESS CORROSION RESISTANCE REMARKS YS TS vTrs vE-60 (J) CORROSION RATE (mm/y) GENERATION OF PITTING (MPa) (MPa) (°C) ave min 1 A 768 921 -70 210 205 0.06 NO INVENTION EXAMPLE 2 B 789 950 -50 185 52 0.03 NO COMPARATIVE EXAMPLE 3 B 810 945 -60 215 200 0.03 NO INVENTION EXAMPLE 4 B 814 939 -70 223 216 0.04 NO INVENTION EXAMPLE 5 B 815 919 -85 302 281 0.04 NO INVENTION EXAMPLE 6 B 796 870 -90 305 294 0.04 NO INVENTION EXAMPLE 7 B 763 839 -65 211 203 0.04 NO INVENTION EXAMPLE 8 B 703 785 -30 28 25 0.05 NO COMPARATIVE EXAMPLE 9 C 810 942 -65 217 205 0.02 NO INVENTION EXAMPLE 10 D 822 938 -70 261 255 0.04 NO INVENTION EXAMPLE 11 E 843 978 -70 273 267 0.04 NO INVENTION EXAMPLE 12 F 805 934 -65 261 254 0.04 NO INVENTION EXAMPLE 13 G 842 963 -70 282 278 0.03 NO INVENTION EXAMPLE 14 H 889 1050 -55 201 184 0.05 NO COMPARATIVE EXAMPLE 15 H 784 934 -40 31 28 0.05 NO COMPARATIVE EXAMPLE 16 I 902 1079 -50 181 176 0.05 NO COMPARATIVE EXAMPLE 17 I 776 974 -35 24 22 0.05 NO COMPARATIVE EXAMPLE 18 J 687 821 -30 28 25 0.26 YES COMPARATIVE EXAMPLE 19 K 706 852 -25 25 22 0.02 NO COMPARATIVE EXAMPLE
Claims (7)
- A martensitic stainless steel seamless pipe for oil country tubular goods comprising: a composition which contains on a mass percent basis,
less than 0.010% of C, 1.0% or less of Si,
0.1% to 2.0% of Mn, 0.020% or less of P,
0.010% or less of S, 0.10% or less of Al,
10% to 14% of Cr, 0.1% to 4.0% of Ni,
0.05% or less of N, and
the balance being Fe and inevitable impurities, wherein the martensitic stainless steel seamless pipe simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness having a fracture transition temperature vTrs of -60°C or less in a Charpy impact test. - The martensitic stainless steel seamless pipe for oil country tubular goods according to Claim 1, wherein the composition further contains on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
- The martensitic stainless steel seamless pipe for oil country tubular goods according to Claim 1 or 2, wherein the composition further contains on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
- A method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods which simultaneously has a high strength of a 110 ksi grade of yield strength and a superior low temperature toughness, the method comprising: performing a quenching treatment on a stainless steel seamless pipe having a composition which contains on a mass percent basis,
less than 0.010% of C, 1.0% or less of Si,
0.1% to 2.0% of Mn, 0.020% or less of P,
0.010% or less of S, 0.10% or less of Al,
10% to 14% of Cr, 0.1% to 4.0% of Ni,
0.05% or less of N, and
the balance being Fe and inevitable impurities in which after heating is performed to a heating temperature for quenching equivalent to or more than the Ac3 transformation point, cooling is performed from the heating temperature for quenching to a temperature range of 100°C or less at a cooling rate equivalent to or more than that of air cooling; and performing a tempering treatment in which following the quenching treatment, heating is performed to a tempering temperature in the range of more than 450°C to 550°C, and cooling is then performed. - The method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to Claim 4, wherein the composition further contains on a mass percent basis, at least one selected from the group consisting of 2.0% or less of Cu and 2.0% or less of Mo.
- The method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to Claim 4 or 5, wherein the composition further contains on a mass percent basis, at least one selected from the group consisting of 0.10% or less of V, 0.10% or less of Nb, and 0.10% or less of Ti.
- The method for manufacturing a martensitic stainless steel seamless pipe for oil country tubular goods according to one of Claims 4 to 6, wherein in the cooling of the tempering treatment, a correctional treatment is performed in a temperature range of 400°C or more.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2007172560A JP5145793B2 (en) | 2007-06-29 | 2007-06-29 | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same |
| PCT/JP2007/070209 WO2009004741A1 (en) | 2007-06-29 | 2007-10-10 | Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP2172573A1 true EP2172573A1 (en) | 2010-04-07 |
| EP2172573A4 EP2172573A4 (en) | 2011-05-18 |
| EP2172573B1 EP2172573B1 (en) | 2014-12-10 |
Family
ID=40225809
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP07829943.5A Not-in-force EP2172573B1 (en) | 2007-06-29 | 2007-10-10 | Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20100193087A1 (en) |
| EP (1) | EP2172573B1 (en) |
| JP (1) | JP5145793B2 (en) |
| CN (1) | CN101437973B (en) |
| RU (1) | RU2431693C1 (en) |
| WO (1) | WO2009004741A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015153092A1 (en) * | 2014-04-01 | 2015-10-08 | Ati Properties, Inc. | Dual-phase stainless steel |
| CN115572907A (en) * | 2022-10-25 | 2023-01-06 | 中广核工程有限公司 | Martensitic stainless steel and its preparation method and application |
| US12221663B2 (en) | 2018-05-25 | 2025-02-11 | Jfe Steel Corporation | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110132501A1 (en) * | 2008-09-04 | 2011-06-09 | Jfe Steel Corporation | Martensitic stainless steel seamless tube for oil country tubular goods and manufacturing method thereof |
| CN102191433A (en) * | 2010-03-17 | 2011-09-21 | “沃斯托克-阿齐亚”有限责任公司 | Seamless pipe for conveying oil field medium |
| CN101956146A (en) * | 2010-10-12 | 2011-01-26 | 西安建筑科技大学 | High strength super-martensitic stainless steel for oil and gas pipelines and preparation method thereof |
| EP2676747B1 (en) | 2011-02-15 | 2019-04-03 | Nippon Steel & Sumitomo Metal Corporation | Method for correcting pipe end of seamless pipe formed from high-cr stainless steel |
| CN102839331B (en) * | 2011-06-24 | 2014-10-01 | 宝山钢铁股份有限公司 | High-toughness corrosion-resistant steel and manufacturing method thereof |
| KR101355464B1 (en) | 2011-12-20 | 2014-01-28 | 주식회사 포스코 | Rolling method of carbon steels |
| JP5807630B2 (en) | 2012-12-12 | 2015-11-10 | Jfeスチール株式会社 | Heat treatment equipment row of seamless steel pipe and method for producing high strength stainless steel pipe |
| RU2537981C1 (en) * | 2013-08-21 | 2015-01-10 | Открытое акционерное общество "Завод им. В.А. Дегтярева" | Method of straightening of steel thin-walled piped combined with tempering |
| CN103740900A (en) * | 2013-11-30 | 2014-04-23 | 常熟市东鑫钢管有限公司 | Heat treatment technology for seamless steel pipes |
| CN106687613A (en) * | 2014-09-08 | 2017-05-17 | 杰富意钢铁株式会社 | High-strength seamless steel pipe for oil well and manufacturing method thereof |
| RU2570964C1 (en) | 2014-12-12 | 2015-12-20 | Открытое акционерное общество "Ордена Трудового Красного Знамени и ордена труда ЧССР опытное конструкторское бюро "ГИДРОПРЕСС" (ОАО ОКБ "ГИДРОПРЕСС") | Heating medium header of steam generator with u-shape pipes of horizontal heat exchange bunch, and method of its producing |
| CN104988403B (en) * | 2015-07-09 | 2017-03-08 | 山西太钢不锈钢股份有限公司 | A kind of oil-gas mining martensitic stainless steel seamless steel pipe and its manufacture method |
| US20200165711A1 (en) * | 2016-02-19 | 2020-05-28 | Nippon Steel & Sumitomo Metal Corporation | Steel |
| CN106119732B (en) * | 2016-06-24 | 2017-11-10 | 张家港海锅重型锻件有限公司 | A kind of deep-sea oil extracting ship F60 two phase stainless steels pipe joint forging feedstock production process |
| CN107099756B (en) * | 2017-05-10 | 2018-09-21 | 西宁特殊钢股份有限公司 | A kind of high-strength corrosion-resisting steel for sucker rod and its production method |
| CN113584407A (en) * | 2020-04-30 | 2021-11-02 | 宝山钢铁股份有限公司 | High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof |
| RU2751069C1 (en) * | 2020-09-30 | 2021-07-07 | Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") | Method for production of 13cr type martensitic stainless steel seamless pipes |
| CN115369313A (en) * | 2021-05-17 | 2022-11-22 | 宝山钢铁股份有限公司 | High-toughness corrosion-resistant martensitic stainless steel oil casing pipe and manufacturing method thereof |
| CN115927800A (en) * | 2022-11-29 | 2023-04-07 | 中国科学院金属研究所 | Low-carbon nitrogen-containing high-strength and high-toughness martensitic stainless steel and heat treatment method thereof |
| JP7574975B1 (en) | 2023-05-18 | 2024-10-29 | Jfeスチール株式会社 | Martensitic stainless steel seamless pipe |
| WO2024236897A1 (en) | 2023-05-18 | 2024-11-21 | Jfeスチール株式会社 | Martensitic stainless seamless steel pipe |
Family Cites Families (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SU1165719A1 (en) * | 1983-11-09 | 1985-07-07 | Уральский ордена Трудового Красного Знамени политехнический институт им.С.М.Кирова | Maraging stainless steel |
| JP2672430B2 (en) * | 1992-02-18 | 1997-11-05 | 新日本製鐵株式会社 | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance |
| JP3250263B2 (en) * | 1992-07-23 | 2002-01-28 | 住友金属工業株式会社 | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance |
| JP2672437B2 (en) * | 1992-09-07 | 1997-11-05 | 新日本製鐵株式会社 | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance |
| JP3328967B2 (en) * | 1992-09-24 | 2002-09-30 | 住友金属工業株式会社 | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance |
| JPH07179943A (en) * | 1993-12-22 | 1995-07-18 | Nippon Steel Corp | Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent corrosion resistance |
| JP3814836B2 (en) * | 1994-08-23 | 2006-08-30 | 住友金属工業株式会社 | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance |
| JPH08109444A (en) * | 1994-10-07 | 1996-04-30 | Nippon Steel Corp | Method for producing seamless martensitic stainless steel pipe for oil well with excellent crushing pressure |
| JP3855300B2 (en) * | 1996-04-19 | 2006-12-06 | 住友金属工業株式会社 | Manufacturing method and equipment for seamless steel pipe |
| MY120831A (en) * | 1998-12-08 | 2005-11-30 | Sumitomo Metal Ind | Martensitic stainless steel products. |
| JP3744254B2 (en) * | 1999-04-27 | 2006-02-08 | 住友金属工業株式会社 | Martensitic stainless steel seamless steel pipe with excellent surface quality |
| JP3485034B2 (en) * | 1999-07-19 | 2004-01-13 | Jfeスチール株式会社 | 862N / mm2 Class Low C High Cr Alloy Oil Well Pipe Having High Corrosion Resistance and Method of Manufacturing the Same |
| JP2001152249A (en) * | 1999-09-08 | 2001-06-05 | Nkk Corp | Method for producing martensitic stainless steel |
| JP3941298B2 (en) * | 1999-09-24 | 2007-07-04 | Jfeスチール株式会社 | High strength martensitic stainless steel pipe for oil wells |
| JP3812360B2 (en) * | 2001-04-09 | 2006-08-23 | 住友金属工業株式会社 | Martensitic stainless steel with excellent strength stability |
| JP4240189B2 (en) * | 2001-06-01 | 2009-03-18 | 住友金属工業株式会社 | Martensitic stainless steel |
| AU2003236231A1 (en) * | 2002-04-12 | 2003-10-27 | Sumitomo Metal Industries, Ltd. | Method for producing martensitic stainless steel |
| RU2219276C1 (en) * | 2002-11-28 | 2003-12-20 | Федеральное государственное унитарное предприятие Производственное объединение "Электрохимический завод" | Martensite-ageing steel and product therefrom |
| AR042494A1 (en) * | 2002-12-20 | 2005-06-22 | Sumitomo Chemical Co | HIGH RESISTANCE MARTENSITIC STAINLESS STEEL WITH EXCELLENT PROPERTIES OF CORROSION RESISTANCE BY CARBON DIOXIDE AND CORROSION RESISTANCE BY FISURES BY SULFIDE VOLTAGES |
-
2007
- 2007-06-29 JP JP2007172560A patent/JP5145793B2/en not_active Expired - Fee Related
- 2007-10-10 WO PCT/JP2007/070209 patent/WO2009004741A1/en not_active Ceased
- 2007-10-10 RU RU2010102917/02A patent/RU2431693C1/en active
- 2007-10-10 US US12/665,097 patent/US20100193087A1/en not_active Abandoned
- 2007-10-10 CN CN2007800007846A patent/CN101437973B/en not_active Expired - Fee Related
- 2007-10-10 EP EP07829943.5A patent/EP2172573B1/en not_active Not-in-force
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015153092A1 (en) * | 2014-04-01 | 2015-10-08 | Ati Properties, Inc. | Dual-phase stainless steel |
| US12221663B2 (en) | 2018-05-25 | 2025-02-11 | Jfe Steel Corporation | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same |
| CN115572907A (en) * | 2022-10-25 | 2023-01-06 | 中广核工程有限公司 | Martensitic stainless steel and its preparation method and application |
| CN115572907B (en) * | 2022-10-25 | 2023-11-17 | 中广核工程有限公司 | Martensitic stainless steel and preparation method and application thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2172573B1 (en) | 2014-12-10 |
| WO2009004741A1 (en) | 2009-01-08 |
| RU2010102917A (en) | 2011-08-10 |
| JP5145793B2 (en) | 2013-02-20 |
| RU2431693C1 (en) | 2011-10-20 |
| US20100193087A1 (en) | 2010-08-05 |
| JP2009007658A (en) | 2009-01-15 |
| CN101437973B (en) | 2012-09-05 |
| EP2172573A4 (en) | 2011-05-18 |
| CN101437973A (en) | 2009-05-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2172573B1 (en) | Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same | |
| JP5487689B2 (en) | Manufacturing method of martensitic stainless steel seamless pipe for oil well pipe | |
| EP1514950B1 (en) | Stainless-steel pipe for oil well and process for producing the same | |
| US10240221B2 (en) | Stainless steel seamless pipe for oil well use and method for manufacturing the same | |
| RU2459884C1 (en) | Tube from high-strength stainless steel with high cracking resistance at strains in sulphide-bearing medium and high-temperature gas corrosion resistance on exposure to carbon dioxide | |
| CN101171351B (en) | Stainless steel pipe for oil well excellent in enlarging characteristics | |
| EP3845680B1 (en) | Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same | |
| JP5499575B2 (en) | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same | |
| EP1099772B1 (en) | Martensite stainless steel for seamless steel tube | |
| EP2060644A1 (en) | Martensitic stainless steel | |
| EP2918697A1 (en) | High-strength stainless steel seamless pipe for oil wells and method for producing same | |
| EP3690072A1 (en) | Oil well pipe martensitic stainless seamless steel pipe and production method for same | |
| EP3287536B1 (en) | Martensitic stainless steel | |
| JP4978073B2 (en) | High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same | |
| EP3690074A1 (en) | Oil well pipe martensitic stainless seamless steel pipe and production method for same | |
| EP2322679B1 (en) | Seamless pipe of martensitic stainless steel for oil well pipe and process for producing the same | |
| CN101815802A (en) | High-strength Cr-Ni alloy product and seamless oil well pipes made by usinfg the same | |
| EP3899062B1 (en) | Hot rolled and steel and a method of manufacturing thereof | |
| EP4079875A1 (en) | Stainless steel seamless pipe for oil well, and method for producing same | |
| EP1876253B1 (en) | Stainless steel pipe for oil well excellent in enlarging characteristics | |
| EP4414463A1 (en) | High-strength seamless stainless steel pipe for oil wells | |
| US20100096048A1 (en) | 655 mpa grade martensitic stainless steel having high toughness and method for manufacturing the same | |
| EP4632101A1 (en) | Martensitic stainless seamless steel pipe |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20100126 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
| DAX | Request for extension of the european patent (deleted) | ||
| A4 | Supplementary search report drawn up and despatched |
Effective date: 20110419 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21D 3/00 20060101ALI20110413BHEP Ipc: C22C 38/02 20060101ALI20110413BHEP Ipc: C22C 38/00 20060101AFI20090127BHEP Ipc: C22C 38/58 20060101ALI20110413BHEP Ipc: C21D 9/08 20060101ALI20110413BHEP |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/40 20060101ALI20130809BHEP Ipc: C21D 8/10 20060101ALN20130809BHEP Ipc: C22C 38/02 20060101ALI20130809BHEP Ipc: C22C 38/58 20060101ALI20130809BHEP Ipc: C22C 38/00 20060101AFI20130809BHEP Ipc: C21D 9/08 20060101ALI20130809BHEP Ipc: C21D 6/00 20060101ALI20130809BHEP Ipc: C22C 38/04 20060101ALI20130809BHEP Ipc: B21D 3/00 20060101ALI20130809BHEP Ipc: C21D 9/14 20060101ALI20130809BHEP Ipc: C21D 1/22 20060101ALI20130809BHEP |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 6/00 20060101ALI20140417BHEP Ipc: C22C 38/40 20060101ALI20140417BHEP Ipc: C22C 38/04 20060101ALI20140417BHEP Ipc: C21D 1/22 20060101ALI20140417BHEP Ipc: C22C 38/00 20060101AFI20140417BHEP Ipc: B21D 3/00 20060101ALI20140417BHEP Ipc: C22C 38/58 20060101ALI20140417BHEP Ipc: C21D 8/10 20060101ALN20140417BHEP Ipc: C22C 38/02 20060101ALI20140417BHEP Ipc: C21D 9/08 20060101ALI20140417BHEP Ipc: C21D 9/14 20060101ALI20140417BHEP |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: C21D 6/00 20060101ALI20140515BHEP Ipc: C22C 38/02 20060101ALI20140515BHEP Ipc: C22C 38/58 20060101ALI20140515BHEP Ipc: C21D 1/22 20060101ALI20140515BHEP Ipc: C22C 38/00 20060101AFI20140515BHEP Ipc: B21D 3/00 20060101ALI20140515BHEP Ipc: C21D 8/10 20060101ALN20140515BHEP Ipc: C22C 38/40 20060101ALI20140515BHEP Ipc: C21D 9/14 20060101ALI20140515BHEP Ipc: C21D 9/08 20060101ALI20140515BHEP Ipc: C22C 38/04 20060101ALI20140515BHEP |
|
| RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21D 3/00 20060101ALI20140521BHEP Ipc: C21D 9/08 20060101ALI20140521BHEP Ipc: C22C 38/58 20060101ALI20140521BHEP Ipc: C22C 38/02 20060101ALI20140521BHEP Ipc: C22C 38/04 20060101ALI20140521BHEP Ipc: C22C 38/40 20060101ALI20140521BHEP Ipc: C21D 1/22 20060101ALI20140521BHEP Ipc: C21D 8/10 20060101ALN20140521BHEP Ipc: C22C 38/00 20060101AFI20140521BHEP Ipc: C21D 9/14 20060101ALI20140521BHEP Ipc: C21D 6/00 20060101ALI20140521BHEP |
|
| INTG | Intention to grant announced |
Effective date: 20140605 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 700712 Country of ref document: AT Kind code of ref document: T Effective date: 20150115 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602007039647 Country of ref document: DE Effective date: 20150122 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 700712 Country of ref document: AT Kind code of ref document: T Effective date: 20141210 Ref country code: NL Ref legal event code: VDEP Effective date: 20141210 |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150311 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150410 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150410 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602007039647 Country of ref document: DE |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| 26N | No opposition filed |
Effective date: 20150911 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151010 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151010 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151010 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151010 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20071010 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141210 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220908 Year of fee payment: 16 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220913 Year of fee payment: 16 Ref country code: DE Payment date: 20220831 Year of fee payment: 16 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602007039647 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231031 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240501 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231010 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231010 |